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Abstract. Relational data is complex. This complexity makes one of
the basic steps of ILP difficult: understanding the data and results. If the
user cannot easily understand it, he draws incomplete conclusions. The
situation is very much as in the parable of the blind men and the elephant
that appears in many cultures. In this tale the blind work independently
and with quite different pieces of information, thereby drawing very
different conclusions about the nature of the beast. In contrast, visual
representations make it easy to shift from one perspective to another
while exploring and analyzing data. This paper describes a method for
embedding interpretations and queries into a single, common Euclidean
space based on their co-proven statistics. We demonstrate our method
on real-world datasets showing that ILP results can indeed be captured
at a glance.

1 Introduction

Once upon a time, there lived six blind men in a village. One day the villagers
told them, “Hey, there is an elephant in the village today.” They had no idea
what an elephant is. They decided, “Even though we would not be able to see
it, let us go and feel it anyway.” All of them went where the elephant was and
touched the elephant. Each man encountered a different aspect of the elephant
and drew a different inference as to its essential nature. One walked into its side,
concluding that an elephant is like a wall. Another, prodded by the tusk, declared
that an elephant is like a spear. The chap hanging onto the tail was convinced
that he had found a sort of rope. The essential nature of the elephant remained
undiscovered.

The tale is that of “The Blind and the Elephant”, which appears in many
cultures. It illustrates the problem many ILP users face, to make sense of rela-
tional data and models, the elephants, before applying their algorithms or while
interpreting the results. Due to the complexity of the data and the models, the
user can only touch small parts of them, like specific queries. Hence, he often
gets only a narrow and fragmented understanding of their meaning.



In contrast, visual representations make it easy to shift from one perspective
to another while exploring and analyzing data. How to visually explore relational
data and queries jointly, however, has not received a lot of attention within the
ILP community. This can be explained by the fact that relational data involves
objects of several very different types without a natural measure of similarity.
Syntactic similarity measures typically used in ILP (c.f. [8]) cannot be used for
two reasons: First, they cannot relate interpretations and queries, and second,
syntactically different queries might actually have identical semantics w.r.t. the
data, resulting in hard to optimize and hard to interpret embeddings.

Our paper addresses this problem of creating embeddings which visualize inter-
pretations and queries. In our embeddings, query-query and query-interpretation
distances are determined by their respective co-occurrence statistics, i.e., queries
are placed close to queries which were often co-proven and close to interpretations
in which they are true. Properly colored and labeled, our embeddings provide a
generic visualization and interactive exploration of relational databases as well
as the working of query-generating ILP-algorithms.

2 Euclidean Embedding of Co-proven Queries

Given a set of interpretations Z and queries Q, we assign positions in R? to
all © € 7 and ¢ € Q such that the distances in R? reflect the co-occurrence
statistics. Computing joint embeddings of Z and Q essentially requires three
steps: (1) collecting embeddable queries, (2) embedding queries and interpreta-
tions into a single Euclidean space, and — as an optional postprocessing step —
(3) labelling the representation by extracting local representatives. We make the
C++ implementation of our method available on our website.?

Step 1 — Queries: Given a finite set Z of observed interpretations, any ILP
algorithm can be used to preselect embeddable queries Q for Z. Although in
this work we concentrate on feature miners, our embeddings can also be used
to for example embed features extracted for classification. In this paper, we use
Molfea [5] and C-armr* [2] to mine databases of molecules. Both systems are
inspired by the Agrawal’s Apriori algorithm [1]: they construct general queries
and specialize them only if they are frequent. Only queries more frequent than
some threshold are retained and further expanded, i.e., specialized. While Molfea
constructs linear fragments only (atom, bond, atom, ...), C-armr constructs
general queries and can take background knowledge into account as well. In
addition to the queries, we also store the interpretations in which they were true.
This will prove useful for the next step and can efficiently be represented in a
binary matrix C € {0, 1}‘Q‘X|I‘ , where | Q] is the number of queries and |Z| is
the number of observed interpretations.

Step 2 — Embedding: We wish to assign positions to elements in Z and
Q through mappings ¢ : Z — R?% and v : Q — R? for a given dimensionality d.

3 http://www.ais.uni-bonn.de/~schulz/
* in the CLASSIC’CL implementation [10]
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These mappings should reflect the dependence between Z and Q such that the
co-occurrence Cq; (c.f. Step 1) of some ¢ € 7 and ¢ € Q determines the distance
between ¢(i) and ¥(q).

