
A N A LY T I C B I P E D A L WA L K I N G W I T H F U S E D A N G L E S A N D

C O R R E C T I V E A C T I O N S I N T H E T I LT P H A S E S PA C E

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

philipp allgeuer

aus

Klosterneuburg, Österreich

Bonn, März 2020

Angefertigt mit Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

1 . gutachter:
2 . gutachter:

Prof. Dr. Sven Behnke
Prof. Dr. Maren Bennewitz

tag der promotion:
erscheinungsjahr:

4. November 2020
2020

To the one who wraps me, and to my mother Karin,
without whose tireless efforts spanning two decades

I would not even be writing this.

iv

A B S T R A C T

As humanoid robots start to move from research labs to workplace
environments and homes, the topic of how they should best and most
reliably locomote in the face of unknown disturbances will be a topic
of increasing importance. This thesis presents algorithms and meth-
ods for the feedback-stabilised walking of bipedal humanoid robotic
platforms, along with the underlying theoretical and sensorimotor
frameworks required to achieve it. Bipedal walking is inherently com-
plex and difficult to control due to the high level of nonlinearity and
significant number of degrees of freedom of the concerned robots, the
limited observability and controllability of the corresponding states,
and—especially for low-cost robots—the combination of imperfect
actuation with less-than-ideal sensing. The methods presented in this
thesis deal with these issues in a multitude of ways, ranging from the
development of an actuator control and feed-forward compensation
scheme, to the implementation of numerous sensor calibration and
processing schemes, to the inclusion of inherent filtering in almost all
of the gait stabilisation feedback pipelines.

Two gaits are developed and investigated in this work, the direct
fused angle feedback gait, and the tilt phase controller. Both gaits
follow the design philosophy of internally leveraging a semi-stable
open-loop gait generator, and extending it through stabilising feed-
back via the means of so-called corrective actions. The idea of using
corrective actions is to modify the generation of the open-loop joint
waveforms in such a way that the balance of the robot is influenced
and thereby ameliorated. Examples of such corrective actions include
modifications of the arm swing and leg swing trajectories, the applica-
tion of dynamic positional and rotational offsets to the hips and feet,
and adjustments of the commanded step size and timing.

Underpinning both feedback gaits and their corresponding gait
generators (the CPG and KGG) are significant advances in the field of 3D
rotation theory. These advances in particular include the development
of three novel rotation representations, the tilt angles, fused angles,
and tilt phase space representations. All three of these representations
are founded on a new innovative way of splitting 3D rotations into
their respective yaw and tilt components.

All of the algorithms presented in this thesis were implemented as
part of the Humanoid Open Platform ROS Software release, and tested
on a multitude of real and simulated robots, including in particular
the igus Humanoid Open Platform and NimbRo-OP2. The notable
walking stability that was achieved critically contributed to Team
NimbRo’s yearly wins at the international RoboCup competition from
2016 onwards.

v

vi

Z U S A M M E N FA S S U N G

Humanoide Roboter verlassen zunehmend die Forschungslabore und
beginnen das alltägliche Leben zu durchdringen, sowohl in Arbeitsum-
gebungen als auch in Privathaushalten. Angesichts dieser Entwicklung
gewinnt die Frage, wie Roboter sich unter dem Einfluss unvorherseh-
barer Störungen zuverlässig fortbewegen können, eine immer größere
Bedeutung. Die vorliegende Arbeit stellt Methoden, Algorithmen,
sowie die dazu erforderlichen theoretischen und sensomotorischen
Grundlagen des stabilen Gangs auf zwei Beinen vor. Die Bipedie
ist von Natur aus komplex und schwierig zu steuern, da zweibeini-
ge Roboter ein hohes Maß an Nichtlinearität und eine hohe Anzahl
an Freiheitsgraden aufweisen. Weitere Schwierigkeiten ergeben sich
durch die eingeschränkte Beobachtbarkeit und Kontrollierbarkeit des
Zustands, sowie die insbesondere bei kostengünstigen Robotern auf-
tretende Kombination aus unpräziser Motorik und ungenauer Senso-
rik. Die vorgestellten Algorithmen lösen diese Problematik durch die
Kombination verschiedener Techniken, insbesondere durch ein neu-
artiges Aktuator-Regelungsschema, zahlreiche Sensorkalibrierungs-
und Prozessschemata, sowie die Anwendung von Filtern in den Rück-
kopplungspfaden.

In dieser Arbeit werden zwei Gangarten entwickelt und unter-
sucht, der „direct fused angle feedback gait“ und der „tilt phase
controller“. Beide Gangarten benutzen einen semistabilen Open-Loop-
Ganggenerator, der zur Stabilisierung des Roboters mit Korrekturmaß-
nahmen erweitert wird. Diese Korrekturmaßnahmen modifizieren die
erzeugten Gelenktrajektorien, und beeinflussen dadurch das Gleichge-
wicht des Roboters. Beispiele für diese Korrekturmaßnahmen stellen
die gezielte Abänderung der Bewegungsbahnen der Arme und Beine,
sowie die Adaptierung der Schrittgrößen und Zeitabfolgen dar.

Beide Gangarten, sowie die dazugehörigen Ganggeneratoren (CPG

und KGG), bauen auf umfangreichen Neuentwicklungen auf dem
Gebiet der 3D-Rotationstheorie auf, die ebenfalls in dieser Arbeit
vorgestellt werden. Diese umfassen insbesondere die Entwicklung
von drei neuartigen Rotationsdarstellungen, die „tilt angles“, „fused
angles“ und „tilt phase space“ Darstellungen. Alle drei basieren auf
einem neuen, innovativen Ansatz zur Aufteilung von Rotationen im
dreidimensionalen Raum in Gier- und Neigungskomponenten.

Alle in dieser Arbeit vorgestellten Algorithmen wurden in der Hu-
manoid Open Platform ROS Software implementiert und auf mehreren
humanoiden Robotern praktisch erprobt, unter anderem auch auf der
igus Humanoid Open Platform. Die hohe Stabilität des damit erzielten
Gangs trug maßgeblich zu den zahlreichen Siegen des Teams NimbRo
bei den jährlichen RoboCup Wettbewerben ab 2016 bei.

vii

viii

A C K N O W L E D G E M E N T S

I would first of all like to thank Lynne Winkler for her unquestionable
support in all aspects of my life, be it robots, RoboCup, climbing,
Ninja Warrior competitions, or anything else. I would also like to
thank Marcell Missura for inducting me into the world of bipedal
walking, Hafez Farazi for the hard work we shared preparing for those
many RoboCups, and Grzegorz Ficht for building the NimbRo-OP2
and NimbRo-OP2X robots, with the help of André Brandenburger,
who also kept the robots in good shape for whenever I needed them. I
would also like to thank Michael Schreiber for his general mechanical
and mechatronic support, Max Schwarz for helping me whenever
I had a particularly fiendish Linux problem or bug, and Prof. Dr.
Sven Behnke for the opportunity to pursue my research interests and
compete at the RoboCup competitions.

ix

This is an abridged version of the full PhD thesis,
for the purposes of making it suitable for submission.

A more detailed version that incorporates extra
explanations and significant extra material can be found at:

https://arxiv.org/pdf/2011.10339

Refer to: Allgeuer (2020)

x

https://arxiv.org/pdf/2011.10339

C O N T E N T S

1 introduction 1
1.1 Key Contributions . 4
1.2 Publications . 6
1.3 Outline . 8

2 related work 9
2.1 ZMP-based Gait Generation 9

2.1.1 Preview Control 10
2.1.2 Model Predictive Control 11

2.2 Capture Point and Divergent Component of Motion . 13
2.3 RoboCup Walking Approaches 16
2.4 Discussion . 18

3 actuator control 21
3.1 Servo Motor Model . 21

3.1.1 DC Motor Model 22
3.1.2 Compensated Motor Control 24

3.2 Feed-forward Torque Estimation 25
3.2.1 Single Support Models 25
3.2.2 Joint Torque Estimation 26

3.3 Experimental Results 28
3.4 Discussion . 31

4 sensor calibration 33
4.1 Inertial Measurement Unit Calibration 33

4.1.1 IMU Orientation Calibration 33
4.1.2 Gyroscope Scale Calibration 34
4.1.3 Gyroscope Bias Calibration 35
4.1.4 Online Gyroscope Bias Autocalibration 36

4.2 Sensor Calibration in the Bigger Picture 38

5 representations of 3d rotations 39
5.1 Motivation and Aims 40

5.1.1 Amount of Rotation in the Major Planes . . . 40
5.1.2 Partitioning of Rotations into Yaw and Tilt . . 42

5.2 Existing Rotation Representations 44
5.2.1 Rotation Matrices 44
5.2.2 Axis-angle and Rotation Vector Representations 45
5.2.3 Quaternions . 46
5.2.4 Euler Angles 48

5.3 Partitioning Rotations into Yaw and Tilt 52
5.3.1 Fused Yaw . 52
5.3.2 Tilt Rotations 54
5.3.3 Tilt Angles Representation 57

xi

xii contents

5.3.4 Fused Angles Representation 58
5.3.5 Tilt Phase Space 60

5.4 Rotation Representation Conversions 65
5.4.1 From Tilt Angles To 66
5.4.2 From Fused Angles To 67
5.4.3 From Tilt Phase Space To 69
5.4.4 From Quaternion To 69
5.4.5 From Rotation Matrix To 71

5.5 Singularity Analysis . 71
5.5.1 Fused Yaw Singularity 72
5.5.2 Other Singularities 74

5.6 Selected Properties of Yaw-Tilt Rotations 75
5.6.1 Links Between Quaternions and Fused Yaw . 76
5.6.2 Links Between Fused Angles and Euler Angles 77

5.7 Discussion . 77
5.7.1 Rotation Representation Aims 77
5.7.2 Application Examples 78

6 why not euler angles? 81
6.1 Euler Angles Conventions 81
6.2 Problems with Euler Angles 82

6.2.1 Singularities and Local Parameter Sensitivities 84
6.2.2 Mutual Independence of Rotation Parameters 85
6.2.3 Axisymmetry of Yaw 90
6.2.4 Axisymmetry of Pitch and Roll 95

6.3 Conclusion . 111

7 attitude estimation 113
7.1 Related Work . 114
7.2 Problem Definition and Notation 115
7.3 Sensor Inputs . 116
7.4 Complementary Filtering 118

7.4.1 1D Linear Complementary Filter 118
7.4.2 Extension to 3D Nonlinear Filtering 119
7.4.3 3D Nonlinear Passive Complementary Filter . 119

7.5 Measured Orientation Resolution Methods 122
7.5.1 Magnetometer Resolution Method 122
7.5.2 Fused Yaw Resolution Method 124

7.6 Extensions to the Estimator 125
7.6.1 Quick Learning 125
7.6.2 Estimation without Magnetometer Data . . . 126

7.7 Experimental Results 126
7.8 Discussion . 133

8 a central pattern generator for walking 135
8.1 CPG Gait Interfaces . 136

8.1.1 CPG Gait Inputs 136
8.1.2 CPG Gait Outputs 137

contents xiii

8.1.3 Provisions for Closed-loop Feedback 137
8.2 CPG Motion Generation 139
8.3 Experimental Results 139

9 direct fused angle feedback controller 143
9.1 Gait Structure . 143
9.2 Corrective Actions . 144
9.3 Fused Angle Feedback Mechanisms 146

9.3.1 Proportional Feedback 147
9.3.2 Derivative Feedback 148
9.3.3 Integral Feedback 149
9.3.4 Timing Feedback 150
9.3.5 Virtual Slope Feedback 151
9.3.6 Tuning of the Feedback Mechanisms 152

9.4 Experimental Results 152
9.5 Conclusion . 165

10 keypoint gait generator 167
10.1 Motivation . 168

10.1.1 Strategies for Balanced Walking 168
10.1.2 Gait Architecture 169
10.1.3 Aims for the Gait Generator 171

10.2 Keypoint Gait Generation 173
10.2.1 Corrective Actions 173
10.2.2 Gait Generator Interface 176
10.2.3 Keypoint Trajectory Generation 179
10.2.4 Implementation 179

10.3 Discussion . 179
10.3.1 Characteristics of the Generator 179
10.3.2 Advantages of the Abstract Space 182

10.4 Experimental Results 182
10.5 Conclusion . 183

11 tilt phase controller 187
11.1 Gait Architecture . 189

11.1.1 Gait Command Velocity 189
11.1.2 The Tilt Phase Space 190

11.2 Tilt Phase Controller Formulation 191
11.2.1 Preliminaries 191
11.2.2 Deviation Tilt 193
11.2.3 Arm and Support Foot Tilt 195
11.2.4 Hip Shift and Continuous Foot Tilt 196
11.2.5 Leaning . 197
11.2.6 Swing Out . 198
11.2.7 Swing Ground Plane 199
11.2.8 Maximum Hip Height 200
11.2.9 Timing Adjustment 201
11.2.10 Step Size Adjustment 201

xiv contents

11.3 Experimental Results 205
11.4 Conclusion . 218

12 conclusion 221
12.1 Future Directions . 222

bibliography 225

L I S T O F F I G U R E S

Figure 3.1 Simple DC motor model 23
Figure 3.2 Visualisation of torque superposition for feed-

forward joint torque estimation 27
Figure 3.3 Comparison of servo target positions with and

without actuator control scheme 30
Figure 3.4 Plot of actuator tracking performance with and

without the actuator control scheme enabled . 31

Figure 4.1 Demonstration of gyroscope bias autocalibration 37

Figure 5.1 The three major planes of balance 41
Figure 5.2 Yaw, pitch and roll as three scalar angular values 42
Figure 5.3 Intrinsic ZYX Euler angles convention 50
Figure 5.4 Definition of the tilt angles parameters 53
Figure 5.5 Examples of tilt rotations 54
Figure 5.6 Definition of the fused angles parameters . . . 59
Figure 5.7 Fused angles pitch/roll domain 60
Figure 5.8 Polar plot of the 2D tilt phase space parameters 61
Figure 5.9 Examples of tilt rotations and their respective

tilt phase space parameters 63
Figure 5.10 Tilt vector addition in the tilt phase space . . . 66
Figure 5.11 Yaw/tilt ambiguity at the fused yaw singularity 72

Figure 6.1 Example of the illogicality of ZYX Euler yaw . 83
Figure 6.2 Plot of Euler angles, fused angles and tilt phase

space parameter sensitivities to infinitesimal
local z-rotations at pure pitch orientations . . . 86

Figure 6.3 Definition of frames for the investigation of para-
meter axisymmetry 92

Figure 6.4 Plots of yaw against β for the determination of
parameter axisymmetry 94

Figure 6.5 3D plots of the Euler/fused/tilt phase space
parameters of all pure tilt rotations (Part 1) . . 96

Figure 6.6 3D plots of the Euler/fused/tilt phase space
parameters of all pure tilt rotations (Part 2) . . 97

Figure 6.7 Axisymmetric fused pitch/roll locus as β varies 102
Figure 6.8 Axisymmetric phase pitch/roll locus as β varies 104
Figure 6.9 Pitch/roll axisymmetry comparison for fused

angles, Euler angles and the tilt phase space . 106
Figure 6.10 Plots of pitch/roll against β for the determina-

tion of parameter axisymmetry 108
Figure 6.11 Tilt phase space level sets of constant α 109

xv

xvi list of figures

Figure 6.12 Fused/Euler angles level sets of constant sin α 110

Figure 7.1 Overview of the coordinate frame definitions for
the attitude estimator 120

Figure 7.2 Plots of the attitude estimation experiment data 128
Figure 7.3 360° yaw rotation of the robot 130
Figure 7.4 Long-term yaw estimation accuracy of the atti-

tude estimator 130
Figure 7.5 Effect of quick learning on attitude estimation 132

Figure 8.1 Sample output waveforms of the Central Pattern
Generator . 141

Figure 9.1 Summary of the direct fused angle feedback
controller corrective actions 144

Figure 9.2 Illustration of the corrective actions 145
Figure 9.3 Fused angle feedback calculation pipeline . . . 147
Figure 9.4 Plots of experimental results for the five feed-

back mechanisms 155
Figure 9.5 Expected fused angle waveforms during walking 156
Figure 9.6 Plots of the response of the direct fused angle

feedback controller to sagittal pushes 158
Figure 9.7 Plot of the ratio of withstood pushes against

push impulse magnitude 159
Figure 9.8 Transient responses to sagittal pushes of various

strengths . 160
Figure 9.9 Phase responses to sagittal pushes of various

strengths . 162
Figure 9.10 Heat map of phase responses to sagittal pushes

of various strengths 164

Figure 10.1 Overview of the keypoint gait architecture . . 170
Figure 10.2 Illustrations of the various corrective actions of

the KGG . 174
Figure 10.3 Sample output waveforms of the Keypoint Gait

Generator . 184

Figure 11.1 Overview of the tilt phase controller approach 188
Figure 11.2 Overview of the tilt phase controller feedback

pipeline . 192
Figure 11.3 Illustration of the tripendulum model 203
Figure 11.4 Plots of the PD, I and leaning corrective actions

acting on a real robot 209
Figure 11.5 Plots of the swing out and swing ground plane

corrective actions on a real robot 210
Figure 11.6 Plots of the timing and maximum hip height

corrective actions on a real robot 211

Figure 11.7 Plot of backwards push of the NimbRo-OP2X
with step size adjustment 212

Figure 11.8 Plot of the ratio of withstood pushes against
push impulse magnitude 216

Figure 11.9 Phase responses to sagittal pushes of various
strengths . 217

Figure 11.10 Heat map of phase responses to sagittal pushes
of various strengths 219

L I S T O F TA B L E S

Table 5.1 Complete list of Euler angles axis conventions 49

Table 9.1 Number of withstood simulated pushes (open-
loop vs. closed-loop) 159

Table 11.1 Number of withstood simulated pushes for vari-
ous controllers 216

xvii

L I S T O F V I D E O S

Video 1.1 Highlights of NimbRo TeenSize at the RoboCup
2016 competition in Leipzig, Germany
https://youtu.be/G9llFqAwI-8

RoboCup 2016: Humanoid TeenSize Soccer Winner
NimbRo . 2

Video 1.2 Highlights of NimbRo AdultSize at the RoboCup
2018 competition in Montréal, Canada
https://youtu.be/tPktQyFrMuw

RoboCup 2018 Humanoid AdultSize Soccer Winner
NimbRo . 3

Video 3.1 Demonstration of the feed-forward torque estima-
tion scheme on the igus Humanoid Open Platform
in Gazebo simulation
https://youtu.be/4AQRvCpquC8

Demonstration of Feed-forward Torque Estimation Dur-
ing Robot Motions 29

Video 7.1 Recording of the attitude estimation experiment
https://youtu.be/LEkEiFzAVrE

Attitude Estimation Experiment (RViz vs Real) 128

Video 8.1 Demonstration of the open-loop Central Pattern
Generator (CPG) gait on the igus Humanoid Open
Platform, Dynaped and NimbRo-OP2 robots
https://youtu.be/ksJRwGlSuTM

Open-loop Central Pattern Generator (CPG) Walking . 142

Video 9.1 Walking experiments demonstrating the feedback
mechanisms implemented as part of the direct fused
angle feedback controller
https://youtu.be/xnzJi2hTfAo

Omnidirectional Bipedal Walking with Direct Fused
Angle Feedback Mechanisms 153

Video 9.2 Demonstration of the closed-loop direct fused angle
feedback gait
https://youtu.be/DvxZJVVRdyE

Walking with Corrective Actions Driven by Direct Fused
Angle Feedback . 157

xviii

https://youtu.be/G9llFqAwI-8
https://youtu.be/tPktQyFrMuw
https://youtu.be/4AQRvCpquC8
https://youtu.be/LEkEiFzAVrE
https://youtu.be/ksJRwGlSuTM
https://youtu.be/xnzJi2hTfAo
https://youtu.be/DvxZJVVRdyE

list of videos xix

Video 9.3 Push resistance test performed on an igus Hu-
manoid Open Platform walking with the direct
fused angle feedback controller in simulation
https://youtu.be/c6zlCK4nFG0

Direct Fused Angle Feedback Controller Simulated Push
Resistance Test . 161

Video 10.1 Kinematic demonstration of the Keypoint Gait Gen-
erator (KGG)
https://youtu.be/XIfxTRLFbwI

Kinematic View of Keypoint Gait Generated Open-loop
Walking . 185

Video 11.1 Short demonstration of the action of the tilt phase
controller
https://youtu.be/ub0GvZ7AbLc

Short Demonstration of the Action of the Tilt Phase
Controller . 206

Video 11.2 Demonstration of the effect of the various imple-
mented KGG corrective actions
https://youtu.be/spFqqktZ1s4

Demonstration of corrective actions: Bipedal walking
with corrective actions in the tilt phase space 206

Video 11.3 Demonstration of step size adaptation using the tilt
phase controller and tripendulum model
https://youtu.be/R9gThzV1hTQ

Step Size Adaptation Using the Tripendulum Model . 207

Video 11.4 First walking and balance test of the tilt phase con-
troller (in simulation)
https://youtu.be/A_HQQfCRhDE

First Walking and Balance Test of the Tilt Phase Con-
troller . 214

Video 11.5 Maximum forwards walking speed test using the
KGG and tilt phase controller
https://youtu.be/yY0kpUZpjO4

Maximum forwards walking speed test: Bipedal walking
with corrective actions in the tilt phase space 214

Video 11.6 Push resistance test performed on an igus Hu-
manoid Open Platform walking with the tilt phase
controller in Gazebo simulation
https://youtu.be/OSvHgVIYquc

Tilt Phase Controller Simulated Push Resistance Test . 215

https://youtu.be/c6zlCK4nFG0
https://youtu.be/XIfxTRLFbwI
https://youtu.be/ub0GvZ7AbLc
https://youtu.be/spFqqktZ1s4
https://youtu.be/R9gThzV1hTQ
https://youtu.be/A_HQQfCRhDE
https://youtu.be/yY0kpUZpjO4
https://youtu.be/OSvHgVIYquc

L I S T O F A C R O N Y M S

AHRS Attitude and Heading Reference System 114
CAD Computer-Aided Design 31
CCW Counterclockwise . 34
CMP Centroidal Moment Pivot [Point] 14
CoM Centre of Mass [Point] 4
CoP Centre of Pressure [Point] 13
CPG Central Pattern Generator 4
CPU Central Processing Unit [Hardware] 132
CW Clockwise . 127
DC Direct Current . 21
DCM Divergent Component of Motion [Point] 14
DDP Differential Dynamic Programming 11
DoF Degree of Freedom 26
eCMP Enhanced Centroidal Moment Pivot [Point] 15
EKF Extended Kalman Filter [Filter] 114
EMF Electromotive Force 22
EW Exponentially Weighted [Integrator] 149
GCV Gait Command Velocity 136
GPS Global Positioning System [Sensor] 115
IIR Infinite Impulse Response [Filter] 197
ILC Iterative Learning Control 25
IMU Inertial Measurement Unit [Sensor] 5
KGG Keypoint Gait Generator 4
LIDAR Light Detection and Ranging [Sensor] 115
LIPM Linear Inverted Pendulum Model 10
MEMS Micro-Electro-Mechanical Systems [Sensor] 113
MIQCP Mixed-Integer Quadratically Constrained Program 12
MPC Model Predictive Control 11
PC Personal Computer [Hardware] 25
PD Proportional-Derivative [Controller] 17
PI Proportional-Integral [Controller] 14
PID Proportional-Integral-Derivative [Controller] 21
PWM Pulse Width Modulation 22
QP Quadratic Program 12
RBDL Rigid Body Dynamics Library [Software] 26
RNEA Recursive Newton Euler Algorithm 26
ROS Robot Operating System [Middleware] 6
SISO Single-input single-output 114
SPL Standard Platform League 17
SQD Spatially Quantised Dynamics 10
URDF Unified Robot Description Format [File format] . . 26

xx

list of acronyms xxi

VHIP Variable-Height Inverted Pendulum 16
VRP Virtual Repellent Point [Point] 15
WLBF Weighted Line of Best Fit [Filter] 148
ZMP Zero Moment Point [Point] 9

xxii

1
I N T R O D U C T I O N

The task of bipedal locomotion exposes many facets of the concept
of balance—most notably the many and varied methods by which
balance can be preserved. While humans, even in early childhood,
seem to effortlessly know how to stabilise their gait and best react to
pushes from all directions while walking, the situation is very different
for humanoid robotic platforms. For robots it must first be established
by which approaches they can be made to keep their balance, before
algorithms can be developed that allow them to reliably execute such
strategies. It is a desire in the field of humanoid robotics for legged
robots to eventually be able to move as fluidly and dynamically as
their animal and human counterparts. Although this is something that
we are beginning to see in the state of the art of quadruped robots, for
biped robots this goal is still decently removed.

This thesis explores the generation of robust feedback-stabilised
bipedal walking gaits, with the aim of using as diverse a set of
strategies as possible for keeping balance—not just the standard ad-
justments of step size and timing.1 It is explored how gaits and their
underlying sensorimotor architecture can be constructed so that they
work in particular for low-cost robots, where dealing with sensor
noise and lacking actuator precision is paramount, and where the
kinds of calculations and predictions one can make about the future
states of the robot are limited. With possible additional restrictions on
the available onboard computational resources, methods are investig-
ated that rely predominantly on analytic calculation, and not on the
solution of large-scale numerical optimisation problems. This allows
the resulting methods to be as portable and efficient as possible in
generating largely model-free walking motions for a wide range of
bipedal robots.

The task of bipedal locomotion poses many difficulties for a robot,
including having to deal with incomplete information, sensor noise,
imperfect actuation, joint backlash, structural non-rigidities, uneven
surfaces, external disturbances, and latencies in the sensorimotor loop.
The control aspect of bipedal walking is also made difficult by the
high dimensionality and significant nonlinearity of the system, as well
as the floating-base nature of the trunk, relatively low controllability
of the full dynamical system, and the only indirect observability of
the positions and orientations of the trunk and limbs of the robot.
Viewed at a fundamental level, all changes of state of the robot can
only be effectuated via the foot-to-ground contact forces, but exactly

1 With sometimes the additional application of ankle torque strategies.

1

2 introduction

Video 1.1: Highlights of the performance of team NimbRo in the TeenSize
soccer competition at RoboCup 2016 in Leipzig, Germany. The
robot soccer team won the competition, and consisted of Dynaped
and four igus Humanoid Open Platform robots.
https://youtu.be/G9llFqAwI-8

RoboCup 2016: Humanoid TeenSize Soccer Winner NimbRo

these forces are neither controllable nor measurable2 nor particularly
predictable, so the resulting task is highly challenging.

The algorithms that are developed in this thesis to address these
challenges—and specifically the requirements that these algorithms
then have to fulfil—are motivated by the environment of the Robo-
Cup competition. RoboCup, or specifically the RoboCup Humanoid
League, is a yearly international competition where teams from all
over the world come together to compete against each other in robot
soccer. The robots have to be fully autonomous, and fall into one of
three size classes: KidSize, TeenSize and AdultSize. Videos 1.1 and 1.2
show summaries of two of NimbRo’s many winning entries to the
TeenSize and AdultSize competitions over the recent years.3 As can
be seen in the videos, the soccer fields that the robots play on consist
of an uneven artificial grass surface that can be unpredictable and
destabilising at times. Frequent tangles and contacts between the
robots also cause the field to become a locomotion environment that
is rife with a wide variety of unforeseeable disturbances.4 The main
influence of the RoboCup competition on the methods developed
in this thesis however, is from the perspective of robustness under
continuous autonomy. RoboCup lends the viewpoint that a method
is only useful if it does the right thing every time, in every situation,
without the possibility of external intervention—and not if it only
does the right thing 95% of the time.

2 No reliable ankle force-torque sensors are assumed to be available in this thesis.
3 See also: https://youtu.be/RG205OwGdSg and https://youtu.be/6ldHWWHfeBc

4 See: https://youtu.be/IuqGolmLi2M

https://youtu.be/G9llFqAwI-8
https://youtu.be/RG205OwGdSg
https://youtu.be/6ldHWWHfeBc
https://youtu.be/IuqGolmLi2M

introduction 3

Video 1.2: Highlights of the performance of team NimbRo in the Adult-
Size soccer competition at RoboCup 2018 in Montréal, Canada.
The robot soccer team won the competition, and consisted of
the NimbRo-OP2, NimbRo-OP2X, and a highly modified Copedo
robot for jumping.
https://youtu.be/tPktQyFrMuw

RoboCup 2018 Humanoid AdultSize Soccer Winner NimbRo

There are two main paradigms for the implementation of bipedal
robotic gaits. A common approach in the state of the art is to use a
dynamics model of some kind to capture and predict the physical
response of the robot, and calculate or optimise a trajectory to satisfy
the required motion and balance criteria. This motion trajectory is
then executed on the robot, often with a controller to reject deviations
and enforce tracking, and/or under regular recomputation to adapt
for differences in the real response of the robot. For low-cost and
imprecise robots however, where good quality tracking and execution
of a trajectory is not given, using such optimised trajectories generated
directly from simplified or even whole-body dynamics models is often
fraught with difficulty. Significant nonlinearities, such as joint backlash,
sensor and actuator delays, irregular properties of the contact surface,
and unmeasurable external disturbances, are difficult to incorporate
into models. This greatly limits the predictive power of such models,
and subsequently the applicability of such methods to such robots.

Small, cheap and simple robots can often easily be made to walk
despite these nonlinearities using hand-crafted gaits. These gaits are
usually not very flexible, and not particularly resistant to disturbances,
but nevertheless find a way to make use of the natural dynamics of the
robot to produce a functional semi-stable gait. This is the foundation
of the second paradigm for the implementation of bipedal gaits—
letting the robot find its own natural rhythm with an open-loop gait
generator, and extending this generator with feedback controllers that
seek to return the robot to that rhythm when there are noticeable

https://youtu.be/tPktQyFrMuw

4 introduction

deviations from it. The gaits developed in this thesis, namely the
direct fused angle feedback gait and the tilt phase controller, both
follow this paradigm, and extend their respective open-loop gaits,
the Central Pattern Generator (CPG) and the Keypoint Gait Generator
(KGG), with so-called corrective actions. These are targeted dynamic
modifications of the generated open-loop waveforms that are designed
to influence the balance of the robot in a particular way. Examples
of corrective actions include tilt adjustments of the arms, orientation
adjustments of the feet, and translational shifts of the robot’s Centre of
Mass (CoM). It should be noted that step size and timing adjustments
are also considered to be corrective actions, but step size feedback, for
example, is only used as a last resort for keeping balance, as amongst
other things it leads to a direct non-compliance with any existing
footstep plans.

Underpinning the two new gaits are many developments in the areas
of sensor processing, state estimation, actuation and rotation theory.
These developments are all presented in detail in this thesis, and in
particular include methods for actuator control, sensor calibration,
sensor processing and attitude estimation. In terms of rotation theory,
significant advancements to the state of the art are made through the
introduction of a new and better concept of ‘yaw’, namely fused yaw.
Three new rotation representations that leverage this concept of yaw—
the tilt angles, fused angles and tilt phase space representations—are
also introduced and used recurrently throughout the remainder of the
thesis.

All of the developments and contributions made throughout this
thesis have been released fully open source online (Team NimbRo,
2018). They have been tested not only in simulation, but also pre-
dominantly on real hardware. This is important, as real hardware
conditions are almost always more strenuous than simulated ones,
and arguably, performance on a real robot is all that matters. Testing
has been carried out on a wide variety of real robots, including the
igus Humanoid Open Platform and the NimbRo-OP2.

1.1 KEY CONTRIBUTIONS

The following key contributions are made by this thesis:

• The novel concept of fused yaw is introduced as a way of parti-
tioning 3D rotations into their respective yaw and tilt compon-
ents in a geometrically and mathematically meaningful way.

• Based on the concept of fused yaw, three new rotation represent-
ations are introduced and investigated in detail: the tilt angles,
fused angles and tilt phase space representations. The latter two
in particular offer definitions of ‘pitch’ and ‘roll’ that far surpass
the definitions that are used in the context of Euler angles.

1.1 key contributions 5

• A gait using corrective actions driven by fused angle feedback
mechanisms is built around an open-loop central pattern-driven
gait generator, and is tested on many different robotic platforms.

• A new self-stable omnidirectional gait generator called the KGG

is developed. It strikes a balance between the security and sim-
plicity of hand-crafted gaits, and the advantages of analytically
computed and optimised gaits. More than just make the robot
walk, the KGG directly embeds a myriad of corrective actions
that can be commanded and activated by higher level controllers
to systematically allow preservation of balance during walking.

• A controller for the corrective actions of the KGG is formulated
based on the tilt phase space. The diversity of the actuated
corrective actions arguably covers the majority of humanlike
strategies by which biped robots can balance during walking.

In addition to these key contributions, the following contributions are
also made by this thesis:

• The novel nonlinear tripendulum model is developed for the pur-
poses of dynamic step size adjustment.

• A 3D attitude estimator is realised that automatically uses the
concept of fused yaw in the absence of magnetometer data for
heading estimation purposes.

• Methods for calibration of the Inertial Measurement Unit (IMU)
and subsequent processing of sensor data are presented, includ-
ing in particular a method for online gyroscope bias autocalibra-
tion.

• An actuator control scheme is realised that makes use of a servo
motor model and feed-forward torque estimation scheme to
improve the compliant tracking of dynamic joint trajectories.

• The notion of tilt vector addition is introduced in the context of
3D rotation theory.

• All developed algorithms and methods are released fully open
source online, in the C++ and sometimes also Matlab languages.

The full version5 of this thesis (Allgeuer, 2020) makes the following
extended contributions:

• Two useful non-standard kinematic pose spaces are presented,
and used to formulate a cost-based solution to the humanoid leg
inverse kinematics problem. A generalised arm inverse kinemat-
ics method is also developed that can place any functional point
of the arm on any desired ray through the shoulder.

5 The current document is an abridged version of the full thesis, and was required in
order to meet submission guidelines concerning the length of the thesis.

6 introduction

• A humanoid kinematic model is used in conjunction with the
developed attitude estimator to formulate CoM state and stepping
motion estimation processes.

• The capture step gait from Missura (2015) is refined in terms
of its open-loop gait, state estimation and implementation. A
rigorous data-based tuning approach is also documented.

• Methods for sensor and robot calibration are presented, in
particular for the purposes of magnetometer calibration and
data processing.

• A method for the online autocalibration of the magnetometer
hard offset is developed.

• The novel notion of referenced rotations is introduced.

• A deeper investigation of 3D rotations is performed, including a
walkthrough of 3D rotation theory, and many further properties
of the new yaw-tilt rotation representations.

• A number of innovative non-standard mathematical filters and
functions are detailed and used throughout the various presen-
ted gaits and calibration algorithms.

Although not a direct contribution of this thesis, further contributions
to the released Humanoid Open Platform ROS Software (and associated
robot platforms) were made by the author in the course of completing
this thesis. These more indirect contributions include work in the areas
of soccer behaviours, demonstration routines, state machines (Allgeuer
and Behnke, 2013), servo communication routines, microcontroller
firmwares (CM730/CM740), robot hardware design and construction.
More general contributions to the ROS software framework included
contributions in the areas of robot control, Gazebo simulation, real-
time logging, dynamic configuration, visualisation tools, hardware
interfaces, network interfaces, and general motion modules.

1.2 PUBLICATIONS

Parts of this thesis have been previously published in conference
proceedings. The academic publications that contributed to, and form
part of this thesis, are listed as follows.

Allgeuer and Behnke (2014) Presents an attitude estimator, based
on 3D nonlinear complementary filtering, that fuses 3-axis gyroscope,
accelerometer and optionally magnetometer data into a robust qua-
ternion estimate of orientation.

1.2 publications 7

P. Allgeuer and S. Behnke (2014). “Robust Sensor Fusion for Robot
Attitude Estimation”. In: International Conference on Humanoid
Robots (Humanoids). Madrid, Spain.

Allgeuer and Behnke (2015) Introduces and thoroughly investigates
the properties of the fused angles and tilt angles rotation paramet-
erisations, motivated by the task of representing the orientation of a
balancing body.

P. Allgeuer and S. Behnke (2015). “Fused Angles: A Representa-
tion of Body Orientation for Balance”. In: International Conference
on Intelligent Robots and Systems (IROS). Hamburg, Germany.

Allgeuer and Behnke (2016) Presents a complete omnidirectional
closed-loop gait based on the direct feedback of orientation deviation
estimates expressed in terms of fused angles. The feedback controls
the step timing, in addition to the virtual walking slope and five
further types of corrective actions.

P. Allgeuer and S. Behnke (2016). “Omnidirectional Bipedal Walk-
ing with Direct Fused Angle Feedback Mechanisms”. In: Interna-
tional Conference on Humanoid Robots (Humanoids). Cancún, Mexico.

Video 9.1: https://youtu.be/xnzJi2hTfAo (page 153)

Allgeuer and Behnke (2018a) Presents a multifaceted feedback
controller, based on the tilt phase space, that uses step timing and
eight other corrective actions to stabilise a core keypoint-based gait.
The feedback controller is free of any physical model of the robot, very
computationally inexpensive, and requires only a single 6-axis IMU.

P. Allgeuer and S. Behnke (2018a). “Bipedal Walking with Correct-
ive Actions in the Tilt Phase Space”. In: International Conference on
Humanoid Robots (Humanoids). Beijing, China.

Video 11.2: https://youtu.be/spFqqktZ1s4 (page 206)
Video 11.6: https://youtu.be/OSvHgVIYquc (page 215)
Video 11.5: https://youtu.be/yY0kpUZpjO4 (page 214)

Allgeuer and Behnke (2018b) Investigates and delineates in great
detail the advantages that fused angles have over Euler angles for rep-
resenting orientations in balance-related scenarios. Points of compar-
ison include the locations of the singularities, the associated parameter
sensitivities, the level of mutual independence of the parameters, and
the axisymmetry of the parameters.

P. Allgeuer and S. Behnke (2018b). “Fused Angles and the Defi-
ciencies of Euler Angles”. In: International Conference on Intelligent
Robots and Systems (IROS). Madrid, Spain.

Video: https://youtu.be/GVEdK0BuzG4

https://youtu.be/xnzJi2hTfAo
https://youtu.be/spFqqktZ1s4
https://youtu.be/OSvHgVIYquc
https://youtu.be/yY0kpUZpjO4
https://youtu.be/GVEdK0BuzG4

8 introduction

Allgeuer and Behnke (2018c) Introduces the tilt phase space rotation
parameterisation, and extensively explores the properties of this new
representation. Previously unexplored properties of the general notion
of tilt rotations are also presented.

P. Allgeuer and S. Behnke (2018c). “Tilt Rotations and the Tilt
Phase Space”. In: International Conference on Humanoid Robots
(Humanoids). Beijing, China.

1.3 OUTLINE

The remainder of this thesis is organised as follows:

Chapter 2: Presents related work for the field of bipedal locomotion.

Chapter 3: Details the actuator control scheme that is used to com-
pensate actuator commands.

Chapter 4: Details the IMU calibration routines, including the online
gyroscope bias autocalibration scheme.

Chapters 5 and 6: Establish the tilt angles, fused angles and tilt
phase space rotation representations, and critically compare
them to Euler angles.

Chapter 7: Details the attitude estimator used for trunk orientation
estimation.

Chapter 8: Details the Central Pattern Generator (CPG), and how it
is used to make robots walk open-loop.

Chapter 9: Presents the direct fused angle feedback controller, which
is a balance controller that adds closed-loop stabilising mechan-
isms to the CPG.

Chapter 10: Introduces the Keypoint Gait Generator (KGG), which is
an analytically computed open-loop gait generator that directly
incorporates the option for a wide array of corrective actions in
its trajectory generation scheme.

Chapter 11: Details the tilt phase controller, which is a controller that
activates the corrective actions of the KGG in order to maintain
balance during walking.

Chapter 12: Makes closing remarks about the achievements and
contributions of the thesis, including recommendations for future
work.

2
R E L AT E D W O R K

In this chapter, some of the most prominent and relevant examples
of the state of the art in balanced bipedal walking are presented, to
establish a background of the methods that exist in literature for such
applications.

2.1 ZMP-BASED GAIT GENERATION

Many modern bipedal gaits are, in a wide variety of ways, based on
the concept of the Zero Moment Point (ZMP). The ZMP of a bipedal
robot is the point within the support polygon of the robot, i.e. within
the convex hull of the ground contact patches, about which the net
resultant ground reaction wrench has zero moment parallel to the
plane of contact (Vukobratović and Borovac, 2004). If such a point does
not exist because it occurs outside the support polygon, the point is
instead referred to as the ‘fictitious’ ZMP, but often for simplicity this
technical distinction is not made. The ZMP is of interest to situations of
walking and balancing as it can be used to formulate a (conservative)
stability criterion. If during a walking motion the actual physical
ZMP remains within the support polygon at all times, the motion is
guaranteed to be stable and the robot will not fall.

Early methods of ZMP-based gait stabilisation and balance control,
such as for example the one used for the ASIMO robot (Hirai et al.,
1998), used ZMP feedback control loops that effectively monitored
the difference between the measured and desired ZMP points, and
applied foot position, posture and body trajectory adjustments to
counteract any unbalanced tipping moments. The desired ZMP in
this case was calculated from the ideal walking pattern using a
detailed physical model of the robot. Later methods of ZMP-based gait
generation constructed reference ZMP trajectories based on desired
walking motions, and used these to compute reference trajectories
for the Centre of Mass (CoM). These trajectories were then tracked as
closely as possible, generally with the use of inverse kinematics and
an appropriate control law.

Given a piecewise polynomial ZMP trajectory, Harada et al. (2004)
analytically derived a formulation for the reference CoM trajectory.
This was later extended by Morisawa et al. (2007) to allow modifica-
tions of foot placement, while still maintaining the analytic solution
approach. Harada et al. (2006) presented a method for simultaneously
and analytically planning CoM and ZMP trajectories in real-time by
connecting newly calculated trajectories to previous ones at the begin-

9

10 related work

ning of double support. Morisawa et al. (2009) extended this approach
to allow footstep locations to be treated as free variables, allowing
reactive steps for push recovery to be realised. This was integrated
with a state feedback controller in Morisawa et al. (2010) so that dis-
turbances could be rejected either with step adaptations or disturbance
suppression methods depending on their severity.

Yi et al. (2011) presented a gait for the DARwIn-OP robot that
uses a step controller that plans a ZMP trajectory two steps into the
future, and generates corresponding CoM trajectories in closed form
directly from the Linear Inverted Pendulum Model (LIPM) equations.
Jerk minimisation is not considered, and the jerk of the CoM is in
fact discontinuous in the middle of each support transition, but this
does not seem to have a significant effect on the stability of the gait.
A push recovery controller is integrated with the walking controller,
and allows ankle, hip and stepping strategies to be applied when
disturbances are detected. The activations of the individual push
recovery strategies are learnt over many real-world trials within a
reinforcement learning setting.

2.1.1 Preview Control

A basis for many works is ZMP tracking with preview control, first
introduced in the context of bipedal walking by Kajita et al. (2003).
A series of footsteps are planned and used to define a reference ZMP

trajectory with the use of suitable heuristics. This trajectory is often
locally fixed once it has been computed, but often also recomputed
online in response to tracking errors and/or disturbances (Nishiwaki
and Kagami, 2010; Tedrake et al., 2015). Based on the Linear Inverted
Pendulum Model described in Kajita et al. (2001), an optimal preview
controller is constructed that utilises state feedback, integral tracking
error feedback, and preview action based on the ZMP reference for
a given future time window (Kajita et al., 2003). This controller acts
to minimise ZMP tracking error under consideration of the planned
future steps, and allows the robot to walk in relatively controlled and
non-dynamic situations.

Many variations and follow-up works of the original ZMP preview
control idea have been published over the years. For instance, Kim et al.
(2019) added a control performance model that approximates the track-
ing performance of the CoM (including the effects of the implemented
low-level tracking controller) using a mass-spring-damper between
the desired CoM and real CoM. This slightly relieves the dependence
on high performance tracking ability of the robot, and increases the
applicability of preview control to compliant robots. Kajita et al. (2018)
also investigated the use of Spatially Quantised Dynamics (SQD) in
combination with preview control for stretched-knee bipedal walking.
While the lateral motions of the CoM are handled by a preview control

2.1 zmp-based gait generation 11

approach, the sagittal walking trajectories are first designed kinemat-
ically, before being quantised spatially based on the hip joint position,
and subsequently refined using Differential Dynamic Programming
(DDP) to respect the nonlinear spatially quantised LIPM equations. Dur-
ing execution of the thereby attained walking motions, the SQD LIPM

equations are once again used to return deviating measured states to
the desired trajectory. The real benefit of using the SQD formulation
is admittedly unclear to the authors of the paper themselves (Kajita
et al., 2018). They also identify a lacking theoretical background for
their use of local optimisation for feedback control, and need to per-
manently manually enforce non-zero sagittal reference velocities in
order to avoid division-by-zero singularities arising from their spatial
quantisation.

