|
CUV
0.9.201304091348
|
|
Functions | |
| template<class V1 , class V2 , class T , class M > | |
| void | cuv::integral_img::integral_image (cuv::tensor< V1, T, M > &dst, const cuv::tensor< V2, T, M > &src) |
| calculate the integral image | |
| template<class V1 , class V2 , class T , class M > | |
| void | cuv::integral_img::scan (cuv::tensor< V1, T, M > &dst, const cuv::tensor< V2, T, M > &src) |
| integrate rows of an image | |
| template<class V , class M > | |
| void | cuv::integral_img::integral_image_4d (cuv::tensor< V, M > &dst, const cuv::tensor< V, M > &src) |
| calculates many integral images in parallel, for data given in format required by Alex' convolutions. | |
| void cuv::integral_img::integral_image | ( | cuv::tensor< V1, T, M > & | dst, |
| const cuv::tensor< V2, T, M > & | src | ||
| ) |
calculate the integral image
this applies
| src | source |
| dst | destination |
| void cuv::integral_img::integral_image_4d | ( | cuv::tensor< V, M > & | dst, |
| const cuv::tensor< V, M > & | src | ||
| ) |
calculates many integral images in parallel, for data given in format required by Alex' convolutions.
The input (and output) is assumed to be row-major and
nChannels x nRows x nCols x nImages.
every channel of every image is integrated separately.
We compute the /exclusive/ scan, s.t. the output is
nChannels x (nRows+1) x (nCols+1) x nImages.
| src | source |
| dst | destination |
| void cuv::integral_img::scan | ( | cuv::tensor< V1, T, M > & | dst, |
| const cuv::tensor< V2, T, M > & | src | ||
| ) |
integrate rows of an image
| src | source |
| dst | destination |
1.8.1.2