For this purpose, we employ Globerson et al.’s CODE algorithm [4]. CODE
is a generic scheme for co-occurrence-based embedding algorithms. Its main idea
is to represent the empirical joint distribution p(A, B) of two random variables
A and B in a low dimensional space, such that items with high co-occurrence
probability are placed close to each other. In CODE, this idea is realized in the
assumption that

pi,q) = 27" - exp(— [[¢(i) — ¥(q)||), (1)

where Z = >, exp(—[¢(i) — ¥(q)|”) is a normalization constant. Starting
from a random position assignment in ¢ and ¢, CODE then minimizes the
Kullback-Leibler divergence between p(4,q) o Cq; and p(i,q) by maximizing the
log-likelihood (¢, ) = >,  p(i,q)logp(i,q). The maximization is performed
by gradient ascent on the gradient of the log-likelihood function derived with
respect to the axis of the embedding space for each ¢ € 7 and ¢ € Q. The same
problem can also be stated as a convex semi-definite programming problem which
is guaranteed to yield the optimal solution, see [4] for details.

Our situation, however, is slightly more complicated. Following suggestions
by Globerson et.al., we extend the simple model by marginalization and within-
variable co-occurrence measures.

(i) First, we observe that the marginal probability of an interpretation is a
quantity artificially created by the number of queries which are true in it.
An embedding influenced by this margin is not very intuitive to read. We
therefore make the embedding insensitive to p(i) by adding it as a factor
to (1), yielding

plira) = o - P0i) - exp(~9(0) — ¥(a)|*). 2)

(ii) However, the results will still be unsatisfactory: using p(Z, Q) only, CODE
tends to map the interpretations to a circle. This results from the fact that
C is binary and all distances are therefore enforced to be of the same length.
To generate more expressive embeddings, we use the interpretations and
queries to generate a non-binary query-query co-occurence matrix D = CCT
and set p(q, ¢’) o« Dyq . This co-proven statistics of queries ¢ and ¢’ should
be represented by distances in the embedding (similar to (1)) as

p(@d) = 5o (<[9(a) ~ v(@)IP) 3)

As described above, we assign initial positions randomly but now adapt them so
that they maximize the “log-likelihood” of the combined and weighted models
in (2) and (3):

l(¢,w>=2i pli,q)logp(i,q) +|Z1/1Q1 - > plq.q)logp(a.q) -

g 9.9



Thus, our embeddings reflect the relations between co-proven queries as well as
interpretations and queries.

Step 3 — Condensation: Literally thousands of queries and instances can
be embedded into a single Euclidean space and can — as a whole — provide useful
insights into the structure of the data. However, we would also like to get a
grasp on what queries in certain regions focus on. To do so, we propose to single
out queries ¢ in an iterated fashion. Specifically, we assign to each query ¢ the
weight w(q) = F(q)/length(q), where F(q) is ¢’s F1 or Fo-measure, see e.g. [7],
and length(q) is its description length. We now locally remove queries with a
low weight in a two-step process. First, we build the k-nearest neighbour graph
of the embedded queries. From the weight, we subtract the weight of its graph
neighbours, thereby removing large-scale differences. Second, we increase weights
of queries with lower weighted neighbours and decrease weights which have higher
weighted neighbours. The last step is repeated until the number of queries ¢
with a positive weight is not changing anymore. In other words, we prefer short
queries with high F-measures on a local neighbourhood.

3 Interpretation of Generated Embeddings

When feature miners are used to generate queries, embeddings have a typical
shape which looks like a tree as seen from above.

(i) Very common queries are generally placed in the center. For databases
where different classes can be distinguished, we note that those central
queries typically are not very discriminative. For example, in a molecular
database containing organic molecules, we would expect chains of carbon
atoms to be in the center of the embedding.

(ii) Queries which hold only on a subset of the interpretations are placed further
away from the center. Those queries can therefore be seen as “specializations”
of the queries in the center or as a cluster of interpretations. The specializa-
tions can describe discriminative or non-discriminative properties. In the
database of organic molecules, certain aromatic rings might be common in
one group of the molecules, but not in the other.

(iii) The tree-like branching repeats recursively. Neighboring branches most likely
represent a meta-cluster of interpretations; far away branches represent
interpretations which are very dissimilar w.r.t their queries.

Please note that the embedding reflects two of the most important axis in ILP
learning tasks: Learning a theory is always a tradeoff between coverage and
simplicity. In our embeddings, it is easy to judge how specific a query is, how
many of the total interpretations it covers and how it relates to other, similar
queries. Furthermore, the embeddings abstract from the syntax of the queries.
They are solely determined by the interaction of the queries with each other and
the interpretations, which is essential if the complexity of queries necessary to
distinguish interpretations varies over the database.
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Fig. 1. Mutagenesis embedding. We show all frequent queries (triangles)
distinct w.r.t. the interpretations. Black/colored queries have low/high pre-
cision, small/large queries have low/high recall. Red/green queries indicate
negative/positive class. The queries with textual descriptions were automatically
selected, the trivial key attribute was omitted in all but the central queries.