Variable step timing is rarely addressed by ZMP-based gait gen-
eration methods, especially in terms of online replanned reactions
to unforeseen disturbances. Kryczka et al. (2015) have presented a
ZMP-based method for incorporating some level of timing feedback
into the trajectory optimisation process (mainly only lateral pushes
towards the stance foot). ZMP preview control as per Kryczka et al.
(2013) is used to generate the nominal gait pattern using the LIPM.
In addition to this, CoM and ZMP feedback controllers are used to
overcome the compliance of the robot. If during walking the error
in the CoM position exceeds a certain threshold, the gait trajectory is
replanned from the current state using nonlinear optimisation of the
following two step timings and the following sagittal and lateral step
positions. The aim of the replanned gait trajectories is to return the
robot to the nominal CoM position and velocity that it should have
at the beginning of a subsequent step. The replanned gait patterns
are executed using a preview control scheme, and are spliced into the
nominal gait patterns using interpolation over a small time window.

When a disturbance to a stationary robot is detected, Urata et al.
(2011) optimise two future footstep locations and one future footstep
time, selecting them from a number of computed ZMP/CoM trajectory
pairs for which the CoM trajectory does not diverge. The CoM traject-
ories are calculated explicitly using singular LQ preview regulation,
based on the corresponding heuristically generated ZMP reference.
The executed motion plan is fixed to always consist of exactly three
steps, but this is sufficient to produce very convincing disturbance
rejection, albeit on specially designed hardware that is able to execute
the planned motions with extreme fidelity.

2.1.2 Model Predictive Control

Given a method for calculating a reference ZMP trajectory, an altern-
ative approach to optimising a CoM trajectory to match this ZMP tra-
jectory is given by Model Predictive Control (MPC). A landmark paper

12 related work

in this direction is Wieber (2006), in which a Linear Model Predictive
Control scheme is developed that solves a continuous sequence of
finite-horizon optimal control problems, and in each cycle only ex-
ecutes the first time step of the resulting calculated CoM trajectory
(with the help of a tracking controller). While not the first to use MPC

in the setting of bipedal locomotion (Azevedo et al., 2002), the innova-
tion was to use simple LIPM dynamics and ZMP reference trajectories
(generated as for ZMP preview control) for the purpose of optimisation.
This allows the crux Quadratic Program (QP) to be solved analytic-
ally using matrix manipulations instead of numerical techniques, and
thereby allows the scheme to work in real-time. In each time step, the
optimal control problem tries to minimise CoM jerk and deviations
from the ZMP reference trajectory, and as a form of feedback uses the
current measured robot configuration as the initial state. While this
already allows certain robustness to disturbances, Wieber (2006) also
investigated reduction of the QP to minimising just the CoM jerk, but
under explicit consideration of ZMP location constraints. This formula-
tion of the QP no longer has an analytic solution, but allowed for more
aggressive ZMP/CoM trajectory pairs, leading to greater disturbance
rejection abilities.

To overcome the restriction of having fixed footstep locations,
Diedam et al. (2008) extended the work of Wieber (2006) to include
the translational locations of the footsteps in the optimisation task.
Nominal footstep locations are generated as before, but instead of
being used directly, these are used to penalise (via the cost function)
the generation of steps that deviate from them. Additional inequality
constraints are added to the MPC to ensure that only feasible steps are
produced. Stephens and Atkeson (2010) also included footstep loca-
tions in their linear MPC scheme, which was targeted at push recovery
for a torque-controlled robot. Their method however was constrained
to push recovery from standing to standing in a fixed number of steps
(generally one) with fixed timing.

Allowing non-fixed footstep yaws and heights of the CoM during
walking introduces significant nonlinearities to the Linear Inverted
Pendulum Model. Griffin and Leonessa (2019) proposed an MPC

scheme based on the time-varying Divergent Component of Motion
(DCM) dynamics (Hopkins et al., 2014) that allows both height (pre-
defined CoM height trajectories) and foot orientation changes during
walking. Smooth DCM trajectories with fixed step times are gener-
ated using DCM acceleration as the control input, and executed using
reverse-time numerical integration and feedback control. Piecewise
linear approximations of the constraints, in particular in relation to
the foot orientations, leads to a Mixed-Integer Quadratically Con-
strained Program (MIQCP) that cannot quite be solved fast enough to
be real-time.

2.2 capture point and divergent component of motion 13

Further examples of works that consider free foot placements and
time-variant CoM heights include Kuindersma et al. (2014) and Bras-
seur et al. (2015), both of which conservatively bound nonlinearities
using linear functions in order to allow more efficient solution meth-
ods. Building on the latter of these two works, Pajon and Wieber (2019)
introduced a linear MPC scheme that incorporates a 3D capturability
constraint for greater passive safety of the generated walking mo-
tions. All generated future trajectories of the robot CoM and Centre of
Pressure (CoP) are constrained to end at their preview horizon with a
dynamically balanced convergent stopping motion, i.e. an exponential
continuation of the previewed CoM trajectory that in limit t → ∞
settles to a stable position that involves the CoM stopping somewhere
over the final support foot.

The main issue with bipedal gaits based on the Model Predictive
Control method is their high computational intensity. A mix of linear-
isations, approximations and design choices must generally be made
to reduce the complexity of the problem to a tractable level, but even
so, a large amount of computation is required in every cycle, only to
be thrown away after executing merely the very first time step of the
calculated trajectory. Some other walking methods, for example as
described by Feng et al. (2015), replan their calculated CoM trajectories
only once per single support phase, but this to some extent sacrifices
immediate responsiveness to disturbances.

2.2 CAPTURE POINT AND DIVERGENT COMPONENT
OF MOTION

The concept of capture points and capture regions (the set of all cap-
ture points) was first introduced by Pratt et al. (2006). Most generally,
a capture point of a robot in a certain state is a point on the ground
that if stepped on brings the robot to a complete stable stop. Although
complicated to calculate for general bipedal robots, for simple models
like the LIPM there is a unique capture point that can easily be calcu-
lated based on the CoM position and velocity. Push recovery of a real
robot based on the capture point was first demonstrated by Pratt et al.
(2009). Later, Englsberger et al. (2011) presented a landmark walking
gait based on stabilisation of the divergent component of the LIPM

capture point dynamics.
Koolen et al. (2012) presented a treatise on the N-step capturability

of walking robots as it relates to three simple gait models based on
the 3D LIPM, and refined the definition of the capture point to include
the instantaneous capture point. This is essentially the same as the
original definition of the capture point, only without the restrictions
of dynamic reachability, i.e. without consideration of step length and
time limitations. Pratt et al. (2012) demonstrated a gait based on
the instantaneous capture point. The current capture region is first

14 related work

estimated based on the current state and capturability analysis of the
3D LIPM with finite-sized feet, before a desired footstep is calculated
based on that. A state machine is used to break down the gait cycle
into nine different stages, and appropriate leg motions are generated
to perform the required footstep using individual swing and stance
leg controllers. Griffin et al. (2017) incorporated some notion of step
timing adjustment into their planned capture point trajectories for
walking. Utilising a QP optimisation scheme, adjustments to an existing
planned capture point trajectory were undertaken to produce plans
that reduced the amount of required knee bend (while remaining
kinematically feasible).

Assuming flat ground and a constant CoM height, Koolen et al.
(2016) presented a gait for the Atlas robot that generates instantan-
eous capture point trajectories at the beginning of each single support
phase, and calculates desired Centroidal Moment Pivot (CMP) traject-
ories using a Proportional-Integral (PI) control law aimed at capture
point tracking. The desired CMP is used to construct a desired lin-
ear momentum rate of change of the robot, which is subsequently
unified with contact information and constraints in a low-level QP

aimed at providing joint accelerations and ground reaction wrenches
to the inverse dynamics used to calculate the required joint torques.
Although a constant CoM height is assumed, the momentum-based
control framework was successfully used both on rough terrain and
stairs.

Parallel to the development of the instantaneous capture point
and its applications to bipedal walking, Takenaka, Matsumoto and
Yoshiike (2009) developed the essentially equivalent notion of the
Divergent Component of Motion (DCM), and used it as a relaxed
boundary constraint for transitioning between cyclic gait patterns
on the ASIMO robot. Takenaka, Matsumoto, Yoshiike and Shirokura
(2009) extended this method of pattern generation to running by in-
cluding consideration of vertical and flywheel models in parallel to
the three-mass Linear Inverted Pendulum Model already used for
forwards locomotion planning. In addition to enforcing continuous
ZMP and DCM locations at the transition points between the calculated
gait patterns (by adding trapezoidal offsets to the planned ZMP wave-
forms), continuous flywheel moments were also enforced to control
the inclination of the torso. Takenaka, Matsumoto, Yoshiike, Hasegawa
et al. (2009) include details of the balance controller used to stabil-
ise the upper body position during running of the ASIMO robot. In
addition to joint angle, ground reaction force and body inclination
control schemes, an implemented model ZMP control scheme uses
horizontal and rotational sagittal accelerations of the torso based on
feedback to stabilise the robot. This results in possible adaptations of
step placement and timing in order to keep the robot balanced while
satisfying all kinematic constraints.

2.2 capture point and divergent component of motion 15

The concepts of the instantaneous capture point and DCM were ex-
tended to 3D by Englsberger et al. (2015), and lead to the development
of the notions of the Enhanced Centroidal Moment Pivot (eCMP) and
Virtual Repellent Point (VRP). The 3D DCM is a point in space a certain
distance in front of the CoM in the direction that it is instantaneously
moving. That is,

ξ = x + bẋ, (2.1)

where x ∈ R3 is the position of the CoM, ẋ ∈ R3 is its instantaneous
velocity, and b is a time-constant. The eCMP is a point that encodes
the sum of all external forces Fext (excluding gravity), and is located
behind the CoM, in the exact opposite direction to which Fext points.
Specifically,

recmp = x− b2

m
Fext, (2.2)

where m is the mass of the robot. The VRP is equivalent to the eCMP,
only with consideration of the force of gravity as well, i.e.

rvrp = x− b2

m
Ftot, (2.3)

where Ftot = Fext + Fg. One can observe that the eCMP and VRP only
differ in their z-coordinate, by the constant height b2g, and that the
resultant DCM dynamics simply become

ξ̇ =
1
b
(
ξ − rvrp

)
. (2.4)

This can be interpreted as the VRP point always exponentially ‘pushing
away’ the DCM along the ray that connects them. Englsberger et al.
(2015) use this fact to plan reference DCM trajectories for walking on
uneven terrain based on VRP points that are chosen to be fixed at a
constant height above the required footsteps. These are then tracked
using a force-based DCM tracking control law based on modifications
of the VRP. The associated reference CoM trajectories are calculated
from the DCM trajectories using the convergent component of the CoM

dynamics. Extensions that include continuous double support phases
and heel-to-toe eCMP trajectories (as opposed to a fixed eCMP at the
foot centre) are also presented.

Many modern methods of gait generation and control rely on
the Divergent Component of Motion. Englsberger et al. (2017) and
Mesesan et al. (2018) use polynomial splines to generate VRP and
DCM trajectories analytically in closed form, and generate multi-
step reference trajectories based on this. Englsberger et al. (2017),
in particular, provide an explicit mechanism for push recovery via step
adjustment, and propose a momentum-based disturbance observer
for estimating and overcoming continuous perturbations. While only
providing simulation results, real-robot experiments with the TORO

16 related work

robot were later published in Englsberger et al. (2018), in the context
of a QP-based whole-body control framework. Khadiv et al. (2016)
also presented a method for incorporating step adjustments into a
DCM planning and tracking scheme. Its application to a simulated
robot with passive ankles is demonstrated, but it was found that
its performance was highly dependent on the manually chosen step
timing.

Hopkins et al. (2014) extended the concept of the DCM to a time-
varying version, and used it to construct stepping trajectories with gen-
eric variability in the CoM height. Stair climbing using a pre-planned
CoM height trajectory was demonstrated, albeit only in simulation.
The scheme runs in real-time, but no provision is made for real-time
step adjustment or trajectory replanning as a response to disturbances.
Caron et al. (2019) used a whole-body admittance controller in con-
junction with a DCM observer and feedback controller to perform stair
climbing with the HRP-4 robot in an Airbus factory. Caron (2019)
investigated the applicability of a whole-body admittance control
strategy in combination with the Variable-Height Inverted Pendulum
(VHIP) model. A linear feedback controller is devised for the nonlinear
VHIP model that, where feasible, acts similar to linear control of the
DCM, and utilises a CoM height variation strategy otherwise (when the
ZMP reaches the edge of the support polygon). Henze et al. (2016) de-
veloped a passivity-based whole-body controller in purely Cartesian
formulation that was used, amongst other things, for multi-contact
balance control. The controller was later extended by Mesesan et al.
(2019) to a generalised tasks formulation, and applied to walking of
the TORO robot over compliant mattresses and pebble beds. Walking
on grass and flat terrain with edge contacts was also demonstrated,
albeit with relatively static and long step times of 1.2–1.7 s.

2.3 ROBOCUP WALKING APPROACHES

The RoboCup Humanoid Soccer competition is an environment where
the analytical or academic beauty of a method is completely second
to its proven robustness and functionality on the field. Interestingly,
there are very few examples of successful RoboCup teams that use
walking approaches similar to any of the finely crafted methods
described above.1 There could be many reasons for this, ranging
from time and resources of the teams, to the necessity of having a
method that can be retuned on short notice before any given soccer
match, but one significant factor is likely the robot hardware. Most
robots participating in the RoboCup Humanoid League do not even
have the quality of actuators and sensors that would be required to
reliably track a planned CoM or DCM trajectory, let alone with much
higher step frequencies, highly dynamic changes of walking plans,

1 With notable exception, for example, of Team THORwIn (McGill et al., 2015).

2.3 robocup walking approaches 17

moving obstacles, and completely unpredictable ground, ball and
push disturbances.

Team Rhoban (Allali et al., 2019) won the KidSize league three years
in a row using a walking engine QuinticWalk that extended their
previous open source gait engine IKWalk (Rouxel et al., 2015) to use
5th order polynomial splines, continuous gait command accelerations,
and explicit double support phases (Allali et al., 2018).2 The generated
gait trajectories are executed open-loop, without consideration of any
ZMP stability criteria or modelling of the dynamics, but a stabilisation
module is used to defer commanding of the support transitions until
it is deemed to be the right time based on the foot force sensors. This
is used as a form of timing feedback to help avoid desynchronisation
of the desired and actual lateral oscillations of the robot.

The widely successful Standard Platform League (SPL) RoboCup
team B-Human (Röfer et al., 2019) has in the last years used a gait
based on the rUNSWift Nao gait (Hengst, 2014). A manually tuned
open-loop gait is stabilised using ankle feedback in the pitch direction,
and timing feedback in the lateral direction. The ankle feedback is
implemented in the form of pitch offsets that are proportional to
low-pass filtered gyroscope measurements. The timing feedback is
implemented by estimating the lateral location of the CoP using foot
force sensors, and adjusting the start of the leg lifting profile to always
occur right before the CoP crosses the zero line. During gameplay, an
online learning scheme monitors the peaks in the observed gyroscope
measurements and uses this to successively guess and refine suitable
gains for the ankle pitch feedback scheme.

The SPL RoboCup team Nao Devils (Hofmann et al., 2018) uses a
walk engine based directly on the original preview control gait by
Kajita et al. (2003). One slight modification to the original method is
the introduction of an additional cart-spring-damper to the model,
forming the so-called Flexible Linear Inverted Pendulum Model (Urb-
ann et al., 2015). Although original walking results were qualitatively
moderate,3 the method was successively refined over following years
to improve performance. For instance, the delay in responsiveness
of walking intent induced by the 1 s preview window was reduced
by resetting the ZMP generation after each step (previously this was
done only when tracking errors exceeded a configured threshold). A
Proportional-Derivative (PD) controller controlling all leg joints except
the hip yaw based on the gyroscope and angle sensors was also added.

Team THORwIn of the AdultSize league (formally Team DARwIn
of the KidSize league) were widely successful in both leagues from
the years 2011 to 2015 (McGill et al., 2015). Originally using the gait
developed for the DARwIn-OP (see Yi et al., 2011 on page 10), for

2 The dominant team of the TeenSize and AdultSize leagues in recent years was Team
NimbRo, which used exactly the approaches to walking presented in this thesis.

3 Video published alongside Urbann et al. (2015): https://youtu.be/q3byPqjQ5a0

https://youtu.be/q3byPqjQ5a0

18 related work

the THOR robot they extended it to a hybrid locomotion controller
that can switch online between two different walking controllers—
a ZMP preview controller using linear quadratic optimisation and a
simpler ZMP controller based on a closed-form solution to the LIPM

equations (Yi et al., 2013). Smaller push disturbances were dealt with
through reactive ankle pitch offsets and a mode whereby the robot
stops walking and lowers its CoM to dampen out oscillations.

Although it has only seen isolated uses at RoboCup competitions,
a distinct and impressive approach to balanced walking has been
developed by Missura of team NimbRo in the form of the capture
step framework (Missura, 2015). This approach adjusts both the step
position and timing to preserve balance, based on the prediction of
the CoM trajectory using the LIPM. The main advantage of this method
is that it does not require forces, torques or the ZMP to be measured,
making it more suitable for low-cost robots. More details of this
method, including a discussion of both its features and shortcomings,
can be found in a dedicated chapter in Allgeuer (2020).

2.4 DISCUSSION

It is a general problem of most ZMP preview control, MPC, capture
point and DCM-based gaits that good actuator tracking performance
and sensor feedback is required to make it work. This limits the applic-
ability of such approaches to high quality hardware, and/or smaller
robots that have favourable torque-to-weight ratios, especially if this
is in combination with proportionally large feet (e.g. the Nao robot).
Many state of the art approaches also require CoP/ZMP measurement
through integrated force-torque sensors as well as precise physical
models to make the planned motions feasible. These criteria are often
not met when using lower cost robots such as the igus Humanoid
Open Platform, in part due to lacking sensors, but mainly due to the
limited robot stiffness and actuation quality.

With respect to the state of the art in bipedal walking, the following
generalised observations can be made:

• Only select few methods can deal with true dynamic and real-
time online adjustments of step timing for the purpose of balance.
This is a problem, as in the face of even small disturbances lateral
oscillations can lead to significant falls.4

• Many methods are evaluated using experiments that only per-
form a few forwards steps at a time (possibly over uneven terrain
or stairs) and then stop. While this demonstrates that locomotion
is fundamentally possible with the method, it is difficult to as-
certain how robust the method truly is, and whether it would

4 Good demonstration: https://youtu.be/l9uvBD9zmsw

https://youtu.be/l9uvBD9zmsw

2.4 discussion 19

for example be suitable for real-life dynamically disturbed omni-
directional walking over the full duration of a 10 minute soccer
half-time (e.g. as required for RoboCup).

• Many state of the art methods that rely on tracking of generated
motion plans take relatively slow (but large) steps (>1 s per
step), as the motion of the robot generally needs to be quite
controlled for the tracking to work well.

• Publications frequently show experiments in simulation only,
with real-robot experiments lagging behind or only possible with
great subsequent effort and adaptation. Englsberger et al. (2013)
and the TORO robot is an example of this, with real-robot TORO
walking experiments only being published five years later in
Englsberger et al. (2018).

By contrast, the methods for walking presented in this thesis are:

• Targeted at low-cost robots with an Inertial Measurement Unit
(IMU) and joint encoders, but no options for force sensing and/or
meaningful CoP/ZMP localisation,

• Targeted at robots with position-controlled actuators (limiting
the compliance and controllability of the interactions the robot
can have with the ground),

• Equipped with step timing feedback in combination with many
other stabilising mechanisms to ensure preservation of balance,

• Based on the idea of stabilising a core semi-stable open-loop gait
with the use of feedback mechanisms,

• Highly dynamic,5 in that they allow the robots to go to their
very limits of balance while still trying to recapture control, and,

• Aimed at allowing continuous walking for long periods of time
(more than 10 minutes), even in the face of significant unknown
and uncategorised disturbances.

5 As opposed to the frequently observed ‘quasi-static’ walking style seen on more
expensive platforms.

20

3
A C T UAT O R C O N T R O L

In order for any motions generated for a robot to work as intended,
robust, accurate and efficient tracking of the computed actuator tra-
jectories is paramount. Even though the Dynamixel servo motors have
an inbuilt configurable Proportional-Integral-Derivative (PID) position
control loop, it is hard to tune this loop so that it works appropriately
and equally in all situations. The approach of simply using very high
gain settings, thereby making the robot very stiff, is not appropriate
because it leads to problems with

• Overloading and overheating, leading to temporary or even
permanent servo failure,

• Little to no damping in the motions, leading to motions that are
not smooth, and prone to unwanted oscillation, and

• Increased self-disturbances of the robot, due to much harsher
and sharper contacts—in particular impacts with the ground.

One fundamental limitation of using just the PID control loops inside
each servo is that each control loop is operating completely independ-
ently. They have no global picture of the state of the robot, what the
robot is trying to achieve, and what amount of torque they can each ex-
pect to require to follow their respective commanded trajectories. PID

control loops are also agnostic to the specific contributing factors why a
servo does not necessarily manage to follow its input commands, and
can only react to disturbances when they have already been measured
in the output, at which point it is too late to avoid them, and difficult
to avoid them in a systematic way. In this chapter, we describe in detail
the actuator control scheme, which seeks to use torque estimation and
feed-forward compensation (in addition to servo-internal proportional
feedback) to improve actuator tracking in a systematic targeted way. A
general discussion of the pipeline how joint commands are generated,
compensated and sent out to the servos can be found in Allgeuer
(2020).

3.1 SERVO MOTOR MODEL

The servo motor model is a mathematical and electromechanical model
of the behaviour of the used servo motors that incorporates both Direct
Current (DC) motor and mechanical friction characteristics. It is used
to allow for compensated control of the servos.

21

22 actuator control

3.1.1 DC Motor Model

The Dynamixel servo motors used in the robots are built around stand-
ard brushed DC motors driven by a Pulse Width Modulation (PWM)
approach. This means that we can model the motor as an effectively
continuously variable voltage Vm applied to an armature resistance in
series with an ideal motor winding, as shown in Figure 3.1. The arma-
ture current I flows through the armature resistance R, producing a
voltage drop of RI from Ohm’s law, and further through the ideal
motor winding, which produces the torque τ on the output shaft. As
a result of the rotation of the output shaft within the magnetic field of
the motor, a voltage E is induced across the winding (due to electro-
magnetic induction) and is referred to as the back-Electromotive Force
(EMF) voltage. The back-EMF voltage is proportional to the angular
velocity ω of the output shaft, and is explicitly given by

E = keω, (3.1)

where ke is the so-called back-EMF constant of the motor. We conclude
from Kirchhoff’s voltage law, as applied to Figure 3.1, that

Vm = RI + E (3.2a)

= RI + keω. (3.2b)

As a simple model of a DC motor, we know that the torque gener-
ated by the motor is proportional to the current flowing through its
windings, i.e.

τ = kt I, (3.3)

where kt is the so-called motor torque constant, and is generally
considered to be equal to the back-EMF constant ke. As a result,

I =
τ

kt
, (3.4)

and substituting this into Equation (3.2b) gives

Vm =
R
kt

τ + keω. (3.5)

While ω is the angular velocity of the shaft of the DC motor, the
effect of gearing means that the angular velocity q̇ of the servo motor
joint axis is proportionally different, i.e.

ω = kgq̇, (3.6)

where kg is the gear reduction ratio. The output torque τq at the joint
axis is also scaled by the effect of gearing,

τq = kgτ, (3.7)

3.1 servo motor model 23

Figure 3.1: A simple electrical model of a DC motor. The voltage Vm applied
to the motor results in an armature current I flowing through the
armature windings of resistance R, and makes the motor spin
with an angular velocity of ω. A back-EMF voltage E is generated
as a result of the rotation of the output shaft in the magnetic field.

and is the sum of the true output torque τd, and the torque τf
that is required to overcome friction. Thus, by rearrangement of
Equation (3.7),

τ =
1
kg
(τd + τf). (3.8)

From Equations (3.5) and (3.6), this leads to

Vm =
R

kgkt
τd + kgkeq̇ +

R
kgkt

τf . (3.9)

The main question now is how to model the friction torque τf in
terms of the joint angular velocity q̇. As discussed in Schwarz and
Behnke (2013), a suitable friction model involving both static and
Coulomb friction terms, and an exponential transition (Stribeck curve)
between them, is given by

τf = sgn(q̇)
(

βτs + (1− β)τc
)
+ cvq̇, (3.10)

where τs is the limit static friction torque, τc is the Coulomb friction
torque, cv is the viscous friction constant, and β is the interpolating
factor

β = exp
(
−
∣∣∣∣ q̇
q̇s

∣∣∣∣δ), (3.11)

where q̇s is the transition velocity between static and Coulomb friction,
and δ is an empirical constant in the range 0.5 to 1.0 based on the
material surfaces and properties. Based on Schwarz and Behnke (2013),
a choice of q̇s = 0.1 rad/s and δ = 1.0 was made for the servos in this
thesis.

Substituting Equation (3.10) into Equation (3.9) gives

Vm =
R

kgkt
τd +

(
kgke +

Rcv
kgkt

)
q̇ +

Rτc
kgkt

sgn(q̇)(1− β) +
Rτs
kgkt

sgn(q̇)β,

24 actuator control

which, with the definition of appropriate constants α̂0, α̂1, α̂2 and α̂3,
can be simplified to

Vm = α̂0τd + α̂1q̇ + α̂2 sgn(q̇)(1− β) + α̂3 sgn(q̇)β. (3.12)

Recalling from Equation (3.11) that β is simply a function of q̇ (the
angular velocity of the servo motor joint axis), we can see that the
effective voltage applied to the motor can therefore be expressed as
a function of q̇, τd (the true joint axis output torque) and four fixed
constants.

3.1.2 Compensated Motor Control

The Dynamixel servo motors used in the robots are position-controlled,
and have an internal position-based PID loop with configurable gains
for control purposes. In order to centralise the control of the servos
and overcome the limitations identified on page 21 of just using servo-
level PID control loops, we nominally configure each servo to only use
proportional (P) control, and find an approach to use the servo model
for global control instead.

In pure proportional mode, the effective voltage applied to the
motor is proportional to the battery voltage and the motor PWM duty
cycle, which in turn is proportional to the position error and P gain.
Thus, with incorporation of a proportionality constant Kc that governs
the scaling from position errors to PWM duty cycles, the effective motor
voltage Vm applied by the servo electronics to the DC motor at any
given time is given by

Vm = VbKcKP(qd − q), (3.13)

where Vb is the battery voltage, KP is the P gain, qd is the desired
position of the servo, and q is the current position of the servo.
Therefore, if we wish for the servo to follow a trajectory where at
some instant the position needs to be q, the velocity needs to be q̇, and
the predicted amount of torque required to follow the trajectory is
τd,1 the required setpoint for the position P control loop in order to
achieve this is given by

qd = q +
1

VbKcKP
Vm,

= q +
1

VbKcKP

(
α̂0τd + α̂1q̇ + α̂2 sgn(q̇)(1− β) + α̂3 sgn(q̇)β

)
= q +

1
VbKP

(
α0τd + α1q̇ + α2 sgn(q̇)(1− β) + α3 sgn(q̇)β

)
, (3.14)

1 That is, the predicted amount of true output torque on the joint axis required to follow
the trajectory from a dynamics perspective (e.g. due to gravity, inertias, contacts, . . .),
not including the torque that is required to overcome joint friction.

3.2 feed-forward torque estimation 25

where the factor of Kc has been absorbed into the constants α̂∗ to give
α∗ (for ∗ = 0, 1, 2, 3).

Equation (3.14) embodies the entire servo motor model, and forms
an essential step of the greater robot control scheme. Given a servo
motor, suitable values of α? are first identified and tuned (see below).
Then, given the required q, q̇ and τd of a joint trajectory in real-time,
Equation (3.14) is evaluated (recall that β is a function of q̇) and the
resulting qd is sent to the servo as its target position. KP is known as it
is the current P gain of the servo, and is calculated from the joint effort
command, and Vb is known as it is measured and reported to the PC

software in every cycle. Note that by design, even though qd is sent as
the target position of the servo, it is not intended that the servo actually
reaches this position. The whole servo model calculation aims to
ensure that if the servo tries to reach qd, then it will instead only reach
q (as actually desired) due to the effect of friction and external forces.
The only missing step at this point is how to calculate the required τd,
also known as the feed-forward torque, given the commanded joint
trajectories of all the joints of a robot. This is addressed in Section 3.2.

The tuning of the α∗ constants for the servo motors used in this
thesis (mainly Dynamixel MX-106 servos) was done in Schwarz and
Behnke (2013) using Iterative Learning Control (ILC). As performing
motions on an entire free-standing robot is difficult and not suitably
repeatable, a test bench was constructed whereby the torso of the
NimbRo-OP was fixed to a table, and a realistic hip pitch trajectory
was executed and evaluated for tracking accuracy. Estimates of the
optimal values of α∗ for tracking were successively refined with every
execution of the trajectory. A total of 12 ILC iterations were required
to converge the estimates of α∗ to their final values, and a maximum
trajectory deviation of approximately 0.02 rad was achieved. Refer
to Schwarz and Behnke (2013) for more details on the method and
results. The tuning results for later robots and servo types were not
independently published.

3.2 FEED-FORWARD TORQUE ESTIMATION

As indicated previously, the only missing link in the pipeline of the
application of the servo motor model that remains is the calculation
at every instant of the desired true output torque τd. This torque is
referred to as the feed-forward torque, and the calculation thereof is
the subject of this section.

3.2.1 Single Support Models

Given the desired positions q, velocities q̇, and accelerations q̈ of
all the joints in a robot at some instant in time, it is possible to
calculate the associated required joint torques to achieve such a

26 actuator control

state (under consideration of external force conditions) using inverse
dynamics. A Unified Robot Description Format (URDF) model of the
robot, which specifies all dimensions, offsets, link masses and inertia
tensors, is available to the robot control process. This physical model
is converted in software to a format that the Rigid Body Dynamics
Library (RBDL) (Felis, 2017) can work with. Given any external force
and loading conditions of the robot, specified as the magnitude and
direction of gravity and any contact forces, the RBDL library can then
use the Recursive Newton Euler Algorithm (RNEA) to calculate all
corresponding internal joint torques.

One difficulty of the inverse dynamics calculation is that it is unable
to automatically resolve indeterminate contacts. That is, if both feet
of the robot are contacting the ground, then the amount of contact
force and torque going through each foot cannot be calculated, and
instead needs to be resolved heuristically. This is less a limitation
per se of the RBDL library, but more a limitation of the availability of
information about the dynamic state of the robot, i.e. the position,
velocity and acceleration of the robot’s free-floating base relative to
the environment. In order to overcome this limitation, we introduce
the concepts of single support models and support coefficients.

A single support model of the robot relative to a particular link is
the dynamic model that assumes that the nominated link is rigidly
fixed in space (with 6 DoF reaction forces and torques), while the rest
of the robot can move freely. One of these single support models is
created for the trunk link, as well as for each tip link, i.e. link at an
end of the kinematic tree (e.g. foot, hand and head links). At each
instant in time, a support coefficient in the range [0, 1] is specified for
each single support model, and expresses the proportion of the weight
of the robot that is expected to be carried by the associated link at
that time. The sum of the support coefficients of all single support
models at any instant should always be 1.0 for obvious reasons. Seeing
as during walking only the feet of a humanoid robot intentionally
touch the ground, often only the support coefficients of the left foot
and right foot are considered. These two support coefficients are
often just referred to as the support coefficients of the left and right
leg respectively. The single support models and associated support
coefficients are the heuristic entity that allow the case of indeterminate
ground contacts to be resolved.

3.2.2 Joint Torque Estimation

Given the desired positions q, velocities q̇, and accelerations q̈, the
joint torques required to overcome and accelerate the link masses and
inertias are first evaluated using the trunk link single support model.
No gravity or other external forces are applied in this first inverse

3.2 feed-forward torque estimation 27

Figure 3.2: Visualisation of the feed-forward joint torque estimation method
for the case of a standing robot that is accelerating its right arm
forwards and left arm backwards. The left-most image shows
the first step, which considers (relative to a fixed trunk) the joint
velocities and accelerations, and the resulting torques required
to overcome link inertias. The centre images show the torques
required to overcome gravity based on the right and left foot
single support models. The right-most image shows the result of
combining all three previously calculated torques using super-
position, where support coefficients of 0.5 are used for each foot.

dynamics computation, as this is handled separately in a second step,
and the trunk link rarely has a non-zero support coefficient anyway.

In the second step, the inverse dynamics of all the available single
support models are computed in turn, with just the positions q and
the force of gravity and any other explicitly modelled external forces
applied. Based on the principle of superposition, the resulting joint
torques from each computation are combined together using the sup-
port coefficients as weights, and further additively combined with
the joint torques that were computed in the first step (see Figure 3.2
for a visual example). This yields the final feed-forward joint torques
that are used for the input τd of the servo motor model. As a neces-
sary simplification for feedback stability reasons, the gravitational
acceleration vector is always assumed to point in a fixed downwards
direction relative to the trunk in every single support model. Perhaps
unintuitively, the error in this assumption is actually empirically less
than if orientation feedback is used, due to the complex nature of
ground contacts.

It may not immediately be obvious why the application of the joint
velocities and accelerations in the first step needs to be separated from
the remaining single support model evaluations. The core problem is
that the foot-to-ground contacts are not always well-modelled by the
assumption that the foot link is completely rigidly fixed in space, i.e.
rigidly connected to the ground. If we consider the case that the robot
commands a quick adjustment to the ankle pitch of both its feet, then
in reality we know that the feet will likely take up a small part of the
motion elastically, and react to the rest by temporarily lifting off the

28 actuator control

ground at one of their edges until the robot starts tipping as a reaction.
These non-rigid effects become more pronounced when the feet are
located on soft surfaces, like for instance artificial grass. According
to the single support models of the feet however, the ankles need to
generate an enormous amount of torque in order to accelerate the
entire torso and weight of the robot, and be able to change their pitch.
Clearly, this does not reflect reality, and overestimates the torques
required in order to perform such ankle motions. In the NimbRo-OP
robot, this systematic overestimation sometimes led to dangerous
oscillatory instabilities, in particular because the NimbRo-OP had very
flexible feet. The approach of separating the calculation of the inertial
joint torques to a separate evaluation of just the trunk link single
support model solved this problem.

3.3 EXPERIMENTAL RESULTS

Figure 3.2 shows an example of the feed-forward torque estimation
method being applied to a standing posture of the igus Humanoid
Open Platform, in the instant that it started lifting its right arm
forwards and left arm backwards. The four 3D visualisations show the
pose of the robot in the first frame of the motion, i.e. the pose where the
arms are still accelerating to move in their respective directions, along
with the feed-forward torques that were calculated for that instant.
The left-most image shows the result of the evaluation of the trunk
link single support model (trunk link fixed in space), considering only
the velocities and accelerations of each joint, and the resulting inertial
torques. From the right-hand rule, it can be observed from the green
block arrow on the left shoulder that the sign of the torque that is
estimated to be required for the shoulder pitch does in fact accelerate
the arm backwards, and that a similar but opposite torque on the right
shoulder accelerates the right arm forwards. Non-zero torques are also
estimated, as expected, for the respective elbow pitches, as the mass
of the lower arms accelerating forwards/backwards results in torque
being required to hold the positions of the elbow joints.

The centre two images in Figure 3.2 show the result of the eval-
uation of the right and left foot single support models respectively,
considering only gravity, and not the velocities and accelerations of the
joints. It can be observed in each case that the joints in the respective
support leg required significant torque to hold the weight of the robot,
and that the knee joint in the respective free leg actually required a
small amount of torque in the opposite direction to keep the lower legs
in their position against gravity. The right-most image in Figure 3.2
shows the superposition of the torques calculated in the previous three,
with consideration of the commanded support coefficients κr and κl
for the right and left legs respectively. Specifically, if τi corresponds
to the inertia-related torques from the left-most image, and τr and τ l

3.3 experimental results 29

Video 3.1: Demonstration of the actuator control scheme, and in particular
feed-forward torque estimation scheme, on the igus Humanoid
Open Platform in Gazebo simulation.
https://youtu.be/4AQRvCpquC8

Demonstration of Feed-forward Torque Estimation During Robot Mo-
tions

correspond to the gravity-related torques from the centre two images,
then the final feed-forward torques shown in the right-most image
correspond to

τd = τi + κrτr + κlτ l , (3.15)

where in this case κr = κl = 0.5, as it was assumed that both legs carry
an equal proportion of the weight of the robot (κr = κl), and

κr + κl = 1. (3.16)

It can be observed from Figure 3.2 that the final combined feed-
forward torques intuitively capture both the effects of gravity and
the velocities and accelerations of the joints. A live demonstration of
the commanded feed-forward torques during motions of an igus Hu-
manoid Open Platform in Gazebo simulation is provided in Video 3.1.

An example of the effect of the full actuator control scheme on
the commanded servo target positions is shown in Figure 3.3. The
figure shows the robot in a balancing pose on its right leg, with
the corresponding final feed-forward torques τd visualised using 3D
block arrows at each joint. The left image shows the commanded joint
positions from the motion modules, i.e. the servo target positions that
would be sent if the actuator control scheme were disabled, and the
right image shows the servo target positions that were computed using
Equation (3.14) and subsequently sent out over the Dynamixel bus.
The difference in leg joint positions between the left and right images
can clearly be identified, and observed to correspond proportionally to
the calculated amount of feed-forward torque in each of the respective

https://youtu.be/4AQRvCpquC8

30 actuator control

Figure 3.3: Comparison of the commanded servo target positions with and
without the actuator control scheme enabled, for a robot balancing
on its right leg. The left image shows the pose q that the robot is
trying to achieve, and the right image shows the servo target
positions qd that are computed as a result of the calculated
feed-forward torques (visualised by the 3D arrows). The target
positions for the servos in the right leg are further forward than
the pose q they are actually desired to reach (refer to the fixed
purple lines), as when the weight of the robot comes into play,
one can imagine that it would push the leg further backwards
than commanded, towards q.

joints.2 Note that it makes sense, for example, that the actuator control
scheme commands a pose for the right leg that is further forwards
and outwards than the pose commanded by the motion modules, as
intuitively one can see that the weight of the robot acts to press the leg
back into the opposite direction again, towards the truly desired pose.

Figure 3.4 shows plots of the tracking performance of the left knee
pitch joint during a walking experiment of the igus Humanoid Open
Platform. A clear difference in tracking performance can be observed
depending on whether the actuator control scheme is enabled or
disabled, even if due to disturbances and real world inaccuracies the
tracking with the scheme enabled is still not perfect. It was observed
in the walking experiments that the battery life of the robot was longer
with the actuator control scheme enabled, as opposed to disabled,
suggesting that it can also increase the energy efficiency of robot
motions. This observation is empirically supported by the servo model
parameter tuning experiments of Schwarz and Behnke (2013), in which
40 full steps of the NimbRo-OP robot consumed 189 J with the servo
model disabled, and 140 J with the model enabled.

2 In this case, the friction terms in Equation (3.14) had no effect as the commanded
pose was stationary, i.e. q̇ = 0 for all joints.

3.4 discussion 31

Figure 3.4: Plot of the left knee pitch tracking performance during a walking
experiment on the igus Humanoid Open Platform. The desired
output trajectory of the knee joint is given in blue. Passing this
directly as the commanded servo targets results in the green
output position waveform, which differs significantly from the
desired waveform. With the actuator control scheme enabled
however, the red waveform is computed in a feed-forward manner
and used as the commanded servo targets instead. The resulting
yellow position waveform corresponds much more closely to the
intended waveform, albeit still with some signs of delay.

3.4 DISCUSSION

Together, the servo motor model (Section 3.1) and method for feed-
forward torque estimation (Section 3.2) constitute the actuator control
scheme. All in all, the actuator control scheme is able to compensate
effectively for many factors, including battery voltage, servo P gain,
gravity, joint friction, inertia, and the relative loadings of the legs. All
of these factors influence how well the servos track their commanded
trajectories, and by specifically considering and modelling them, the
performance of the robot becomes significantly more consistent across
the wide range of possible robot states and conditions.

One possible downside of the actuator control scheme is that it
requires a relatively accurate and highly-tuned physical model of the
robot. In the case of the robots used in this thesis, this is in general not
a problem due to the use of Computer-Aided Design (CAD) and 3D
printing, but it is potentially a problem for other more custom robots
that do not have an accurate URDF model (with masses and inertias),
and do not need one anyway for other higher level motion planning
algorithms. If no masses and inertias are available for a robot, then the
actuator control scheme can still be used, just with the feed-forward
torques set to zero, or replaced with simplified calculated values based
at each time step on the support coefficients and weight of the robot.
Doing this would sacrifice the inertia compensation and the accuracy

32 actuator control

of the gravity compensation, but would still leave the friction, battery
voltage and servo P gain compensation intact.

Positive effects of the actuator control scheme include reduced servo
overheating and wear, increased battery life due to increased energy
efficiency, reduced issues with impacts and self-disturbances, and the
ability to increase joint compliance while maintaining good levels of
trajectory tracking. One particular benefit of the control scheme is that
the motions performed by the robot become more consistent across the
full spectrum of possible battery voltage values. This is particularly
useful when designing, for example, keyframe motions, or for that
matter essentially any other motions that have a significant open-loop
component to them as well.

4
S E N S O R C A L I B R AT I O N

All sensor data available to the robot is read in by a main robot control
process at a rate of 100 Hz. In order to properly use the available sensor
data—for instance for the estimation of the orientation of the robot (see
Chapter 7)—it needs to be calibrated first. This involves calibrating
the data, in particular, from the gyroscope and accelerometer sensors.

Some calibration methods rely on others already having been suc-
cessfully performed. For example, the gyroscope bias can only be
correctly estimated if the Inertial Measurement Unit (IMU) orientation
and gyroscope scale calibrations have already been completed. As a
result, the full calibration procedure of a robot is somewhat sensitive
to order. A list of the IMU calibration procedures is given as follows,
in the order that the calibrations are generally performed:

• IMU orientation calibration

• Gyroscope scale calibration

• Gyroscope bias calibration

• Online gyroscope bias autocalibration

A much more complete list and discussion of sensor calibration
procedures is provided in Allgeuer (2020).

4.1 INERTIAL MEASUREMENT UNIT CALIBRATION

One very important class of robot calibrations is given by the IMU

calibration procedures. In this section, we refer to the IMU as consisting
of only the 3-axis gyroscope and accelerometer sensors, and assume
that these are rigidly connected to each other.

4.1.1 IMU Orientation Calibration

The first aspect of the IMU that needs to be calibrated is the orientation
offset of the IMU sensors relative to the main trunk link of the robot.1

As the gyroscope and accelerometer chips are mounted in a fixed and
aligned arrangement relative to one another, tuning only the offset
of the accelerometer chip relative to the trunk suffices. This is done
by sampling low-pass filtered values of the accelerometer at various
well-defined orientations of the trunk, and computing the best-fitting

1 It is assumed that the sensors are rigidly attached to the trunk of the robot, so the
required offset is constant, and thus can be tuned.

33

34 sensor calibration

estimate of RB
I , the orientation of the accelerometer (i.e. IMU) frame {I}

relative to the body-fixed (i.e. trunk-fixed) frame {B}.
The tilt rotation component (see Section 5.3.3) of RB

I is computed
from measurements of the 3-axis acceleration aI when the robot trunk
is manually positioned to be perfectly upright relative to gravity, i.e. so
that the body-fixed and global z-axes align and point upwards. That
is, if āI u is the mean accelerometer value measured in this position,
then we can naturally define

zI B =
āI u

‖ āI u‖
, (4.1)

and from this derive the required tilt rotation component. The remain-
ing yaw rotation component of RB

I is resolved by averaging out the
fused yaws calculated from the measurements of aI that are obtained
when the robot trunk is lying perfectly on its front, back and/or side.
Joined together, the yaw and tilt rotation components together specify
the complete IMU orientation offset RB

I , as required.

