
    
 This lecture is part of the intelligent systems track of the master
          programme "Computer Science".
        
          The lecture gives an overview over the most important technical neural
          networks and neural paradigms.
          
          The following topics will be explained in detail: Perceptron,
          multi-layer perceptron (MLP), radial-basis function nets (RBF),
          Hopfield nets, self organizing feature maps (SOMS, Kohonen),
          adaptive resonance theory (ART), learning vector quantization,
          recurrent networks, back-propagation of error, reinforcement learning,
          Q-learning, support vector machines (SVM),
          Neocognitron, Convolutional Neural Networks, Deep Learning.
          
          In addition exemplary applications of neural nets will be presented
          and discussed: function approximation, prediction, quality control,
          image processing, speech processing, action planning, control of
          technical processes and robots.
          Implementation of neural networks in hardware and software: tools,
          simulators, analog and digital neural hardware.
        
          The exercises are arranged to intensify the work with
          the research topics presented in the lecture.
          You will get weekly paper-and-pencil assignments that are designed to
          be worked on in two person groups and completed within one week.
          Your results of the assignments shall be presented and discussed
          during
          the exercise group to practice and improve your oral presentation
          skills.
          The paper and pencil assignments are accompanied by small programming
          tasks to be completed using individually implemented programms and
          stat of the art simulation tools.
          You will need to reach half of the possible points from the paper and
          pencil assignments to be admitted to the examination.
        
          
University of Bonn, Institute for Computer Science, Computer Science VI - Intelligent Systems and Robotics Imprint Data Privacy Statement