Universität Bonn: Autonomous Intelligent SystemsInstitute for Computer Science VI: Autonomous Intelligent Systems

CudaVision - Lernende Sehsysteme auf Grafikkarten

Projektgruppe -- BA-INF 051 (B) [B]

Lab -- MA-INF 4308 (B) [B]

Prof. Dr. Sven Behnke, Hannes Schulz

Mittwoch, 13-15:00 c.t. im CI-Lab N904
Vortreffen: Mittwoch, 13. Oktober, 13 Uhr c.t. im Raum N907


Inhalt

Durch die Verfügbarkeit von Programmierschnittstellen, wie CUDA, ist es möglich, die Rechenleistung moderner Grafikkarten für eine Vielzahl von Anwendungen nutzbar zu machen. Lernende Computer-Vision-Systeme können durch die inhärente feinkörnige Parallelität besonders gut durch die parallele Hardware bescheunigt werden: Viele Algorithmen beziehen sich auf einzelne Bildregionen, die zumindest anfangs unabhängig voneinander verarbeitet werden können.

Beschleunigungsfaktoren im Bereich von zwei Größenordnungen ermöglichen es sehr große Datenmengen (z.B. die der Pascal Visual Object Classes Challenge, s.u.) zu verarbeiten und Klassifikatoren länger zu trainieren. Beim Experimentieren mit Lernalgorithmen sind die Wartezeiten drastisch kürzer.

In der Projektgruppe sollen im Praktikumsteil verschiedene Lernverfahren aus dem Bereich der visuellen Mustererkennung mit CUDA implementiert werden.

Im Seminarteil wird der Stand der Forschung im Bereich der Lernverfahren für visuelle Wahrnehmung beleuchtet.

Vorraussetzungen

  • Programmierkenntnisse in C/C++ oder einer anderen objektorientierten Programmiersprache
  • Vorkenntnisse im Bereich Künstliche Intelligenz und maschinelles Lernen sind von Vorteil.

Application Domain: Pascal Object Recognition Challenge

Pascal Object Categorization Challenge

Our two CUDA super computers with 1.920 computing units each

CUDA-Supercomputer

Universität Bonn, Institute for Computer Science, Departments: I, II, III, IV, V, VI