4.1.2 Gyroscope Scale Calibration

Once the orientation of the IMU in the trunk is known, the magnitude
of the gyroscope sensor values needs to be compensated for scale
and temperature. The trunk orientation computed by the attitude
estimator presented in Chapter 7 is used for this purpose. Only
the gyroscope and accelerometer values are applied as inputs to the
estimator, and the value of the openly integrated fused yaw component
of the output (see Section 5.3.1) is monitored while the robot trunk
is manually rotated about its upright z-axis (relative to gravity). The
exact calibration procedure is given as follows:

1. Position the robot so that the trunk is perfectly upright relative
to gravity.

2. Indicate to the software that the gyroscope scale calibration is
starting.

3. Rotation 1: While keeping the trunk as upright as possible, yaw
the robot about its (upright) z-axis by exactly K ≥ 1 revolutions
in a counterclockwise (CCW) direction. This corresponds to an
applied yaw rotation of Ψ1 = 2πK radians.

4. Indicate to the software that the calibration midpoint has been
reached.

5. Rotation 2: While still keeping the trunk as upright as possible,
yaw the robot back to its original orientation by applying exactly
K revolutions in the opposite direction. This corresponds to an
applied yaw rotation of Ψ2 = −2πK radians.

4.1 inertial measurement unit calibration 35

6. Indicate to the software that the original orientation has been
reached again.

Based on the measured 3-axis gyroscope values and changes in fused
yaw throughout both rotations, an unbiased estimate of a gyroscope
scale factor kg can be obtained for the current measured temperature.
Doing this once for a high temperature and once for a low temperature
allows coerced linear interpolation to be used to select an appropriate
scale factor kg(T) for any future measured temperature T. If Ω̂I is
a raw measured gyroscope value, the corresponding scale-corrected
gyroscope value Ω̂I s is given by

Ω̂I s = kg(T) Ω̂I . (4.2)

Note that {I} is the coordinate frame defining the x, y and z-axes of
the IMU sensors, and is therefore also the frame relative to which the
gyroscope measurements are expressed.

4.1.3 Gyroscope Bias Calibration

The gyroscope sensor is modelled as having a non-zero bias bΩ that
offsets all of the scale-corrected measured angular velocities Ω̂I s. That
is, if ΩI is the true angular velocity of the IMU at some instant in time,
it is modelled that

Ω̂I s = ΩI + bΩ + wΩ, (4.3)

where wΩ is zero mean sensor noise. If the assumption is made that
bΩ is a fixed constant over all time, then it is possible to calibrate the
gyroscope bias only once, and simply subtract it from every future
scale-corrected measurement Ω̂I s, as

Ω̂I s − bΩ = ΩI + wΩ. (4.4)

If the robot (and therefore IMU) is completely stationary for some
period of time, we know that ΩI = 0, and therefore that

Ω̂I s = bΩ + wΩ. (4.5)

As such, if we low-pass filter the obtained values of Ω̂I s during this
period of time with a moderate 90% settling time Ts,M (on the order of
seconds), the effect of wΩ diminishes (as it is zero mean) and a highly
accurate estimate of bΩ results. This process has been implemented as
a gyroscope bias calibration procedure that can manually be triggered
in the software. After waiting a number of seconds for the bias estimate
to converge, the low-pass filtered value of Ω̂I s is captured and saved
as the bias estimate bΩ.

36 sensor calibration

4.1.4 Online Gyroscope Bias Autocalibration

The assumption that the gyroscope bias is constant over all time is not
always accurate. To overcome this, an online method of gyroscope bias
autocalibration has been developed that allows even brief periods of
time that the robot is stationary during operation to be automatically
detected, and leveraged to improve the gyroscope bias estimate. The
robot is considered to be stationary if the difference between Ω̂I s—
see Equation (4.2)—and a moderately low-pass filtered version of Ω̂I s
(90% settling time Ts,M ≈ 2 s) is less than a given threshold in norm for
a configured duration of time (≈1.5 s). The norm threshold is chosen
so that it is not much larger than the general maximum magnitude of
sensor noise wΩ, so as to ensure that the robot really is stationary when
the condition is satisfied. The gyroscope bias adjustment process starts
(time ta = 0) every time the robot is detected to become stationary,
and stops whenever the threshold is even just temporarily exceeded.

In addition to the moderate low-pass filter running on Ω̂I s, a low-
pass filter with an even slower 90% settling time (Ts,S ≈ 8 s) is used in
parallel, in order to improve the noise rejection ability of the estimated
gyroscope bias bΩ when the robot is stationary for longer, i.e. when
a larger ta has been reached. Let ΩM be the filtered angular velocity
from the moderate low-pass filter, and ΩS be the equivalent output
angular velocity of the slower low-pass filter, which is automatically
reset to the value of ΩM in the instant when ta = 0, i.e. when the
adjustment process starts. For as long as the robot is stationary, in each
measurement cycle the estimated gyroscope bias bΩ is interpolated
linearly towards the so-called target bias bT, given by

bT = uΩS + (1− u)ΩM, (4.6)

where u is 0 when the bias adjustment process starts, and interpolates
up to 1 over the next Ts,S seconds, i.e.

u = interpolateCoerced
(
[0, Ts,S]→ [0, 1], ta

)
. (4.7)

In each cycle, the bias bΩ is updated using the formula

bΩ ← bΩ + αB(bT − bΩ), (4.8)

where αB ∈ [0, 1] is the smoothing factor of bΩ, given by

Ts,B = interpolateCoerced
(
[0, td]→ [Ts,slow, Ts, f ast], ta

)
, (4.9a)

αB = 1− 0.10
∆t

Ts,B , (4.9b)

where ∆t is the measurement cycle time, td is a configured fade
duration (≈1.2 s), and Ts,slow and Ts, f ast are configured slow and fast
gyroscope bias 90% settling times, respectively. Note that Equation (4.8)

4.1 inertial measurement unit calibration 37

Figure 4.1: Time plots of the gyroscope autocalibration scheme in action.
As indicated by the legend, the thin light lines correspond to
the components of the scale-corrected gyroscope value Ω̂I

s, the
thick dark lines correspond to the components of the estimated
gyroscope bias bΩ, and the dashed lines correspond to the com-
ponents of the target bias bT , towards which bΩ is faded during
the adjustment process. Note that before and after the beginning
of adjustment, the value of bT is just ΩM, the filtered angular
velocity from the moderate low-pass filter. The gyroscope bias
smoothing factor αB is shown for the interval where adjustment
is active. After the norm threshold is violated at ta ≈ 4.5 s, the
estimated bias bΩ is no longer adjusted, and simply retains its
value.

is the standard update equation for a first-order low-pass filter, but
one where the smoothing factor αB is continuously variable with time.

Effectively, the described autocalibration scheme attempts to extract
from the measured gyroscope values as much useful information as
possible, in as little time as possible, but without risking using the
data too early and temporarily degrading the bias estimation accuracy.
This is why the scheme initially waits a small amount of time for
the robot to be stable, and then only weakly uses the data at first to
improve the bias estimate, before becoming increasingly confident as
further time elapses and the robot is still perceived to be stable. The
use of low-pass filtering ensures that no sudden jumps in the bias
estimate occur, and that the noise in the sensor can be robustly and
reliably rejected. In addition to being automated and having a quicker
responsiveness, these are both properties that do not apply to the
manual calibration scheme presented in Section 4.1.3.

A plot of the gyroscope bias autocalibration method in action is
shown in Figure 4.1. Initially, the robot is in motion, as can be seen
from the gyroscope values, but after stopping and waiting a small
amount of time for the motion of the torso to settle, the bias adjustment

38 sensor calibration

process automatically triggers at ta = 0 s, and fades the initially zero
bias estimate bΩ = (bΩx, bΩy, bΩz) to its appropriate filtered measured
value. After only 1.25 s, the estimate reaches its final value, and only
varies very slightly thereafter due to the residual effect of sensor noise.

4.2 SENSOR CALIBRATION IN THE BIGGER PICTURE

This chapter detailed how the raw acquired sensor data can be pro-
cessed into a more useful form with the help of numerous calibration
procedures. How this processed sensor data is filtered and used for
higher level state estimation however (required for the purposes of
motion feedback control), has not been addressed yet. Chapter 7 does
this, and details how the calibrated sensor data can be fused together
in an attitude estimation process to estimate the orientation of the
robot. Before we can deal with the estimation of orientations and
headings of the robot however and use these to construct bipedal
walking gaits, we first need a greater understanding of rotations and
general rotation formalisms in 3D. In particular, we need to be able to
answer simple questions like

What is ‘yaw’ and how should we quantify it?

Is there more than one possible definition of yaw?

Which definition corresponds to our natural intuition?

Chapters 5 and 6, i.e. the next two chapters, deal with these and many
other related questions, including for example questions pertaining to
the concepts of ‘pitch’ and ‘roll’. Building on this gained knowledge,
Chapters 7 and 9 (and beyond) then develop effective algorithms for
the tasks of state estimation and bipedal walking.

5
R E P R E S E N TAT I O N S O F 3 D R O TAT I O N S

In order to arrive at a gait that uses orientation feedback to maintain
stability, the orientation of the robot must first be estimated and
represented in a way that is both meaningful and useful. It is shown
in Chapter 7 how 3D nonlinear filtering techniques can be used to
estimate the orientation of a robot, but the final result is given by four
quaternions parameters in the range from −1 to 1. On the face of
it, without making any further conversions or calculations, it is not
obvious how to interpret these four parameters so as to know basic
things about the resulting estimated orientation, such as what the
heading of the robot is, or how close the robot is to falling down in
some direction. It is also not an easy task for a human to interpret the
four parameters to understand what the exact nature of the orientation
is. This chapter seeks to develop methods and concepts that can
be used to extract meaning from such expressions of orientation,
both for algorithmic purposes, for example to stabilise motions using
orientation feedback, and for the ease of human interpretation and
visualisation.

The applications of newly developed formulations of, for example,
yaw are also useful deeper inside the state estimation itself. In Sec-
tion 7.5.2, the concept of fused yaw is used to resolve a measured
orientation of the Inertial Measurement Unit (IMU) in the case that
no magnetometer is available. In this chapter, we take a systematic
approach to placing the idea of fused yaw into context by developing
and presenting three new highly intertwined representations of rota-
tions, namely tilt angles, fused angles and the tilt phase space, that all
depend fundamentally on this notion of yaw. Rotation representations,
interchangeably referred to as rotation parameterisations, are simply
put a way of assigning numeric values or parameters to a rotation.
Here we are considering the three-dimensional space of 3D rotations,
so the number of parameters must be at least three. Some rotation
representations consist of exactly three parameters, like Euler angles
and rotation vectors, but some consist of four, like quaternions and
axis-angle pairs, and others consist of even more, like rotation matrices,
which consist of nine parameters. A full review of existing rotation
representations is given in Section 5.2.

While this chapter has been kept relatively focused on presenting the
new rotation representations, how to work with them, and what basic
properties they have, Chapter 6 is dedicated entirely to answering the
question of why the development of new rotation representations was
even necessary, and why Euler angles are not an appropriate solution.

39

40 representations of 3d rotations

All of the presented conversions and algorithms for working with tilt
angles, fused angles and the tilt phase space have been implemented in
both C++ and Matlab, and have been released open source for anyone
to use (Allgeuer, 2018b; c), as a means of providing support with using
these new representations. The libraries are seen as a test bed for the
development of numerical rotation-related algorithms.

5.1 MOTIVATION AND AIMS

This work on 3D rotations was motivated by the development of gait
stabilisation algorithms for bipedal robot platforms, or more generally,
the analysis and control of balancing bodies in 3D. Walking bipedal
robots are seen to be balancing bodies as they are under constant
influence of gravity, and constantly aim to keep their state of balance
upright and stable, despite changing support conditions and possible
disturbances. The need for the development of new representations of
3D rotations emerged from the need to answer certain basic questions
about the orientations of such walking robots—questions that were
not well answered by any other existing rotation parameterisations.

5.1.1 Core Aims: Amount of Rotation in the Major Planes

Keeping with the context of walking bipedal robots, suppose we have
a robot with a body-fixed coordinate frame {B} attached to its trunk.
Assuming the global orientation of this frame qG

B can be estimated,
e.g. using IMUs and other sensors, the state of balance of the robot is
entirely encoded in this rotation. It is not uncommon for a gait to treat
the sagittal and lateral planes of balance relative to the robot, i.e. the
forwards/backwards and sideways planes of balance, separately, so
for the purposes of constructing stabilising feedback it is useful to be
able to answer questions like (see Figure 5.1):

• How rotated is the robot in the transverse plane, i.e. what is the
heading of the robot?

• How rotated is the robot in the sagittal plane?

• How rotated is the robot in the lateral plane?

We are searching for a rotation representation that, amongst other
things, can provide good answers to these questions. These are not
the only requirements that we are looking for however, to find the
‘ideal’ rotation representation for the analysis and control of balancing
bodies in 3D. Our further requirements and expectations are outlined
in the remainder of this section (as well as in the one that follows).

As illustrated in Figure 5.2, given any orientation of the robot, we
wish to be able to answer the three questions above with three scalar
angular values that we can write in the three figurative boxes shown.

5.1 motivation and aims 41

Figure 5.1: Illustration of the three major planes of balance, the sagittal xz
plane (pitch), lateral yz plane (roll), and transverse xy plane (yaw).
For the purpose of being able to analyse and control the state of
balance of the robot, we wish to be able to quantify the ‘amount
of rotation’ a robot has individually within each of these three
planes, as suggested by the arrows on the right-hand image.

We will refer to these values as ‘yaw’, ‘pitch’ and ‘roll’ respectively, and
together, these three values should define the entire orientation. By
definition, the three values should quantify the ‘amount of rotation’,
whatever that is chosen to mean, within the xy, xz and yz major
planes (see Figure 5.1).1 For ease of interpretation, we require the
values to just be angles, i.e. in units of radians, and loosely speaking
we should expect that bigger values lead to bigger rotations. As a
final requirement (for now), in order to be intuitive and geometrically
useful, the sole effect of applying a global z-rotation to the orientation
of the robot should be to additively affect the yaw value. That is, if the
robot is rotated by π

4 rad about the global positive z-axis, then only the
yaw value should change, and up to angle wrapping, should change
by exactly +π

4 rad. This property is referred to as yaw additivity.
The requirements listed so far are all relatively elemental and

understandable, but in fact, other than Euler angles, no standard
existing rotation representation is in a position to be able to satisfy
these requirements, and to provide three values to write into the three
boxes. The list of existing rotation representations is introduced in
detail in the following section (see Section 5.2), but as an example,
quaternions and rotation matrices clearly fail to provide any scalar
angular values at all, let alone ones that directly quantify the amount
of rotation in each of the three major planes, and rotation vectors in
particular fail the required additivity property of yaw. Euler angles
may at first seem to be a satisfactory solution to the given requirements,
being a commonly accepted catch-all solution, but this is not entirely
so. They can often enough be the correct choice for a task, such as for

1 This can approximately be thought of as the ‘amount of rotation’ about the corres-
ponding z, y and x-axes respectively, but not quite.

42 representations of 3d rotations

Figure 5.2: Given any 3D orientation, represented here on the left by the
rotation of a rectangular prism, we wish to be able to write
three scalar angular values in the three figurative boxes shown,
where together the three values unambiguously define the entire
orientation. The three values should relate to the ‘amounts of
rotation’ within the three major planes, which can loosely be
thought of as the amounts of rotation about the x, y and z-axes,
and will be referred to as the ‘roll’, ‘pitch’ and ‘yaw’ of the rotation
respectively.

example the modelling of gimbals or a colocated series of joints, but
too often they are chosen simply because there does not seem to be a
reasonable alternative. This thesis provides two such alternatives and
dedicates an entire chapter (see Chapter 6) to an in-depth explanation
of the shortcomings of Euler angles, and why they are unsuitable
for balance-related tasks. In fact, other than for specific situations
like just previously mentioned, where the task itself inherently and
physically involves a series of well-defined elemental rotations, it is
unclear what reason there would be to ever use Euler angles at all
over a construct like the tilt phase space (introduced in this chapter).
The main problems with Euler angles revolve around the location
of their singularities, the lack of parameter axisymmetry, and the
lack of complete parameter independence. All of these points are
discussed in detail in Chapter 6, with an adjoining discussion of why
the representations introduced in this chapter do not have any such
problems.

5.1.2 Further Aims: Partitioning of Rotations into Yaw and Tilt

Three new rotation representations are introduced in this chapter,
namely the tilt angles, fused angles and tilt phase space paramet-
erisations. While tilt angles form an intermediary representation that
intuitively demonstrates how to partition rotations into meaningful
notions of yaw and tilt, namely the fused yaw and tilt rotation com-
ponents, the other two representations follow suit, but reparameterise
the tilt component to provide pitch and roll components, as required
by the motivational scenario of the three boxes describing the amount
of rotation in the three major planes (see Figures 5.1 and 5.2). The
fused angles and tilt phase space parameterisations are easy ways

5.1 motivation and aims 43

of quantifying 3D rotations, just like Euler angles are, but ways that
have been specifically developed for balance-related scenarios and
mobile robotics, and solve numerous problems and imperfections that
Euler angles have. They describe the state of balance of a robot in an
intuitive and problem-relevant way, and in particular the fused angles
parameterisation offers a useful geometric interpretation as well. Most
importantly however, both new parameterisations use concurrent spe-
cifications of pitch and roll, in that no order of rotations is imposed on
the two like for Euler angles. That is, the tilt component in each case
is a single atomic rotation that is quantified by the two scalar angular
pitch and roll values, but no subdivision into separate pitch and/or
roll rotations can logically be made. This is important as it enables
the definitions of pitch and roll to be axisymmetric, a point that is
discussed in more detail in Section 6.2.4.

Ultimately, when using rotation parameterisations to represent the
orientation of a robot for the purpose of a balance-related task such
as a bipedal gait, the greatest concern is how close the robot is to
falling over. This can also be characterised as how far the robot is from
being upright, so naturally the chosen way of partitioning rotations
into yaw and tilt components should reflect that. Specifically, the
yaw component should encapsulate the heading of the robot, i.e.
the horizontal planar 360° bearing of the robot that it is deemed
to be facing, and the tilt component should purely encapsulate the
remaining heading-independent relation between the robot and the
planar ground, i.e. how far the robot is from being upright no matter
what direction it is facing. This is why the tilt component is sometimes
referred to as a heading-independent balance state, as it should
indicate what direction locally relative to the robot’s heading the
robot is falling in, if any.

How far a robot is from being upright can equally be seen as a
measurement of how far the gravity vector is away from pointing
straight down relative to the robot’s body-fixed coordinate frame {B}.
In fact, the direction of this gravity vector (i.e. − zB

G) is exactly what
an accelerometer attached to the robot would measure under quasi-
static conditions, and it can be seen that this vector is completely
independent to any changes in heading, i.e. any applications of global
z-rotations to {B}. This leads to the further aim that in order to suitably
represent the heading-independent balance state, the tilt component
of a rotation should be defined in such a way that there is a one-to-one
correspondence in general to the set of possible measured gravity
directions, and therefore also to the unit sphere of possible zB

G.
Rotations in general can always be viewed as a single rotation by

an angle θa about a unit vector axis ê = (ex, ey, ez) (see Section 5.2.2).
This characterisation of rotations can also be used to set expectations
for how the definitions of the yaw and tilt components should behave.
Specifically, the z-component of ê, namely ez, encodes a measure of the

44 representations of 3d rotations

proportion of the rotation that is about the z-axis, where we recall that
by convention the z-axis points ‘upwards’. Thus, we should expect
that the tilt component of a rotation has no ez component, and that
conversely, the yaw component of a rotation is purely a function of θa
and ez, and completely independent of ex and ey—the proportions of
the rotation about the x and y-axes.

The method of partitioning 3D rotations into fused yaw and tilt
rotation components, as presented in this chapter, satisfies all of the
aforementioned expectations and requirements.

5.2 EXISTING ROTATION REPRESENTATIONS

Numerous ways of representing a rotation in three-dimensional Euc-
lidean space have been developed and refined over the years. Many
of these representations arose naturally from classical mathematics,
and have found widespread use in areas such as physics, engineer-
ing and robotics. Different representations have different advantages
and disadvantages, and which representation is suitable for a par-
ticular application depends on a wide range of considerations. Such
considerations include:

• Ease of geometric interpretation, in particular in a form that is
relevant to the particular problem,

• The range of singularity-free behaviour,

• Computational efficiency in terms of common operations such
as rotation composition and vector rotation,

• Mathematical convenience, in terms of numeric and algebraic
complexity and manipulability, and

• Algorithmic convenience, in the sense of a representation poten-
tially possessing properties that can conveniently be exploited
for a particular algorithm.

A wide range of existing rotation representations are reviewed in this
section as a basis of comparison to the ones newly developed in this
chapter. Due to the dimensionality of the space of 3D rotations, a min-
imum of three parameters is required for any such representation. A
representation with exactly three parameters is referred to as minimal,
while other representations with a greater number of parameters are
referred to as redundant.

5.2.1 Rotation Matrices

A rotation can be represented as a linear transformation of coordinate
frame basis vectors, expressed in the form of an orthogonal matrix of

5.2 existing rotation representations 45

unit determinant. Due to the strong link between such transformation
matrices and the theory of direction cosines, the name direction cosine
matrix is also sometimes used. The space of all rotation matrices is
called the special orthogonal group SO(3), and is defined as

SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1}, (5.1)

where R3×3 is the set of all 3 × 3 matrices with real entries. It is
important to note that the special orthogonal group SO(3) has an
exact one-to-one correspondence with the space of all 3D rotations, so
it is often interchangeably used to denote it.

We first note from Equation (5.1) that all rotation matrices have the
property that

RT = R−1. (5.2)

Rotation of a vector v ∈ R3 by a rotation matrix is given by matrix
premultiplication. Furthermore, for a rotation from a coordinate frame
{G} to another frame {B}, we have that

RG
B =

 ↑ ↑ ↑
xG

B yG
B zG

B
↓ ↓ ↓

 =

← xB
G →

← yB
G →

← zB
G →

, (5.3)

where yG
B, for example, is the column vector corresponding to the

y-axis of frame {B} expressed in the coordinates of frame {G}. With nine
parameters, rotation matrices are clearly a redundant parameterisation
of the rotation space. They are quite useful in that they are free of
singularities, easy to compose, and trivially expose the basis vectors
of the fixed and rotated frames, but for many tasks they are not as
computationally and/or numerically suitable as other representations.
One problem in particular, is that the numerical reorthogonalisation
of a nearly valid rotation matrix is a non-trivial and involved process.

5.2.2 Axis-angle and Rotation Vector Representations

By Euler’s rotation theorem, every rotation in three-dimensional
Euclidean space can be expressed as a single counterclockwise (CCW)
rotation by up to π radians about some axis. As such, every 3D rotation
can be assigned a vector-scalar axis-angle pair

A = (ê, θa)

∈ S2 × [0, π] ≡ A,
(5.4)

where ê = (ex, ey, ez) is a unit vector corresponding to the axis of
rotation, θa is the angular magnitude of the rotation, and S2 is the unit
sphere in R3. The domain A is the set of all axis-angle pairs, where
it should be noted that certain pairs correspond to the same final
coordinate frame, like for example (ê, π) and (−ê, π). By convention,

46 representations of 3d rotations

for numerical and/or algorithmic benefits, the identity rotation is
often chosen to be represented by ê = 0, even though strictly speaking
0 /∈ S2. If we consider values of θa outside of the default [0, π] interval,
the following representational equivalences hold:

(ê, θa) ≡ (ê, θa+ 2πk), (5.5a)

(ê, θa) ≡ (−ê,−θa), (5.5b)

for k ∈ Z an integer. Incidentally, these equivalences demonstrate how
any (ê, θa) ∈ S2 ×R can be collapsed into an equivalent expression in
the default domain A = S2 × [0, π]. A closely related concept to the
axis-angle representation is the rotation vector, given by

e = θaê ∈ R3. (5.6)

Effectively, rotation vectors are 3D vectors that encode the magnitude
and axis of a 3D rotation in terms of their vector norm and direction.

While the axis-angle representation is redundant, the rotation vector
representation, with only three parameters, is classified as minimal.
Both representations however suffer from a general impracticality of
mathematical and numerical manipulation. For example, no formula
for rotation composition exists that is more direct than converting
to quaternions and back. Rotation vectors do indeed provide three
different angular values that quantify different dimensions of the
rotation, but they do not intuitively or otherwise well-define the
amount of rotation in the three major planes, and the z-component
does not satisfy the necessary additivity condition (see Section 5.1.1)
that is required for it to constitute a usable concept of yaw.

5.2.3 Quaternions

Quaternions in general are an extension of the complex numbers to
four dimensions. While complex numbers define the imaginary num-
ber i such that i2 = −1, and describe every possible complex element
as a combination a + bi, quaternions define three such numbers i, j
and k such that

i2 = j2 = k2 = ijk = −1, (5.7)

and describe every possible quaternion as a combination2

q = a + bi + cj + dk. (5.8)

While this is the classic definition of general quaternions, it is more
common and useful in the context of 3D rotations to view quaternions

2 Note that as a result of Equation (5.7), one can deduce that ij = k, jk = i and ki = j.
Thus, using these basic rules, products of quaternions can always be simplified down
again to the canonical form given in Equation (5.8).

5.2 existing rotation representations 47

just as their four real coefficients (a, b, c, d). With a suggestive switch
in coefficient labels, the set of all general quaternions becomes

H = {q = (w, x, y, z) ∈ R4}. (5.9)

The relation to the classic definition of quaternions is then given by

1 ≡ (1, 0, 0, 0) ∈H, (5.10a)

i ≡ (0, 1, 0, 0) ∈H, (5.10b)

j ≡ (0, 0, 1, 0) ∈H, (5.10c)

k ≡ (0, 0, 0, 1) ∈H. (5.10d)

For q = (w, x, y, z), the w-component is referred to as the scalar part
of q, and the remaining three components are referred to as the vector
part of q. This leads to the vector notation of a quaternion q, namely

q = (w, x, y, z) = (q0, q), (5.11)

where
q0 = w ∈ R, (5.12a)

q = (x, y, z) ∈ R3. (5.12b)

In fact, all scalars a ∈ R and vectors v ∈ R3 can be identified with
their corresponding purely scalar or vector quaternions, given by

a ≡ (a, 0, 0, 0) ∈H, (5.13a)

v ≡ (0, vx, vy, vz) ∈H. (5.13b)

Pure rotations in 3D space can be represented by the set of qua-
ternions of unit norm. The set of all quaternion rotations is thus

Q = {q ∈H : ‖q‖ = 1}, (5.14)

where we note in particular that for q ∈ Q, this implies that

w2 + x2 + y2 + z2 = 1. (5.15)

The four quaternion rotation parameters are sometimes also referred
to as Euler-Rodrigues parameters. The space Q corresponds to the
four-dimensional unit sphere S3, and is a double cover of the space
of rotations SO(3), in that q and −q both correspond to the same 3D
rotation. That is,

q ≡ −q. (5.16)

Quaternion rotations with w ≥ 0 can be related to their corresponding
axis-angle representation (ê, θa) ∈ A, and thereby visualised to some
degree in terms of what rotation they represent, using

q = (q0, q) =
(
cos θa

2 , ê sin θa
2

)
, (5.17a)

=
(
cos θa

2 , ex sin θa
2 , ey sin θa

2 , ez sin θa
2

)
∈ Q. (5.17b)

48 representations of 3d rotations

The use of quaternions to express rotations generally allows for
very computationally efficient calculations, and is grounded by the
well-established field of quaternion mathematics. A crucial advantage
of the quaternion representation is that it is free of singularities. On
the other hand, as previously mentioned, it is not a one-to-one map-
ping of the special orthogonal group, as q and −q both correspond to
the same rotation. The redundancy of the parameterisation, as there
are four parameters, also means that the unit magnitude constraint
has to explicitly and sometimes non-trivially be enforced in numer-
ical computations. Furthermore, no clear geometric interpretation of
quaternions exists beyond the implicit relation to the axis-angle rep-
resentation given in Equation (5.17). In light of the motivation and
aims set out in Section 5.1, for applications relating to the analysis and
control of balancing bodies in 3D, quaternions can be very helpful in
performing state estimation (e.g. Chapter 7), but a final quaternion ori-
entation of the trunk does not give any direct insight into the amount
of rotation within the three major planes. As such, quaternions are
very useful computationally, but do not by themselves provide the
answers we are looking for.

5.2.4 Euler Angles

Instead of representing rotations as a single turn about a single axis,
like for the axis-angle representation, it is also possible to extract
more meaning by expressing rotations as a sequence of three rotations
about three well-defined axes. Euler angles express a rotation as such
a sequence of three elemental rotations, and rotate a coordinate frame
about a predefined set of coordinate axes in a predefined order. The
elemental rotations are either by convention extrinsic about the fixed
global x, y and z-axes, or intrinsic about the local x, y and z-axes of
the coordinate frame being rotated. For example, if the first elemental
rotation has already been applied to the global frame {G} to get the
intermediate frame {A}, then the next elemental rotation about, for
instance, the y-axis, would be about yG for extrinsic Euler angles,
or yA for intrinsic Euler angles (which is the more common case).
Independently of whether the extrinsic or intrinsic convention is
chosen, there are six possible choices for the predefined order of
coordinate axis rotations where each axis is used only once (e.g. YZX),
and a further six possible conventions where the first and third axes
of rotation are the same (e.g. ZXZ). The former are commonly referred
to as Tait-Bryan angles, and the latter are referred to as proper Euler
angles. All possible Euler angles axis conventions are summarised in
Table 5.1.

It is easy to see that all extrinsic Euler angles conventions are
completely equivalent to the corresponding intrinsic Euler angles
conventions, just with the order of axis rotations reversed. Whether

5.2 existing rotation representations 49

Table 5.1: A complete list of the possible Euler angles axis conventions, separ-
ated into Tait-Bryan angles and proper Euler angles. A convention
of YZX, for example, means that the first elemental rotation is about
the y-axis, followed by the z-axis, and then the x-axis. Whether the
axes from the local (rotating) or global (fixed) frame are used de-
pends on a further choice of whether the Euler angles are intrinsic
or extrinsic, respectively.

Type Order of axis rotations

Tait-Bryan angles XYZ, XZY, YXZ, YZX, ZXY, ZYX

Proper Euler angles XYX, XZX, YXY, YZY, ZXZ, ZYZ

the rotations are local or global just reverses the order in which
the rotations are ‘stacked’. Thus, without loss of generality, we only
consider the intrinsic convention from here on in. We wish to evaluate
Euler angles with respect to the aims set out in Section 5.1, and
compare them to the new parameterisations that are developed in
this thesis. As such, it is furthermore desirable to only consider axis
conventions that have their three elemental rotations about all three
different axes, i.e. Tait-Bryan angles, so that the amount of rotation
within each of the three major planes can be quantified.

One of the aims that was specified in Section 5.1.1 was the property
of yaw additivity. In the context of Euler angles, this means that if
a global z-rotation is applied to a frame, then only the Euler angle
corresponding to the z-axis should change, and up to angle wrapping,
it should change by the exact amount of the z-rotation. This is clearly
the case if and only if the axis convention places the z-rotation first.
Thus, only two viable Euler angles conventions remain as candidates
for analysis, the intrinsic ZYX and intrinsic ZXY Euler angles con-
ventions. For completeness, both of these Euler angles conventions
are presented in the next two sections, but unless explicitly otherwise
stated, all further references to ‘Euler angles’ will be referring to in-
trinsic ZYX Euler angles. All arguments and properties that apply to
the ZYX representation can however equivalently be reformulated to
apply to the ZXY representation, so the choice is arbitrary.

The z, y and x-components of the Euler axis representation collect-
ively correspond to the concepts of yaw, pitch and roll, respectively.
Although initially promising, Euler angles do not suffice for the rep-
resentation of the orientation of a body in balance-related scenarios.
The main reasons for this are:

• The proximity of the gimbal lock singularities to normal working
ranges, leading to unwanted artefacts due to the increased
local parameter sensitivities in widened neighbourhoods of the
singularities,

50 representations of 3d rotations

Figure 5.3: Definition of the intrinsic ZYX Euler angles convention for a
rotation from {G} to {B}. The global frame {G} is first rotated CCW

by the Euler yaw ψE about zG, then by the Euler pitch θE about
y′, and finally by the Euler roll φE about x′′ ≡ xB. The pitch
rotation is labelled −θE because geometrically the labelled arc in
this example is clockwise, and not CCW.

• The mutual dependence of the parameters, leading to a mixed
attribution of which parameters contribute to which major planes
of rotation,

• The fundamental requirement of an order of elemental rotations,
leading to non-axisymmetric definitions of pitch and roll that do
not correspond to each other in behaviour, and

• The asymmetry introduced by the use of a yaw definition that
depends on the projection of one of the coordinate axes onto a
fixed plane, leading to unintuitive non-axisymmetric behaviour
of the yaw angle.

More details on all of these points are provided in Chapter 6.

5.2.4.1 Intrinsic ZYX Euler Angles

Let {G} denote the global reference frame, and let {B} be the body-fixed
frame of which the orientation is being expressed. The intrinsic ZYX
Euler angles representation consists of the following sequence of three
rotations, as shown in Figure 5.3:

• First a rotation by the Euler yaw ψE about the original z-axis,
which corresponds to zG,

• Then a rotation by the Euler pitch θE about the resulting inter-
mediate y-axis, and

5.2 existing rotation representations 51

• Finally a rotation by the Euler roll φE about the once again
resulting x-axis, which corresponds to xB.

The complete Euler angles rotation from {G} to {B} is then denoted by

EG
B = (ψE, θE, φE)

∈ (−π, π]× [−π
2 , π

2]× (−π, π] ≡ E.
(5.18)

The representation is unique, except at the gimbal lock singularities,
which correspond to θE = ±π

2 , where for ε ∈ R we have that

(ψE, π
2 , φE) ≡ (ψE − ε, π

2 , φE − ε), (5.19a)

(ψE,−π
2 , φE) ≡ (ψE − ε, −π

2 , φE + ε). (5.19b)

Beyond wrapping of the individual angles to the standard range of
(−π, π], one further representational equivalence is given by

(ψE, θE, φE) ≡ (π + ψE, π − θE, π + φE). (5.20)

The rotation matrix R corresponding to the Euler angles rotation
E = (ψE, θE, φE) is given by

R = Rz(ψE)Ry(θE)Rx(φE) (5.21a)

=

cψE
cθE

cψE
sθE

sφE
− sψE

cφE
cψE

sθE
cφE

+ sψE
sφE

sψE
cθE

sψE
sθE

sφE
+ cψE

cφE
sψE

sθE
cφE
− cψE

sφE

−sθE
cθE

sφE
cθE

cφE

, (5.21b)

where Ry(•) for example is the rotation matrix corresponding to a
CCW rotation by angle • about the y-axis, and we denote s∗ ≡ sin(∗)
and c∗ ≡ cos(∗). The reverse conversion from a rotation matrix R back
to the Euler angles representation E is given by

ψE = atan2(R21, R11), (5.22a)

θE = asin(−R31), (5.22b)

φE = atan2(R32, R33), (5.22c)

where Rij is the i th-row j th-column entry of the rotation matrix R.
The conversion from Euler angles to the quaternion representation
q = (w, x, y, z) is given by

q = qz(ψE)qy(θE)qx(φE) (5.23a)

=

(
cψ̄E

cθ̄E
cφ̄E

+ sψ̄E
sθ̄E

sφ̄E
, cψ̄E

cθ̄E
sφ̄E
− sψ̄E

sθ̄E
cφ̄E

,

cψ̄E
sθ̄E

cφ̄E
+ sψ̄E

cθ̄E
sφ̄E

, sψ̄E
cθ̄E

cφ̄E
− cψ̄E

sθ̄E
sφ̄E

)
,

(5.23b)

52 representations of 3d rotations

where qz(•) for example is the quaternion corresponding to a CCW

rotation by angle • about the z-axis, and we denote ∗̄ ≡ 1
2∗. The

conversion from q = (w, x, y, z) back to E = (ψE, θE, φE) is given by

ψE = atan2(wz + xy, 1
2 − y2 − z2), (5.24a)

θE = asin(2(wy− xz)), (5.24b)

φE = atan2(wx + yz, 1
2 − x2 − y2). (5.24c)

The conversion equations presented here are required later for analysis
of the Euler angles representation, in particular for Chapter 6.

5.2.4.2 Intrinsic ZXY Euler Angles

The intrinsic ZXY Euler angles representation consists of the following
sequence of three rotations:

• First a rotation by the ZXY Euler yaw ψẼ about the original
z-axis, which corresponds to zG,

• Then a rotation by the ZXY Euler roll φẼ about the resulting
intermediate x-axis, and

• Finally a rotation by the ZXY Euler pitch θẼ about the once again
resulting y-axis, which corresponds to yB.

The complete ZXY Euler angles rotation is then denoted by

ẼG
B = (ψẼ, φẼ, θẼ)

∈ (−π, π]× [−π
2 , π

2]× (−π, π] ≡ Ẽ.
(5.25)

5.3 PARTITIONING ROTATIONS INTO YAW AND TILT

As thoroughly explained in Section 5.1, we wish to find a way of
partitioning any 3D rotation into separate and independent yaw and
tilt components, which together uniquely define the original rotation.
We wish for this partition to be intuitive and meaningful, and further
wish to parameterise the tilt component by equally meaningful angular
notions of pitch and roll. This section addresses how to do exactly this,
and formally introduces the tilt angles, fused angles and tilt phase space
rotation parameterisations.

5.3.1 Fused Yaw

We begin by defining our notion of yaw, the fused yaw of a rotation.
Suppose we have the global frame {G}, and any body-fixed frame
{B}, as illustrated in Figure 5.4. The rotation that we are seeking to
parameterise is the one from {G} to {B}. We first define the intermediate
frame {A} by rotating {B} in such a way that zB rotates onto zG in the

5.3 partitioning rotations into yaw and tilt 53

Figure 5.4: Definition of the tilt angles parameters T = (ψ, γ, α) for a rotation
from {G} to {B}. The frame {G} is first rotated CCW about zG by the
fused yaw ψ to give the intermediate frame {A}, and this frame
is then tilted CCW about v̂ by the tilt angle α to give {B}. The tilt
axis v̂ is always in the global xGyG plane, and is at an angle of
γ relative to xA, as indicated. For aid of visualisation, note that
xB is pointing left-downwards out of the page, and yB is pointing
up-rightwards out of the page.

most direct way possible, within the plane through the origin that
contains these two vectors. Note that this rotation of {B} to get {A} is
in the opposite direction to the magenta arrows in Figure 5.4 (see in
particular the arrow labelled ‘α’). The fused yaw ψ ∈ (−π, π] is then
given by the signed angle of the pure CCW z-rotation from {G} to {A}, as
labelled in the figure. If zB and zG point in exactly opposite directions,
then {A} is not uniquely defined, and this situation is referred to as
the fused yaw singularity. This corresponds to all situations where the
rotation from {B} to {A} has a magnitude of π radians, i.e. 180°.

Mathematically, one can deduce that the fused yaw is given, in
terms of the basic coordinate axis components of {G} and {B}, by

ψ = wrap
(
2 atan2

(
xG

By − yG
Bx, 1 + xG

Bx + yG
By + zG

Bz
))

, (5.26)

where wrap(•) is a function that wraps an angle to the range (−π, π]

by multiples of 2π. Note however that this equation is not numerically
robust, and in fact fails for rotations that have an angle of exactly
θa = π, i.e. rotations by 180° about any axis, as atan2(0, 0) emerges on
the right-hand side. As a robust alternative, if qG

B = (w, x, y, z) ∈ Q

is the quaternion rotation from {G} to {B}, the nominal mathematical
definition of the fused yaw is given by

ψ = wrap
(
2 atan2(z, w)

)
. (5.27)

54 representations of 3d rotations

Figure 5.5: Three different examples of tilt rotations applied to an upright
standing robot. The corresponding axes of rotation in the hori-
zontal xy plane, v̂∗, are shown in dashed. Note that the direction
of rotation is always CCW.

This is the simplest and most fundamental definition of the fused yaw,
and fails with atan2(0, 0) if and only if w = z = 0, which corresponds
exactly to the fused yaw singularity described above. For convenience,
at the fused yaw singularity the fused yaw ψ is generally defined to
be zero, as this makes definitions such as for example Equation (5.28)
consistent with other characterisations.

5.3.2 Tilt Rotations

In reference to Figure 5.4, the fused yaw ψ parameterises the first
component of the rotation from {G} to {B}, namely the rotation from
{G} to {A}, but the rotation component from {A} to {B} still remains.
This component is referred to as the tilt rotation component of {B}
relative to {G}, and it is easy to see that this tilt component itself has a
fused yaw of zero. In fact, in general all rotations with zero fused yaw
are referred to exclusively as tilt rotations, or pure tilt rotations, and
the set of all tilt rotations is denoted by

TR(3) = {R ∈ SO(3) : ψ = 0} ⊂ SO(3). (5.28)

While the fused yaw of a rotation relates to the change in heading
that it induces, the tilt rotation component of a rotation relates to
how much, and in what direction, the originally upright z-axis ‘tips
over’ towards the horizontal ground plane. Three different examples

5.3 partitioning rotations into yaw and tilt 55

of tilt rotations, as applied to an upright standing robot, are shown in
Figure 5.5 for illustrative purposes of this concept.

The following are completely equivalent characterisations of the set
of all (pure) tilt rotations:

• All rotations that have a fused yaw of zero,

• All rotations that correspond to a single rotation about a vector
in the horizontal xy plane,

• All rotations for which the axis of rotation has no component in
the z-direction, i.e. ez = 0, and,

• All rotations that have a quaternion z-component of zero.

Most of these characterisations follow naturally and easily from the
definition of fused yaw in Section 5.3.1. The last one can be observed
from Equation (5.27), by substituting in z = 0 and considering the
cases separately where w is positive or negative.

5.3.2.1 Z-vector Parameterisation

Given the above definition and characterisations of tilt rotations, we
now wish to be able to parameterise the two-dimensional tilt rotation
component of a rotation, i.e. the component from {A} to {B}, just like
the parameter ψ was used to parameterise the one-dimensional yaw
rotation component from {G} to {A}. The space of all tilt rotations is,
as stated, two-dimensional, so two or more parameters are required
for the task, or exactly two in order to be minimal. While three novel
such parameterisations are introduced in this chapter, two of which
specifically aim to do this in a way that reflects the angular amounts
of rotation independently in the sagittal and lateral planes, we can
already preliminarily parameterise tilt rotations using existing tools
that we already have, namely rotation matrices and quaternions.

By definition, the tilt rotation component relates to the relative
directions of the two z-axes zG and zB, and the nature of the direct
planar 3D rotation between them (see Figure 5.4). Thus, it can be
observed that two immediate options for parameterising tilt rotations
are just these z-axis vectors themselves, namely the global z-vector

zB
G, and the local z-vector zG

B. In terms of the basic coordinate axis
components of {G} and {B}, these can trivially be identified as

zB
G = (zB

Gx, zB
Gy, zB

Gz), (5.29a)

zG
B = (zG

Bx, zG
By, zG

Bz). (5.29b)

We note that these are unit vectors, and thus use three interdependent
parameters to express the required two degrees of freedom, and that
they correspond exactly to the last row and column of the rotation
matrix RG

B , respectively.

56 representations of 3d rotations

The local z-vector zG
B is a valid parameterisation for tilt rotation

components, but not in general a useful one because its x and y-
components depend on the fused yaw ψ. This means that if the
heading of a body {B} is changed, the fused yaw changes additively as
required, but the local z-vector zG

B also changes despite the fact that
the tilt rotation component itself has not changed. The global z-vector

zB
G does not have this problem however, as

zB
G ≡ zB

A, (5.30)

and therefore remains constant as expected. Thus, by convention,
when referring to the z-vector parameterisation of a rotation, or just
the z-vector of a rotation, this is unambiguously taken to mean the
global one, namely zB

G. The z-vector parameterisation is meaningful
and relevant in application scenarios mainly because it corresponds
to the direction that an accelerometer attached to the body would
measure under quasi-static conditions, as indicated in Section 5.1.2.