4 Showcases

We tested our approach on several real-world datasets for the two-dimensional
case. To provide a qualitative assessment of our method, we apply it to datasets
where some structures or models have already been discovered and point out the
properties described in Section 3.

4.1 Mutagenesis

On Mutagenesis [9], the problem is to predict the mutagenicity of a set of
compounds. In our experiments, we use the atom and bond structure information
only (including the predefined predicate like ball3s, ring_size_5s, and others).
The dataset consists of 230 compounds (138 positives, 92 negatives). The 2D
Euclidean embedding is shown and in Fig. 1.

As discussed in Section 1, the most common query, here key (A), is placed in
the center. Also notice specializations branching from the center, for example
variants of attyp (B, 10). The embedding reflects rules we could induce employing
Srinivasan’s ALEPH on the same dataset such as active(A) :- attyp(4,B,29),
ring size 5s(A) or active(A) :- ball3s(A). Queries which primarily hold
on positive/negative interpretations are spatially well separated and form clusters
which indicate similar coverage of interpretations.
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Fig. 2. Estrogen embedding. The coding is as in Fig. 1; only black/colored
queries indicate now low/high mean activity of the respective interpretations.

4.2 Estrogen Database

The Estrogen database was extracted from the EPA’s DSSTox NCTRER
Database®. The original dataset was published by Fang et al. [3], and is specially
designed to evaluate QSAR approaches. The NCTRER. database provides ac-
tivity classifications for a total of 232 chemical compounds, which have been
tested regarding their binding activities for the estrogen receptor. The database
contains a diverse set of natural, synthetic, and environmental estrogens, and
is considered to cover most known estrogenic classes spanning a wide range of
biological activity [3]. Here, “activity” is an empirically measured value between
0 and 100, which we averaged and used as a query’s color. The 2D Euclidean
embedding is shown and discussed in Fig. 2.

The embedding shows oxygen (O) as a primary component of organic molecules
and a typical branching structure, starting from the center and on a smaller
level for example from nitrogen (N) and chlorine (Cl) -based compounds. The
activity varies smoothly in the embedding, as extending a chain with certain
atoms increases or decreases the chance of higher activity. Even for clearly active
molecules, different subtypes can be distinguished.

In their original publication Fang et al. have identified that a phenolic ring
connected by one to three atoms to another benzene ring is one of the key features
that have to be present regarding the likelihood of a compound being an ER
ligand. A phenolic ring is a 6-carbon benzene ring with an attached hydroxyl
(OH) group. In the embedding, it can be seen that this is reflected in features
like C-C-C=C-0, which indicates that there is a path of one carbon atom to (a
part of) a ring structure (C-C=C) connected to an oxygen.

® http://www.epa.gov/ncct /dsstox/sdf_nctrer.html
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Fig. 3. Left: AIDS database embedding. The coding is as in Fig. 1. Right: Azi-
dothymidine (AZT), a component known to be very active. AZT and derivatives
are represented by the left central branch in the embedding.

4.3 AIDS Database

The DTP AIDS Antiviral Screening Database originating from the NCI’s de-
velopment therapeutics program NCI/NIHS consists of SMILES representations
of 41,768 chemical compounds [6]. Each data entry is classified as either active,
moderately active, or inactive. A total of 417 compounds are classified as active,
1,069 as moderately active, and 40,282 as inactive. We have converted this dataset
into SDF format using the OpenBabel toolkit and randomly sampled 400 active
and 400 moderate/inactive compounds. The 2D Euclidean embedding is shown
and discussed in Fig. 3.

In this database we can clearly see a natural distinction of queries: While
oxygen (O) and nitrogen (N) are both common, the lower half of the embedding
focuses on nitrogen-based molecules. Within this half, further distinctions (left:
flourine (F), right: sulfur (S) -based compounds) can be made.

The embedding clearly indicates compounds that are derivatives of Azi-
dothymidine (AZT), a potent inhibitor of HIV-1 replication. In the left central
branch, the embedding clearly indicates prominent features of AZT, such as the
nitrogen-group N=N=N and the C-N-C-N-C-0 chain connecting both rings.

5 Concluding Remarks

In our opinion, to unveil its full power, ILP must incorporate visual analysis
methods. With the work presented here, we have made a step in this direction.

5 http://dtp.nci.nih.gov/



We have presented the first method for embedding interpretations and queries
into the same Euclidean space based on their co-occurrence statistics. As our
experiments demonstrate, the spatial relationships in the resulting embedding
are intuitive and can indeed reveal useful and important insights at a glance.
Aside from their value for visual analysis, embeddings are also an important
tool in unsupervised learning and as a preprocessing step for supervised learning
algorithms. In future research, we will explore this direction.
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