Given any unit global z-vector zB
G, the corresponding tilt rotation

is uniquely defined, as the required intermediate frame {A} can be
retrieved by rotating frame {B} directly onto zG, as per the definition
in Section 5.3.1. Conversely, given a tilt rotation component, zB

G is
clearly uniquely defined. As such, the z-vector parameterisation is,
as required, a one-to-one mapping of the space of tilt rotations, at
least everywhere except for the fused yaw singularity, where zG and
zB point in opposite directions. All tilt rotations for which this is the
case are equally assigned zB

G = (0, 0,−1) in terms of the z-vector
parameterisation.

5.3.2.2 Quaternion Parameterisation

Being just a special type of 3D rotation, tilt rotation components can
also be parameterised by their corresponding quaternion rotation from
{A} to {B}, namely

qA
B ≡ (w, x, y, 0), (5.31)

where qA
B must be a unit quaternion, so

w2 + x2 + y2 = 1. (5.32)

Note that the above w, x and y parameters are not the same as for
the quaternion representation qG

B of the entire rotation from {G} to
{B}. Also, it should be noted that the quaternion z-component of tilt
rotations is always zero, hence why the z-component can be omitted in
Equation (5.31). Like for the z-vector parameterisation, the quaternion
parameterisation of the tilt rotation component once again corresponds
to three interdependent parameters that together express the required
two degrees of freedom of the space of tilt rotations. A difference to
the z-vector parameterisation however, is that qA

B and − qA
B are treated

5.3 partitioning rotations into yaw and tilt 57

as equivalent parameter values. The various different tilt rotations
at the fused yaw singularity also correspond to different values of
the w, x and y parameters, as opposed to all corresponding to the
same value, like for the z-vector parameterisation. This fundamental
difference is discussed further in Section 5.5, also in relation to other
representations and how they behave at the fused yaw singularity.

5.3.3 Tilt Angles Representation

It can be seen from the definition of fused yaw and tilt rotations that,
geometrically, every rotation can be divided into a pure z-rotation,
followed by a rotation about an axis in the horizontal xy plane. As
shown in Figure 5.4, the former is the yaw rotation component, from
{G} to {A}, and the latter is the tilt rotation component, from {A} to
{B}, as previously defined. One natural way of parameterising the tilt
rotation component is using the axis-angle representation, defined
in Section 5.2.2. We choose an axis-angle pair (v̂, α) ∈ A such that
α ∈ [0, π], thus representing the tilt rotation component as a single
CCW rotation by up to 180° about a vector v̂ in the horizontal xy plane.
The angle α is the magnitude of the tilt rotation component, and is
referred to as the tilt angle of the rotation from {G} to {B}, and the
vector v̂ is referred to as the tilt axis. The CCW angle from xA to v̂
about the global z-axis zG is referred to as the tilt axis angle of {B},
and is denoted γ. Both xA and v̂ are in the global xy plane, so zG is
perpendicular to them, and γ is well-defined. The tilt angle α, tilt axis
v̂, and tilt axis angle γ are all labelled in Figure 5.4.

It is easy to see that the tilt rotation component from {A} to {B} is
completely defined by the parameter pair (γ, α). Thus, together with
the fused yaw ψ, we arrive at the tilt angles parameterisation of the
rotation from {G} to {B}, namely

TG
B = (ψ, γ, α)

∈ (−π, π]× (−π, π]× [0, π] ≡ T.
(5.33)

The tilt angles parameters corresponding to the identity rotation are
given by (0, 0, 0) ∈ T. It can be seen by construction that all rotations
possess a tilt angles representation, but it is not always necessarily
unique. Most notably, when α = 0, the γ parameter can be arbitrary
with no effect. Mathematically, the tilt axis angle γ and tilt angle α can
be expressed in terms of the basic coordinate axis components of {G},
or more specifically, the components of the z-vector zB

G, as

γ = atan2(− zB
Gx, zB

Gy), (5.34a)

α = acos(zB
Gz). (5.34b)

The tilt axis v̂ can be expressed in terms of γ and the fused yaw ψ, as

v̂G =
(
cos(ψ + γ), sin(ψ + γ), 0

)
. (5.35)

58 representations of 3d rotations

Relative to the intermediate frame {A}, or for tilt rotations, this is just

v̂A =
(
cos γ, sin γ, 0

)
. (5.36)

While tilt angles themselves do not directly address all the require-
ments and aims that were set out in Section 5.1, they constitute a
useful intermediate representation for defining and analysing other
parameterisations of the tilt rotation component, and give a somewhat
direct and ‘low-level’ view of the partition of rotations into yaw and
tilt components. By optionally extending the domain of α to [0, ∞),
tilt rotations of arbitrary magnitude can also be parameterised and
numerically manipulated. This, for example, is not possible with either
the z-vector or quaternion parameterisations of the tilt rotation com-
ponent, and can be useful for dealing with rotations that exceed 180°
in magnitude, as opposed to just considering the final coordinate
frame that these so-called unbounded rotations result in.

5.3.4 Fused Angles Representation

Although the tilt angles parameterisation is a helpful start in under-
standing tilt rotations, we wish to be able to parameterise the tilt
rotation component in such a way that it reveals concurrent definitions
of pitch and roll, as discussed in Sections 5.1.1 and 5.1.2. To do this,
we consider just the tilt rotation component of a rotation from {G} to
{B}, namely the component from {A} to {B}, as shown in Figure 5.6.
We define the fused pitch θ as the signed angle between the global
z-vector zG (= zA) and the yBzB plane, and the fused roll φ as the
signed angle between zG and the xBzB plane, as illustrated in the
figure. The signs of θ and φ are defined to be the same as the signs
of − zB

Gx and zB
Gy, respectively. In fact, the fused pitch and roll are

exactly given by
θ = asin(− zB

Gx), (5.37a)

φ = asin(zB
Gy). (5.37b)

Loosely speaking, rotations with positive fused pitch can be thought of
as tendentially ‘forwards’ rotations that have a positive CCW compon-
ent about the y-axis, and positive fused roll rotations can be thought
of as tendentially ‘rightwards’ rotations that have a positive CCW

component about the x-axis.
By inspection of their mathematical and geometric definitions, it

can be seen that the fused pitch and roll only uniquely specify the
tilt rotation component of a rotation up to the z-hemisphere, that is,
whether zB and zG are mutually in the same unit hemisphere or not.
To resolve this ambiguity, the fused hemisphere, or just hemisphere,
of a rotation is defined as

h = sign(zB
Gz), (5.38)

5.3 partitioning rotations into yaw and tilt 59

Figure 5.6: Definition of the fused angles parameters (θ, φ, h) for a tilt rotation
component from {A} to {B}. Refer to Figure 5.4 for a visual
definition of the intermediate frame {A}, and the fused yaw ψ
used to define it. The frame {A} is rotated onto frame {B} through
a tilt angle of α in such a way that zA ≡ zG rotates directly
onto zB. The fused pitch θ and fused roll φ are defined as the
angles between zG and the yBzB and xBzB planes respectively.
The hemisphere h is +1 if zG and zB are mutually in the same
hemisphere, and −1 if not. For aid of visualisation, note that xB is
pointing left-downwards parallel to the page, and yB is pointing
up-leftwards out of the page.

where sign(•) is a sign function that takes on only the values ±1.
Note that sign(•) differs from the normal sign function sgn(•) in that
sign(0) = 1, whereas sgn(0) = 0.

Using the notion of the fused hemisphere, the triplet (θ, φ, h) be-
comes a complete description of the tilt rotation component of a
rotation, just like the parameter pair (γ, α) is. Thus, together with
the fused yaw ψ, we define the fused angles parameterisation of the
rotation from {G} to {B} as

FG
B = (ψ, θ, φ, h)

∈ (−π, π]× [−π
2 , π

2]× [−π
2 , π

2]× {−1, 1} ≡ F̂.
(5.39)

The fused angles parameters corresponding to the identity rotation
are given by (0, 0, 0, 1) ∈ F̂. A hat is used for the domain F̂ in
Equation (5.39), because the given definition is in fact a superset
of the true domain F of the fused angles parameterisation. From
Equation (5.37), it can be seen that

zB
Gx = − sin θ, (5.40a)

zB
Gy = sin φ. (5.40b)

60 representations of 3d rotations

Figure 5.7: An illustration of the true domain of the fused pitch and roll.
While nominally the domain is (φ, θ) ∈ [−π

2 , π
2]×[−

π
2 , π

2], we see
through the application of the sine sum criterion |θ|+ |φ| ≤ π

2
that the true domain is given by the shaded diamond-shaped
region. The nominal square domain corresponds to F̂, and the
true diamond domain corresponds to F.

As zB
G is a unit vector, we must have that

zB 2
Gx + zB 2

Gy ≤ 1, (5.41)

so from Equation (5.40), we deduce that θ and φ must satisfy

sin2 θ + sin2 φ ≤ 1. (5.42)

This is referred to as the sine sum criterion, and given that the fused
pitch and roll are both restricted to a domain of [−π

2 , π
2], this is

completely equivalent to

|θ|+ |φ| ≤ π
2 . (5.43)

The region in the fused pitch vs. fused roll space that is defined by
the sine sum criterion is shown in Figure 5.7. The true domain F of
the fused angles representation is given by the restriction of F̂ to this
region. The domains of the fused yaw and hemisphere parameters
remain unchanged however.

5.3.5 Tilt Phase Space

As an alternative to fused angles for parameterising the tilt rotation
component of a rotation in a way that yields pitch and roll components,

5.3 partitioning rotations into yaw and tilt 61

Figure 5.8: A polar plot of the 2D tilt phase space parameters (px, py) ∈ P2.
The x and y-axes correspond to px and py respectively, and in
terms of polar coordinates, γ is the polar angle and α is the radius.
Note that although the radial scale in this plot only goes up to
1.0, this is just an arbitrary choice, and can of course be extended
to π or more.

we now introduce the closely related tilt phase space parameterisation.
The tilt phase space combines the ability of fused angles to quantify
the amounts of rotation in the major planes, with the ability of tilt
angles to optionally also represent tilt rotations over 180°. The tilt
phase space also enables a more vectorial view of rotations, while
still adhering to the partition of rotations into fused yaw and tilt
components, as required. There are two main variants of the tilt phase
space, relative and absolute, and for each case there is the choice to
either consider all three parameters (3D), or only the two that quantify
the tilt rotation component (2D). If referring to just ‘the tilt phase
space’, without a qualifier, by default this refers to the relative tilt
phase space, and from the context it is usually clear whether just the
2D pitch and roll parameters are being considered, or whether the 3D
parameters, including the yaw, are being considered. The relative and
absolute tilt phase spaces are defined as follows.

62 representations of 3d rotations

5.3.5.1 Relative Tilt Phase Space

Given the tilt angles representation TG
B = (ψ, γ, α) of a rotation from

{G} to {B}, the phase roll px, phase pitch py, and fused yaw pz are
defined by

px = α cos γ, (5.44a)

py = α sin γ, (5.44b)

pz = ψ. (5.44c)

The 3D relative tilt phase space representation is then given by

PG
B = (px, py, pz) ∈ R3 ≡ P3. (5.45)

The relative tilt phase parameters corresponding to the identity rota-
tion are given by (0, 0, 0) ∈ P3. Often, when working with tilt rotations,
the fused yaw component is either zero or irrelevant. In such cases,
the 2D relative tilt phase space representation can be used instead,
given by

PG
B = (px, py) ∈ R2 ≡ P2, (5.46)

which essentially just omits the fused yaw component pz. The 2D
formulation of the tilt phase space is the most frequently encountered
one in this thesis, specifically because of its application to bipedal
walking (e.g. in Chapters 10 and 11). It should be noted that R was
used in full generality in Equations (5.45) and (5.46) for the definition
of the tilt phase space domains P2 and P3, in order to naturally be able
to represent rotations of all magnitudes (i.e. unbounded rotations). As
is frequently the case however, if we are dealing strictly with rotations
where only the final orientation of the coordinate frame matters, then
the true domain of the tilt phase space would rather be

P3 ≡ D̄2(π)× (−π, π], (5.47a)

P2 ≡ D̄2(π), (5.47b)

where D̄2(π) is the closed 2-dimensional disc of radius π centred at
the origin. That is, put more simply, in the phase pitch vs. phase roll
space, D̄2(π) corresponds to a circle of radius π and all of its interior.

Plots of phase pitch py against phase roll px are customarily drawn
on a polar plot to highlight the relationship between the ‘Cartesian’
tilt phase coordinates and the ‘polar’ tilt angles coordinates α and
γ, as made explicit in Figure 5.8. The circular boundary of a polar
plot also well-represents the natural domain of all tilt rotations if only
bounded rotations, i.e. tilt rotations of up to 180°, are considered, as
this domain is circular as well, as just discussed. An example of three
different pure tilt rotations, and what their respective tilt phase space
coordinates are as viewed in a polar plot, is shown in Figure 5.9.

The tilt phase parameters were defined in terms of the tilt angles
parameters in Equation (5.44), but as discussed in Section 5.3.3, the tilt

5.3 partitioning rotations into yaw and tilt 63

Figure 5.9: Three different examples of tilt rotations applied to an upright
standing robot (left), and the corresponding points in the 2D tilt
phase space (right). The respective CCW axes of rotation in the
horizontal xy plane, v̂∗, are shown in dashed. Note, for example,
that A is a rotation about the positive x-axis, i.e. v̂A = (1, 0, 0), so
its corresponding py component is zero, and its px component is
positive (can be seen in the phase plot on the right).

axis angle γ and the tilt angle α are not always unique in describing
a particular tilt rotation component. Thus, it is important to check
that the tilt phase space is nonetheless well-defined, and furthermore
that it is unique, continuous and smooth (infinitely differentiable)
everywhere except for at the fused yaw singularity. These are critically
important properties of the tilt phase space, as they imply that the
representation can for example safely be differentiated and related to
angular velocities. The well-definedness, continuity and smoothness
of the tilt phase space, in particular at the identity tilt rotation PG

B =

(0, 0) ∈ P2, is demonstrated in Allgeuer (2020).

5.3.5.2 Absolute Tilt Phase Space

The absolute tilt phase space shares the same definition as the relative
tilt phase space, only with the absolute tilt axis angle γ̃ = γ + ψ being
used instead of γ. That is,

p̃x = α cos γ̃, (5.48a)

p̃y = α sin γ̃, (5.48b)

p̃z = ψ. (5.48c)

If a clear distinction between γ̃ and γ is required, then γ can be
referred to as the relative tilt axis angle. The triplet

T̃G
B = (ψ, γ̃, α)

∈ (−π, π]× (−π, π]× [0, π] ≡ T̃,
(5.49)

64 representations of 3d rotations

is sometimes referred to as the absolute tilt angles parameterisation of
a rotation, and once again, if clear distinction is required, the standard
tilt angles representation can be referred to as the relative tilt angles.

Based on Equation (5.48), the 3D absolute tilt phase space represent-
ation is given by

P̃G
B = (p̃x, p̃y, p̃z) ∈ R3 ≡ P̃3, (5.50)

and the 2D absolute tilt phase space representation is given by

P̃G
B = (p̃x, p̃y) ∈ R2 ≡ P̃2, (5.51)

The absolute tilt phase parameters corresponding to the identity
rotation are (0, 0, 0) ∈ P̃3, as before. Geometrically, the absolute tilt axis
angle γ̃ is equivalent to the CCW angle from xG to v̂ (see Figure 5.4),
instead of the angle from xA to v̂, as for the relative tilt axis angle
γ. The relation between the absolute and relative tilt phase spaces is
given by

p̃x = px cos ψ− py sin ψ, (5.52a)

p̃y = px sin ψ + py cos ψ, (5.52b)

p̃z = pz, (5.52c)

for the conversion from relative to absolute, and

px = p̃x cos ψ + p̃y sin ψ, (5.53a)

py = − p̃x sin ψ + p̃y cos ψ, (5.53b)

pz = p̃z, (5.53c)

for the conversion from absolute to relative. These equations essentially
correspond to simple 2D rotations by ±ψ for (px, py) and (p̃x, p̃y).

The absolute tilt phase space is only a slight variation of the relative
tilt phase space, and it should be noted that for tilt rotations the two
representations are identical anyway. That is,

pz = ψ = 0 =⇒ P̃G
B ≡ PG

B (5.54)

All previous arguments about bounded vs. unbounded rotations, the
true bounded domain of the parameters, phase plots, continuity and
smoothness and so on, hold just the same for the absolute tilt phase
space. In fact, all results that hold for one of the two spaces in general
correspond trivially to completely analogous results for the other.

5.3.5.3 Tilt Vector Addition

If one takes two different tilt rotations and combines them as sequential
rotations, the result is in general not a tilt rotation, and depends on the
order in which the two rotations are combined. In mathematical terms,

5.4 rotation representation conversions 65

this is to say that the binary operation given by standard rotation com-
position is not closed on the set of all tilt rotations, and not commutative.
This can be problematic, if for example in an orientation feedback
controller it is required to combine the contributions of multiple tilt
rotation feedback paths, e.g. for Proportional-Integral-Derivative (PID)
feedback like in Section 11.2, as using standard rotation composition
cannot result in an unambiguous final tilt rotation. The 2D tilt phase
space provides a way of defining a useful and meaningful addition
operator for tilt rotations that is closed, commutative, and like stand-
ard rotation composition, associative. This new binary operation ‘⊕’
is referred to as tilt vector addition, and for P1, P2 ∈ P2 is defined by

P1 ⊕ P2 = (px1 + px2, py1 + py2) ∈ P2. (5.55)

In terms of tilt angles this is equivalent to

(α1cγ1
, α1sγ1

)⊕ (α2cγ2
, α2sγ2

) = (α1cγ1
+ α2cγ2

, α1sγ1
+ α2sγ2

), (5.56)

where the standard abbreviations c∗ and s∗ for cos(∗) and sin(∗) have
been used. If we let P3 ∈ P2 denote the tilt rotation corresponding
to the sum P1 ⊕ P2, and let (γ3, α3) denote the associated tilt angles
parameters, then we can also write

(γ1, α1)⊕ (γ2, α2) = (γ3, α3), (5.57)

noting that this is not just elementwise vector addition, but rather
shorthand for applying Equation (5.56) and then converting the result
back into tilt angles. The action of tilt vector addition is illustrated in
Figure 5.10.

Although tilt vector addition is nominally defined in terms of the
relative tilt phase space, completely analogous definitions of tilt vector
addition naturally hold for the absolute tilt phase space as well. An
important observation however, which supports the self-consistency
of the definition of tilt vector addition, is that regardless of whether
two tilt rotations are added in the relative or absolute spaces, the
outcome is the same. This means that if two tilt rotations (or tilt
rotation components for rotations of equal fused yaw) are expressed
in terms of their relative and absolute tilt phase space parameters and
added using tilt vector addition, the resulting tilt rotations expressed
as, for example, quaternions are identical.

5.4 ROTATION REPRESENTATION CONVERSIONS

Given the many different existing rotation representations and the
new ones that have been introduced in this chapter, it is important to
be able to relate them to each other and convert between them. This
section summarises all relevant conversion equations, and also sheds
light on the intricate connections between the various representations,

66 representations of 3d rotations

Figure 5.10: An illustration of tilt vector addition in the 2D tilt phase space,
where as indicated we have that P1 ⊕ P2 = P3. When expressed
in terms of the tilt phase space, it can be seen that tilt vector
addition is equivalent to standard vector addition. In terms of tilt
angles, we have in this case that a tilt of 0.7 rad about γ1 = 60°,
added to a tilt of 0.8 rad about γ2 = 195°, gives a combined tilt
of 0.5814 rad about γ3 = 136.6°.

as required for later parts of this thesis. Conversions from the z-
vector parameterisation to other forms have been omitted, as these are
implicit from the definitions that have been given in this chapter so far,
e.g. like in Equations (5.34) and (5.37). Conversions to and from the tilt
phase space are also in general only presented in terms of the relative
tilt phase space, as Equations (5.52) and (5.53) can then be used to
relate this to the absolute tilt phase space. Throughout this section, as
well as throughout the remainder of this thesis, the shorthand is used
that c∗ ≡ cos(∗), s∗ ≡ sin(∗) and ∗̄ ≡ 1

2∗.

5.4.1 From Tilt Angles To

Given a tilt angles rotation T = (ψ, γ, α) ∈ T, the corresponding
rotation matrix is given by

R = Rz(ψ)Rv̂(α) (5.58a)

=

cγcγ+ψ + cαsγsγ+ψ sγcγ+ψ − cαcγsγ+ψ sαsγ+ψ

cγsγ+ψ − cαsγcγ+ψ sγsγ+ψ + cαcγcγ+ψ −sαcγ+ψ

−sαsγ sαcγ cα

, (5.58b)

5.4 rotation representation conversions 67

where Rz(•) is a CCW rotation by angle • about the z-axis, and Rv̂(•) is
a CCW rotation by angle • about the vector v̂ = (cγ, sγ, 0). The z-vector
parameterisation is thus given by the bottom row

zB
G = (− sin α sin γ, sin α cos γ, cos α). (5.59)

The quaternion corresponding to T, on the other hand, is given by

q = qz(ψ)qv̂(α) (5.60a)

= (cᾱcψ̄, sᾱcψ̄+γ, sᾱsψ̄+γ, cᾱsψ̄). (5.60b)

In specific reference to Section 5.3.2.2 and Equation (5.31), the qua-
ternion corresponding to the tilt rotation component of a rotation is
thus given by

qA
B = (w, x, y, 0) (5.61a)

= (cos α
2 , sin α

2 cos γ, sin α
2 sin γ, 0). (5.61b)

The tilt phase representation of the rotation T is clear by definition,
i.e. from Equations (5.44) and (5.48), and aside from the fused yaw
ψ, which is common to both representations, the fused angles F =

(ψ, θ, φ, h) can be calculated from the tilt angles parameters using

sin θ = sin α sin γ, (5.62a)

sin φ = sin α cos γ. (5.62b)

The fused hemisphere h is given by

h = sign(cos α) (5.63a)

=

{
1 if α ≤ π

2 ,

−1 if α > π
2 ,

(5.63b)

where we recall that α ∈ [0, π]. Interestingly, from Equation (5.62) we
note that

sin2 θ + sin2 φ = sin2 α. (5.64)

This, amongst other things, gives new insight into why the sine sum
criterion in Equation (5.42) must hold.

5.4.2 From Fused Angles To

Given a fused angles rotation F = (ψ, θ, φ, h) ∈ F, the tilt angles
parameters can be calculated using

γ = atan2(sin θ, sin φ), (5.65a)

α = acos
(

h
√

1− sin2 θ − sin2 φ
)

, (5.65b)

68 representations of 3d rotations

where for numerical computation one may choose to use the identity

1− sin2 θ − sin2 φ ≡ cos(θ + φ) cos(θ − φ). (5.66)

Most conversions involving fused angles involve the calculation of the
tilt angles parameters γ and α, followed by the use of the appropriate
tilt angles conversion formulas from Section 5.4.1. This is why the
tilt angles representation is sometimes referred to as an intermediate
representation. Despite this however, in most cases there are still slight
simplifications or alternatives that can be found, either to make the
calculation somewhat more direct, or to highlight mathematical links
between fused angles and other representations that are useful for
analysis. For instance, the rotation matrix representation of F can be
expressed as

R =

cγcγ+ψ + cαsγsγ+ψ sγcγ+ψ − cαcγsγ+ψ sψsφ + cψsθ

cγsγ+ψ − cαsγcγ+ψ sγsγ+ψ + cαcγcγ+ψ sψsθ − cψsφ

−sθ sφ cα

, (5.67)

leading to a z-vector parameterisation of

zB
G = (− sin θ, sin φ, cos α) (5.68a)

=
(
− sin θ, sin φ, h

√
1− sin2 θ − sin2 φ

)
. (5.68b)

The quaternion q corresponding to the fused angles F can also be
expressed partially in terms of the fused angles parameters using

q =


q̃p
‖q̃p‖

if h = 1,

q̃n
‖q̃n‖

if h = −1,
(5.69)

where the unnormalised positive and negative hemisphere quaternions
q̃p and q̃n are given by

q̃p =
(
cψ̄(1+cα), sφcψ̄ − sθsψ̄, sφsψ̄ + sθcψ̄, sψ̄(1+cα)

)
, (5.70a)

q̃n =
(
sαcψ̄, cψ̄+γ(1−cα), sψ̄+γ(1−cα), sαsψ̄

)
. (5.70b)

The respective quaternion norms are analytically given by

‖q̃p‖ =
√

2(1 + cos α) = 2 cos α
2 , (5.71a)

‖q̃n‖ =
√

2(1− cos α) = 2 sin α
2 . (5.71b)

Note that both cases in Equation (5.69) can actually be used every-
where in both fused hemispheres, but the normalisation of q̃p becomes
numerically sensitive towards the bottom (α = π) of the negative
hemisphere, and the normalisation of q̃n similarly becomes numeric-
ally sensitive towards the top (α = 0) of the positive hemisphere. This

5.4 rotation representation conversions 69

can be seen from the quaternion norms given in Equation (5.71). It
should also be noted that the value of α does not need to be computed
in order to evaluate Equation (5.70), only cos α and sin α, which can
be obtained from Equations (5.64) and (5.65b) directly.

The conversion from fused angles to the tilt phase space is also
nominally performed via calculation of α and γ, but the two spaces
can also be more directly related using

px =
sin φ

sinc α
=
(α

sin α

)
sin φ, (5.72a)

py =
sin θ

sinc α
=
(α

sin α

)
sin θ, (5.72b)

where

sinc α =

{
sin α

α if α 6= 0,

1 if α = 0,
(5.73)

is the cardinal sine function, a smooth function of α.

5.4.3 From Tilt Phase Space To

The conversions from the tilt phase space P = (px, py, pz) ∈ P3 to
all other representations mentioned in this chapter are nominally
performed via the tilt angles representation, the conversion to which
is given by

ψ = pz, (5.74a)

γ = atan2(py, px), (5.74b)

α =
√

p2
x + p2

y . (5.74c)

The only exception is the fused angles representation, which can be
related to the tilt phase space directly using Equation (5.74c), followed
by

sin θ = py sinc α, (5.75a)

sin φ = px sinc α. (5.75b)

The tilt phase space is another example of why the tilt angles repres-
entation is sometimes referred to as an intermediate representation.

5.4.4 From Quaternion To

Given the quaternion q = (w, x, y, z) ∈ Q, the corresponding rotation
matrix is given by

R =

 1− 2(y2 + z2) 2(xy− wz) 2(xz + wy)
2(xy + wz) 1− 2(x2 + z2) 2(yz− wx)
2(xz− wy) 2(yz + wx) 1− 2(x2 + y2)

, (5.76)

70 representations of 3d rotations

leading to a z-vector parameterisation of

zB
G =

(
2(xz− wy), 2(yz + wx), 1− 2(x2 + y2)

)
. (5.77)

As given in Equation (5.27), the quaternion parameters define the
fused yaw ψ as

ψ = wrap
(
2 atan2(z, w)

)
, (5.78)

where wrap(•) is a function that wraps an angle to the range (−π, π]

by multiples of 2π. The remaining tilt angles parameters are then
given by

γ = atan2(wy− xz, wx + yz), (5.79a)

α = acos(2(w2 + z2)− 1) (5.79b)

= 2 acos
(√

w2 + z2
)

, (5.79c)

and the remaining fused angles parameters are given by

θ = asin
(
2(wy− xz)

)
, (5.80a)

φ = asin
(
2(wx + yz)

)
, (5.80b)

h = sign
(
w2 + z2 − 1

2

)
. (5.80c)

Care has to be taken with the combination of Equation (5.78) and
Equation (5.79a) near the fused yaw singularity α = π, which is
equivalent to w = z = 0. The fused yaw has an essential discontinuity
there, so both equations necessarily become numerically sensitive in
that region. Due to the resulting effects, the calculated tilt parameters
may not accurately describe the original quaternion. Assuming a
rotation is at the fused yaw singularity, more numerically consistent
equations for the tilt angles parameters are ψ = 0, α = π, and

γ = atan2(y, x). (5.81)

Once the tilt angles parameters are known, the tilt phase parameters
can trivially be calculated using Equations (5.44) and (5.48). Alternat-
ively, the tilt phase parameters can be calculated more directly from
the quaternion parameters using

px =
α

S
(wx + yz), (5.82a)

py =
α

S
(wy− xz), (5.82b)

pz = wrap
(
2 atan2(z, w)

)
, (5.82c)

where
α = acos

(
(w2 + z2)− (x2 + y2)

)
, (5.83a)

S = 1
2 sin α =

√
(w2 + z2)(x2 + y2) . (5.83b)

5.5 singularity analysis 71

Similar to the need for Equation (5.81), if S = 0 then

(px, py) =


(0, 0) if w2 + z2 ≥ x2 + y2,

π
(x, y)
‖(x, y)‖ otherwise.

(5.84)

It should be noted that if the operand of acos(•) in Equation (5.83a)
is divided by (w2 + z2) + (x2 + y2), which is nominally 1 for a unit
quaternion q = (w, x, y, z), then the entire conversion algorithm to the
tilt phase space is quaternion magnitude independent.

5.4.5 From Rotation Matrix To

The conversions from rotation matrices to other representations is
discussed in detail in Allgeuer (2020). As a brief excerpt however, the
tilt rotation component parameters for the tilt angles representation
can be calculated as

γ = atan2(−R31, R32), (5.85a)

α = acos(R33), (5.85b)

and the corresponding fused angles parameters can be calculated as

θ = asin(−R31), (5.86a)

φ = asin(R32), (5.86b)

h = sign(R33). (5.86c)

5.5 SINGULARITY ANALYSIS

When examining rotation representations, it is important to identify
and precisely quantify any singularities. It was shown by Stuelpn-
agel (1964) that it is topologically impossible to have a one-to-one
and global three-dimensional, i.e. minimal, parameterisation of the
rotation group without any singular points. For an n-dimensional
parameterisation to be one-to-one and global without any singular
points, there must exist a differentiable one-to-one map with differ-
entiable inverse that carries the rotation space SO(3) to the required
parameter domain subset of Rn. Thus, for n = 3, it must be the case
for every parameterisation that either the map is not one-to-one, not
differentiable, or not inverse differentiable.

Of greatest concern to the mathematical and practical applications
of particular rotation representations is the location and prevalence
of singular points. The possible types of singularities of rotation
representations can be characterised to primarily include:

(i) Rotations that do not possess a unique parameterised represent-
ation,

72 representations of 3d rotations

Figure 5.11: At the fused yaw singularity, i.e. zB = −zG, there are multiple
combinations of yaw and tilt that can take a global frame {G}
to the local frame {B}. In this example, a yaw rotation of ψ1
followed by a tilt rotation of (γ1, α1) (i.e. a CCW rotation of {A}
by α1 = π radians about v̂1), is equivalent to a yaw rotation of
ψ2 = 0 (i.e. no yaw rotation) followed by a tilt rotation of (0, α2)
(i.e. a CCW rotation of α2 = π radians about xG).

(ii) Sets of parameters that do not correspond to a unique rotation,

(iii) Rotations in the neighbourhood of which the sensitivity of the
rotation to parameters map is unbounded, and,

(iv) Sets of parameters in the neighbourhood of which the sensitivity
of the parameters to rotation map is unbounded.

It should be noted that strictly speaking, all cyclic parameters that loop
around at ±π break the mathematical condition of differentiability, as
this requires continuity. This is not seen to result in true singularities
or discontinuities however, as the cyclic parameters are clearly viewed
as having a cyclic topology, for which the jump at ±π is not a
discontinuity.

5.5.1 Fused Yaw Singularity

The most prominent singularity present in the new representations
developed in this thesis is the fused yaw singularity, which has
been mentioned before in Section 5.3.1. The geometric definition of
the fused yaw ψ requires a direct planar rotation to be constructed
from zB to zG, but this rotation is not uniquely defined in situations
where zB and zG are antiparallel, i.e. when they point in opposite

5.5 singularity analysis 73

directions. As shown in Figure 5.11, in such situations there are
multiple combinations of yaw and tilt that can be used to arrive at the
final body-fixed frame {B}, leading to an ambiguity in the definition of
the associated parameters. The following are all completely equivalent
characterisations of rotations at the fused yaw singularity:

• Rotations for which the body-fixed z-axis points vertically down-
wards,

• Rotations by 180° about an axis in the xy plane, i.e. pure 180°
tilt rotations,

• Rotations for which zG
Bz ≡ zB

Gz = −1, i.e. zB = −zG,

• Rotation matrices for which R33 = −1,

• Quaternion rotations for which w = z = 0,

• Tilt angles rotations for which α = π,

• Fused angles rotations for which θ = φ = 0 and h = −1,

• Tilt phase space rotations for which ‖(px, py)‖ =
√

p2
x + p2

y = π.

Conceptually, the fused yaw singularity can be seen to be as ‘far
away’ from the identity rotation as possible, as all fused yaw singular
rotations are 180° away from the identity, and no two rotations in the
rotation space can be separated by more than that. This is particularly
useful for applications involving balancing bodies, as in particular for
most cases of mobile robotics, a completely inverted pose is the most
uncommon part of the rotation space to occur.

Based on the above characterisations of rotations at the fused yaw
singularity, expressions can be developed for the formats of the various
rotation representations at the fused yaw singularity. For instance:

Tsing = (ψ, γ, π), (5.87a)

Fsing = (ψ, 0, 0,−1), (5.87b)

Psing = (px, py, ψ), (5.87c)

qsing = (0, x, y, 0) (5.87d)

=
(
0, cos(γ + ψ

2), sin(γ + ψ
2), 0

)
, (5.87e)

where p2
x + p2

y = π2 and x2 + y2 = 1. For rotation matrices, the format
of the fused yaw singularity is given by the following expressions:

Rsing =

R11 R12 0
R12 −R11 0
0 0 −1

 (5.88a)

=

x2 − y2 2xy 0
2xy y2 − x2 0

0 0 −1

 (5.88b)

74 representations of 3d rotations

=

cos(2γ + ψ) sin(2γ + ψ) 0
sin(2γ + ψ) − cos(2γ + ψ) 0

0 0 −1

, (5.88c)

where R2
11 + R2

12 = 1 in Equation (5.88a), and x2 + y2 = 1 in Equa-
tion (5.88b).

As per the characterisation of singularities given at the start of this
section, the fused yaw singularity is a singularity of types (i) and
(iii) for tilt angles and the tilt phase space, and types (i), (ii) and
(iii) for fused angles. The difference comes about from the way that
the fused angles tilt rotation component parameters are equal for all
fused yaw singular rotations, which is not the case for the other two
representations. The singularity is of type (iii) because it constitutes
an essential discontinuity in the map from the rotation space to the
respective fused yaws. As a result, given any fused yaw singular
rotation R, and any neighbourhood U of R in the rotation space SO(3),
for every ψ ∈ (−π, π] there exists a rotation in U with a fused yaw
of ψ. Despite this discontinuity, by convention when calculating the
fused yaw of a singular rotation, the value of ψ = 0 is used. This
makes sense because the value of zero emerges naturally from the
evaluation of atan2(0, 0), which occurs in all formulas for ψ when the
input rotation is fused yaw singular, and because it is most natural to
parameterise pure tilt rotations in a way that has zero yaw. Despite the
convention of using ψ = 0 however, for tilt angles and the tilt phase
space it is still nonetheless possible to unambiguously interpret sets
of singular parameters with ψ 6= 0. This is done, for example for the
parameter set T = (ψ, γ, π) ∈ T, by first geometrically applying the
yaw rotation that is defined by ψ, followed by the tilt rotation that is
defined by γ and π. This yields a well-defined and unambiguous final
rotation in SO(3) corresponding to the tilt angles parameters T.

5.5.2 Other Singularities

In knowledge of the nature of the fused yaw singularity and its
effects also on the other parameters, the remaining singularities in the
new representations developed in this thesis can be determined by
examining just pure tilt rotations of up to but not including 180°. This
follows directly from the general continuity of the fused yaw, and the
characterisation that the fused yaw singular rotations are pure 180°
tilt rotations. Consider for example the fused angles parameterisation
(θ, φ, h) of a tilt rotation. The entries Rij ∈ [−1, 1] of the associated
rotation matrix are well-known to be a continuous, and in fact smooth,
function of the underlying 3D rotation. As such, from Equation (5.86)
and the continuity of the standard asin(•) function, it can be seen that
the fused pitch θ and the fused roll φ are continuous over the entire
rotation space. Furthermore, the hemisphere parameter of the fused
angles representation is uniquely and unambiguously defined over the

5.6 selected properties of yaw-tilt rotations 75

rotation space. As a result, despite its discrete and thereby technically
discontinuous nature, the hemisphere parameter is not considered to
be the cause of any singularities in the fused angles representation.

It can be seen from Equations (5.87e) and (5.88c) that at the fused
yaw singularity, the fused yaw ψ and tilt axis angle γ are linearly
dependent in the sense that only the value of γ + ψ

2 matters. Thus, the
tilt axis angle, like the fused yaw ψ, also suffers from a singularity
at α = π due to the fused yaw singularity. In addition to this how-
ever, similar to the nature of polar coordinates at the origin, the γ

parameter has an essential discontinuity at α = 0. The local sensitivity
of γ around this discontinuity is not in general a problem however,
as the closer α gets to zero, the proportionally less effect the value
of γ actually has on the rotation that the parameters represent. This
is reflected, for example, by Equation (5.60b) in that all uses of γ

are premultiplied by sin α
2 , which tends to zero for small values of α.

Equation (5.85a) demonstrates through the continuity of atan2(• , •)

away from (0, 0) that the tilt axis angle γ is in fact continuous every-
where except for the aforementioned cases of α = 0 and α = π, as
these conditions correspond exactly to R31 = R32 = 0. Similarly, Equa-
tion (5.85b) demonstrates from the continuity of acos(•) that the tilt
angle α is continuous everywhere, even if it can be observed that there
are cusps at α = 0 and π.

The singularity analysis for the tilt phase space is slightly more
complicated, as the relation to the rotation matrix parameters is
somewhat less direct, but the tilt phase space is in fact continuous and
smooth everywhere away from the fused yaw singularity. Given the
definition of the tilt phase space in terms of the tilt angles parameters
γ and α, it is not immediately clear why this should be the case, but a
proof involving the smoothness of the cardinal sine function has been
provided in Allgeuer (2020).

5.6 SELECTED PROPERTIES OF YAW-TILT ROTATIONS

The fused angles, tilt angles and tilt phase space representations
all possess a remarkable number of sometimes subtle, yet powerful,
properties that turn out to be useful in many applications and contexts.
A small selection of such mathematical and geometric properties are
presented in this section. A continuation of many more such properties
is presented in Allgeuer (2020).

76 representations of 3d rotations

5.6.1 Links Between Quaternions and Fused Yaw

For rotations away from the fused yaw singularity α = π, that is,
for rotations where the fused yaw is well-defined and unambiguous,
inspection of Equation (5.60) reveals that the z-component

z = cos α
2 sin ψ

2 (5.89)

of a quaternion q = (w, x, y, z) ∈ Q is zero if and only if the fused
yaw is zero. This comes about because the cos α

2 term is non-zero for
α ∈ [0, π). Expressed in terms of mathematical notation, we have that

ψ = 0 ⇐⇒ z = 0, (5.90)

and consequently, from Equation (5.17b), that

ψ = 0 ⇐⇒ ez = 0. (5.91)

This is a remarkable and not to be undervalued property of the fused
yaw, as it asserts that the fused yaw is zero if and only if there is no
component of rotation about the vertical z-axis. This, by contrast, is
not true for any other definition of yaw. It can further be observed
that the quaternion q f corresponding to the fused yaw component of
a rotation can be constructed by zeroing the x and y-components of
the quaternion q = (w, x, y, z) and renormalising. This leads to the
equation

q f =
1√

w2+z2
(w, 0, 0, z). (5.92)

and like Equation (5.90) makes great intuitive sense, as we are essen-
tially zeroing the x and y-components of the axis of rotation of q, leav-
ing just the z-axis yaw rotation component. Once again, Equation (5.92)
and this kind of thinking does not apply to any other definition of
yaw. The ability to so easily and directly calculate q f leads to one way
of removing the fused yaw component of a quaternion—something
that is a surprisingly common operation—using the expression

qt = q∗f q (5.93a)

= 1√
w2+z2

(
wq + z(z, y,−x,−w)

)
, (5.93b)

where q∗f is the conjugate, and therefore inverse, of q f (recall that q f is
a unit quaternion). As an alternative to Equation (5.93), the fused yaw
can also be calculated directly using Equation (5.78) and manually
removed using the fact that

q f = qz(ψ) = (cos ψ
2 , 0, 0, sin ψ

2). (5.94)

Equations (5.92) and (5.93b) fail if and only if w = z = 0, which is
precisely equivalent to α = π, the fused yaw singularity.

5.7 discussion 77

5.6.2 Links Between Fused Angles and Euler Angles

Even though the interpretations of the variables are quite different, and
the nature of the domains do not correspond, purely mathematically
it can be observed from Equations (5.22b) and (5.86a) that the ZYX
Euler pitch is equal to the fused pitch, and from Equation (5.86b) that
the ZXY Euler roll is equal to the fused roll. That is,

θE = θ, (5.95a)

φẼ = φ. (5.95b)

As such, fused angles can be seen to—with an adaptation of the
domains and geometric interpretation—unite the ZYX Euler pitch and
ZXY Euler roll with a novel and meaningful concept of yaw, to form a
useful representation of rotations.

5.7 DISCUSSION

In this section, we discuss how the developed rotation representations
relate to the requirements that were set out in Section 5.1, and provide
application examples for them.

5.7.1 Rotation Representation Aims

As described in detail in Section 5.1, the work on 3D rotations in this
chapter was motivated by the analysis and control of balancing bodies
in 3D, and set out to develop new rotation representations, specifically
the fused angles and tilt phase space representations, to address certain
gaps in the field of existing rotation representations. A condensed
summary of the aims that were listed for the new representations is
as follows—the developed representations should:

Aim 1: Partition rotations into independent yaw and tilt rotation
components that are then independently parameterised,

Aim 2: Quantify the amount of rotation in the xy, xz and yz major
planes as scalar angular values that can meaningfully be referred
to as ‘yaw’, ‘pitch’ and ‘roll’,

Aim 3: Define a notion of yaw that satisfies yaw additivity, i.e. global
z-rotations should purely additively affect the yaw,

Aim 4: Define notions of pitch and roll that are concurrent, i.e. with
no forced order of application that prioritises one of the two,

Aim 5: Have a tilt rotation component that encapsulates the heading-
independent balance state of a robot, i.e. how far in any direction
the robot is from being upright,

78 representations of 3d rotations

Aim 6: Have a tilt rotation component that has a direct correspond-
ence to the set of possible accelerometer-measured gravity direc-
tions, and,

Aim 7: Given that (ê, θa) ∈ A is the axis-angle representation, have
a tilt rotation component that has no ez component, and a yaw
rotation component that is purely a function of θa and ez.

As discussed and demonstrated throughout this chapter, all of these
aims have been addressed by the fused angles and tilt phase space
representations. The notion of fused yaw for example, presented in
Section 5.3.1, quantifies the amount of rotation in the xy plane (Aim 2),
satisfies yaw additivity (Aim 3), and explicitly partitions rotations
into independently parameterised yaw and tilt rotation components,
as required by Aim 1. The fused pitch and roll (θ, φ), and phase roll
and pitch (px, py), are also two different definitions of pitch and roll
that are concurrent (Aim 4), as in each case there is no delineable
order of rotations, and that quantify the amount of rotation in the xz
and yz major planes. It should be noted that due to the required yaw
additivity and yaw/tilt parameter independence, the major planes
being referred to in all instances are the major planes of frame {A},
as defined in Section 5.3.1 and Figure 5.4. This makes intuitive sense,
as {A} is like an untilted and upright heading-local frame, meaning
that rotations in the xAzA and yAzA planes really do correspond to
heading-local sagittal and lateral rotations, as desired. The described
nature of {A} also justifies why the tilt rotation component from {A}
to {B} is a heading-independent balance state (Aim 5). The reason
why there is a direct correspondence (Aim 6) between tilt rotations
and the set of possible gravity directions as measured by a quasi-
static accelerometer, i.e. zB

G, was discussed in Section 5.3.2.1. The final
remaining aim, Aim 7, can be seen to be satisfied by the definition
of fused yaw and tilt, by consideration of Equations (5.17b), (5.27)
and (5.61).

The main differences between the fused angles and tilt phase
space representations are magnitude axisymmetry (discussed later in
Section 6.2.4.3), the way that rotations in the negative fused hemisphere
are handled, and the optional ability to represent unbounded rotations
in the case of the tilt phase space. The tilt phase space also facilitates tilt
vector addition, a commutative and unambiguous way of concurrently
adding tilt rotations, which finds use in multiple practical scenarios.

5.7.2 Application Examples

The rotation representations developed in this chapter can be applied,
with advantages, in many scenarios. Many uses of the representations
are described throughout this thesis and the associated open source
software releases, but as a general example, quadrotors for instance

5.7 discussion 79

need to tilt in the direction they wish to accelerate, so a smooth and
concurrent way of representing such tilt in terms of pitch and roll,
using a suitable mix of tilt angles, fused angles, and in particular the
tilt phase space, can be of great benefit. Similar arguments for the
use of these representations also apply to the scenarios of balance
and bipedal locomotion, where the tilt rotation component is particu-
larly relevant, because as previously mentioned, it encapsulates the
entire heading-independent balance state of the robot, with no extra
component of rotation about the z-axis. Indeed, due also to the paral-
lel between tilt rotations and the values measured by accelerometer
sensors (Aim 6 above), tilt rotations can be seen to be a natural and
therefore practically useful split of orientations into yaw and tilt.

Figure 5.1 illustrates how for the application of bipedal walking
the fused angles ψ, θ, φ and/or the tilt phase space parameters px,
py, pz can be identified as the ‘roll’, ‘pitch’ and ‘yaw’, and used to
independently quantify the amounts of rotation in the lateral, sagittal
and horizontal (i.e. heading) planes of walking, respectively. This
allows the motion, stability and state of balance to be measured
and controlled separately in each of these three major directions
of walking. Examples of gait stabilisation schemes that work in this
way include the one presented in Chapter 9, which operates largely
independently in the sagittal and lateral planes based on the fused
pitch and fused roll orientation values. Another example is the balance
feedback controller presented in Chapter 11, which based on the many
advantageous properties of the tilt phase space, constructs numerous
pure tilt rotation feedback components. It is in the nature of feedback
controllers, e.g. PID-style controllers, to produce control inputs of
arbitrary magnitude based on a set of gains, so the unbounded nature
of the tilt phase space allows this to be handled in a clean way to full
effect. The combining of various tilt rotation feedback components is
also naturally handled by the tilt phase space via tilt vector addition.

On a lower level, the representations developed in this chapter have
also been used, for example, in Chapter 10 for the constraint-based
generation of gait trajectories. Most notably, the tilt phase space is used
to separate the yaw and tilt of the feet at each so-called gait keypoint,
and then interpolate between them using a method of orientation cubic
spline interpolation (more details in Allgeuer, 2020). This ensures that
the yaw and tilt profiles are individually exactly as intended in the
final 3D foot trajectories, especially seeing as the yaw profiles come
from the commanded step sizes, and the tilts come separately from
the feedback controller. Tilt vector addition is also required, because
multiple feedback paths need to contribute to each final foot tilt. The
summed foot tilts are not guaranteed to be in range though, so the
unbounded nature of the tilt phase space helps in being robust to
‘wrapping around’ prior to foot tilt saturation. As such, the presented

80 representations of 3d rotations

work on rotations allows for the effective and robust generation of gait
trajectories using such methods.

As a final note, it is reiterated that open source software libraries
in both C++ (Allgeuer, 2018c) and Matlab (Allgeuer, 2018b) have been
released to support the development and use of algorithms involving
the tilt angles, fused angles and/or tilt phase space representations.
Although these new representations are clearly the focus, it should be
noted that the released libraries equally support all standard rotation
representations as well, like the Euler angles, rotation matrix and
quaternion representations.

6
W H Y N O T E U L E R A N G L E S ?

Three new rotation representations, all based on a novel way of parti-
tioning 3D rotations into yaw and tilt components, were introduced
in the previous chapter. Detailed explanations were given as to why
the representations are required, and what properties they are desired
to have (see Section 5.1). A condensed list of aims was given in Sec-
tion 5.7.1. Despite hints having been given as to why it is the case, one
question has so far remained however—

Why are Euler angles not good enough for the job?

This chapter aims to clearly and resolutely answer this question by
presenting a comparative analysis between Euler angles, fused angles
and the tilt phase space, in specific reference to the motivations and
aims that were provided in the previous chapter, and why Euler angles
do not fulfil them. Further problems and illogicalities of Euler angles
are also presented, in explicit contrast to how the situation is different
for fused angles and the tilt phase space.

The reasons why the other existing rotation representations, like
for example quaternions, do not address our rotation representation
needs is relatively clear from Section 5.1, and has already been dis-
cussed previously, e.g. at the end of Section 5.2.3. It should be clearly
noted however, that rotation matrices and quaternions are of course
nonetheless very useful for all kinds of computations and algorithms
in this thesis, including ones that involve the new representations. For
instance, the attitude estimator in Chapter 7 is based on the fused yaw,
but formulated in terms of rotation matrices and quaternions, and
the final estimated orientation is expressed in terms of fused angles
and/or the tilt phase space in order to be useful for the various gait
feedback controllers that use it.

6.1 EULER ANGLES CONVENTIONS

This chapter relies heavily on the definitions and results that were
presented in Chapter 5. To understand the ensuing comparative
analysis, it is important, for example, to be familiar with Section 5.3,
and in particular the definitions and properties of the selected two
Euler angles conventions, given in Section 5.2.4. One should recall that
due to the reverse equivalence between intrinsic and extrinsic Euler
angles, the convention that the z-axis points ‘upwards’, and the desire
to express rotation components about all three principal axes, the only

81

82 why not euler angles?

two relevant Euler angles conventions are the intrinsic ZYX and ZXY
Euler angles conventions, given respectively by

EG
B = (ψE, θE, φE) ∈ (−π, π]× [−π

2 , π
2]× (−π, π] ≡ E, (6.1a)

ẼG
B = (ψẼ, φẼ, θẼ) ∈ (−π, π]× [−π

2 , π
2]× (−π, π] ≡ Ẽ. (6.1b)

All problems or results that are derived for one of these two con-
ventions can analogously be derived for the other, so without loss
of generality, in this chapter we will mainly focus on the ZYX Euler
angles convention, and refer to it ubiquitously as the ‘Euler angles’ rep-
resentation. If the ZXY convention is needed, then it will be referred
to explicitly as the ‘ZXY Euler angles’, with the ‘ZXY Euler yaw’, ‘ZXY
Euler roll’ and ‘ZXY Euler pitch’ components, and the associated tilded
notation will be used, as given in Equation (6.1b).

6.2 PROBLEMS WITH EULER ANGLES

There are many different problems with Euler angles, but before these
are meticulously mathematically explored, here are some examples
where one can intuitively tell1 that something is not behaving as it
really should:

1. Consider a humanoid robot where the body-fixed z-axis points
up through its head and the x-axis points forwards out of its
chest, as shown in Figure 6.1a. If the yaw of a rotation is zero,
then one would expect that no significant z-rotation or change
in heading occurs. Nonetheless, when for example combining
a Euler yaw of 0° with a Euler pitch of −80° and a Euler roll
of 180°, the resulting rotation leaves the robot lying on its back
facing the opposite direction to the one it started in, as shown in
Figure 6.1b. The fact that a large change in heading has occurred
is supported by the axis-angle representation of the rotation,
which is π radians about the vector (0.766, 0, 0.643), which has
a significant non-zero z-component.

2. Consider the same humanoid robot, with a pure pitch rotation
of ±75° applied to it, so that it is close to lying on its front or its
back. If a humanoid robot falls over and tries to get up again,
these are not unexpected orientations to occur. If the heading-
independent balance state were to be defined as the orientation
of the robot with its Euler yaw removed (as opposed to its fused
yaw), then one can observe that this balance state would be very
unstable in situations like the one described. If the robot rotates
just 10° locally about its z-axis, the Euler yaw would change by
34.3°. For pure pitch rotations of ±85°, this increases to changes
in Euler yaw of 45.1° for rotations about the z-axis of just 5°.

1 In consideration of Section 5.7.1

6.2 problems with euler angles 83

(a) Robot prior to rotation (b) After rotation by E(0°,−80°, 180°)

Figure 6.1: Consider the rotation of a robot by the ZYX Euler angles rotation
E = (0°,−80°, 180°). If the robot is initially upright and facing to
the left, as shown in (a), then the final pose of the robot is lying
on its back and facing to the right, as shown in (b). Although the
ZYX Euler yaw of this rotation is zero, clearly a vast change in the
intuitive understanding of ‘heading’ has occurred, demonstrating
a clear shortcoming of the ZYX Euler angle representation.

This sensitivity is clearly not desired within the normal working
ranges of the robot.

3. While it is clear by assumption that the z-axis points ‘upwards’,
along the direction of gravity, the choice of whether the x and
y-axes point ‘forwards’ or ‘sidewards’, or in another diagonal
direction, is essentially arbitrary. Thus, the concepts of pitch
and roll, and the parameters expressing them, should behave
analogously to each other, just in 90° differing directions. This is
not the case at all for the Euler pitch and Euler roll parameters, as
they do not even share the same domain ([−π

2 , π
2] vs. (−π, π]).

4. For ZYX Euler angles, the x-axis about which the final x-rotation
is performed has a zero y-component relative to the initial yaw-
rotated intermediate frame (i.e. the supposed ‘heading-local’
frame), but a non-zero z-component. This means that the Euler
yaw and roll actually both contribute to the final heading of the
robot, which is not desired. In fact, at the extremes when the
Euler pitch is ±π

2 , the Euler yaw and roll become completely
interchangeable, as demonstrated by Equation (5.19).

Summarised into a more generalised and abstract list, the core failings
of the Euler angles representations are as follows:

A) Singularities and Local Parameter Sensitivities:
The gimbal lock singularities are in close proximity to normal
working ranges, making them hard to avoid, and leading to

84 why not euler angles?

unwanted artefacts due to the increased local parameter sensit-
ivities in widened neighbourhoods of the singularities.

B) Mutual Independence of Rotation Parameters:
The Euler parameters have mutual interdependencies, leading
to a mixed attribution of which parameters contribute to which
major planes of rotation.

C) Axisymmetry of Yaw:
The definition of the Euler yaw depends implicitly on axis
projection, leading to unintuitive non-axisymmetric behaviour
of the yaw angle.

D) Axisymmetry of Pitch and Roll:
The definition of Euler pitch and roll requires a fundamental
assumption of the order of elemental rotations, leading to non-
axisymmetric definitions that do not correspond to each other in
domain and/or behaviour.

Each of these core issues are investigated in detail in the following
sections, with a specific focus on demonstrating why Euler angles
have these problems, and fused angles and the tilt phase space do not.

Of the seven aims given in Section 5.7.1, Euler angles only satisfy
two of them, Aim 3 and Aim 6. For instance, as described just above
in Example 2, the problem of parameter sensitivities (Problem A)
prevents the definition of a meaningful heading-independent balance
state based on Euler pitch and roll, refuting Aim 5. The issues relating
to axisymmetry (Problems C and D) also complicate or even violate
Aims 2 and 4. The problem of parameter interdependencies (Prob-
lem B) further contribute to this, but also explain why Aims 1, 5, and
7 are not met.

6.2.1 Singularities and Local Parameter Sensitivities

We recall from Section 5.5 that it was shown by Stuelpnagel (1964)
that it is topologically impossible to have a global one-to-one three-
dimensional parameterisation of the rotation group without any sin-
gular points. That is, every three-dimensional parameterisation of the
rotation space must have at least one of the following:

(i) A rotation that does not have a unique set of parameters,

(ii) A set of parameters that does not specify a unique rotation,

(iii) A rotation in the neighbourhood of which the sensitivity of the
map from rotations to parameters is unbounded,

(iv) A set of parameters in the neighbourhood of which the sensitivity
of the map from parameters to rotations is unbounded.

6.2 problems with euler angles 85

The Euler angles representation is singular at gimbal lock, i.e. when
the Euler pitch θE = π

2 or −π
2 . Based in part on Equation (5.19),

it can be seen that the Euler yaw ψE and Euler roll φE both have
essential discontinuities there. In reference to the characterisation
of singularities given above, the singularities at both gimbal lock
scenarios are of type (i) and (iii), for both ψE and φE. It is critical
to compare this to the case for fused angles and the tilt phase space,
which both only have the one fused yaw singularity in the parameter ψ,
which occurs for α = π. Thus, these two representations have a single
singularity in a single parameter that does not affect the heading-
independent balance state, while Euler angles have two singularities
in two parameters, one of which directly affects it. As such, fused
angles and the tilt phase space can represent heading-local states of
balance completely without singularities, while this is not the case for
Euler angles.

The fused yaw singularity is also ‘maximally far’ from the identity
rotation, requiring a 180° tilt rotation in any direction to get there,
while the two Euler angle singularities are only 90° away, which
is close to, if not in, normal working ranges. In fact, the increased
parameter sensitivity of the Euler yaw and roll near gimbal lock has
noticeable effects even for tilt rotations of only 65° for instance. Sudden
sensitive changes in Euler yaw and roll can occur if even small changes
in orientation are made, even though the resulting rotation remains
essentially pure pitch in nature. Suppose we consider pure pitch
rotations of up to 90°, and calculate the sensitivity of the Euler yaw
and roll parameters relative to small infinitesimal rotations about the
local body-fixed z-axis. The result is shown in Figure 6.2, along with
similarly calculated sensitivities for the fused yaw, fused roll and phase
roll parameters. While the fused yaw maintains a perfect sensitivity
of 1 for all pitch angles and the fused roll and phase roll parameters
slowly increase in sensitivity as the local z-rotation becomes closer to
being a global x-rotation, the Euler yaw and roll can both be seen to
have strongly divergent sensitivities that have noticeable effects for
even moderate pitch rotations. Consequently, it can be seen that the
Euler yaw component of a rotation cannot in general meaningfully
be removed, as due to the highly sensitive Euler roll, even moderate
tilts can experience large z-rotations in the rotation that remains, even
though this should actually only be the contribution of ‘pitch’ and
‘roll’.

6.2.2 Mutual Independence of Rotation Parameters

In order to be able to fulfil many of the aims set out in Section 5.7.1, one
necessary implicit condition is that the individual rotation parameters
need to be as mutually independent as possible, and correspond
intuitively and uniquely to the x, y and z-components of rotation.

86 why not euler angles?

Figure 6.2: Plot of the sensitivities of the Euler angles, fused angles and tilt
phase space parameters to infinitesimal local z-rotations at pure
pitch orientations. Suppose β ∈ [0, 90°] and we consider locally
z-rotating (i.e. about its own z-axis) the pure pitch orientation
Ry(β). If the z-rotation is by some infinitesimal angle ε, then
the sensitivity of a parameter X in describing Ry(β) is given by
SX(β) = | dX

dε |. Clearly, high sensitivities as displayed by the Euler
yaw and roll are undesirable, as for example, SφE(β) = 3 means
that a small change in z-rotation causes a threefold change in
the Euler roll φE. We can observe that the fused angles and tilt
phase space parameters have reasonable sensitivities everywhere,
and in particular that the fused yaw sensitivity is perfectly unit
magnitude for all β.

This is not the case for Euler angles, as is shown in the following
subsections by direct comparison to the fused angles and tilt phase
space representations.

6.2.2.1 Mutual Dependence of Yaw and Roll

Consider the Euler angles rotation E = (ψE, θE, φE) ∈ E from a global
frame {G} to the body-fixed frame {B}, consisting of a sequence of
three rotations, namely about the z, y and x-rotations respectively.
Let {E} denote the frame that results when {G} is initially rotated by
the Euler yaw ψE. Ideally, as per Aim 5, {E} should be the reference
frame for a Euler angles-based heading-independent balance state, i.e.
the rotation component from {E} to {B}. One can quickly see however
that this so-called balance state can actually have large z-rotation
components in it, contravening that it is heading-independent in any
intuitive sense. One obvious example of this has already been shown
in Figure 6.1, where an example robot with zero Euler yaw can be
observed to be intuitively facing the exact opposite direction to its

6.2 problems with euler angles 87

reference identity pose. If we consider the axis of rotation of the Euler
roll parameter (the third of the three elemental Euler rotations) in
terms of the (supposedly) heading-local frame {E}, we can see that it
is given by

xE
B = (cos θE, 0, − sin θE). (6.2)

This is of course problematic, as the z-component is non-zero, meaning
that the Euler roll rotation about this axis contributes to the heading
of frame {B}. This effect can most clearly be seen when |sin θE| is large,
or in particular when

|sin θE| = 1 ⇐⇒ θE = ±π
2 , (6.3)

which corresponds to gimbal lock, where Euler yaw and roll become
completely interchangeable as given by Equation (5.19). The Euler
pitch does not have this same problem, as relative to {E}, its axis of
rotation is given by the pure

yE
E = (0, 1, 0). (6.4)

Conceptually, what is happening is that part of the total ‘yaw’ of a
rotation is always being quantified by the Euler roll parameter, in
addition to the Euler yaw parameter, meaning that neither cleanly
represents the component of rotation that they ideally should. The
fused angles and tilt phase space representations do not have any
such mutual dependencies, thanks in part to the fact that they rely on
concurrent and not sequential definitions of pitch and roll. Importantly,
this means that the heading-independent balance state defined by each
representation (as expected) has no component of rotation about the
z-axis, as indicated by Equation (5.36).

6.2.2.2 Mutual Dependence of Pitch and Roll

As the Euler pitch elemental rotation sequentially precedes the Euler
roll one, the axis of rotation xE

B of the latter is a function of θE, as
explicitly given in Equation (6.2). This creates a dependency of φE on
θE, which results in the Euler roll φE not completely capturing the
intuitive sense of ‘roll’ all by itself. This can be seen in the bottom row
of the rotation matrix in Equation (5.21), which corresponds to the
z-vector

zB
G = (− sin θE, cos θE sin φE, cos θE cos φE). (6.5)

The unit vector zB
G, as discussed in Section 5.1.2, is a heading-

independent measure of the global ‘up’ direction, just like a quasi-
static accelerometer would measure the direction of gravity. While
the x-component is a pure function of θE, the y-component is not a
function purely of φE, as would naturally be desired. It can be seen
for example from Equation (5.68) however, that

zB
G = (− sin θ, sin φ, cos α), (6.6)

88 why not euler angles?

so both of the aforementioned properties hold for fused angles. The
situation is slightly more complicated for the tilt phase space, but from
Equation (5.72), seeing as the phase roll and pitch parameters are just
a rescaling of the sines of the fused angles parameters, an essentially
similar result applies.

6.2.2.3 Purity of the Axis of Rotation

As discussed in Section 5.2.2, every 3D rotation can be expressed as a
single rotation by some angle θa ∈ [0, π] about an axis ê = (ex, ey, ez)

in 3D space. We start by recalling from Equation (5.91) that the fused
yaw is zero if and only if there is no component of rotation about the
vertical z-axis, i.e.

ψ = 0 ⇐⇒ ez = 0, (6.7)

and observe from Equations (5.17b) and (5.92) that the fused yaw
component of rotation q f is given by the renormalisation of

q̃ f =
(
cos θa

2 , 0, 0, ez sin θa
2

)
. (6.8)

It can consequently be seen that the fused angles and tilt phase space
representations both satisfy Aim 7 (see Section 5.7.1). Conceptually,
the interpretation of this result is that the notion of yaw used in both
representations is intricately and purely linked to the z-component of
the axis of rotation, in such a way that the former cleanly parameterises
the latter. This also means that the remaining two pitch and roll
parameters in each representation together cleanly parameterise the
remaining two x and y-components of the axis of rotation. Neither
result is true for the Euler angles representation, where for example
the Euler angles rotation given in Example 1 on page 82 demonstrates
that rotations free of Euler yaw can still have significant non-zero
z-rotation components.

For each representation, we now look more carefully at the purity of
the pitch and roll parameters in representing the x and y-components
of the axis of rotation. Due to yaw additivity (Aim 3) and the desire
for yaw/tilt parameter independence (Aim 1), it only makes sense
to look at these components relative to the respective heading-local
yaw-rotated intermediate frame, namely

• Frame {A} for the fused angles and tilt phase space representa-
tions, given by a yaw rotation of {G} by the fused yaw ψ,

• Frame {E} for the ZYX Euler angles representation, given by a
yaw rotation of {G} by the ZYX Euler yaw ψE, and,

• Frame {Ẽ} for the ZXY Euler angles representation, given by a
yaw rotation of {G} by the ZXY Euler yaw ψẼ.

6.2 problems with euler angles 89

This conforms with our previously stated expectation (Aim 2) that
the pitch and roll values should quantify the amount of rotation in
the xz and yz major planes of exactly these frames, respectively. Thus,
we only need to examine and compare, for each representation, the
nature of the axis of rotation for rotations that have zero yaw in that
representation. Furthermore, as only the signed direction of the axis
of rotation matters for the purpose of this discussion, we can consider
any non-unit vector ẽ = (ẽx, ẽy, ẽz) defining that ray.

For fused angles and tilt phase space rotations with zero fused yaw,
it can be deduced from Equations (5.36), (5.44) and (5.62) that the axes
of rotation are respectively given by

ẽF = (sin φ, sin θ, 0), (6.9a)

ẽP = (px, py, 0). (6.9b)

On the other hand, from Equation (5.23), for ZYX Euler angles rota-
tions with zero ZYX Euler yaw, and ZXY Euler angles rotations with
zero ZXY Euler yaw, the axes of rotation are respectively given by

ẽE = (sφ̄E
cθ̄E

, cφ̄E
sθ̄E

, −sφ̄E
sθ̄E

), (6.10a)

ẽẼ = (sφ̄Ẽ
cθ̄Ẽ

, cφ̄Ẽ
sθ̄Ẽ

, sφ̄Ẽ
sθ̄Ẽ

). (6.10b)

For fused angles it can be seen that there is no component of rotation
about the x and y-axes exactly when the fused roll φ and fused pitch
θ are zero, respectively, and for the tilt phase space it can be seen
that this occurs exactly when the phase roll px and phase pitch py are
zero, respectively. For ZYX Euler angles however, the y-component is
also zero when φE = π, and for ZXY Euler angles, the x-component
is also zero when θẼ = π. This comes about because the ẽx and ẽy
components are mixed expressions of Euler pitch and roll, instead of
clean independent expressions like for fused angles and the tilt phase
space, where direct one-to-one associations can be made between

ẽx ←→ φ, px (6.11a)

ẽy ←→ θ, py (6.11b)

It is also evident from the

ẽz = ±sφ̄E
sθ̄E

(6.12)

components in Equation (6.10) that the Euler pitch and roll together
contribute a component of rotation about the z-axis, as previously
mentioned, which is unintuitive and indicates an impure contribution
to the axis of rotation. In fact, seeing as Equation (6.10a) essentially
encodes an arbitrary y-rotation followed by an x-rotation, and Equa-
tion (6.10b) encodes the exact reverse, it can be interpreted that the
non-commutativity of these operations manifests itself in the opposite
sign that results in the z-component ẽz. Thus, as ẽz = 0 for fused

90 why not euler angles?

angles and the tilt phase space, these two new representations can
conceptually be thought of as a concurrent way of combining x and
y-rotations in a symmetrical and neutral way, somewhere exactly in
between choosing the x-rotation to go first and choosing the y-rotation
to go first.

6.2.3 Axisymmetry of Yaw

By convention (and without loss of generality), in this thesis the z-axis
is chosen to point in the direction opposite to gravity. This, amongst
other things, ensures that the concepts of ‘roll’, ‘pitch’ and in particular
‘yaw’, line up with what one would intuitively expect. The fixed choice
of z-axis, however, still leaves one degree of rotational freedom open
for the choice of the directions of the global x and y-axes, where we
recall that these must obviously lie in the plane perpendicular to the
z-axis, be perpendicular to each other, and satisfy the right-hand rule.
No one choice is ‘right’ or ‘wrong’—they are all equally valid and
mathematically correct definitions of the global reference frame—so
one would desire that any analysis of the orientation or balance of a
body gives analogous results no matter which one is chosen. In the
context of this chapter, the concept of parameter axisymmetry refers
to the property that one or more rotation parameters are either:

(a) Invariant to the freedom of choice of x and y-axis, or,

(b) Vary in an intuitive rotational manner proportional to the choice.

In other words, axisymmetry refers to the notion that the rotation
parameters, in order to be self-consistent, should be symmetrical
about the unambiguously defined z-axis. This is a relatively natural
property to desire, as, for example, the amount of yaw a rotation has
should clearly transcend any arbitrary choice of which reference frame
to use for analysis.

The fused yaw parameter is axisymmetric in the sense that it is
invariant to the choice of global x and y-axes, i.e. type (a) axisymmetry.
Consider a robot that is upright, and thereby considered to be in its
identity orientation relative to the environment. If the robot undergoes
any rotation, the above statement of fused yaw axisymmetry asserts
that the fused yaw of this rotation is the same no matter what choice
of reference global x and y-axis is made to numerically quantify the
rotation. This is an important and reassuring property of the fused
yaw as, given that the z-axis is unambiguously defined, any concept
of yaw about the z-axis should clearly be a property of the actual
physical rotation, not a property of some arbitrary choice of reference
frame made solely for the purpose of mathematical analysis. This is
not the case for Euler yaw however, as can easily be demonstrated
as follows. Suppose we have a robot standing upright relative to the

6.2 problems with euler angles 91

well-defined global z-axis, and suppose we define two different global
reference frames:

• Frame {G1}, such that relative to the identity pose of the robot
the z-axis points upwards, the x-axis points forwards, and the
y-axis points leftwards, and,

• Frame {G2}, such that relative to the identity pose of the robot
the z-axis points upwards, the y-axis points forwards and the
x-axis points rightwards.

Both {G1} and {G2} are perfectly valid choices of reference frames that
are consistent with the gravity-defined z-direction. If the robot now
performs a 180° rotation about the horizontal axis 45° in between
forwards and leftwards, the rotation quantified in terms of {G1} has
a Euler yaw of +90°, but the rotation quantified in terms of {G2} has
a Euler yaw of −90°, which is completely contradictory. This should
not be, however, as the robot in both cases is performing exactly the
same rotation relative to its environment. In terms of fused yaw, both
quantifications of the rotation, i.e. relative to {G1} and relative to {G2},
have a yaw of zero.

6.2.3.1 Mathematical Model of Yaw Axisymmetry

We now develop a mathematical model of yaw axisymmetry and
demonstrate that the fused yaw satisfies it, while the Euler yaw
does not. Consider once again a robot that is upright relative to
its environment, and that is in its identity orientation. Let {U} be a
global coordinate frame such that zU points in the direction opposite
to gravity, as required, and suppose that a rotation is undergone by
the robot that is numerically given by RU

C , where {C} is a body-fixed
frame that coincides with {U} prior to rotation. This is a fixed physical
rotation of the robot relative to its environment, so it should have a
unique well-defined fused yaw according to axisymmetry.

As the z-axis is uniquely determined by the direction of gravity,
every valid global coordinate system {G} that can be used as a reference
frame to quantify RU

C , including {U} itself, is a pure z-rotation of {U}.
That is, given any valid global coordinate system {G},

RG
U = Rz(β), (6.13a)

RU
G = Rz(−β), (6.13b)

for some angle β ∈ (−π, π]. Given a frame {G}, a body-fixed frame {B}
is attached to the robot in such a way that it coincides with {G} when
the robot is initially upright, but rotates with the robot, as shown in
Figure 6.3. Thus, the physical rotation undergone by the robot maps
frames {U} to {C}, and {G} to {B}. As such, the rotation matrices RU

C
and RG

B are simply two different ways of quantifying the exact same
rotation, just with a different reference frame.

92 why not euler angles?

(a) Left: Prior to rotation the global frame {U} coincides with the local frame
{C}, Right: Frame {C} rotates with the body, and quantifies the physical
rotation relative to {U}.

(b) Left: Prior to rotation the global frame {G} coincides with the local frame
{B}, Right: Frame {B} rotates with the body, and quantifies the physical
rotation relative to {G}.

Figure 6.3: Definition of frames for the investigation of parameter axisym-
metry. Consider a body (represented here by a box) undergoing
any physical rotation. The physical rotation can be modelled (a)
as the rotation from {U} to {C}, or equivalently (b) as the rotation
from {G} to {B}, where zU ≡ zG. Thus, RU

C and RG
B both numeric-

ally quantify the same physical rotation, despite being different
rotation matrices. The axisymmetry property of fused yaw asserts
that irrespective of the choice of {G}, the fused yaws of RU

C and
RG

B are the same. As a result, every single physical rotation can
unambiguously be assigned a fused yaw (irrespective of reference
frame), which by contrast is not possible for Euler yaw.

6.2 problems with euler angles 93

By definition, the rotation RG
B maps {U} onto {C}, so

RG
B = RG

U RU
C RU

G . (6.14)

This equation can be understood directly from the theory of referenced
rotations (Allgeuer, 2020), or from the observation that given any vector
relative to {G}, applying the rotation RG

B is equivalent to transforming
the vector to {U} coordinates using RU

G , applying the rotation RU
C from

{U} to {C}, and then transforming the result back to {G} coordinates
using RG

U . Consequently, from Equation (6.13),

RG
B = Rz(β) RU

C Rz(−β). (6.15)

Taking the fused yaw Ψ(•) of both sides of Equation (6.15) gives

Ψ
(

RG
B
)
= Ψ

(
Rz(β) RU

C Rz(−β)
)

= wrap
(

β + Ψ
(

RU
C Rz(−β)

))
= wrap

(
β + Ψ

(
RU

C
)
− β

)
= Ψ

(
RU

C
)
. (6.16)

We note that Ψ
(

RU
C
)

is clearly independent of β and the choice of {G},
so Ψ

(
RG

B
)

must be independent as required. This demonstrates that
the fused yaw of the physical rotation of the robot is invariant to the
choice of reference global x and y-axis, as required, and therefore that
the fused yaw satisfies type (a) parameter axisymmetry.

At this point, it can be demonstrated once again that Euler yaw
violates parameter axisymmetry by considering, for example,

RU
C = Rx(

3π
4),

β = π
2 .

The Euler yaw of RU
C is clearly zero, as it consists of just a single coun-

terclockwise (CCW) x-rotation by 3π
4 radians, but from Equation (6.15),

RG
B = Rz(β) RU

C Rz(−β)

= Rz(
π
2) Rx(

3π
4) Rz(−π

2)

=

−
1√
2

0 1√
2

0 1 0
− 1√

2
0 − 1√

2

.

We therefore conclude that

RG
B = Ry(

3π
4)

= ER(π, π
4 , π),

where ER(• , • , •) is notation for the rotation matrix corresponding to
the enclosed Euler angles parameters. The Euler yaw of RG

B is thus

94 why not euler angles?

Figure 6.4: Plots of fused yaw and Euler yaw against β for the determination
of parameter axisymmetry. A β of zero corresponds to the chosen
physical rotation of RU

C = FR(−1.2, 0.2, −1.3, 1). In contrast to
the irregular nature of the Euler yaw, the constant nature of the
fused yaw exemplifies its type (a) axisymmetry. That is, no matter
what valid global reference frame is chosen to quantify RU

C , the
fused yaw of the rotation is the same.

π radians, which is totally different to the (zero) Euler yaw of RU
C ,

despite the fact that both rotation matrices numerically quantify the
same physical rotation. This proves that the Euler yaw cannot be
axisymmetric.

6.2.3.2 Visualising Yaw Axisymmetry

As can be observed from Equation (6.13), the set of all possible choices
of global reference x and y-axes corresponds directly to the set of all
possible choices of β, which is in the range (−π, π]. Thus, given
a particular physical rotation of the robot, one can plot the yaw
that the rotation has relative to all possible valid global reference
frames, by plotting the yaw it has for all possible values of β. This
has been done, for example, in Figure 6.4 for the physical rotation

RU
C = FR(−1.2, 0.2, −1.3, 1), where FR(• , • , • , •) is notation for the
rotation matrix corresponding to the enclosed fused angles parameters.
It can clearly be seen that while the fused yaw remains constant for
all β, the Euler yaw varies greatly and quite irregularly. In fact, if the
same physical rotation but with h = −1 had been chosen, the Euler
yaw would be seen to take on all possible values from −π to π as β

varies.
A similar observation can be made in Figure 6.5a, where surface

plots of the Euler yaw and fused yaw parameters are provided for the
case that an upright robot is rotated away from the vertical z-axis in
every possible direction, about the vectors in the xy plane. Put into
other words, Figure 6.5a plots, as surfaces, the Euler yaw and fused
yaw parameters for all tilt rotations up to π

2 radians in magnitude.
The x and y-coordinates of the surfaces are the x and y-components

6.2 problems with euler angles 95

of the rotation vector representations of the respective tilt rotations.
While the fused yaw demonstrates axisymmetric, and in fact constant,
behaviour about the gravity-defined z-axis, the Euler yaw behaves
differently depending on the direction in which the robot is tilted
away from the z-axis. While requiring the surface plots in Figure 6.5a
to be rotationally symmetric about the z-axis may at first seem like a
different definition of axisymmetry than the one used so far, one can
quickly see that plotting the yaw parameters of all tilt rotations (of a
particular magnitude) with respect to a single global reference frame
is in fact mathematically equivalent to plotting the yaw parameters
of a single (physical) tilt rotation with respect to all possible global
reference frames. This comes about because both the set of all tilt
rotations of a particular magnitude, and the set of all global reference
frames, are generated by z-rotational changes of basis of any one
single element.

6.2.4 Axisymmetry of Pitch and Roll

To investigate the axisymmetry of pitch and roll for the Euler angles,
fused angles and tilt phase space representations, we consider the same
situation as described in Section 6.2.3.1, and illustrated in Figure 6.3.
That is, suppose an upright robot undergoes a physical rotation RU

C
relative to one particular global reference frame {U}, and that {G}
is any other global reference frame such that RG

B models the exact
same rotation. As the z-axes of both {U} and {G} are constrained by
convention to point in the same opposite direction to gravity, the two
frames are just separated by a single z-rotation Rz(β), so one can write

RG
U = Rz(β), (6.17)

where β is a scalar angle in the range (−π, π]. Given this mathematical
framework, the definition of parameter axisymmetry (see page 90) for
any arbitrary rotation parameter can be restated as the property that
the parameter, when calculated of RG

B , is either:

(a) Completely independent of β, or,

(b) Varies in a rotational manner with respect to β.

We start by introducing the following notation for the Euler angles, tilt
angles, fused angles and tilt phase space representations of the fixed
physical rotation RU

C :

EU
C = (ψE0, θE0, φE0), (6.18a)

TU
C = (ψ0, γ0, α0), (6.18b)

FU
C = (ψ0, θ0, φ0, h0), (6.18c)

PU
C = (px0, py0, ψ0), (6.18d)

96 why not euler angles?

(a) 3D plots of Euler yaw and fused yaw relative to (x, y) = (αcγ, αsγ).

(b) 3D plots of Euler pitch and roll relative to (x, y) = (αcγ, αsγ).

Figure 6.5: 3D plots of the Euler angles, fused angles and tilt phase space
parameters of all pure tilt rotations up to π

2 in magnitude (con-
tinued in Figure 6.6). The parameters are plotted relative to the
rotation vector coordinates of the associated tilt rotations, namely
(x, y) = (α cos γ, α sin γ). Although it may at first seem unrelated
to parameter axisymmetry, plotting all tilt rotations of a particular
magnitude α is equivalent to plotting any one such tilt rotation
relative to all different possible global reference frames (i.e. all
different β). Thus, for instance the rotational symmetry seen in
the fused yaw plot is indicative of its type (a) axisymmetry (see
page 90), while the lack of rotational symmetry in the Euler yaw
plot is indicative of its lack of axisymmetry. The Euler pitch and
Euler roll plots behave similarly in nature for small ‖(x, y)‖ = α,
but as the tilt rotations get larger, the Euler pitch and roll start to
behave completely differently. For values of α beyond π

2 (beyond
the pictured domain), |φE| even starts to exceed π

2 and takes on
values up to π. This does not happen for the Euler pitch at all.

6.2 problems with euler angles 97

(a) 3D plots of fused pitch and roll relative to (x, y) = (αcγ, αsγ).

(b) 3D plots of phase pitch and roll relative to (x, y) = (αcγ, αsγ).

Figure 6.6: Continuation of Figure 6.5. In contrast to the lack of correspond-
ence in behaviour between the Euler pitch and roll parameters
(see Figure 6.5b), the fused pitch and roll (and phase pitch and
roll) parameters do clearly visibly behave identically to each other.
The perfect planar circular discs that can be seen in (b) for the
tilt phase space are indicative of its type (b) axisymmetry (see
page 90). Refer to Visualisation C in Section 6.2.4.5 for further
discussion of this figure.

98 why not euler angles?

and similarly define the following notation for the same various
representations of RG

B :

EG
B = (ψEβ, θEβ, φEβ), (6.19a)

TG
B = (ψβ, γβ, αβ), (6.19b)

FG
B = (ψβ, θβ, φβ, hβ), (6.19c)

PG
B = (pxβ, pyβ, ψβ). (6.19d)

Given this notation, the result, for example, that the tilt angle para-
meter α is type (a) axisymmetric can be proven by demonstrating
that αβ is independent of β, i.e. that it is a function only of the ‘zero’
variables ∗0 in Equation (6.18). We already know from Section 6.2.3.1
that the fused yaw is invariant to the choice of β, so simply restating
Equation (6.16) in terms of the new notation gives our first result:

ψβ = ψ0. (6.20)

This is the mathematical embodiment of the type (a) axisymmetry of
the fused yaw parameter. We now continue through all the other rep-
resentations and rotation parameters, and demonstrate the type (a) or
type (b) axisymmetry of each, except for the Euler angles parameters,
which are demonstrated to be non-axisymmetric. The previous result,
that the Euler yaw is not axisymmetric, can be mathematically inferred
from the fact that, up to angle wrapping,

ψEβ = ψE0 + atan2(B, A), (6.21)

where
A = c2

βcθE
+ s2

βcφE
− cβsβ sθE

sφE
, (6.22a)

B = cβsβ(cθE
− cφE

)− s2
β sθE

sφE
. (6.22b)

Clearly, the right-hand side of Equation (6.21) is a function of β.

6.2.4.1 Axisymmetry of Tilt Angles

From Equation (6.18b) and the conversion equation from tilt angles to
rotation matrices given in Equation (5.58), we have that

RU
C =

 • • •

• • •

−sα0
sγ0

sα0
cγ0

cα0

, (6.23)

where the dotted entries have been omitted for brevity. Similarly, from
Equation (6.19b), we have that

RG
B =

 • • •

• • •

−sαβ
sγβ

sαβ
cγβ

cαβ

. (6.24)

6.2 problems with euler angles 99

Based on Equation (6.15) however, we also know that

RG
B = Rz(β) RU

C Rz(−β)

=

cβ −sβ 0
sβ cβ 0
0 0 1


 • • •

• • •

−sα0
sγ0

sα0
cγ0

cα0


 cβ sβ 0
−sβ cβ 0

0 0 1


=

 • • •

• • •

−cβ sα0
sγ0
− sβ sα0

cγ0
cβ sα0

cγ0
− sβ sα0

sγ0
cα0

. (6.25)

So by comparing entries in Equations (6.24) and (6.25), we know that

sαβ
sγβ

= sα0
(cβsγ0

+ sβcγ0
), (6.26a)

sαβ
cγβ

= sα0
(cβcγ0

− sβsγ0
), (6.26b)

cαβ
= cα0

. (6.26c)

As the cos(•) function is one-to-one on the domain [0, π], by direct
consequence of Equation (6.26c),

αβ = α0, (6.27)

which demonstrates that the tilt angle α is type (a) axisymmetric. This
insight also allows Equations (6.26a) and (6.26b) to be simplified to[

cos γβ

sin γβ

]
=

[
cβ −sβ

sβ cβ

][
cos γ0
sin γ0

]
. (6.28)

By identifying the middle matrix as a 2D rotation matrix that rotates
a vector CCW by an angle of β, one can deduce that, up to angle
wrapping,

γβ = γ0 + β. (6.29)

This expression, in particular in combination with Equation (6.28), is
the mathematical embodiment of the type (b) axisymmetry of the tilt
axis angle parameter γ, as it can clearly be seen that γ varies in an
intuitive rotational manner with respect to β. Thus, it can be concluded
that all three tilt angles parameters are axisymmetric.

6.2.4.2 Axisymmetry of Fused Angles

The fused pitch and roll are axisymmetric in the sense that their sine
ratios, sin θ and sin φ, circumscribe a uniform circle as a function of
the choice of global reference x and y-axes, i.e. as a function of β. That
is, the locus of (sin φ, sin θ) over all possible choices of β is a circle, and
this circle is traversed uniformly as the choice varies. This corresponds
to type (b) axisymmetry, and as demonstrated later, Euler angles do
not satisfy this property.

100 why not euler angles?

Similar to Equations (6.23) and (6.24), the rotation matrices RU
C and

RG
B can, from Equation (5.67), be written as

RU
C =

 • • •

• • •

−sθ0
sφ0

cα0

, (6.30a)

RG
B =

 • • •

• • •

−sθβ
sφβ

cαβ

. (6.30b)

From Equation (6.15) however, RG
B can alternatively be written as

RG
B = Rz(β) RU

C Rz(−β)

=

cβ −sβ 0
sβ cβ 0
0 0 1


 • • •

• • •

−sθ0
sφ0

cα0


 cβ sβ 0
−sβ cβ 0

0 0 1


=

 • • •

• • •

−cβsθ0
− sβsφ0

cβsφ0
− sβsθ0

cα0

. (6.31)

Comparing Equations (6.30b) and (6.31) yields

sφβ
= cβsφ0

− sβsθ0
, (6.32a)

sθβ
= cβsθ0

+ sβsφ0
, (6.32b)

which leads to the matrix equation[
sin φβ

sin θβ

]
=

[
cβ −sβ

sβ cβ

][
sin φ0
sin θ0

]
. (6.33)

By once again identifying the middle matrix as a 2D rotation matrix
that rotates a vector CCW by an angle of β, one can see that this equa-
tion is exactly the mathematical statement of the type (b) axisymmetry
of fused pitch and roll. Furthermore, seeing as the fused hemisphere
parameter h is just the sign of cos α, from Equation (6.26c) we can
deduce that

hβ = h0, (6.34)

i.e. that the fused hemisphere parameter is type (a) axisymmetric. Thus,
it can be concluded that all four fused angles parameters, including of
course the fused yaw, are axisymmetric.

The axisymmetry of the fused pitch and roll can be interpreted
and visualised by viewing the respective sine ratios as quadrature
sinusoid components of the associated rotation. The fused pitch θ

and fused roll φ come together with the fused hemisphere h to define
the tilt rotation component of a rotation. The magnitude of this tilt
rotation is given by the tilt angle α, and the relative direction is given

6.2 problems with euler angles 101

by the tilt axis angle γ. The fused pitch and roll can be thought of as
a way of ‘splitting up’ the action of α into orthogonal components,
much like a vector can be resolved into components relative to a
coordinate frame. More precisely, the sine ratios sin φ and sin θ are in
fact a decomposition of sin α into quadrature sinusoid components, i.e.
sinusoid components that are exactly 90° out of phase, and trace out a
uniform circle parametrically. This quadrature nature is exemplified
by the equations

sin φ = sin α cos γ, (6.35a)

sin θ = sin α sin γ, (6.35b)

and
sin α =

√
sin2 φ + sin2 θ, (6.36a)

γ = atan2(sin θ, sin φ), (6.36b)

which are strongly resemblant of the standard equations that relate
Cartesian coordinates to polar coordinates. The property of axisym-
metry of the fused pitch and roll is equivalent to stating that the choice
of global reference x and y-axis simply results in a fixed phase shift
to the quadrature components, i.e. as suggested by Equation (6.29).
This suggests that the nature of fused pitch and roll in expressing a
rotation is a property of the actual physical rotation, not whatever
arbitrary reference frame is chosen to numerically quantify it.

The uniform circular nature of the fused pitch and roll sine ratios,
and how these vary axisymmetrically in a purely rotational manner
with respect to β, can be seen in Figure 6.7. The locus of the sine ratio
pair (sin φβ, sin θβ) is plotted for a particular physical rotation FU

C as
β varies, and the quadrature decomposition of sin α into sin φ and
sin θ components is illustrated graphically by the orange triangle. The
result that the value of β directly additively affects the tilt axis angle
γ, as stated in Equation (6.29), can also be observed.

6.2.4.3 Axisymmetry of the Tilt Phase Space

The phase roll px and phase pitch py are type (b) axisymmetric rotation
parameters. This can most easily be seen from the axisymmetry of the
tilt angles parameters, where from Equations (6.27) and (6.29) we can
see that

pxβ = αβ cos γβ = α0 cos(γ0 + β) = α0(cβcγ0
− sβsγ0

), (6.37a)

pyβ = αβ sin γβ = α0 sin(γ0 + β) = α0(sβcγ0
+ cβsγ0

). (6.37b)

This can be simplified and factored into the matrix equation[
pxβ

pyβ

]
=

[
cβ −sβ

sβ cβ

][
px0
py0

]
. (6.38)

102 why not euler angles?

Figure 6.7: Locus of the fused roll and pitch sine ratios (sin φβ, sin θβ) as
β varies, i.e. for all possible choices of global reference x and
y-axes, for the physical rotation FU

C = F(2.0, 0.6, 0.4, 1). Points in
β-increments of 45° are labelled, and illustrate how β can be seen
to be a positive offset to the tilt axis angle γ, as in Equation (6.29).
The orange triangle demonstrates the decomposition of sin α into
the quadrature sinusoid components sin φ and sin θ.

Similar to what Equation (6.33) did for the fused pitch and roll, this
matrix equation epitomises the type (b) axisymmetry of the tilt phase
space pitch and roll parameters. The middle matrix can clearly be
identified as a 2D rotation matrix that encodes a CCW rotation by β,
meaning that (pxβ, pyβ) varies in an intuitive rotational manner with
respect to β, as required. As a result, it can be concluded that all three
tilt phase space parameters are axisymmetric, as the third parameter,
pz, is just the fused yaw.

Like for fused angles, the tilt phase space pitch and roll parameters
can also be interpreted to be quadrature sinusoid components that
together describe the tilt rotation component. The phase pitch and roll
parameters can be thought of as the most direct way of ‘splitting up’
the magnitude α of a tilt rotation into orthogonal components. These
components correspond to quadrature sinusoids that are exactly 90°
out of phase, and trace out a uniform circle parametrically. Similar to

6.2 problems with euler angles 103

Equations (6.35) and (6.36) for fused angles, the quadrature nature of
the phase pitch and roll is highlighted by the equations

px = α cos γ, (6.39a)

py = α sin γ, (6.39b)

and their inverse relations

α =
√

p2
x + p2

y, (6.40a)

γ = atan2(py, px). (6.40b)

Due to these relations, as well as Equation (6.29), the property of
axisymmetry for the phase roll and pitch can be seen to be equivalent
to the observation that the choice of global reference x and y-axis
simply results in a fixed phase shift to the quadrature components.
This observation is illustrated more clearly later in Figure 6.10, as well
as in Figure 6.8, which plots the locus of the tilt phase parameters
(px, py) for a particular physical rotation as β varies. In the latter
figure, the quadrature decomposition of α into px and py parameters
is also depicted by means of an orange triangle, and the additivity of
β to the tilt axis angle γ can be surmised from the β labels.

It is evident by now that fused angles and the tilt phase space
share many similar positive properties. One property that the tilt
phase space has, but the fused angles representation does not, is
magnitude axisymmetry. This relates to the fact that equal angle
magnitude rotations in any tilt direction (i.e. away from the z-axis)
have equal norms in the 2D tilt phase space, and that this norm is
directly proportional to the magnitude of tilt rotation. While the first
of these properties holds for the fused angles sine ratios (sin φ, sin θ),
the latter does not, as the norm in the sine ratio space starts changing
more slowly the closer a tilt rotation gets to a magnitude of 90°.
Magnitude axisymmetry is an important property, for example in cases
of rotations or orientations being used for the purposes of feedback
control. In such cases, for control theoretical reasons it is often desired
that rotations that are, for instance, twice as large provide exactly
twice as much contribution to the feedback error term.

6.2.4.4 Non-axisymmetry of Euler Angles

To demonstrate that the Euler pitch and roll parameters are non-
axisymmetric, we first turn to a simple example. Suppose we have a
robot standing upright relative to the well-defined global z-axis, and
two different global reference frames, {G1} and {G2}, as defined in the
bullet point list on page 91. The x-axis of {G1} and y-axis of {G2} both
point forwards relative to the robot, and the y-axis of {G1} and x-axis
of {G2} point in antiparallel, i.e. opposite, directions—leftwards and
rightwards relative to the robot, respectively. If the robot performs a

104 why not euler angles?

Figure 6.8: Locus of the phase roll and pitch (pxβ, pyβ) as β varies, i.e. for all
possible choices of global reference x and y-axes, for the same
physical rotation as in Figure 6.7. Points in β-increments of 45°
are labelled, and illustrate how β can be seen to be a positive
offset to the tilt axis angle γ, as in Equation (6.29). The orange
triangle demonstrates the decomposition of α into the quadrature
sinusoid components px and py.

90° CCW rotation about the horizontal axis 60° from being forwards
and 30° from being leftwards, then the rotation quantified in terms of
Euler angles relative to {G1} is given by

E1 = (1.047, 1.047, 1.571), (6.41)

and in terms of Euler angles relative to {G2} is given by

E2 = (−0.524, 0.524, −1.571). (6.42)

As xG1
and yG2

are by definition both the same physical vector, and as
E1 and E2 actually both represent the same physical rotation, logically
(from the concept of pitch/roll axisymmetry) one would expect that
the parameter of E1 that quantifies the amount of rotation about the x-
axis, i.e. the Euler roll φE1, is numerically the same as the parameter of
E2 that quantifies the amount of rotation about the y-axis, i.e. the Euler
pitch θE2. This is not the case however, as from above, φE1 = 1.571
and θE2 = 0.524. Similarly, the vectors yG1

and xG2
are negatives of

each other, so logically from axisymmetry one would expect that θE1
is numerically the negative of φE2, but this is also not the case, as

6.2 problems with euler angles 105

θE1 = 1.047 and φE2 = −1.571. Thus, it can be concluded that the
Euler angles representation does not satisfy pitch/roll axisymmetry.
Performing the same calculations for fused angles and the tilt phase
space yields

F1 = (0, 1.047, 0.524, 1),

F2 = (0, 0.524, −1.047, 1),

P1 = (0.785, 1.360, 0),

P2 = (−1.360, 0.785, 0).

(6.43)

It is immediately clear by inspection that pitch/roll axisymmetry is
satisfied in this example, for both representations, as

φ1 = θ2 = 0.524,

θ1 = −φ2 = 1.047,

px1 = py2 = 0.785,

py1 = −px2 = 1.360.

(6.44)

Fused yaw axisymmetry can also be observed in Equation (6.43), as

ψ1 = ψ2 = 0,

pz1 = pz2 = 0,
(6.45)

but the same cannot be said about the Euler yaw, as

ψE1 = 1.047 6= −0.524 = ψE2. (6.46)

Similar to Equation (6.21) for Euler yaw, the non-axisymmetry of the
Euler pitch and roll can also be demonstrated mathematically. Using
the notation from Equations (6.18) and (6.19) (see also Section 6.2.3.1
for the definition of β), the Euler pitch and roll of RG

B can be derived
to be

θEβ = asin
(
cβ sθE0

+ sβ cθE0
sφE0

)
, (6.47a)

φEβ = atan2
(
cβ cθE0

sφE0
− sβ sθE0

, cθE0
cφE0

)
. (6.47b)

Clearly these expressions are neither independent of β, as would be
required for type (a) axisymmetry, nor do they vary in an intuitive
rotational manner with respect to β like Equations (6.33) and (6.38) do,
as would be required for type (b) axisymmetry. The non-axisymmetry
of these expressions can be better visualised by plotting them against
each other as a locus of β. This has been done in Figure 6.9, where
the loci of the Euler angles sine ratios (sin φE, sin θE), fused angles
sine ratios (sin φ, sin θ), and tilt phase components (px, py) have been
plotted for all β ∈ (−π, π], for a physical rotation of

RU
C = FR(−1.2, 0.2, −1.3, 1).

The relationships between corresponding points on the three loci are
shown in the figure using dotted lines. The uniform circular nature

106 why not euler angles?

Figure 6.9: The fused angles (sin φβ, sin θβ), Euler angles (sin φEβ, sin θEβ),
and tilt phase space (pxβ, pyβ) loci of pitch vs. roll as β varies,
for the physical rotation RU

C = FR(−1.2, 0.2, −1.3, 1). For each
locus, points in β-increments of 45° are labelled, and joined to
each other between the three loci using dotted lines. For β = 0 we
have that RU

C = RG
B , and for instance that (pxβ, pyβ) = (px0, py0).

The non-circularity of the Euler angles locus, as well as the non-
uniform spacing of the associated keypoints, demonstrates the
violation of axisymmetry for Euler pitch and roll.

of the fused angles and tilt phase space loci are clear indications of
the type (b) axisymmetry of their associated pitch and roll parameters,
while the irregular non-uniform shape of the Euler angles locus clearly
demonstrates the inherent non-axisymmetry of the Euler pitch and
roll parameters. Conceptually, the problem of Euler angles is the
fundamental requirement of a sequential order of rotations, leading to
definitions of pitch and roll that do not correspond to each other in
behaviour, as one then implicitly depends on the value of the other.

6.2.4.5 Visualising Pitch/Roll Axisymmetry

Although the nature of pitch/roll axisymmetry has been somewhat
visualised in previous figures, e.g. Figures 6.7 and 6.8, we now com-
plete the picture with some further depictions of the nature of the
various pitch and roll parameters.

6.2 problems with euler angles 107

visualisation a While the variation of fused and Euler yaw with
respect to β has already been plotted in Figure 6.4 for one particular
physical rotation, we now do the same for the various different notions
of pitch and roll that have been compared in this chapter. Figure 6.10
shows the variations of the fused, phase and Euler pitch and roll as
β ranges from −π to π, for the exact same physical rotation as in
Figure 6.9. While 90° out-of-phase quadrature sinusoid waveforms
can be observed in the fused angles and tilt phase space plots, as
discussed in Sections 6.2.4.2 and 6.2.4.3, the Euler angles plot reveals
in particular the irregularity and non-axisymmetry of the Euler roll
parameter.

visualisation b We know from the type (a) axisymmetry of the
tilt angle α, i.e. Equation (6.27), and the type (b) axisymmetry of the tilt
axis angle γ, i.e. Equation (6.29), that all possible representations RG

B
of a particular physical rotation RU

C have the same value of α, and take
on every possible value of γ. Thus, any single locus as per Figure 6.9
can be generated by plotting the respective pitch and roll parameters,
for all rotations that have a tilt angle of α0, i.e. the same tilt angle as

RU
C . Consequently, all possible loci of pitch and roll (as β varies) can
be examined at once by plotting the level sets of constant α in the
pitch/roll plane. This has been done for the phase pitch and roll in
Figure 6.11. For fused angles and Euler angles, it turns out that it is
equivalent and more correct to plot the level sets of constant sin α in the
pitch/roll plane, as suggested by relations like Equation (6.36a). The
resulting plots are shown in Figure 6.12. While the fused angles and
tilt phase space plots demonstrate clear axisymmetry and uniformity
about the origin, the Euler angles level set contours get stretched apart
into a more rounded square-like form, and for sin α = 1, the top and
bottom edges of the square can even be considered to completely
‘open up’ due to the gimbal lock singularities.

For the purposes of understanding what is going on, one should
note that the fused angles and Euler angles sin α level set plots in
Figure 6.12 are actually ‘double covers’ of the equivalent α level sets,
as

sin α ≡ sin(π − α). (6.48)

In fact, each cover corresponds exactly to one fused hemisphere
h. Being slightly lenient with regards to gimbal lock, the top h-
hemisphere corresponds to a Euler pitch/roll in the domain [−π

2 , π
2]×

[−π
2 , π

2], while the bottom h-hemisphere corresponds to the Euler roll
being in the remainder of its domain, i.e. larger than π

2 in magnitude.
For fused angles, as α moves from 0 to π, the level sets start as a
single point at the origin, expand uniformly to a circle of radius
1 when α = π

2 , and then shrink back down uniformly again to a
point as α approaches π. If one were to plot the raw fused angles
(φ, θ) instead of their sine ratios (sin φ, sin θ), then a similar behaviour

108 why not euler angles?

(a) Plot of the fused roll and pitch sine ratios (sin φβ, sin θβ) against β.

(b) Plot of the phase roll and pitch (pxβ, pyβ) against β.

(c) Plot of the Euler roll and pitch sine ratios (sin φEβ, sin θEβ) against β.

Figure 6.10: Plots of fused, Euler and phase pitch and roll against β for the
determination of parameter axisymmetry (see Figure 6.4 for
the yaw plot). Exactly as in Figure 6.9, a β of zero corresponds
to the chosen physical rotation of RU

C = FR(−1.2, 0.2, −1.3, 1).
While exact quadrature sinusoid pitch/roll waveforms can be
identified in the (a) fused angles and (b) tilt phase space plots,
in particular the irregularity and non-axisymmetry of the Euler
roll parameter can be identified in the (c) Euler angles plot.

6.2 problems with euler angles 109

Figure 6.11: Level sets of constant α in the (px, py) tilt phase space plane. The
shaded region is the valid (bounded) 2D tilt phase space domain.
The uniformly circular nature of the plot visually illustrates the
axisymmetry of the phase pitch and roll.

occurs, only the level sets around α = π
2 grow to a diamond shape and

back. For Euler angles, as α moves from 0 to π, the level sets shown
in Figure 6.12b start expanding more or less circularly, but quickly
stretch out into square form, where the top and bottom edges of
the square become increasingly stretched and less densely populated
with β points. At α = π

2 , the level set essentially corresponds to two
separate vertical lines, at sin φE = ±1, although it is somewhat a
matter of definition how the Euler angles parameters exactly behave at
gimbal lock. Beyond that, the exact reverse process of shrinking back
down to the origin occurs. If one were to plot the raw Euler angles
(φE, θE) instead of their sine ratios, the level sets would initially behave
somewhat qualitatively similarly, in that a dot grows approximately
circularly before becoming more square-like and ending up at α = π

2
as two vertical lines at φE = ±π

2 . Beyond this however, the raw level
sets flip outside of these lines and shrink back down to a point at
φE = ±π in a somewhat symmetrical reverse process.

visualisation c As discussed in Section 6.2.3.2, and shown
in Figures 6.5 and 6.6 (see page 96), the axisymmetry of rotation
parameters can be examined by constructing surface plots of their
values for all tilt rotations up to π

2 radians in magnitude. This is

110 why not euler angles?

(a) Level sets of constant sin α in the (sin φ, sin θ) fused angles plane.

(b) Level sets of constant sin α in the (sin φE, sin θE) Euler angles plane.

Figure 6.12: Level sets of constant sin α in the fused angles and Euler angles
pitch/roll planes. The shaded region in each case corresponds
to the valid pitch/roll domain. The uniformly circular nature of
(a) the fused angles plot, in contrast to (b) the Euler angles plot,
visually illustrates the axisymmetry of the fused pitch and roll.

6.3 conclusion 111

because the action of tilting an upright robot away from the z-axis in
all different directions is fundamentally equivalent to representing a
single tilt rotation of 0 to π

2 radians relative to all different possible
global reference frames. The interpretation of Figure 6.5a, and how
it demonstrates the type (a) axisymmetry of the fused yaw and the
non-axisymmetry of the Euler yaw, has already been discussed in
Section 6.2.3.2. In Figures 6.6a and 6.6b, we can see the surface plots
for fused pitch and roll, and phase pitch and roll, respectively. It can
clearly be identified that the respective pitch and roll components are
mutually symmetric in each case, and mirror each other in behaviour
throughout their entire domains. Specifically, a simple 90° rotation
about the z-axis maps both roll surface plots directly onto their
respective pitch surface plots. This rotation is equivalent to simply
reinterpreting all of the plotted tilt rotations with a β of π

2 , as per
Equation (6.13), so this is one example of pitch/roll axisymmetry that
can be directly interpreted from the figure. Looking at the Euler angles
plots in Figure 6.5b, the same cannot be said for the Euler pitch and
roll. The Euler roll plot shows clear distortion effects due to the gimbal
lock singularities, has a much larger range of values (from −π to π,
although this cannot be seen in the figure as only α ≤ π

2 is plotted),
and does not correspond at all to the pitch plot via any rotation. This
illustrates why it can be said that the Euler pitch and roll parameters
are not axisymmetric, and do not correspond to each other in domain
and/or behaviour (refer to the statement of Problem D on page 84).

6.3 CONCLUSION

This chapter has demonstrated four fundamental reasons why Euler
angles are not a suitable representation for representing orientations
in balance-related applications, and why the fused angles and tilt
phase space representations do better in all four of these areas. Euler
angles may still be suitable for the analysis of physical gimbals or
a collocated series of joints, but for almost all other applications,
the proximity of the gimbal lock singularities to normal working
ranges (greatly affecting even the non-yaw components), and the
lack of parameter axisymmetry (leading to illogical and non-self-
consistent behaviour of the various parameters), make Euler angles
unsuitable for the task. The core problem of Euler angles is the inferior
reliance on a sequential order of rotations, in particular forcing an
order on the pitch and roll parameters instead of allowing them to
be concurrent. This leads to mutual parameter dependencies that
corrupt the ‘purity’ of the first and third rotation parameters, as can
for example clearly be seen for the Euler yaw and roll in Figure 6.5.
None of these problems are the case for the fused angles and tilt phase
space representations, where for example it can be observed that
the fused angles representation combines the ‘uncorrupted’ second

112 why not euler angles?

rotation parameters of the ZYX and ZXY Euler angles representations
respectively, with a novel and self-consistent definition of yaw, to form
a genuinely useful and geometrically meaningful representation of
orientation for balance.

7
AT T I T U D E E S T I M AT I O N

In Chapter 4, we discussed in detail how the acquired sensor data
is calibrated and filtered to ensure that it is maximally useful in
measuring the state of the robot. The acquired data included elements
like the gyroscope and accelerometer values, with magnetometer
values being treated separately in Allgeuer (2020). In this chapter, we
discuss how the calibrated and corrected sensor data is fused together
into higher level estimates of the state of the robot. In particular, we
discuss how the orientation (also referred to as the attitude) of the
robot is estimated from the Inertial Measurement Unit (IMU) data. The
result of this estimation is used by the various implemented gaits for
the purpose of future state prediction and feedback.

Attitude estimation is the task of constructing an estimate of the
full 3D orientation of a body relative to a global fixed frame, based on
a finite history of sensor measurements, e.g. gyroscope, accelerometer
and magnetometer measurements. The body in question is often
a robot, but in principle it can correspond to any object that is
equipped with the sensors necessary for the estimation task. With
the advent of low-cost inertial sensors—particularly those based on
Micro-Electro-Mechanical Systems (MEMS)—the field of application
for attitude estimation techniques has greatly widened, extending into
the field of low-cost robotics. With low cost sensors and processors
however, it is crucial that any estimation algorithms are able to run
computationally efficiently, and are able to function with high noise
inputs without excessively sacrificing estimator response. In addition
to low estimator latency, orientation-independent mathematical and
numerical stability are also desirable. For balance-related applications
like bipedal walking, it is also important that the magnetometer does
not influence the non-heading components of the estimated result, as
these are the components that are most relevant for balance feedback,
and the magnetometer is generally a less robust sensor than the
gyroscope and accelerometer due to the high prevalence of magnetic
inconsistencies, disturbances and distortions.

An attitude estimator that fulfils the aforementioned criteria is
presented in this chapter. The estimator is available as part of the
Humanoid Open Platform ROS Software1, or completely separately as
a generic portable C++ library (Allgeuer, 2016). All of the algorithms
and discussed cases are implemented in the release(s), and have been
tested both in simulation and on all of the real humanoid platforms

1 https://github.com/AIS-Bonn/humanoid_op_ros/blob/master/src/nimbro_

robotcontrol/util/rc_utils/include/rc_utils/attitude_estimator.h

113

https://github.com/AIS-Bonn/humanoid_op_ros/blob/master/src/nimbro_robotcontrol/util/rc_utils/include/rc_utils/attitude_estimator.h
https://github.com/AIS-Bonn/humanoid_op_ros/blob/master/src/nimbro_robotcontrol/util/rc_utils/include/rc_utils/attitude_estimator.h

114 attitude estimation

used throughout this thesis, including in particular for many years
under the strenuous conditions of the RoboCup competition.

7.1 RELATED WORK

Much effort has been made in the past to develop algorithms for the
reconstruction of attitude in aeronautical environments. This work
was largely in relation to the Attitude and Heading Reference Systems
(AHRS) required for aeronautical applications, with examples being
the works of Gebre-Egziabher et al. (2004) and Munguía and Grau
(2014). Other classic works in the area of attitude estimation, such as
Vaganay et al. (1993) and Balaram (2000), have focused more on robot-
ics and control applications, but do not specifically address the issues
encountered with low-cost IMU systems. A comprehensive survey of
modern nonlinear filtering methods for attitude estimation was under-
taken by Crassidis et al. (2007). Almost all of the surveyed advanced
filtering techniques relied on some form of the Extended Kalman Filter
(EKF), with various modifications being used to improve particular
characteristics of the filter, often convergence. Such EKF filters can be
seen to be computationally expensive however, when considering im-
plementation on embedded targets such as microcontrollers. It is often
also difficult to provide a guarantee of filter robustness (Euston et al.,
2008), and difficult to ensure that the magnetometer measurements
do not significantly affect the estimated non-heading components of
orientation.

Alternative to the general stream of development of EKF filtering is
the concept of complementary filtering. This builds on the well-known
linear single-input single-output (SISO) complementary filters, and
extends these in a nonlinear fashion to the full 3D orientation space.
Such filters have favourable frequency response characteristics, and
seek to fuse low frequency attitude information with high frequency
attitude rate data. Prominent examples of generalised complementary
filters include the works of Jensen (2011) and Mahony et al. (2008).
A different approach again is taken by Madgwick et al. (2011), who
formulate a numerical filter directly in the quaternion space, and
numerically integrate quaternion velocities q̇ with the use of renorm-
alisation to estimate the required orientation. The method, developed
in the context of wearable devices for rehabilitation robotics, does
not respect magnetometer independence, and uses a non-ideal gradi-
ent descent numerical approximation for orientation reconstruction
that converges over multiple cycles. An empirical comparison of the
Madgwick filter, a complementary filter and an EKF-based approach is
performed in Cavallo et al. (2014).

The orientation estimation problem addressed in this thesis relates
specifically to the design of an attitude estimator that can function
with noisy low-cost sensors, and that is simple and efficient enough to

7.2 problem definition and notation 115

be implemented at high loop rates on low-power embedded targets,
such as microcontrollers. To this end, the work presented by Mahony
et al. (2008) was used as a basis for the developed attitude estimator.
A central problem in applying this work however, is that a method is
required for reconstructing an instantaneous 3D orientation ‘measure-
ment’ directly from the sensor measurements (see Section 7.5). This is
a complex optimisation problem that generally requires a suboptimal
solution algorithm for computational feasibility reasons (Mahony et al.,
2008). Literature does not elucidate a clear solution to this problem—in
particular not in an explicit form—and not in a way that can func-
tion robustly in all cases. One of the main contributions of the work
presented here lies in the development of an algorithm for the robust
calculation of such instantaneous orientation measurements. Other
contributions include the novel use of fused yaw (see Section 5.3.1) in
an estimator, the integration of a quick learning scheme (Section 7.6.1),
and the explicit extension of the attitude estimator to cases of reduced
sensory information (Section 7.6).

7.2 PROBLEM DEFINITION AND NOTATION

The goal of the attitude estimation process is to calculate an estimate
of the rotation of a body relative to a global reference frame, based
on observations acquired through sensory perception. Such sensory
perception can include accelerometers, gyroscopes, magnetometers,
Global Positioning System (GPS), visual perception and/or Light
Detection and Ranging (LIDAR). The types of sensors considered for the
task in this thesis are the ones that are typically found in IMU systems,
and are typically available in low-cost variants for mobile robotic
systems, i.e. gyroscope, accelerometer and magnetometer sensors.
No matter which sensors are used however, it is always a stringent
requirement that the estimator is globally stable, and is able to function
equally well throughout the entire orientation space.

We define {G} to be the global reference frame relative to which
the orientation of the body is estimated, and {B} to be the body-fixed
frame that rotates with the body, and therefore with the sensors that
provide the observational input to the attitude estimator. It is assumed
that {B} is defined in such a way that its z-axis points ‘upwards’ (and
x-axis points ‘forwards’) relative to the body, and correspondingly, that
{G} is defined in such a way that its z-axis points ‘upwards’ relative
to the world, i.e. in the direction opposite to gravity. Importantly, this
means that the gravity vector can be written as

gG = (0, 0,−g), (7.1)

where g = 9.81 m/s2. These are the standard definitions of {G} and
{B} that were used throughout the rotations chapters (Chapters 5
and 6). All further notation that was introduced and used there is also

116 attitude estimation

considered to carry across to this chapter, including for instance the
rotation basis notation

RG
B =

 ↑ ↑ ↑
xG

B yG
B zG

B
↓ ↓ ↓

 =

← xB
G →

← yB
G →

← zB
G →

, (7.2)

where for example zB
G is the unit z-vector of frame {G}, expressed in

the coordinates of frame {B}. Note that throughout this chapter we
refer to two vectors as

• Parallel if they are linearly dependent and a positive multiple
of each other,

• Antiparallel if they are linearly dependent and a negative mul-
tiple of each other, and

• Collinear if they are either parallel or antiparallel.

As a final note, the concepts of fused yaw and tilt are used in many
places within this chapter, and should be reviewed, if necessary, from
Sections 5.3.1 and 5.3.2.

7.3 SENSOR INPUTS

Using the notation and definitions introduced in the previous section,
the problem considered in this paper can be more precisely refor-
mulated as being the task of robustly calculating an online estimate
for qG

B (or RG
B), given arbitrary time sequences of 3-axis gyroscope,

accelerometer and magnetometer data. Keeping in mind the sensor
and calibration models introduced in Chapter 4, the format and type
of data provided by each of these sensors is assumed to be modelled
as follows.

gyroscope This sensor is assumed to provide a measure ΩB
y ∈ R3

of the angular velocity of the body, in the coordinates of frame {B}. The
conversion of the raw data from the IMU frame {I} to the body-fixed
frame {B} is performed using the calibrated IMU orientation offset RB

I
(see Section 4.1.1). As given by Equation (4.3), after scale correction and
temperature compensation, the gyroscope measurement is assumed
to be affected by a largely time-invariant gyroscope bias bΩ, along
with zero mean sensor noise wΩ. The bias bΩ is managed using the
gyroscope bias calibration and online gyroscope bias autocalibration
schemes (see Sections 4.1.3 and 4.1.4), and the sensor noise wΩ is
not explicitly abated using low-pass filtering, as the gyroscope data is
directly integrated as part of the estimation process, and it is the nature
of integration to dampen out high frequency components of a signal.
The final corrected and calibrated angular velocity measurement

ΩB
y ∈ R3, (7.3)

7.3 sensor inputs 117

is used as the gyroscope input to the attitude estimator, and is ex-
pressed in the units of rad/s.

accelerometer This sensor is assumed to provide a measure
ãB ∈ R3 of the proper acceleration of the body. This is the inertial

coordinate acceleration being experienced by the body, together with
the effect of gravitational acceleration. The latter term is assumed
to dominate the measured proper acceleration. Cases where this
assumption is violated, like for example in collisions, are implicitly
filtered out by the low-pass dynamics of the estimator. Grouping the
inertial acceleration components with a zero mean noise term wa,
yields the measurement model

ãB = − RB
G gG + wa. (7.4)

The minus sign comes from the definition of proper acceleration, as
an object at rest on the Earth’s surface, for instance, has a proper
acceleration of g = 9.81 m/s2 upwards, but the gravity vector gG nom-
inally points downwards, as in Equation (7.1). The raw accelerometer
measurements are brought from the IMU frame {I} to the body-fixed
frame {B} using the IMU orientation offset RB

I (see Section 4.1.1), and
are subsequently low-pass filtered using a mean filter to combat the
sensor noise. The resulting measured proper acceleration is then

ãB ≈ − RB
G gG = RB

G (0, 0, g) (7.5a)

= g zB
G. (7.5b)

Thus, for each filtered accelerometer measurement ãB , we can con-
struct an estimate

z̃B
G =

ãB

‖ ãB ‖
∈ S2, (7.6)

of the positive global z-vector zB
G, and use this as the accelerometer-

based input to the attitude estimator.

magnetometer The measurement model and calibration process
of the magnetometer sensor is relatively complex, and is described
in detail in Allgeuer (2020). The described magnetometer correction
pipeline involves spike and mean filtering of the data, as well as the
application of hard and/or soft iron corrections, and/or cyclic angle
warping for final fine-tuning. It is assumed that the final extracted
magnetometer measurement m̃B is expressed relative to the body-
fixed frame {B}, and is a direct measure of the strength and direction
of the Earth’s magnetic field mG

e = (mex, mey, mez), i.e.

m̃B ≈ RB
G mG

e ∈ R3. (7.7)

118 attitude estimation

7.4 COMPLEMENTARY FILTERING

The method of attitude estimation presented in this chapter is based
on the concept of complementary filtering.

7.4.1 1D Linear Complementary Filter

A simple preliminary approach to the attitude estimation problem is
to separate the problem into each of its independent axes of rotation.
This can work for body rotations close to the upright identity pose,
but does not extend well to the whole orientation space. Nevertheless,
the 1D filtering approach demonstrates well the concept of linear
complementary filtering. Taking for example the pitch direction of
rotation, one can express the filter equations as

˙̂θ = ωy − ĉω + kp(θy − θ̂) (7.8a)
˙̂cω = −ki(θy − θ̂), (7.8b)

where

θ̂ ⇒ Estimated pitch angle of the body (output of the filter)

ωy ⇒ Angle rate measurement in the pitch direction, based on
the gyroscope

ĉω ⇒ Estimated integral term as an offset to ωy

θy ⇒ An instantaneous measurement of the pitch angle, based
solely on the accelerometer (and possibly magnetometer)

kp ⇒ Proportional gain indicating the influence of θy on θ̂

ki ⇒ Integral gain indicating the influence of θy on ĉω

Proportional-Integral (PI) filter equations similar to Equation (7.8)
can also be formulated for the roll and yaw directions, where, if no
magnetometer is used, the θy − θ̂ error term for the yaw case needs
to be left as zero, as the accelerometer alone cannot yield information
about the yaw of the body.

Effectively, the PI compensation closes the loop on the type I system,
forming a linear second-order system with zero theoretical steady
state error to step inputs. The linear complementary filter combines
the high-pass rate data with the low-pass position data to form
a high bandwidth estimate of the system state. However, despite
possessing positive filter attributes, the assumption that each axis
behaves independently places a severe limitation on the usability
of the filter for attitude estimation. A core issue is that the angular
velocity about one axis generally affects the rotation about all axes,
and to differing amounts depending on the orientation of the body.
The three independent 1D filters also do not clearly indicate how

7.4 complementary filtering 119

the three estimated outputs can be unambiguously and meaningfully
combined into a total estimation of the 3D orientation of the body.

7.4.2 Extension to 3D Nonlinear Filtering

In light of the limitations of the 1D complementary filter, it is desir-
able to formulate a complementary filter that operates on the full 3D
rotation space, ideally retaining the positive frequency attributes of
the linear filter. Mahony et al. (2008) introduced three such nonlinear
filters, the direct, passive and explicit complementary filters. The main
difference between the three filters is that while the direct comple-
mentary filter uses the instantaneous inertial sensor data to transform
the gyroscope measurements in the update equation, the passive
complementary filter uses the current filter estimate, and the explicit
complementary filter uses an update technique that operates directly
on the sensor measurement vectors.

A key design decision of the attitude estimator presented here is that
the magnetometer measurements should not have any direct influence
on the attitude estimate, other than to resolve the yaw, i.e. heading.
The reason for this is to reduce instabilities in the output pitch and roll
components, and to alleviate the requirement of performing a mag-
netometer calibration in order for these components of the estimate
to function correctly. This is impossible to achieve with the explicit
complementary filter, and so the only filter in Mahony et al. (2008) to
provide a solution to the problem of constructing an instantaneous
orientation measurement from sensor data was found to be unsuitable.
Comparison of the direct and passive filters also led to the conclusion
that the feed-forward nature of the direct formulation was unsuitable
due to high frequency noise considerations. Consequently, the attitude
estimator presented in this chapter is built around the core of the
nonlinear passive complementary filter.

7.4.3 3D Nonlinear Passive Complementary Filter

As indicated in Figure 7.1, we define frame {E} as the frame corres-
ponding to the current estimate

q̂G
E ≡ q̂ ∈ Q (7.9)

of the orientation of the body-fixed frame {B}, relative to the global
frame {G}.2 In every update cycle, given the current accelerometer
and magnetometer-based sensor measurements z̃B

G and m̃B (and

2 To aid understanding, if the output quaternion q̂ of the attitude estimator is perfectly
accurate, i.e. q̂ = qG

B , then clearly {E} = {B}, so {E} is the attitude estimator’s estimate
of the frame {B}.

120 attitude estimation

Figure 7.1: Overview of the coordinate frame definitions for the 3D non-
linear passive complementary filter, and measured quaternion
orientation resolution methods.

if needed also q̂), the first task is to construct a full 3D measured
quaternion orientation

qG
B̃ y ≡ qy ∈ Q, (7.10)

that is consistent with these measurements. The frame that results
from this reconstruction of an orientation from the sensor measure-
ments is labelled frame {B̃}, and within the accuracy of the sensors
and respective calibrations should correspond to the frame {B}. The
deviation of the measured quaternion qy from the current estimated
quaternion q̂ can be calculated as

q̃ = q̂∗qy, (7.11)

and is referred to as the error quaternion

q̃E
B̃ ≡ q̃ ≡ (q̃0, q̃) ∈ Q. (7.12)

The rotation axis of this error quaternion rotates the current orientation
estimate towards the orientation given by the sensor measurements,
and leads to the corrective error feedback term

Ωe = 2q̃0q̃. (7.13)

This term is an angular velocity in R3 that rotates q̂ towards qy, with
an angular speed of exactly the sine of the angle between these two
orientations. Using the corrective error feedback term, the nonlinear
3D passive complementary filter equations can be written as

˙̂q = 1
2 q̂(Ωy − ĉΩ + kp Ωe), (7.14a)

˙̂cΩ = −ki Ωe, (7.14b)

where we recall that quaternions and vectors can be directly multiplied
with each other by making the vectors into quaternions themselves by
adding a zero scalar part (w-component). The variables involved in
the filter equations are given by

7.4 complementary filtering 121

q̂ ⇒ Estimated quaternion orientation of the body (output of
the filter)

Ωy ⇒ Measured angular velocity of the body based on the gyro-
scope, as given by Equation (7.3)

ĉΩ ⇒ Estimated integral term as an offset to Ωy

Ωe ⇒ Corrective error feedback angular velocity term, as given
by Equation (7.13)

kp ⇒ Proportional gain indicating the influence of Ωe on q̂

ki ⇒ Integral gain indicating the influence of Ωe on ĉΩ

The PI gains kp and ki of the filter should be tuned to provide non-
oscillatory yet responsive transients, as limited by sensor noise. Note
that mathematically, Equation (7.14a) simply computes the quaternion
velocity ˙̂q that is equivalent to the effect of the angular velocity

Ωy − ĉΩ + kp Ωe (7.15)

being applied to the quaternion q̂. The direct parallel of the 3D filter
update equations to the case for the 1D complementary filter in
Equation (7.8) is clear to see by equivalating

q̂ ↔ θ̂, Ωy ↔ ωy, (7.16a)

ĉΩ ↔ ĉω, Ωe ↔ θy − θ̂. (7.16b)

Given the filter equations in Equation (7.14), in each time step the
variables q̂ and ĉΩ are updated based on numerical trapezoidal in-
tegration as a function of the measured elapsed time ∆t since the
previous time step. Given the nominal update cycle time ∆tn of the
estimator, it is recommended for robustness purposes to coerce ∆t
to some interval scaled by ∆tn, in order to avoid large jumps in the
estimator states when lags occur, and ensure greater correctness of the
gyroscope angular velocity integration in general. In the implementa-
tion of the attitude estimator as part of the Humanoid Open Platform
ROS Software, the measured elapsed time in each cycle is coerced to
the range

∆t ∈
[
0.8∆tn, 2.2∆tn

]
, (7.17)

as these are known to be realistic limits for the true cycle time in all
normal cases.

The stability of the passive complementary filter is discussed in
detail in Mahony et al. (2008). Theoretical analysis demonstrates that
there is a measure zero set in the space of all possible measured
rotation and bias errors such that equilibrium exists despite lack of
convergence. The equilibrium is unstable however, and the error is
locally exponentially stable in all other cases. This set consists of all
error states such that ĉΩ is constant and equal to Ωy, and q̃ is a rotation

122 attitude estimation

by π radians. This pathological set is of no concern however, as it is
never reached in any practical situation. Even intentional initialisation
of the filter to such an equilibrium state in simulated experiments did
not prove to be a problem, as mere arithmetic floating point errors
were enough for the divergent dynamics near the pathological set to
take over, and force the estimator away from this unstable equilibrium.

7.5 MEASURED ORIENTATION RESOLUTION METHODS

Given the 3D nonlinear passive complementary filter presented in
the previous section, the core task that remains is to specify how
the measured quaternion orientation qy is to be constructed from the
current accelerometer and magnetometer-based measurements z̃B

G
and m̃B respectively. The various approaches to doing this are referred
to as the measured quaternion orientation resolution methods, and
can, if needed, also use the current estimated orientation q̂ as an
input—for instance to ensure in the case of a lack of information
that the generated qy is as close as possible to q̂. The two main
implemented resolution methods are described in this section. Details
of the additional ZYX yaw resolution method can be found in Allgeuer
(2020). All three resolution methods are available in the released
attitude estimator code (Allgeuer, 2016).

7.5.1 Magnetometer Resolution Method

As can be seen from Equation (7.11), the calculation of the error
quaternion q̃, requires knowledge of qy, the instantaneous measured
orientation best fitting the sensor measurements z̃B

G and m̃B . In
general, these two measurements suffice to construct a unique rotation
qy that best fits the given data. If not, q̂ is taken as a further input
in the place of m̃B , and one of the other resolution methods is used
instead.3 No matter what resolution method is used however, it is a
design decision that the quaternion qy ≡ qG

B̃ y must always be calculated
in such a way that it satisfies

zB̃
G = z̃B

G, (7.18)

i.e. qy must always be consistent with the direction of gravity measured
by the accelerometer, with only the heading component being decided
by either m̃B or q̂.

For the magnetometer resolution method, we use m̃B to resolve the
heading of qy. In order to do this, we need a calibrated value of

mG
e—the magnetic field vector of the Earth relative to the nominated

global reference frame {G}. The calibration of this vector, known as the

3 The fused yaw resolution method is strongly recommended over the ZYX yaw resolution
method in all situations.

7.5 measured orientation resolution methods 123

reference field vector, is discussed in Allgeuer (2020). For the purposes
of the magnetometer resolution method, only the x and y-components
of the reference field vector are required, i.e. mex and mey, and these
are used only to resolve the heading of qy.

The quaternion qy is calculated by first constructing the rotation
matrix

RG
B̃ y =

← xB̃
G →

← yB̃
G →

← zB̃
G →

, (7.19)

and then converting this to quaternion form. The required value of
zB̃

G is already known from Equation (7.18), so it only remains to
calculate suitable mutually orthogonal axis vectors xB̃

G and yB̃
G. From

Equation (7.7), ideally we would wish to be able to find xB̃
G and yB̃

G
such that

m̃B = RG T
B̃ y mG

e, (7.20)

but this is not necessarily possible, so instead we minimise the angular
difference between the left-hand side and right-hand side vectors of
this equation. The angular difference can be seen to be minimised
when the respective projections of the two vectors onto the plane
perpendicular to zB̃

G are parallel. The projection of m̃B can be seen to
be

m̂B̃ = m̃B −
(

m̃B • zB̃
G
)

zB̃
G, (7.21)

and observing that

RG T
B̃ y mG

e = mex xB̃
G + mey yB̃

G + mez zB̃
G, (7.22)

the required projection of RG T
B̃ y mG

e can be seen to be

m̂B̃
e = mex xB̃

G + mey yB̃
G. (7.23)

Solving these equations for the condition that m̂B̃ and m̂B̃
e are parallel

(i.e. positive multiples of one another) yields

xB̃
G =

x̃B̃
G

‖ x̃B̃
G‖

, yB̃
G =

ỹB̃
G

‖ ỹB̃
G‖

, (7.24)

where

ûB̃ = m̂B̃ × zB̃
G, (7.25a)

x̃B̃
G = mex m̂B̃ + mey ûB̃ , (7.25b)

ỹB̃
G = mey m̂B̃ −mex ûB̃ . (7.25c)

Equation (7.19) is then used as previously described to calculate RG
B̃ y

and subsequently qy. Note that the z-component mez of the reference

124 attitude estimation

field vector is not required at any point in the calculations. The
magnetometer resolution method fails due to a division by zero if
mex = mey = 0, or if zB̃

G and m̃B are collinear. Both of these situations
should never reasonably occur (away from the Earth’s north and south
poles), as it corresponds to the Earth’s magnetic field being vertical in
the global fixed frame—a generally unexpected case.

7.5.2 Fused Yaw Resolution Method

As discussed in Section 6.2, the concept of Euler yaw is not particularly
advantageous when it comes to applications relating to balance and
heading. The fused yaw on the other hand is, so a resolution method
based on this notion of yaw has been developed.

As indicated in Figure 7.1, we define the frame {H} to be the frame
{B̃} rotated by the inverse of q̂. That is, {H} corresponds to the current
estimated orientation of the global fixed frame. Note that this will
not be identical to {G} in general, as q̂ and qy generally differ, even
if only slightly. The fused yaw resolution method works by zeroing
the fused yaw of {H} with respect to {G}, much like the ZYX Euler
method (described in Allgeuer, 2020) zeroes the corresponding ZYX
Euler yaw. One notable distinction to the ZYX Euler method is that
having zero relative fused yaw is in fact a mutual relationship, as the
inverse of a rotation has the exact negative of its fused yaw. A second
notable distinction is that the notion of fused yaw is more closely
related to quaternions than ZYX Euler yaw, and so a convenient direct
quaternion formulation exists.

The z-vector zH
G = (zGx, zGy, zGz) of the true global frame {G} with

respect to the estimated global frame {H} can be calculated to be

zH
G = L qH

B̃

(
zB̃

G
)

= Lq̂
(

zB̃
G
)

= q̂ zB̃
G q̂∗. (7.26)

Temporarily treating quaternions as column vectors in R4, the fused
yaw resolution method can then be summarised mathematically as

qy =
q̃y

‖q̃y‖
, (7.27)

where

q̃y =


1 + zGz −zGy zGx 0

zGy 1 + zGz 0 −zGx
−zGx 0 1 + zGz −zGy

0 zGx zGy 1 + zGz

q̂. (7.28)

From inspection it can be seen that the only case in which the al-
gorithm fails is if zH

G = (0, 0,−1). This occurs if the rotation from

7.6 extensions to the estimator 125

{G} to {H} (or equivalently, vice versa) is at the fused yaw singularity,
in which case it can be derived from Equation (7.11) that the error
quaternion q̃ ≡ qE

B̃ must be a rotation by π radians. We recall however,
from page 121, that this is the exact condition of the only unstable
equilibrium point, i.e. problem case, of the passive complementary
filter itself. Thus, we conclude that unlike the ZYX yaw method, the
use of the fused yaw resolution method ensures that there is only
a single error condition for which any part of the total estimation
process yields suboptimal results. Furthermore, this one error condi-
tion is when q̃ is at an exact antipode of the identity rotation—a case
that in practical situations is never reached. Nevertheless, for reasons
of completeness and robustness, the above algorithm falls back to
zeroing the ZYX yaw if it fails. This is guaranteed not to fail if the
fused yaw algorithm failed. It is important to note that the fused yaw
resolution method is equally stable in all global orientations of the
body, as its action depends only on the deviation between the two
global frames {G} and {H}, and not on where in the rotation space the
current attitude estimate q̂ actually lies.

7.6 EXTENSIONS TO THE ESTIMATOR

Given the complete attitude estimator as described in the chapter thus
far, some extensions can be made to improve performance, or allow
estimation with less than the full required 9 axes of data.

7.6.1 Quick Learning

It is desired for the attitude estimator to settle quickly from large
estimation errors, yet simultaneously provide adequate general noise
rejection. To this end, quick learning4 is proposed as a method to
help achieve this. Quick learning allows two sets of PI gains to be
tuned—one set that provides suitably fast transient response for
quick convergence, and one set that provides good tracking and noise
rejection for the long term. Given a desired quick learning time, a
parameter λ ∈ [0, 1] is then used to fade linearly between these two
sets of gains over this time, where the final faded gains are the ones
that provide good tracking and noise rejection. The gain fading scheme
is mathematically given by(

kp, ki
)
= λ

(
knom

p , knom
i
)
+ (1− λ)

(
kquick

p , kquick
i

)
. (7.29)

Quick learning can be triggered at any time, including automatically
when the estimator starts, and is disabled when λ subsequently returns
to 1.0 via a linear ramp.

4 This extension to the estimator is referred to as ‘quick learning’ mostly for historical
reasons, and would more accurately be summarised as a ‘gain scheduling scheme’.

126 attitude estimation

7.6.2 Estimation without Magnetometer Data

If no magnetometer data is available in a system, the attitude estimator
can still be used without any degradation in the estimation quality
of the pitch and roll dimensions by setting m̃B and mG

e to zero. In
this case, the magnetometer resolution method directly falls through,
and the estimation relies solely on the selected yaw-based orientation
resolution method. Due to the yaw-zeroing approach that is used, the
open-loop yaw produced by the estimator remains stable with each
update of qy. The component of Ωy in the instantaneous direction
of zG however, does not have any feedback via the corrective error
feedback term Ωe in this case, so small constant global yaw velocities
in q̂ can result. Essentially, this is because the integration in Equa-
tion (7.14) of the component of Ωy − ĉΩ in the direction of zG is then
‘unconstrained’, leading to yaw drifts. Such yaw drifts are unavoidable
without magnetometer data however, as no sensory information is
then available that can be used to prevent it.

The effect of the yaw drifts on the output quaternion q̂ can be
eliminated for convenience by removing the fused yaw component
of q̂ (to give q̂t), using an equation like Equation (5.93). Note that the
fused yaw is the one and only notion of yaw for which it is perfectly
valid to perform this operation, as when the fused yaw component
of a rotation is removed, the tilt rotation component remains, and
tilt rotations have the unique property of having a direct one-to-one
correspondence to the set of possible accelerometer-measured gravity
directions, as discussed in Sections 5.1.2 and 5.7.1. In addition to
not being a strictly valid operation, removing the ZYX Euler yaw has
sensitivity issues (see Section 6.2.1), and leads to unexpected behaviour
near the not uncommon scenario of pitch rotations by π

2 radians.

7.7 EXPERIMENTAL RESULTS

Over the years, thorough experimentation and testing of the proposed
attitude estimator (and corresponding C++ implementation) has been
performed on multiple different platforms, as well as in simulation. In
the context of this thesis, we provide results of the attitude estimator
running on a real igus Humanoid Open Platform robot, using specific-
ally the fused yaw resolution method, for mathematical, algorithmic
and performance reasons.

Video 7.1 shows the visual recording of an experiment in which
an igus Humanoid Open Platform robot was manually rotated in the
pitch, roll and yaw directions, followed by various combinations of the
three, including laying the robot face down on the floor and picking it
up again. Two attitude estimators—one allowed to use magnetometer
data and one not—were run in parallel to a single instance of the angle
estimator that was used by Missura (2015) for the purpose of capture

7.7 experimental results 127

steps. The output of the attitude estimator with magnetometer data is
shown in the video by means of a 3D robot model in RViz. The model
rotates live relative to the visualised grid frame, to show the current
estimated robot orientation at all times. Adjoining live data plots can
also be seen, indicating the fused angles output of all three orientation
estimation methods at once. It can generally be observed from the
video that the estimated RViz orientation is virtually indistinguishable
from the true motion of the robot, keeping in mind that the former
naturally does not show the effect of any translations.

The data that was captured during Video 7.1 is shown in Figure 7.2.
As an initial observation, it can be identified that the fused pitch
and roll waveforms are nearly identical for the two instances of the
attitude estimator. This is expected, as it was one of the core aims
of the estimator that the magnetometer strictly only affects the fused
yaw component of the estimation, and not the balance-critical fused
pitch and roll components. Note that a similar statement for the
Euler pitch and roll would be invalid (and not expected), as the
ZYX Euler roll parameter contains components of ‘yaw’, as discussed
in Section 6.2.2.1. In contrast to the near-inseparable pitch and roll
waveforms, the two estimated yaw waveforms can be observed to have
a near-constant offset to each other. This is expected, as the estimator
that is not using magnetometer data has no sensor data that allows it
to discern absolute heading, so it effectively expresses its estimated
yaws relative to the pose the robot was in when it was switched on
and the estimator started running. Nonetheless, importantly, it can be
seen that the final estimated fused yaws for both attitude estimators
are very close to the ones that were estimated at the beginning of the
experiment. This is expected, as the robot at the end of the experiment
was facing in the approximate same direction as it was facing at the
beginning of the experiment.

Initially, as the robot is rotated independently about its local y, x and
z-axes, it can be seen that the overwhelming estimation responses come
in the fused pitch, roll and yaw parameters, respectively. After this, a
complicated rotation sequence ensues that effectively rotates the robot
by ≈90° clockwise (CW). It can be extracted from the yaw estimation
data that the two attitude estimators quantified this rotation as −89.6°
and −90.6°, respectively. Given the general circular non-uniformity
of the magnetometer measurements and the somewhat approximate
nature of the 90° rotation, these two values are quite close to their
expected value. The experiment continues by indirectly rotating the
robot back to facing forward, and then tipping it forwards onto the
ground. It can be observed in the video that the foot of the robot is
inadvertently pulled by the right foot of the experimenter as the robot
is being placed on the ground. This can be seen to directly explain the
disturbances that appear at time t = 35.5 s.

128 attitude estimation

Video 7.1: Recording of the attitude estimation experiment, comparing the
estimated orientation of the robot in RViz with the real orientation
of the robot. The captured data is plotted in Figure 7.2.
https://youtu.be/LEkEiFzAVrE

Attitude Estimation Experiment (RViz vs Real)

Figure 7.2: Plots of the attitude estimation data captured in Video 7.1. The
outputs of the attitude estimation with and without magneto-
meter measurements are compared to the angle estimator used in
Missura (2015) for the purpose of capture steps.

https://youtu.be/LEkEiFzAVrE

7.7 experimental results 129

While the pitch and roll values5 that were estimated by the angle
estimator (Missura, 2015) corresponded quite closely to the values
estimated by the attitude estimators for very basic motions (i.e. the
pitch and roll tests), as soon as these basic motions were combined
into more complex ones, the angle estimator severely struggled. While
Video 7.1 visually proves that the pitch and roll values calculated by
the attitude estimators are quite accurate, it can be seen that as of
t = 20 s, the values calculated by the angle estimator severely diverge
from these. At t = 22.4 s for example, the estimated angle estimator
roll is −53.2°, and at t = 29.7 s the estimated roll even reaches 88.1°.
Looking at the video, these two estimated rolls are clearly nonsensical,
especially seeing as they occur prior to the robot being laid down on
the ground. A different problem can also be identified around the
time t = 37 s, where the estimated roll becomes somewhat unstable,
as evidenced by the sharp jagged edges in the waveform there and the
subsequent increase of the estimated roll to 58.2° despite the fact that
no significant rotation is occurring during that time (see Video 7.1).
After the robot is lifted upright again and placed back into a standing
position, it can be seen that the angle estimator needs many seconds to
recover, as was also the case the previous times the roll had a problem
during the experiment. A core problem of the angle estimator is that
it fails to capture local z-rotations. This is a non-ignorable issue, as
they occur all the time during real walking.

Figure 7.3 shows the results of a further experiment where the
robot was rotated 360° about the global z-axis, and placed back down
on the ground.6 Once again, a constant offset between the resulting
estimated fused yaws was observed, as expected, and the final fused
yaws correlated very closely to the initial ones. The sudden jumps in
the middle of the plot are attributed to the fused yaws rolling over
from +π to −π. Comparing the initial and final estimated fused yaws
reveals that the attitude estimator with magnetometer data saw a
total change of −1.2°, while the estimator without magnetometer data
saw a total change of −0.9°. These two results are in relative close
correlation to each other, and it is thinkable that the true rotation that
was undergone by the robot was actually only accurate to ±1°, seeing
as ultimately the performed rotation was judged visually (using a
fixed straight edge as a guide) by the experimenter.

While Figure 7.3 demonstrates that the short- to medium-term
performance of the estimated fused yaw is reliable and stable, even
without magnetometer data, the long-term performance still needs
to be ascertained. This has been done in Figure 7.4, which shows the
results of a long-term yaw drift test for a robot that was left untouched

5 Note that the angle estimator only estimates pitch and roll, and does not provide any
estimate of yaw.

6 Note that the robot was in fact overrotated (around time t = 13 s), and brought back
to the required pose after that. The final adjustments to the robot happened slowly in
the time period from t = 16 s to 20 s.

130 attitude estimation

Figure 7.3: Estimated fused yaw with and without magnetometer data for
a 360° yaw rotation of the robot. The rotation was performed
visually by the experimenter with the aid of a fixed straight edge,
and the resulting changes in yaw were measured to be −361.2°
and −360.9°, respectively. Given the level of agreement between
these results, it is thinkable that the true rotation performed by
the experimenter was only accurate to ±1°.

Figure 7.4: Plot of the long-term yaw estimation accuracy of the attitude
estimator, demonstrating the possibility of yaw drift in the case of
magnetometer-free estimation. The robot was kept stationary in
a standing position for the whole experiment, and at t = 273.4 s
online gyroscope bias autocalibration (see Section 4.1.4) was en-
abled. While the yaw drift prior to autocalibration was ≈0.031°/s,
afterwards the yaw was stable at <0.0001°/s drift.

7.7 experimental results 131

in a standing position for more than 10 minutes. It can be seen that the
attitude estimator with magnetometer data is not prone to yaw drift,
as a properly calibrated magnetometer provides an absolute reference
of heading that can be used to maintain a consistent estimate of fused
yaw. The attitude estimator without magnetometer data however,
relies solely on 3D open-loop integration of the gyroscope to provide
a reasonable estimate of fused yaw, and is thus vulnerable to drift.7

Normally, online gyroscope bias autocalibration (see Section 4.1.4) is
always enabled, but initially in Figure 7.4 when it was disabled, a yaw
drift of 0.031°/s (32.3 s per degree) was observed. This is because the
gyroscope bias is not truly constant over time, so a one-time gyroscope
bias calibration always eventually leads to residual errors that cause
yaw drift.8 When the online gyroscope bias autocalibration scheme
was enabled at time t = 273.4 s however, the yaw drift immediately
halted, and reduced to below the measurable threshold of 0.0001°/s
(0.36°/h). It is important to note that while the autocalibration scheme
only activates when the robot is stationary, it nevertheless ensures that
up to the very instant the robot starts moving again, the estimated
gyroscope bias is completely correct.

It can be observed from Figure 7.4 that the fused yaw estimated
using magnetometer data is noisier than the fused yaw estimated
without. This is because the magnetometer is an inherently noisy
sensor, that when the robot is moving actually gets even noisier due to
the magnetic and electromagnetic disturbances caused by the servos.
Deviations of the local magnetic field from the Earth’s magnetic field
are also frequent occurrences in buildings, where electrical mains and
the presence of larger metal objects and structures are commonplace.
Ultimately, the use of magnetometer data in the attitude estimator
allows absolute estimates of heading to be made, at the cost of
increased noise and decreased short-term stability of the fused yaw.

The effect of quick learning (refer to Section 7.6.1) is shown in
Figure 7.5. While it is nominally only active in the first few seconds
after initialisation, it can also be relevant if the attitude estimator is
set to a particular orientation, or reset. In the experiment in the figure,
a running attitude estimator was reset twice to the identity rotation,
once with quick learning enabled, and once with it disabled. The
difference in time that it took for the estimator to converge to the
orientation of the robot with quick learning disabled is very apparent,
at around 8.8 s as compared to 0.36 s. The effect of the increased gains

7 The estimated fused pitch and roll cannot drift in any situation, as the accelerometer
data provides an absolute reference of tilt. The accelerometer data however cannot be
used to resolve heading, as a change in heading leaves the measured gravitational
acceleration constant.

8 Note that it would be possible to simply ‘ignore’ gyroscope measurements smaller
than a given threshold, and this would be an easy way to ‘cheat’ an eternally stable
fused yaw, but this only helps as long as the robot is completely stationary, and does
not do anything to solve the problem that the gyroscope bias is still wrong when the
robot subsequently moves.

132 attitude estimation

Figure 7.5: The effect of quick learning on the settling time of the attitude
estimator. At times t = 3.66 s and t = 8.86 s, the attitude estimator
is reset to the identity rotation, and thereby forced to converge
again to the true orientation of the robot. Quick learning is
enabled (λ = 0) for the first reset, but disabled for the second. The
resulting difference in settling time (0.36 s vs. 8.8 s) is apparent.

during quick learning can be seen to temporarily increase the amount
of noise in the estimated fused pitch and roll around the t = 5–6 s
mark, but as λ returns to 1 and the gains return to normal, this can
be seen to smoothen out again. Note that the robot was being held in
the air during the experiment, so it is not expected that the robot’s
orientation is perfectly constant throughout. With quick learning, the
knowledge that the current orientation estimate (after reset) is likely
not accurate allows larger gains to be reasonably employed to reduce
the convergence time of the estimator, while ensuring all the while
that the gains during normal operation can remain small enough that
the excessive influence of accelerometer and magnetometer noise can
be avoided.

The attitude estimator was designed to be able to run at high
loop rates on embedded hardware, so as to minimise estimation and
possible control feedback latencies. The C++ attitude estimator library
code was tested on a Personal Computer (PC) with a 2.40 GHz Intel
i5-2430M processor. On a single Central Processing Unit (CPU) core,
the average execution time of the estimator over 100 million cycles
was found to be 127.6 ns for the magnetometer method, 144.3 ns for
the ZYX yaw method (see Allgeuer, 2020), and 112.3 ns for the fused
yaw method. It is to be expected that the fused yaw method takes
comparatively less time, as it does not in general require a rotation
matrix to quaternion conversion, unlike the other two methods. From
these results it is confidently anticipated that the algorithm is efficient
enough to be implemented at high execution rates on a low-cost

7.8 discussion 133

microcontroller, where floating and/or fixed point operations are
comparatively more expensive than on a PC.

7.8 DISCUSSION

The presented attitude estimator has been used, completely un-
changed, on a wide variety of different robots for many years, in-
cluding in the demanding environment of the RoboCup competition.
In the early years, when magnetometers were still allowed in the com-
petition, the magnetometer resolution method was the main method
in use. As of 2016 however, when magnetometers were disallowed,
the fused yaw method took its place, and proved to work very well
in estimating the pitch and roll of the trunk of the robot at all times.
Paired up with the gyroscope scale calibration (see Section 4.1.2) and
online gyroscope bias autocalibration scheme (see Section 4.1.4), it
was also possible to derive a relatively reliable and low-drift estim-
ate of the yaw, despite it essentially being dependent on open-loop
integration. The scale calibration of the gyroscope also contributed in
allowing lower values of the proportional gain kp to be chosen, leading
to reduced delay times when tracking sharp changes in orientation,
and generally superior transient response characteristics.

One of the most important features of the attitude estimator is that
no matter which measured orientation resolution method is used,
the filter is equally stable in all global body orientations, and only
demonstrates potential non-convergent behaviour on a pathological
set that is of no practical concern. Extensions to the filter also allow
for reliable attitude estimation in situations of reduced sensory data,
and the quick learning feature allows for shorter settling times from
large estimation errors when required.

The output of the estimator can be used flexibly depending on the
situation, in the form of either

• q̂ ∈ Q, the full quaternion orientation estimate of the robot,

• q̂t ∈ Q, the (pitch/roll) tilt rotation component of the robot,
expressed as a zero z-component quaternion,

• F̂ = (ψ, θ, φ, h) ∈ F, the individual fused angles parameters of q̂
(see Section 5.3.4), or,

• P̂ = (px, py, pz) ∈ P3, the individual tilt phase space parameters
of q̂ (see Section 5.3.5).

In these various forms, the estimated orientation output of the attitude
estimator can be used for all kinds of feedback purposes, including in
particular the analysis and control of balancing biped robots.

134

8
A C E N T R A L PAT T E R N G E N E R AT O R F O R WA L K I N G

For most bipedal robot platforms, completely open-loop walking—for
at least short periods of time—is reasonably possible with a moderate
level of stability. This is because it is usually possible to design walking
motions that take advantage of the small basin of passive stability
provided by the foot stiffnesses and support polygons. The Central
Pattern Generator (CPG) is one such walking motion, and is sufficiently
generic and tuneable that it has proven to work, and be effective on, a
wide range of different robots. The general approach to walking used
by the bipedal gaits in this thesis is to start with an open-loop gait core,
and build around it stabilising feedback mechanisms that adjust the
gait step sizes, timing, and other specifics of the generated waveforms.
The CPG that is introduced in this chapter is used as the basis of the
direct fused angle feedback controller gait in Chapter 9, and has been
implemented in the cap_gait gait engine of the Humanoid Open
Platform ROS Software.1

The CPG is based on the general ideas that were present in the CPG

used by Missura (2015), but with many modifications and improve-
ments that were mainly intended to allow the generator to be more
flexible and work on a wider variety of robots. The main differences to
the older CPG, also described in Missura and Behnke (2013), include:

• Changes to the leg retraction profiles to transition more smoothly
between swing and support phases,

• The addition of a double support phase for greater walking
stability and passive oscillation damping,

• The addition of a trim factor for the angle relative to the ground
at which the feet are lifted during stepping,

• The integration of a dynamic pose blending algorithm to enable
smoother transitions to and from walking,

• The incorporation of support coefficient waveforms, for use with
the actuator control scheme (see Chapter 3),

• The introduction of a leaning strategy based on the rate of change
of the commanded gait velocity, and

• The use of hip motions instead of leg angle motions for the gait
command velocity-based leaning strategies.

1 https://github.com/AIS-Bonn/humanoid_op_ros/blob/master/src/nimbro/

motion/gait_engines/cap_gait/src/cap_gait.cpp

135

https://github.com/AIS-Bonn/humanoid_op_ros/blob/master/src/nimbro/motion/gait_engines/cap_gait/src/cap_gait.cpp
https://github.com/AIS-Bonn/humanoid_op_ros/blob/master/src/nimbro/motion/gait_engines/cap_gait/src/cap_gait.cpp

136 a central pattern generator for walking

8.1 CPG GAIT INTERFACES

The Central Pattern Generator (CPG) in its purest form can simply be
considered to be a complex high-dimensional function with certain
inputs and outputs, i.e. a function like

fCPG : {vg, µi} 7→ {qo, ξ, κl , κr} (8.1)

where the individual input and output variables are as described in
the following subsections.

8.1.1 CPG Gait Inputs

One of the two inputs to the open-loop CPG gait is the dimensionless
Gait Command Velocity (GCV) vector

vg = (vgx, vgy, vgz) ∈ [−1, 1]3. (8.2)

The components of the input GCV vector vg specify the desired walking
speed of the robot in the sagittal, lateral and yaw rotation directions
respectively, as a ratio of the corresponding maximum allowed speeds.
For instance, full speed forwards walking corresponds to a GCV of
vg = (1, 0, 0). The raw input GCV vector is first scaled, if required, to
ensure that its p-norm satisfies

‖vg‖p =
(
|vgx|p + |vgy|p + |vgz|p

) 1
p ≤ 1, (8.3)

and the resulting vector is slope-limited to ensure that no sharp
changes in walking speed can occur, yielding the internal GCV vector

vi = (vix, viy, viz). (8.4)

In general, a value of p in the range [2, 2.5] was found to be suitable
for the tested robots. The p-norm limit ensures, for stability reasons,
that the robot cannot for instance try to walk full speed forwards and
sidewards at the same time, and the slope limit ensures that no jumps
or step changes can occur in the CPG outputs.

The second input to the CPG gait is the gait phase variable

µi ∈ (−π, π]. (8.5)

This variable parameterises the gait cycle that is generated by the CPG

in a direct and deterministic way, and for regular open-loop walking
starts at 0 or π at the beginning of walking, and is updated after each
time step ∆t using

µi ← wrap(µi + π fg∆t), (8.6)

8.1 cpg gait interfaces 137

where fg is the configured nominal gait frequency in units of steps per
second. The wrap(•) function ensures that the gait phase stays strictly
in the range (−π, π] at all times. Each value of µi corresponds to a
fixed instant of the gait cycle. For example,

µi = 0 ⇒ Foot strike of the right leg, beginning of double support

µi = π ⇒ Foot strike of the left leg, beginning of double support

It should be noted that by convention, the swing phase of the left leg
and support phase of the right leg occur in the phase range µi ∈ (0, π],
and the support phase of the left leg and swing phase of the right leg
occur in the phase range µi ∈ (−π, 0]. As the arms generally swing
opposite to the legs during walking, the swing and support phase
definitions for the arms are exactly opposite to those for the legs.

8.1.2 CPG Gait Outputs

The outputs of the CPG gait are exactly those required by the actuator
control scheme (see Chapter 3). In each execution cycle this corres-
ponds to

• The vector of joint position commands qo ∈ RN , specifying the
desired angular position of each joint (for N joints),

• The vector of joint effort commands ξ ∈ [0, 1]N , specifying how
stiff each joint should be, and,

• The required support coefficients κl and κr of the left and right
legs respectively, specifying the proportion of the weight of the
robot that is expected to be supported by each leg.

The vector qo can be seen to correspond directly to the desired joint
space pose of the robot, and like the support coefficients κl and κr, it is
calculated dynamically based on the GCV and gait phase inputs. The
joint effort command vector ξ, on the other hand, is generally assigned
a manually configured constant value, and is thus trivial to compute
in each cycle.

8.1.3 Provisions for Closed-loop Feedback

As discussed at the beginning of this chapter, we wish to construct the
CPG in such a way that it is possible for higher level balance controllers
to add stabilising feedback to the generated walking motions, with
the aim of making them fundamentally more robust. The CPG thus
makes provisions in particular for the inclusion of timing and step
size feedback.

138 a central pattern generator for walking

8.1.3.1 Timing Feedback

A balance feedback controller can apply timing feedback to the CPG

through the specification of a gait frequency offset fgo, time to step ts,
and corresponding support leg sign δt ∈ {−1, 1}.2 The ts parameter
specifies the amount of time that should be taken by the CPG until the
foot opposite to δt should next be commanded to strike the ground.
The current support foot according to the current gait phase µi is given
by

δc =

{
−1 if µi ∈ (0, π],

1 if µi ∈ (−π, 0].
(8.7)

Thus, the amount of gait phase µr ∈ [0, 2π) that needs to be covered
in the specified duration of ts seconds is

µr =


−µi if δt = δc = 1,

π − µi if δt = −1,

2π − µi if δt = 1 and δc = −1.

(8.8)

This corresponds to an instantaneous gait frequency, in steps per
second, of

f̃g =
µr
πts

+ fgo, (8.9)

where the effect of the gait frequency offset parameter fgo has also
been included. After application of a maximum gait frequency bound
fg,max, i.e.

fg = coerce
(

f̃g, 0, fg,max
)
, (8.10)

Equation (8.6) can be used as normal to update the gait phase in each
cycle. The final instantaneous predicted time to step is

t̂s =
µr

π fg
. (8.11)

Note that a feedback controller may return a different ts in each cycle,
so the amount that µi is incremented by with each update may vary
continuously, and differ at each instant throughout a single step.

8.1.3.2 Step Size Feedback

In the framework of the CPG, step size feedback is realised via modi-
fication of the internal GCV vector vi. Balance feedback controllers can
either simply apply additive offsets to the value of vi, or intercept its
calculation prior to slope limiting (but after p-norm limiting), and cal-
culate an arbitrary desired value ṽi based on that intermediate value
and the current balance state. In the latter case, the slope limiting is

2 δt = 1 corresponds to the left leg, δt = −1 corresponds to the right leg.

8.2 cpg motion generation 139

skipped because otherwise the ability of the controller to make quick
balance recovery steps is inhibited. To prevent discontinuities in the
gait outputs from occurring as a result, the internal GCV vector vi is
made persistent and updated in each cycle using the equation

vi ← vi +
∆t
t̂s
(ṽi − vi), (8.12)

where t̂s ≥ ∆t is the final predicted time to step as in Equation (8.11),
and ∆t is the nominal cycle time. This equation effectively adjusts
the current internal GCV so that it reaches ṽi exactly at the end of the
current step.

No matter which method of step size adjustment is used, the final
value of vi is the one that is passed on to the internals of the CPG, and
used to generate the required joint waveforms.

8.2 CPG MOTION GENERATION

For mathematical and algorithmic details of the generation of the CPG

walking motions, including the leg lifting, leg swing, arm swing, hip
swing and leaning components, refer to Allgeuer (2020).

8.3 EXPERIMENTAL RESULTS

The Central Pattern Generator (CPG) has been successfully imple-
mented on all of the robots used throughout this thesis, including
in particular the igus Humanoid Open Platform, NimbRo-OP2 and
NimbRo-OP2X. The level of stability that the open-loop gait has varies
with the mechanical quality of the robot and whether serial or parallel
leg kinematics are present, but all tested robots were able to walk
with the CPG with a moderate to high quality. Clearly, without any
balance feedback there is a limit to the level of disturbances (and
self-disturbances) that can be passively rejected by the gait, but the
self-stability of the CPG was found to be sufficient in all robots for
moderate durations of walking over flat terrains. For conservative
input GCV vectors, the most common mode of failure is if a timing
offset is induced in the balance of the robot, and the robot ends up
trying to lift a leg that it is currently standing on.

Due to the moderately large number of parameters of the CPG, it
may at first seem like it is difficult to tune, but seeing as most of
the parameters were intentionally designed to be dimensionless and
highly independent in terms of their effect, this is not truly the case.
The process of tuning starts with the tuning of the halt pose, i.e. the
base pose of the gait. The halt pose should be a stable and symmetric
standing pose of the robot, with a small yet non-zero amount of leg
retraction. In the halt pose, the balance of the robot should be suitably
centred above the support polygon defined by its feet, and in the

140 a central pattern generator for walking

case of serial kinematics robots, should incorporate a slight forwards
tilt of the torso. The leg lifting and hip swing parameters are first
tuned to achieve stable walking on the spot, before experiments with
pure steady-state sagittal, lateral and rotational walking motions are
used to tune the leg swing and arm swing parameters. The leaning
parameters come last as they depend on the behaviour of the robot
when it is accelerating in the sagittal direction, which requires tests
with changing GCVs. Once the parameters of the CPG have been tuned
for one robot, carrying them across to another robot is usually a simple
task, and requires only very minimal changes to the parameters, if
at all, for the gait to work. Usually, even between robots of different
shapes and sizes, only the halt pose needs to be adjusted, and at most
the configured step height parameters as well.

Figure 8.1 shows plots of the generated joint space waveforms for
the left and right limbs of an igus Humanoid Open Platform robot.
When the CPG gait is triggered at time t = 0.65 s, no pre-gait blending
is required as the robot is already in the halt pose. After π radians
(i.e. 417 ms) of pose blending, and an overlapping 1.2 s of forced zero
internal GCV time, a step change in vg occurs to the commanded value
of (0.7, 0.4, 0.4). When this happens, the slope limiting of the internal
GCV vi ensures that it remains continuous in its approach of vg, as can
be seen from the resulting linear ramps in the top plot of the figure.
After a few seconds of steady-state limit cycle walking, at t = 6.3 s,
the trigger comes that the robot should stop walking. It cannot do
this immediately, as it is in the middle of taking a large step and is
currently walking with a significantly non-zero GCV, but over the next
2–3 steps, the internal GCV is faded linearly back down to zero. Once
vi arrives at zero, at the next culmination of a step (µi = 0 or π) the
CPG waveforms are stopped, and after 417 ms of further pose blending
back to the halt pose, the CPG gait releases control of the robot.

A video of the CPG gait running on various kinematic simulations,
physical simulations and real robots is provided in Video 8.1. The
quality of the gait without feedback is not perfect, and the robots are
prone to falling if disturbed, but the CPG serves as a reliable foundation
on which robust gaits like the capture step gait (see Allgeuer, 2020 for
use of this CPG as part of a capture step gait) and direct fused angle
feedback controller (see Chapter 9) can be built.

8.3 experimental results 141

Figure 8.1: Sample output waveforms of the Central Pattern Generator (CPG)
for an input GCV of vg = (0.7, 0.4, 0.4) and a nominal gait
frequency of fg = 2.4 Hz. The CPG gait is activated at time
t = 0.65 s, and receives the trigger to stop walking at time t = 6.3 s.
After a further two steps, during which the robot slows down to
an internal GCV of zero, the robot stops walking and fades back to
the halt pose. Note how the waveforms for the left limbs (middle
plot) are in general in exact antiphase to those for the right limbs
(bottom plot). This can most clearly be identified in the plots of
θkp, the knee pitch angles. The top plot shows the values of the
gait phase µi and internal GCV vector vi used for the generation of
the waveforms. The effect of the initial GCV zero time, in addition
to the effect of the GCV slope limiting, can be seen in the plot.

142 a central pattern generator for walking

Video 8.1: Demonstration of the open-loop Central Pattern Generator (CPG)
gait on the igus Humanoid Open Platform, Dynaped and Nim-
bRo-OP2 robots. The gait is demonstrated in kinematic simulation,
physical simulation, and on the real robot hardware.
https://youtu.be/ksJRwGlSuTM

Open-loop Central Pattern Generator (CPG) Walking

https://youtu.be/ksJRwGlSuTM

9
D I R E C T F U S E D A N G L E F E E D B A C K C O N T R O L L E R

This chapter presents a novel balance controller, referred to as the
direct fused angle feedback controller. It does not make any notable
adjustments to the step sizes, but nonetheless has a strong stabilising
effect on the open-loop Central Pattern Generator (CPG) walking
motions of the robot, through the use of timing adjustments and
so-called corrective actions, as indicated in Figure 9.1. Corrective
actions are inline modifications to the waveforms generated by the
CPG, and are computed as a function of the trunk orientation feedback
received from the attitude estimation in the form of fused angles
(see Section 5.3.4). As the direct fused angle controller works by
mechanisms other than step size adjustment, aside from the choice
of which method of timing adjustment to use, it can coexist entirely
and be used in conjunction with the capture step controller if desired
(see Allgeuer, 2020). This option for coexistence is demonstrated in
the released implementation of both controllers (and the CPG gait), as
all three of them are implemented in the same gait engine.1

It is demonstrated by the direct fused angle feedback controller in
this chapter that genuinely good walking results can be achieved using
relatively simple feedback mechanisms, with only minimal modelling
of the robot, and without measuring or controlling forces or torques.
Only joint positions and a 6-axis Inertial Measurement Unit (IMU)
are required for this method to work, making it flexible, portable
and reliable for robots of all sizes, including in particular those with
low-cost actuators and sensors. The main take-away message of the
direct fused angle controller is that simple robot-agnostic feedback
mechanisms are enough to make a robot walk if the sensor and
feedback chains are carefully constructed, and that the feedback
mechanisms can easily be run in parallel with more complicated
step size adjustment schemes if desired, for greater overall walking
robustness.

9.1 GAIT STRUCTURE

The direct fused angle controller takes as input the estimated fused
pitch θB and fused roll φB (see Section 5.3.4) of the trunk of the
robot, as estimated by the attitude estimator (see Chapter 7). Based
on the deviations of these two angles from their nominal expected
waveforms, the controller calculates a gait frequency offset fgo in

1 https://github.com/AIS-Bonn/humanoid_op_ros/tree/master/src/nimbro/

motion/gait_engines/cap_gait

143

https://github.com/AIS-Bonn/humanoid_op_ros/tree/master/src/nimbro/motion/gait_engines/cap_gait
https://github.com/AIS-Bonn/humanoid_op_ros/tree/master/src/nimbro/motion/gait_engines/cap_gait

144 direct fused angle feedback controller

Figure 9.1: Summary of the timing feedback and corrective actions implemen-
ted as part of the direct fused angle feedback controller. For more
details on each individual corrective action, refer to Section 9.2
and Figure 9.2.

Hertz for the purpose of CPG timing feedback as per Equation (8.9)
(see Section 8.1.3.1), and implements the required corrective actions
using additive components to the CPG-generated waveforms. The final
calculated CPG joint commands are then passed to the actuator control
scheme as normal.

9.2 CORRECTIVE ACTIONS

Numerous different corrective actions have been implemented in the
direct fused angle controller. Corrective actions can be thought of as
motion primitives that are dynamically weighted and superimposed
on top of the open-loop CPG gait waveforms, so as to affect or bias
the balance of the robot in some way. Six different corrective actions
(mostly illustrated in Figure 9.2) have been implemented in a mix of the
abstract and inverse pose spaces (Allgeuer, 2020). The implemented
corrective actions are as follows:

1. Arm angle: The abstract arm angles φax, φay are adjusted to
bias the balance of the robot and produce reaction moments
that help counterbalance transient instabilities. As an example,
if both arms are moved backwards, the balance of the robot is
tendentially shifted backwards as a result.

2. Hip angle: The torso of the robot is tilted within the lateral and
sagittal planes to induce lean in a particular direction. As for
the lateral leaning component of the CPG, the leg retraction
parameter of one of the legs is trimmed to ensure that no
disparity in foot height occurs as a result.

3. Continuous foot angle: Continuous offsets are applied to the
abstract foot angles φ f x, φ f y to bias the tilt of the entire robot

9.2 corrective actions 145

Figure 9.2: The implemented corrective actions in both the sagittal (top
row) and lateral (bottom row) planes—from left to right in both
cases, the arm angle, hip angle, continuous foot angle, support
foot angle, and CoM shifting corrective actions. The actions in
this figure have been exaggerated for the purposes of clearer
illustration.

from the feet up. For example, if the feet are both offset so that
the toe area points further downwards, the balance of the robot
is biased in the backwards direction.

4. Support foot angle: Gait phase-dependent offsets are applied
to the abstract foot angles φ f x, φ f y of the support foot, in order
to induce ground reaction forces that push the balance of the
robot in the opposite direction. The offsets are faded in linearly
starting at the instant of foot strike, and are faded out linearly
just in time for leg lift-off. As such, the support foot angle offsets
are only applied to each foot during their single and double
support phases, and not during their swing phase.

5. CoM shifting: The inverse kinematic positions of the feet relative
to the torso are adjusted in the horizontal plane to shift the
position of the Centre of Mass (CoM). The centring of the robot’s
mass above its support polygon is thereby adjusted, influencing
its balance. As an example of such influence, shifting the CoM to
the right for instance increases the proportion of time spent on
the right foot during walking.

6. Virtual slope: The inverse kinematic positions of the feet relative
to the torso are adjusted in the vertical direction in a gait phase-

146 direct fused angle feedback controller

dependent manner to lift the feet more at one swing extremity.
This can be thought of as what the robot would need to do in
order to walk up or down a slope.

9.3 FUSED ANGLE FEEDBACK MECHANISMS

Each of the aforementioned corrective actions (and timing feedback)
are activated and driven based on an array of feedback mechanisms
that use the estimated fused pitch and roll of the torso as their source.
Each feedback mechanism calculates its contribution to the activations
of the corrective actions as a function of the deviations of the fused
pitch θB and fused roll φB angles from their nominal limit cycle
values. The nominal limit cycles of the fused angles are modelled
as parameterised sine functions of the gait phase µi, and the fused
angle deviations dθ , dφ are defined as the difference between θB, φB
and their current expected values θexp, φexp. That is,

dθ = θB − θexp, (9.1a)

dφ = φB − φexp, (9.1b)

where
θexp = keoy + kemy sin(µi − kepy), (9.2a)

φexp = keox + kemx sin(µi − kepx), (9.2b)

where k∗ are constants that are tuned based on CPG walking experi-
ments to define the expected fused angle waveforms.

An overview of the complete feedback mechanism calculation
pipeline, from the fused angle deviations dθ , dφ through to the re-
sulting corrective actions and timing adjustment, is shown in Fig-
ure 9.3. The algorithmic details of the various feedback mechanisms
are discussed in the following subsections. While the timing adjust-
ment ends with the calculation of a gait frequency offset fgo, and the
virtual slope ends with the calculation of the required inverse kin-
ematic adjustment of the foot locations, the remaining three feedback
mechanisms—namely the proportional, derivative and integral feed-
back mechanisms—are responsible for the activation of the remaining
five corrective actions (i.e. the ones in Figure 9.2). This is done in
each execution cycle of the direct fused angle controller through the
calculation of a fused feedback vector

e =
[
ePx ePy eDx eDy eIx eIy

]T
, (9.3)

which summarises the amount of proportional, derivative and integral
feedback there should be in the lateral (x) and sagittal (y) directions
at that instant of time. The calculated fused feedback vector e is

9.3 fused angle feedback mechanisms 147

Figure 9.3: Overview of the fused angle feedback calculation pipeline.

converted to a vector ua of corrective action activation values using
the equation

ua = Kae, (9.4)

where Ka is the configured (constant) corrective action gains matrix.
Note that a single 5× 6 gains matrix Ka is indicated here for generality
and mathematical brevity, but in practice a full tune involves only
10–14 non-zero gains in the matrix. These intended feedback paths
are explicitly listed throughout the following subsections. The entries
of ua give the magnitude and sign with which each of the available
corrective actions—excluding the virtual slope, which is calculated
and added separately (see Section 9.3.5)—are applied to the abstract
and inverse poses generated by the CPG gait (Allgeuer, 2020). This is
the means by which the robot acts to keep its balance.

To ensure that the pose of the robot stays within suitable joint limits,
soft coercion (a form of smooth saturation, see Allgeuer, 2020) is
applied to the final calculated abstract arm angles, leg angles, foot
angles, and inverse kinematic adjustments to the CoM. Soft coercion
is used instead of standard hard coercion (i.e. instead of simply
applying hard limiting bounds), because soft coercion is continuously
differentiable (of class C1) and results in smoother saturation behaviour
of the limbs, with less self-disturbances of the robot.

9.3.1 Fused Angle Deviation Proportional Feedback

The most fundamental and direct form of fused angle feedback is
the proportional corrective action feedback. As with nearly all of
the implemented feedback mechanisms, the proportional feedback
operates in both the lateral and sagittal planes. The fused angle

148 direct fused angle feedback controller

deviation values dθ , dφ are first passed through a mean filter to
mitigate the effects of noise. Smooth deadband (Allgeuer, 2020) is
then applied to the output to inhibit corrective actions when the
robot is close to its intended trajectory, and thereby avoids oscillations
due to hunting. Smooth deadband was chosen for this application (as
opposed to standard sharp deadband) to soften the transitions between
action and inaction, and to avoid any unnecessary self-disturbances
and/or unexpected oscillatory activation-deactivation cycles. These
can occur if sharp deadband is used, due to its strongly asymmetrical
behaviour around its threshold points. The proportional fused angle
feedback values ePx and ePy from Equation (9.3) are calculated by
scaling the results of the smooth deadband by the proportional fused
angle deviation gain Kp.

The proportional fused angle feedback mechanism is intended for
activating the arm angle, support foot angle, and hip angle corrective
actions, as these have the most direct effect on the transient behaviour
of the robot.

9.3.2 Fused Angle Deviation Derivative Feedback

The proportional feedback works well in preventing falls when the
robot is disturbed, but if used alone has the tendency to produce po-
tentially unstable low frequency oscillations of the robot, in particular
in the sagittal direction due to compliance effects in the ankles. To
enhance the transient disturbance rejection performance of the ro-
bot, corresponding derivative feedback terms are incorporated to add
damping to the system. If the robot has a non-zero angular velocity,
this component of the feedback reacts ‘earlier’ to cancel out the velo-
city before a large fused angle deviation ensues, and the proportional
feedback has to combat the disturbance instead.

The derivative fused angle feedback values eDx and eDy from Equa-
tion (9.3) are computed by passing the fused angle deviations dφ

and dθ through a Weighted Line of Best Fit (WLBF) derivative filter
(Allgeuer, 2020), applying smooth deadband, and then scaling the
results by the derivative fused angle deviation gain Kd. The smooth
deadband, like for the proportional case, is to ensure that no corrective
actions are taken if the robot is within a certain threshold of its normal
walking limit cycle, and ensures that the transition from inaction to
action and back is smooth.

A Weighted Line of Best Fit (WLBF) filter observes the last N data
points of a signal, in addition to assigning confidence weights to each
of the data points, and performs weighted linear least squares regres-
sion to fit a line to the data, with the data measurement timestamps
being used as the independent variable. The linear fit evaluated at the
current time gives a smoothed data estimate, and the fitted linear slope
gives a smoothed estimate of the derivative of the data stream. WLBF

9.3 fused angle feedback mechanisms 149

derivative filters have a number of advantages, in particular when
compared to the alternative of computing the numerical derivative of
a signal and applying a low pass filter. WLBF filters are more robust to
high frequency noise and outliers in the data for the same level of re-
sponsiveness to input transients, and have the advantage of inherently
and easily supporting non-constant time separations between data
points in a stable manner, even if two data points are very close in
time. The use of weights in WLBF filters also allows some data points
to be given higher confidences than others in a probabilistic manner.
For example, in regular parts of the gait cycle where noise and er-
rors in the measurements are expected, lower weights can be used
to help reject noise and disturbances in the sensor measurements. To
the knowledge of the author, the use of weighted linear least squares
regression in this online fashion for the purposes of data smoothing
and derivative estimation, in particular in the context of walking gaits,
has not previously been published, so no references can be provided.

The derivative fused angle feedback values eDx and eDy, are intended
for activating the arm angle, support foot angle and hip angle corrective
actions, and serve to allow better loop shaping for the transient
response to disturbances.

9.3.3 Fused Angle Deviation Integral Feedback

The proportional and derivative fused angle feedback mechanisms
are able to produce significant improvements in walking stability, but
situations may arise where continued corrective actions are required
to stabilise the robot, due to for example asymmetries in the robot. The
continual control effort and resulting periodic steady state errors are
undesired. The purpose of the integral feedback is to slowly converge
to offsets to the gait halt pose (see Section 8.3) that minimise the need
for control effort during general walking.

The fused angle deviations dφ and dθ are first integrated over time
using an Exponentially Weighted (EW) integrator, a type of ‘leaky
integrator’. This kind of integrator incrementally computes the sum

I[n] = x[n] + αx[n− 1] + α2x[n− 2] + · · · (9.5)

where α ∈ [0, 1] is the so-called history time constant, and x[•] is the
data to integrate. The sum is most conveniently computed using the
difference equation

I[n] = x[n] + αI[n− 1]. (9.6)

If α = 0, the integrator simply returns the last data value, but if α = 1
the output is the same as that of a classical integrator, so the value
of α effectively trims the amount of memory that the integrator has.

150 direct fused angle feedback controller

A suitable value for α is computed from the desired half-life time Th,
which is a measure of the decay time of the integrator, using

α = 0.5
∆t
Th , (9.7)

where ∆t is the nominal time step. An EW integrator is used instead
of a standard integrator for flexibility and stability reasons, to combat
integral windup, and because old data eventually needs to be ‘forgot-
ten’ while walking, because situations can change. The alternative of
keeping the last N fused angle deviations in a buffer and integrating
over the buffer is less efficient, less continuous in the output and less
flexible, in addition to being vulnerable to aliasing effects.

As indicated in Figure 9.3, the outputs of the two fused angle
deviation EW integrators (one for dθ and one for dφ) are passed through
respective mean filters to allow the trade-off between settling time and
level of noise rejection to be trimmed. The smoothed outputs of the
mean filters are then scaled by the integral fused angle deviation
gain Ki to give the integral fused angle feedback values eIx and
eIy, as required for the calculation of the fused feedback vector e
in Equation (9.3). The integral fused angle deviation feedback is
intended for activating a mix of the arm angle, hip angle, continuous foot
angle, and CoM shifting corrective actions, although to preserve greater
independence between the feedback mechanisms, primarily the last
two of these four are recommended.

9.3.4 Fused Angle Deviation Timing Feedback

The Proportional-Integral-Derivative (PID) feedback mechanisms act
to return the robot to the expected fused angle limit cycles during
walking. For larger disturbances this is not always possible, practicable
and/or desired from a timing perspective. For instance, if a robot is
pushed so far laterally that it is only resting on the outer edge of its
support foot, then no matter what fused angle feedback mechanisms
are applied, it is infeasible to return the robot to its centred and upright
position in the same time as during normal walking. This generally
results in the robot attempting to perform its next step anyway, despite
being tilted, and falling as a result. To deal with this mode of failure,
timing feedback has been implemented. This form of feedback adjusts
the rate of progression of the gait phase as a function of the fused
roll deviation dφ. Steps taken by the robot can thereby be sped up or
slowed down based on the lateral balance state of the robot.

The required sign of the timing feedback depends on the current
gait phase-dependent support leg sign, and only minimal timing
adjustments are desired during the double support phase due to
the sensor noise associated with foot strike and the transferral of
the robot’s weight from one foot to the other. As a result, the timing

9.3 fused angle feedback mechanisms 151

feedback is constructed by taking the mean filtered fused roll deviation
d̄φ from the proportional feedback pipeline, and weighting it by a
saturated oscillatory gait phase-dependent expression to give

ẽTx = d̄φ coerce
(
−Ktw sin(µi − 1

2 D), −1, 1
)
, (9.8)

where coerce(•) is standard hard coercion, µi is the gait phase, D is the
double support phase length, and Ktw ∈ [1, ∞) is a gain that adjusts
the shape of the oscillatory weighting curve. To avoid unnecessary
disturbances to the gait frequency during normal walking, smooth
deadband is applied to the calculated weighted deviation ẽTx to give
the final fused angle timing feedback value eTx. The required gait
frequency offset fgo (see Section 8.1.3.1) is then given by

fgo =

{
Ksu eTx if eTx ≥ 0,

Ksd eTx otherwise,
(9.9)

where Ksu and Ksd are configured speed-up and slow-down gains. The
calculated gait frequency offset fgo is then used in the standard CPG

gait frequency update equation, given by Equation (8.9).

9.3.5 Virtual Slope Feedback

If the robot is tilted sagittally in the direction that it is walking, it can
happen that a foot prematurely strikes the ground during its swing
phase. This is undesirable and a cause for destabilisation of the robot.
The virtual slope corrective action adjusts the inverse kinematic height
of the feet in a gait phase-dependent manner as a function of the
estimated fused pitch θB and the sagittal component vix of the internal
Gait Command Velocity (GCV). This is used to effectively simulate
as if the robot was walking up or down a slope, hence the name of
the corrective action. For example, if the robot is walking forwards
and tilted forwards, the robot with virtual slope active will lift its
feet higher at the front of its swing phases, ensuring that the legs do
indeed reach full forward swing before establishing ground contact.

The required sagittal virtual slope Vs is calculated at each point in
time by first applying sharp deadband to the measured fused pitch
θB of the trunk, then linearly scaling the result by one of two gains,
depending on whether the robot is tilted in the same direction that it
is walking or not. The sagittal virtual slope feedback value eVy is then
calculated using the formula

eVy = Vs vix, (9.10)

where vix is the sagittal component of the current internal GCV vector
vi. The calculated value of eVy is taken as the maximum required
magnitude of inverse kinematic height adjustment of the feet during

152 direct fused angle feedback controller

the current step. If ζs is the leg-dependent swing angle used in the
generation of the CPG waveforms (Allgeuer, 2020), the exact required
inverse kinematic height adjustment at every instant in time is given
independently for both legs by the formula

plz ← plz +
1
2

(
ζs + sign(eVy)

)
, (9.11)

where plz is the z-component of the inverse space ankle position vector
pl , and sign(•) is a sign function such that sign(0) = 1.

9.3.6 Tuning of the Feedback Mechanisms

The process of tuning the feedback mechanisms is greatly simplified
by their considerable independence. The individual feedback mechan-
isms have clearly observable and direct effects that can be precisely
isolated and tested, so arguably the process of tuning the proposed
gait is quicker and easier than it would be for most model-based
approaches that do not somehow work out of the box. For instance,
in experiments it was always observed that the direct fused angle
controller is significantly easier to tune for a robot than the capture
step controller.

The process of tuning starts with the Proportional-Derivative (PD)
gains, as these are most responsible for the transient disturbance
response characteristics of the robot. The most effective corrective
actions in each of the sagittal and lateral planes of motion are identified
for each robot, and the gain ranges that produce noticeable effects
without risking oscillations or instabilities are also experimentally
established. The choice of corrective actions may be influenced by
external objectives, such as for example the desire to minimise trunk
angle deviations from upright. In this case, the hip angle feedback
components may be omitted for example.

Once the transient response has been tuned, a suitable integral
feedback half-life time is chosen based on the rate at which the robot
should adapt to changes in its environment, and gains are chosen that
bring the activations of the associated integral corrective actions to
the desired range. Timing is then considered, with the speed-up and
slow-down gains being selected to avoid premature stepping, and to
instantaneously halt the gait phase when the robot reaches a certain
nominal lateral angular deviation. The virtual slope mechanism is
mostly parameter-free, and the sole pair of linear scaling factors are
chosen to provide the desired margin of clearance of the foot from the
ground during maximum forwards walking.

9.4 EXPERIMENTAL RESULTS

The proposed gait has been implemented and evaluated experiment-
ally on all of the robots used throughout this thesis, including in

9.4 experimental results 153

Video 9.1: Walking experiments demonstrating the feedback mechanisms
implemented as part of the direct fused angle feedback controller.
These are the exact experiments (for the most part) for which the
plots are provided in Figure 9.4.
https://youtu.be/xnzJi2hTfAo

Omnidirectional Bipedal Walking with Direct Fused Angle Feedback
Mechanisms

particular all seven igus Humanoid Open Platform robots that were
constructed over the years, as well as the Dynaped robot. As a matter
of cross-validation, the direct fused angle controller was observed to
work particularly well on Dynaped, despite the fact that essentially the
same controller parameters and gains matrix Ka were used as on the
igus Humanoid Open Platform. This demonstrates the independence
and portability of the feedback controller, which is a great strength of
the gait that derives from its essentially model-free nature.

Overall, the feedback mechanisms were observed to make a sig-
nificant difference to the walking ability of the tested robots—as
demonstrated in detail in Video 9.1 for each feedback mechanism
individually—with walking often not even being possible for exten-
ded periods of time without them. The feedback mechanisms also
equipped the robots with disturbance rejection capabilities that were
not present otherwise. Reliable omnidirectional walking speeds of
21 cm/s were achieved for the igus Humanoid Open Platform, and
36 cm/s was achieved for Dynaped. Both of these walking speeds
were measured on an artificial grass surface of blade length 32 mm.

Plots of experimental results demonstrating the efficacy of the
feedback mechanisms are shown in Figure 9.4. In Figure 9.4a, the robot
walked twice onto an unexpected 1.5 cm step change in floor height,
the first time with proportional and derivative feedback enabled, and
the second time with them disabled. It can be seen that with the
feedback enabled the robot is able to avoid falling—albeit with a
large steady state error in the fused pitch—while without feedback

https://youtu.be/xnzJi2hTfAo

154 direct fused angle feedback controller

the robot falls immediately. Adding in integral feedback, configured
to activate both the CoM shift and continuous foot angle corrective
actions, produces the results in Figure 9.4b. It can be seen that the
relatively large initial error in the fused pitch is rejected within about
5 s, with the robot converging to upright walking despite being on an
uneven floor. Note that the residual fused pitch limit cycles towards
the end of the plot are an effect of the robot’s feet not being equally
positioned on the step change in floor height.

Figure 9.4c shows the effect of timing feedback. Timing feedback
activates when there are significant deviations in the lateral direction
between the measured and expected orientations of the robot. A plot
comparing the measured and expected fused pitch and roll values
for stable balanced walking is shown in Figure 9.5. Despite initial
appearances, the deviations from expected are actually quite small
(<1.1°), and only larger deviations should trigger changes to the
nominal step timing. In Figure 9.4c, the robot was subjected to two
lateral pushes while walking in place, the first with timing feedback
enabled, and the second without. It can be seen at t = 3.1 s that the
gait phase slows down in response to the push, allowing the fused
roll to return to its expected limit cycle within the following 2.5 s. An
identical push at t = 8.2 s, without timing feedback enabled, causes
the robot to fall.

Figure 9.4d illustrates the effect of the virtual slope corrective action.
The robot was continuously pushed forwards while it was walking
forwards, first with the virtual slope feedback enabled, and then
without. In the first case, the adjustments to the inverse kinematic
height of the feet ensured that the robot could continue to walk
forwards and regain balance once it was no longer being pushed. In
the latter case however, the feet started to collide with the ground in
front of the robot, preventing the robot from taking its intended step
sizes, and causing significant self-destabilisation. The robot was not
able to get its feet underneath its CoM again, and subsequently fell
shortly after.

A more detailed idea of how the PD corrective actions activate in
the face of push disturbances is given in Figure 9.6. The top plot
shows the response of an igus Humanoid Open Platform robot that
was pushed forwards while walking on the spot on artificial grass,
while the bottom plot shows an equivalent backwards push. In both
cases, the fused angle deviation proportional and derivative feedback
components were enabled, and used to activate the sagittal arm angle
and support foot angle corrective actions. Prior to both pushes, it
can be observed from the plots that no significant activations of the
feedback mechanisms were occurring. As soon as the destabilisation
caused by the pushes was detected however, i.e. via the ensuing
deviation caused in the measured fused pitch, the arms and feet
sprung into action to counteract the disturbance and return the robot

9.4 experimental results 155

(a) Effect of PD feedback when walking onto a step change in floor height.

(b) Effect of I feedback when walking onto a step change in floor height.

(c) Effect of timing feedback on the lateral transient response to pushes.

(d) Effect of virtual slope feedback while walking and being pushed forwards.

Figure 9.4: Plots of experimental results showing the effects on the stability
of the robot of the five implemented feedback mechanisms.

156 direct fused angle feedback controller

Figure 9.5: Plot of the fused angle waveforms θB, φB, along with the expected
fused angle waveforms θexp, φexp, during on-spot walking. The
close correlation between the expected and true orientations of
the robot can be observed. Note that the plot is quite enlarged, so
the deviations from expected in this case are actually all less than
≈0.02 rad = 1.1°.

to a stable walking limit cycle. Note that the support foot angle
activations alternate between the left and right feet as the robot takes
steps, as it only makes sense to adjust the orientation of the foot that is
actually on the ground. Although the activations reacted very quickly
after the push, and spiked to a ‘large’ value, the derivative feedback
component ensures that as the robot dissipates energy and starts
to return towards upright, the magnitude of the activations quickly
drops again, and in fact even briefly reverses so as to prevent excessive
overshoot. Sagittal overshoot is a common problem of the open-loop
CPG. It causes the pitch of the robot to oscillate back and forth in an
only lightly damped manner, and makes the robot more sensitive to
any further disturbances. This is actively prevented by the feedback
controller, leading to greater walking stability.

A more holistic qualitative demonstration of the proposed gait (i.e.
the CPG gait combined with the direct fused angles feedback con-
troller) and its resistance to disturbances can be found in Video 9.2.
Experiments and real-life situations are shown for multiple different
robot platforms, including Dynaped, the igus Humanoid Open Plat-
form, NimbRo-OP2 and NimbRo-OP2X, and impressions of walking
performance in simulation are also given. Notable aspects of the video
include the wide variety of conditions and disturbances that the gait
is confronted with, as well as the fast maximum walking speeds that
were achieved on the NimbRo-OP2X (≈59 cm/s).

Despite (by design) not using adaptations of step size for the preser-
vation of balance, large improvements to the push recovery ability of
the robot are achieved by the direct fused angle feedback controller.
This level of improvement has been quantified using controlled push

9.4 experimental results 157

Video 9.2: Demonstration of the closed-loop direct fused angle feedback gait.
Simple corrective actions based on the estimated fused angles of
the torso are used to maintain the balance of the robot, even
in the face of disturbances. The gait is demonstrated on the
igus Humanoid Open Platform, Dynaped, NimbRo-OP2 and
NimbRo-OP2X robots, as well as in simulation.
https://youtu.be/DvxZJVVRdyE

Walking with Corrective Actions Driven by Direct Fused Angle Feedback

https://youtu.be/DvxZJVVRdyE

158 direct fused angle feedback controller

Figure 9.6: Plots of the response of the direct fused angle feedback controller
to sagittal pushes. The top plot shows a forwards push during
which the robot reaches a maximum forwards tilt of 0.253 rad,
while the bottom plot shows a backwards push that results in
a maximum backwards tilt of 0.22 rad. Both disturbances were
rejected primarily via the arm angle and support foot angle
corrective actions, the activations of which are shown in the plot.

experiments in Gazebo simulation. A simulated igus Humanoid Open
Platform was made to walk on the spot with the feedback controller
either turned on or off, and 20 pushes of equal impulse magnitude but
random direction2 were applied at regular time intervals. If a robot
fell over due to a push, it was manually reset to upright in time for
the next push. The number of successful pushes, i.e. pushes where the
robot did not fall over, even with delayed consequence, were recorded
for the open-loop and closed-loop gait for push impulses in the range
of 0.3–2.0 s N. The numerical results of the experiment are listed in
Table 9.1, and the corresponding videos of the actual experiments are
provided in Video 9.3. Figure 9.7 provides a graphical summary of the
obtained results, and what it means for the comparative stability of
the open-loop and closed-loop gaits. Overall, it can be observed that

2 The pushes were restricted to be ‘horizontal’ in the sense that they are parallel to the
ground plane, but random in terms of their exact heading.

9.4 experimental results 159

Table 9.1: Number of withstood simulated pushes (out of 20) when walking
on the spot with the direct fused angle feedback controller

Impulse (s N) 0.3 0.6 0.9 1.2 1.6 2.0

Open-loop 20 13 11 6 5 3

Closed-loop 20 20 20 19 17 13

Figure 9.7: Plot of the ratio of withstood pushes against push impulse mag-
nitude for a simulated igus Humanoid Open Platform walking
on the spot with the Central Pattern Generator and direct fused
angle feedback controller. The performance of the robot with
and without the controller activated is contrasted. The raw data
corresponding to the plot is given in Table 9.1.

the feedback controller makes a clear difference to the stability of the
robot. The effect is most noticeable for higher push impulses, where
for example a push impulse of 1.6 s N resulted in only 5 successful
pushes for the open-loop gait, but 17 for the closed-loop gait. Note
that for reference of scale, a push impulse of 2.0 s N is expected to
cause an instantaneous change in CoM velocity of about 30–40 cm/s
for the igus Humanoid Open Platform, which is considerable given
its CoM height of about 55 cm.

Push experiments were also performed on real hardware using the
igus Humanoid Open Platform. As push impulses cannot easily be set
or measured in real-life push experiments, a different approach was
used, whereby the robot was pushed many times over many minutes
of walking, and the corresponding push responses were extracted,
synchronised, overlaid, and finally classified as either successful or
unsuccessful. The results of this process can be seen in Figure 9.8.
Separate plots are provided for forwards and backwards pushes, and
for the open-loop and closed-loop gaits (i.e. with and without the
direct fused angle feedback controller). Note that the lines in the plot
terminate whenever the robot started receiving assistance due to fall-
ing (red lines), or when a subsequent push was started (blue lines). It
can clearly be observed from the plots that the feedback controller has
a strong effect in reducing the duration that a disturbance is experi-

160 direct fused angle feedback controller

Figure 9.8: Plots of the transient response of a walking igus Humanoid
Open Platform robot to sagittal pushes of various strengths. The
pushes are grouped by whether they are forwards or backwards,
and whether the feedback controller was active at the time or
not. From top to bottom, the plots correspond to a) open-loop
forwards pushes, b) closed-loop forwards pushes, c) open-loop
backwards pushes, and d) closed-loop backwards pushes. The
pushes all occurred at time t = 0, and each individual curve is
coloured blue if the robot survived the push, otherwise red.

9.4 experimental results 161

Video 9.3: Push resistance test performed on an igus Humanoid Open Plat-
form in simulation. The robot is walking on the spot with the CPG

gait, and is disturbed in random directions by impulses of various
magnitudes. The effectiveness of the direct fused angle controller
is evaluated by comparing it to open-loop performance.
https://youtu.be/c6zlCK4nFG0

Direct Fused Angle Feedback Controller Simulated Push Resistance Test

enced, and the amount that the fused pitch oscillates when it returns
to nominal. The controller is able to efficiently leverage the effects of
the corrective actions to more quickly dissipate the disturbance energy
without causing any extra oscillations or disruptions. Note that the
increase in maximum fused pitch that can successfully be recovered
from is only modest when comparing open-loop and closed-loop per-
formance. This is because the tipping point of the robot is somewhat
mechanically fixed, and can only be slightly altered by moving the
arms. The magnitude of the push impulse that it takes to get the
robot to this maximum fused pitch is significantly higher however (for
closed-loop), as it first has to overcome the corrective actions to even
reach the tipping point.

The responses of the robot to the pushes shown in Figure 9.8 can also
be analysed in the phase space, i.e. in the space of fused pitch velocity
vs. fused pitch. Combining the respective forwards and backwards
pushes into a single plot yields the curves shown in Figure 9.9. The
top plot shows the traces of the push responses for the open-loop gait,
while the bottom plot shows the same for the closed-loop gait. Note
that the start of each trace (t = 0 in Figure 9.8) is marked with a solid
dot. It can immediately be observed from Figure 9.9 that the region in
the phase space corresponding to stable walking trajectories is larger
for the closed-loop gait than for the open-loop gait. This increase
in size corresponds predominantly to a wider range of stable fused
pitch velocities—an observation that is consistent with the previous
observations that the closed-loop gait is more quickly able to dissipate

https://youtu.be/c6zlCK4nFG0

162 direct fused angle feedback controller

Figure 9.9: Plots of the phase response of a walking igus Humanoid Open
Platform robot when sagittal pushes of various strengths are ap-
plied. The fused pitch velocity θ̇B is plotted against the fused pitch
θB for each individual push trajectory, and the resulting curve is
coloured according to whether the robot successfully withstood
the push (blue) or not (red). The beginning of each trajectory is
marked with a solid dot. The top plot corresponds to the per-
formance of the robot with the feedback controller disabled, and
the bottom plot shows how this performance improves when the
feedback controller is enabled.

9.4 experimental results 163

disturbance energies, and can deal with larger initial CoM velocities
after a push. These factors together lead to the greater overall push
recovery ability that is observed for the closed-loop gait. In reference
to Figure 9.9, it should be noted that some of the red traces start from
deep within the blue region of stability, and first sharply increase their
velocity (a vertical change in the plot) before subsequently starting to
diverge in terms of the fused pitch. This is deduced to correspond to
situations where the push from the experimenter was still ongoing
when the trace was started. As a similar observation, some of the red
unstable trajectories start to decrease their velocity towards the end
of the trace. This is deduced to correspond to situations where the
experimenter caught the falling robot before the trace was stopped.

The plots in Figure 9.9 can alternatively be viewed as a heat map,
as shown in Figure 9.10. The states in the phase space are divided
into cells (i.e. bins), and the trajectories that pass through any one
cell are collected and used to calculate a success rate for the cell. The
success rate is a value in [0, 1], and corresponds to the proportion
of the trajectories that passed through the cell that did not end in a
fall. Extra data of normal balanced walking has been incorporated
into the figure to avoid the issue of unvisited states in the middle of
the stable region (i.e. holes in the data as can be seen in Figure 9.9).
Note that a minimum cell visit count of two was used, explaining why
disconnected cell patches are possible. It can be observed from the
figure that the robot is 100% stable close to the phase origin, but as the
fused pitch and/or velocity increase, there is a sharp transition to 0%
stability. This transition is especially sharp in the case of the closed-
loop gait, which exhibits a relatively low amount of intermediate
transitional cells between the blue and red areas. Overall, like in
Figure 9.9, it can be seen that the closed-loop gait has a significantly
larger region of stability, and that the main gain in area is due to the
greater stability of states with high fused pitch velocities.

The task of tuning the PD gains of the direct fused angle feedback
controller can usually easily be completed manually, but an altern-
ative learning approach for the tuning of the sagittal gains has been
proposed by Rodriguez et al. (2018). They used Bayesian optimisation
with Gaussian process regression and multi-fidelity entropy search to
share experiments and parameter updates between real-robot experi-
ments and physical simulations, all the while trying to account and
correct for systematic errors between the two. A video is available3

that compares the manually tuned sagittal feedback gains to the final
optimised ones for an igus Humanoid Open Platform. Although the
difference may be difficult to detect at first, on closer inspection the
manually tuned robot can be seen to exhibit slightly greater low fre-
quency oscillations in the pitch direction, which at times can impede
clean walking progress. More experiments would be needed to evalu-

3 https://youtu.be/twl8cGefsz8

https://youtu.be/twl8cGefsz8

164 direct fused angle feedback controller

 -
0.

57
0

 -
0.

53
6

 -
0.

50
3

 -
0.

46
9

 -
0.

43
6

 -
0.

40
2

 -
0.

36
9

 -
0.

33
5

 -
0.

30
2

 -
0.

26
8

 -
0.

23
5

 -
0.

20
1

 -
0.

16
8

 -
0.

13
4

 -
0.

10
1

 -
0.

06
7

 -
0.

03
4

 0
.0

00
 0

.0
34

 0
.0

67
 0

.1
01

 0
.1

34
 0

.1
68

 0
.2

01
 0

.2
35

 0
.2

68
 0

.3
02

 0
.3

35
 0

.3
69

 0
.4

02
 0

.4
36

 0
.4

69
 0

.5
03

 0
.5

36
 0

.5
70

Fused pitch (rad)

 0.96
 0.88
 0.80
 0.72
 0.64
 0.56
 0.48
 0.40
 0.32
 0.24
 0.16
 0.08
 0.00

 -0.08
 -0.16
 -0.24
 -0.32
 -0.40
 -0.48
 -0.56
 -0.64
 -0.72
 -0.80
 -0.88
 -0.96

Fu
se

d
pi

tc
h

ve
lo

ci
ty

 (
ra

d/
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

None

 -
0.

57
0

 -
0.

53
6

 -
0.

50
3

 -
0.

46
9

 -
0.

43
6

 -
0.

40
2

 -
0.

36
9

 -
0.

33
5

 -
0.

30
2

 -
0.

26
8

 -
0.

23
5

 -
0.

20
1

 -
0.

16
8

 -
0.

13
4

 -
0.

10
1

 -
0.

06
7

 -
0.

03
4

 0
.0

00
 0

.0
34

 0
.0

67
 0

.1
01

 0
.1

34
 0

.1
68

 0
.2

01
 0

.2
35

 0
.2

68
 0

.3
02

 0
.3

35
 0

.3
69

 0
.4

02
 0

.4
36

 0
.4

69
 0

.5
03

 0
.5

36
 0

.5
70

Fused pitch (rad)

 0.96
 0.88
 0.80
 0.72
 0.64
 0.56
 0.48
 0.40
 0.32
 0.24
 0.16
 0.08
 0.00

 -0.08
 -0.16
 -0.24
 -0.32
 -0.40
 -0.48
 -0.56
 -0.64
 -0.72
 -0.80
 -0.88
 -0.96

Fu
se

d
pi

tc
h

ve
lo

ci
ty

 (
ra

d/
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

None

Figure 9.10: Plots of the open-loop vs. closed-loop walking stability of an
igus Humanoid Open Platform in the form of a phase space
heat map. The blue areas indicate phase states corresponding
to stable walking (1.0 = 100% success rate), while the red areas
indicate states where the robot tendentially lost balance and
fell over (0.0 = 0% success rate). In-between colours indicate
that certain binned states were encountered multiple times with
different outcomes. All the data from the push tests is shown,
including also the states of normal balanced walking between
pushes. The grey cells correspond to phase states that were not
encountered during the tests.

9.5 conclusion 165

ate the true potential of this method in surpassing manual tuning in a
time and resource-efficient manner.

The gait presented in this chapter has successfully been run in
combination with the capture step controller, and produced results
notably superior to just using the latter on the igus Humanoid Open
Platform. The capture step timing was used in place of the fused angle
deviation timing, and the step sizes computed from the capture step
algorithm were either used or not used based on the situation (e.g. in
testing vs. at competition). The gait was used in this configuration for
example at the RoboCup 2016 soccer tournament, and over all games
played, none of the five robots ever fell while walking (see Video 1.1
for impressions of the competition), except in cases of strong collisions
with other robots. In fact, up to and including 2018 all of the TeenSize
and AdultSize robots of the NimbRo RoboCup team always used the
direct fused angle feedback controller for gait stabilisation purposes,
frequently however with capture step timing enabled. Video 1.2, for
example, shows the AdultSize RoboCup performance with capture
step timing enabled, while another video4 shows the performance of
the same robots with the simpler fused angle deviation timing. The
extensibility of the gait to incorporate other methods of step size and
timing validates, amongst other things, the use of the presented gait
as a stabilising foundation for more complex step size adaptation
schemes.

9.5 CONCLUSION

An inherently robust omnidirectional closed-loop gait has been presen-
ted in this chapter that stabilises a central pattern generated open-
loop gait using fused angle feedback mechanisms. The gait is simple,
model-free, quick to tune, easily transferable between robots, and only
requires servo position feedback if feed-forward torque compensa-
tion is desired as part of the actuator control scheme (see Chapter 3).
The gait is also suitable for larger robots with low-cost sensors and
position-controlled actuators. This demonstrates that walking does not
always mandate complex stabilisation mechanisms. The gait has been
experimentally verified and discussed, and demonstrably made robots
walk that were not able to produce even remotely similar results with
just a manually tuned open-loop CPG approach. One of the notable
merits of the presented gait is that it can combine very well with more
complicated model-based approaches that are able to suggest step size
and/or alternative timing adjustments. This is what makes the gait so
useful and powerful as a building block for more complex and more
tailored gait stabilisation schemes.

4 https://youtu.be/RG205OwGdSg

https://youtu.be/RG205OwGdSg

166

10
K E Y P O I N T G A I T G E N E R AT O R

The task of bipedal locomotion exposes many facets of the concept
of balance—most notably the many and varied methods by which
balance can be preserved. While humans, even in early childhood,
seem to effortlessly know how to stabilise their gait and best react to
pushes while walking, the situation is quite different for humanoid
robotic platforms. For robots it must first be delineated by which
approaches they can be made to keep their balance, before algorithms
can be developed that allow them to reliably execute such strategies.

As discussed in Chapter 2, broadly speaking there are two main
paradigms for the implementation of bipedal robotic gaits. A common
approach in the state of the art is to use a dynamics model of some kind
to capture and predict the physical response of the robot, and calculate
or optimise a trajectory to satisfy the required motion and balance
criteria. This motion trajectory is then executed on the robot, often with
a controller to reject deviations and enforce tracking, and/or under
regular recomputation to adapt for differences in the real response
of the robot. For imprecise low-cost robots however, where good
quality tracking and execution of a trajectory is not given, using
such optimised trajectories generated directly from simplified (or
even whole-body dynamics) models is often fraught with difficulty.
Significant nonlinearities, such as joint backlash, sensor noise, sensor
and actuator delays, irregular properties of the contact surface, and
unmeasurable external disturbances, are difficult to incorporate into
models. This greatly limits the predictive power of such models, and
subsequently the applicability of such methods to such robots.

Nevertheless, simpler, cheaper and smaller robots are often easily
made to walk despite these nonlinearities using hand-crafted gaits.
These gaits are however usually not very flexible or stable on their own.
This is the foundation of the second paradigm for the implementation
of bipedal gaits—letting the robot find its own natural rhythm and
stability with an inspired open-loop gait generator that is entirely
self-contained, and extending it with a higher level controller that
seeks to preserve and return to that rhythm when there are significant
deviations from it. As we did for the Central Pattern Generator (CPG),
in this chapter we continue with this second paradigm and present a
self-stable omnidirectional gait generator that seeks to strike a balance
between the security and simplicity of hand-crafted gaits, and the
advantages of analytically computed and optimised gaits. More than
just making the robot walk, the so-called Keypoint Gait Generator
(KGG) directly embeds a myriad of corrective actions into its generation

167

168 keypoint gait generator

algorithm, each of which can be commanded and activated by higher
level controllers to systematically allow preservation of balance during
walking. The diversity of the implemented corrective actions arguably
cover the majority of humanlike strategies by which biped robots can
balance during walking.

The idea for the keypoint gait generator originated from the CPG,
in particular in the light of the CPG’s observed shortcomings. The
KGG is somewhat like an extension and complete redesign of the
CPG from the ground up, with a focus on greater flexibility and
general analytical correctness in the way the gait motion waveforms
are generated, in particular from a task space perspective. While the
CPG strictly only generates the nominal open-loop walking waveforms,
and relies on higher level balance controllers like the direct fused
angle controller to later change the waveforms to implement corrective
actions, the KGG intrinsically incorporates the effects of a diverse array
of corrective actions and directly generates the final required joint
waveforms. Amongst many improvements of the KGG over the CPG

(see Section 10.1.3), the KGG incorporates many new and/or improved
corrective actions in its generation algorithm (as compared to the CPG),
and allows situations like for example lateral crossing trajectories to
be explicitly addressed and dealt with.

An implementation of the Keypoint Gait Generator (KGG) has
been released open source as part of the feed_gait package of the
Humanoid Open Platform ROS Software.1

10.1 MOTIVATION

We first put the KGG into context by identifying the objectives that it
intends to fulfil, the balance strategies it intends to implement, and
where it fits into the bigger picture of the gait architecture.

10.1.1 Strategies for Balanced Walking

There are many ways in which a humanoid robot is assessed to be
able to influence its balance while walking, not just the two that are
most commonly addressed in other works—adjustments of step size
and timing. Inspired in part by the reactions humans exhibit when
disturbed while standing or walking, a list of strategies for preserving
or recovering balance in a bipedal robot is as follows:

• Adaptation of step sizes,

• Adaptation of step timing,

1 https://github.com/AIS-Bonn/humanoid_op_ros/tree/master/src/nimbro/

motion/gait_engines/feed_gait

https://github.com/AIS-Bonn/humanoid_op_ros/tree/master/src/nimbro/motion/gait_engines/feed_gait
https://github.com/AIS-Bonn/humanoid_op_ros/tree/master/src/nimbro/motion/gait_engines/feed_gait

10.1 motivation 169

• Horizontal planar shifts of the torso, and thereby Centre of Mass
(CoM) position, relative to the feet,

• Active changes in torso height, and thereby CoM height, above
the ground,

• Active leaning of the robot torso from the hips,

• Arm motions to generate reaction moments and/or statically
offset the centre of gravity of the robot,

• Swing leg trajectory adjustments, to generate reaction moments
and/or bias the weight of the robot in a particular direction by
means of modifying how the swing leg moves between lift-off
and foot strike,

• Height adjustment of the predicted locations of lift-off and foot
strike to adapt to the ground, for example as required in the case
of a tilted robot,

• Intentional utilisation of ground normal forces to apply a restor-
ing moment to the robot to make it more upright, for example by
pushing more into the ground at foot strike, or less just before
lift-off,

• Adjustments of the foot tilt relative to the ground at the instant
of foot strike, resulting in large impulses to the balance state of
the robot due to the impactful nature of the ground contacts,
and,

• Adjustments of the foot tilt relative to the ground during the
support and swing phases.

The Keypoint Gait Generator (KGG) presented in this chapter seeks to
address all of these strategies by extending its fundamental walking
waveforms with a multitude of corrective actions that can be activated
simultaneously (as required) to preserve balance.

10.1.2 Gait Architecture

The gait presented in this chapter is referred to as a gait generator, as it
gives the ability to higher level controllers to execute all of the balance
strategies implemented therein, without these controllers needing to
know anything about joint motions, how they look like, or how they
need to be generated.2 As such, the gait architecture can logically be
partitioned into the higher level controller(s) in use, and the KGG that
sits underneath them, with the latter receiving its commands from the

2 Recall that this was not the case for the CPG and its corresponding higher level
controllers, as for example the direct fused angle controller directly modifies the
generated joint waveforms in order to implement its required corrective actions.

170 keypoint gait generator

Higher Level Controller

Keypoint Gait Generator

Actuator Control Scheme

Robot Hardware

Gait Inputs

Servo Motor Model

URDF Model

Humanoid

Kinematics Model

State

Estimation

Sensor

Processing

Gait Command

Velocity (GCV)

Corrective action

activation values

Joint positions, efforts,

and support coefficients

Raw servo

commands

Sensor data

Estimated

robot state

Processed

sensor data

Figure 10.1: Overview of where the KGG fits into the overall keypoint gait
architecture. Note that it is possible for there to be multiple
higher level controllers running in parallel if each of them
calculate activation values for different sets of corrective actions.
The actuator control scheme (Chapter 3), sensor processing
(Chapter 4), and state estimation (Chapter 7) have been covered
in previous chapters. A higher level controller that drives all of
the corrective actions implemented in the KGG is presented in
Chapter 11.

controllers via the gait interface described later in Section 10.2.2.1. The
complete gait architecture, including the sensorimotor management
aspects, is shown in Figure 10.1. Despite the appearance in the figure, it
should be noted that no higher level controllers are actually mandatory
for walking at all—the gait generator can make the robot walk open-
loop by itself as it was designed to do—but walking open-loop does
not make use of any of the implemented balancing corrective actions,
and is subsequently not as stable as feedback-based walking.3

The input to the gait as a whole is the dimensionless Gait Command
Velocity (GCV) vector

vg = (vgx, vgy, vgz) ∈ [−1, 1]3. (10.1)

This is a vector of three dimensionless values in the range [−1, 1],
representing the required x, y and yaw velocities of the robot as a ratio

3 Note that in the case of open-loop walking without a higher level controller, the
input GCV vg is passed directly to the keypoint gait generator as the internal GCV

vi, and the gait frequency fg that is normally set by the higher level controller (see
Section 10.2.2.1) is simply kept constant at its nominal value.

10.1 motivation 171

of their respective allowed maximums. The higher level controllers
process the input GCV vector vg, along with the sensory feedback from
the robot, and compute commands for the KGG that try to ensure that
the robot remains balanced. These commands consist of the required
activation values for the KGG corrective actions—including for example
the required instantaneous gait frequency fg—and incorporate in
particular also the internal GCV vector

vi = (vix, viy, viz) ∈ [−1, 1]3. (10.2)

The internal GCV vector vi tracks the input GCV vg in all situations
other than if the higher level controller wishes to command step size
adjustments for the purpose of balance preservation, and is assumed
to be continuous, e.g. through filtering or slope limiting applied by
the higher level controller.

Given the gait generator commands calculated by the higher level
controllers, the KGG in turn calculates the required instantaneous joint
position, joint effort and support coefficient commands, where support
coefficients are a feed-forward estimation of the ratios of the weight of
the robot that will be carried by each leg when the joint commands are
executed. As discussed in Chapter 3, all of these outputs are used by
the actuator control scheme to generate raw servo commands that are
then sent electrically to the servo motors. The purpose of the actuator
control scheme is to ensure good position tracking of the servo motors,
by accounting in a feed-forward manner for factors such as battery
voltage, joint friction, link inertia, and the relative loadings of the legs.

As discussed on page 168, the KGG and associated gait architecture
is somewhat related to the Central Pattern Generator (CPG) presented
in Chapter 8. Aside from a fundamental shift in how the walking
waveforms are generated, one core difference between the two gait
generators is that the corrective actions of the KGG are truly embedded
and integrated inside the gait generator, as opposed to being impre-
cisely superimposed onto individual joints post factum and assuming
that this does not adversely affect the gait profile in any way. A further
difference and advantage of the KGG over the CPG is that the associ-
ated higher level balance controllers are abstracted away from having
to work with the raw joint waveforms, leading to a more governed
output and better separation of duties.

10.1.3 Aims for the Gait Generator

One of the aims of the gait generator is to allow fast walking with
large step sizes. In order for this to be possible, the severity of the
self-disturbances, impacts and nonessential spikes in acceleration
during the gait cycle needs to be minimised as much as possible.
This is embodied in the following list of desired properties for the gait
generator:

172 keypoint gait generator

• The final trajectories should be continuous in velocity and accel-
eration in all dimensions,

• The trunk orientation should remain as constant as possible, up
to the moderate lateral oscillations required to assist support
exchanges,

• The CoM should not undergo any sudden changes in height, and
should generally rise and fall as little as possible during normal
walking at a given gait velocity,

• The CoM should avoid start-stopping, i.e. having excessive oscil-
latory sagittal linear accelerations, as much as possible,

• During ideal walking, the feet should not significantly impact
the ground and come down with zero instantaneous normal
relative ground velocity, and,

• The feet should always contact the ground with zero instantan-
eous tangential velocity relative to the ground.

The KGG was designed at every stage with these aims in mind.
In addition to these general desired properties, there are also the

following more specific considerations—that in particular were ob-
served to be problems of, or were not addressed by, the CPG presented
in Chapter 8. These need to be taken into account in the design of the
gait generator:

• The robot torso is not necessarily nominally sagittally upright,
so the floor may nominally be tilted relative to the torso frame,
and the leg lift-swing profile needs to be able to adapt to that.

• The neutral leg pose during walking is not usually vertically
downwards, so leg swing rotations in the hip for the purpose of
stepping adversely affect the foot height, and in particular do so
in a strongly asymmetrical fashion.

• The greater the swing of a leg, the more a shortening of the leg
for the purpose of leg lifting also acts to reduce the step size.

• When falling in the direction of walking, if the ankle does not
adjust for the extra tilt deviation, the toe may strike the ground
prior to the remainder of the foot, preventing a full step from
being taken, and possibly destabilising the robot.

• When falling in the direction of walking, the swing leg needs to
be lifted higher towards the end of swing to avoid premature
contact of the foot with the ground, and vice versa when falling
in the direction opposite to walking. Crucially, the continued leg
motion should also passively exert a restoring force to counteract
the tilt instead of ‘giving way’ to it.

10.2 keypoint gait generation 173

• For cases of compliant actuation, when a leg is lifted it tends to
spring mechanically into a particular direction due to the sudden
reduction in joint torque loadings. The leg is only reloaded when
it has already reestablished contact with the ground, so leg lifting
and placing is inherently asymmetrical and will tend to make
the robot drift.

The KGG was designed to address these shortcomings of the CPG.

10.2 KEYPOINT GAIT GENERATION

The KGG uses systems of linear equations and cubic spline interpola-
tion between a set of gait phase-dependent keypoints to dynamically
generate walking trajectories for the robot in a constraint-based fash-
ion. In this section, we explicitly define the ten corrective actions that
are implemented as part of the KGG, and based on these definitions
also explicitly delineate the inputs and outputs of the KGG.

We begin by introducing the notion of the nominal ground plane N,
which is a plane in body-fixed coordinates that reflects the nominal
orientation of the ground relative to the robot. The nominal ground
plane embodies the fact that not all robots nominally walk with a
completely upright torso, e.g. as generally assumed in Missura (2015).
The N plane is defined by the (fixed) nominal phase pitch pyN of the
torso, and the corresponding nominal ground frame {N} is defined by
the rotation

RB
N = Ry(−pyN), (10.3)

where Ry(θ) is notation for a pure y-rotation by θ radians. From
Equation (10.3), it can be seen that the nominal ground normal vector

ẑB
N ≡ ẑN is given by

ẑN =
(
− sin(pyN), 0, cos(pyN)

)
. (10.4)

The nominal ground plane N is used as a planar reference level for
the generation of the arm and leg motion profiles. Given a nominal
ground plane and a point that characterises the centre of a motion
profile (i.e. motion centre point), the hip height of that profile is given
by the distance perpendicular to the ground plane (i.e. along ẑN) from
the motion centre point to the hip centre point.

10.2.1 Corrective Actions

Numerous corrective actions have been implemented in the KGG. All
of these corrective actions are illustrated in Figure 10.2—with the
exception of the step size and timing actions—and are given as follows:

Step size: The sizes of the commanded steps are adjusted to capture
the energy of the robot if it is falling (or predicted to fall) in a
particular direction.

174 keypoint gait generator

Figure 10.2: Diagrams of the various corrective actions implemented in the
KGG. In most cases, the images and annotations are significant
1D simplifications of the true corrective actions for illustrative
and explanatory purposes only. For instance, while the arm
tilt shown in the top left image seems to be purely sagittal, in
truth it is a 3D tilt rotation that is at no point separated into
sagittal and/or lateral planes of motion. The arrows in general
indicate the effect of the corrective actions in the depicted balance
situations. The annotations in the swing ground plane image
are trying to show that due to the forwards tilt of the robot, a
normal step (lower dashed line) would have collided with the
ground, while the adjusted step (solid line) avoids premature
contact with the ground and executes the required step size
despite the forwards tilt. Note that the swing ground plane is
also 3D, and is not restricted in any way to be a pure sagittal tilt.
The step size and timing corrective actions are not pictured in
this figure as their effects are relatively clear.

10.2 keypoint gait generation 175

Step timing: The rate at which the required stepping trajectories of
the robot are executed is adjusted to speed up or slow down the
gait as appropriate.

Arm tilt: The modelled CoM positions of the arms are tilted4 to shift
their weight and cause corresponding reaction moments.

Support foot tilt: The orientation of the current support foot is
tilted to apply a restoring moment to the robot via the thereby
altered ground reaction force. Smooth transitions to and from
the support foot tilt are used during the double support phases
to ensure that the resulting foot orientation trajectories remain
continuous and differentiable.

Continuous foot tilt: An equal tilt offset is applied to both feet
throughout the entire gait trajectory in order to consistently
shift the balance of the robot in a particular 360° direction.

Hip shift: The position of the torso of the robot is adjusted in the xy
plane to trim the centring of the robot’s weight above its feet.

Maximum hip height: The hip height (see page 173) of the gener-
ated motion profile is limited to a certain maximum height to
temporarily increase the passive stability of the gait.

Swing ground plane: The commanded foot trajectories are adapted
to orientation deviations of the torso to avoid premature and/or
belated foot strike. Effectively, the swing ground plane S is used
as a planar reference level (similar to the nominal ground plane
N) for adjusting the relative foot heights and tilts generated by
the KGG.

Swing out tilt: The midpoint of the trajectory of the swing leg is
tilted around the respective hip point to adjust the path taken by
the swing leg to its target footstep location. The modified swing
trajectory influences the balance of the robot via the inertial and
gravitational effects of the swing leg.

Lean tilt: The torso of the robot is tilted at the hips to intentionally
make the robot lean in a particular direction.

It should be noted that the corrective actions were not simply chosen
arbitrarily on a basis of trial and error, but were the result of an
analysis of the conceivable strategies for balanced bipedal walking,
the results of which were presented in Section 10.1.1.

4 Note that all uses of the word ‘tilted’ precisely mean that a pure tilt rotation (see
Section 5.3.2) is applied to the corresponding entity.

176 keypoint gait generator

10.2.2 Gait Generator Interface

As indicated in Figure 10.1, the KGG takes as its inputs the required
activation values of the various implemented corrective actions, and
outputs the required joint commands for the actuator control scheme.
The exact nature of these gait generator inputs and outputs are
delineated in this section.

10.2.2.1 Gait Generator Inputs

A complete list of the inputs to the gait generator, covering all correct-
ive action activation values, is as follows:

• The dimensionless internal GCV vi = (vix, viy, viz) to use to set
the desired footstep size of the robot,

• The instantaneous gait frequency fg (in rad/s) to use for updat-
ing the gait phase µi in each cycle,

• The arm tilt Pa = (pxa, pya) to apply to the arms,

• The support foot tilt Ps = (pxs, pys) to apply to the feet during
their respective support phases,

• The continuous foot tilt Pc = (pxc, pyc) to apply to the feet as
offsets throughout the entire gait trajectory,

• The dimensionless hip shift s = (sx, sy) to apply to the robot (in
units of the inverse leg scale Li),

• The maximum hip height Hmax to allow relative to the feet for
the generated motion profile (in units of the leg tip scale Lt),

• The 2D tilt phase rotation PS = (pxS, pyS) defining the swing
ground plane S relative to the nominal ground plane N,

• The swing out tilt Po = (pxo, pyo) to apply to the midpoint of the
leg swing trajectory, and,

• The lean tilt Pl = (pxl , pyl) to apply to the robot torso.

Given this list of gait generator inputs, it is important to note that:

(i) All strategies for balanced walking listed in Section 10.1.1 are
covered by this palette of gait generator inputs.

(ii) Step size adjustments are effectuated via the internal GCV vector
vi, and timing adjustments are effectuated via the gait frequency
parameter fg.

(iii) A small constant bias can be applied to vi to negate any minor
drifts in the real world walking performance of a particular
robot.

10.2 keypoint gait generation 177

(iv) All Cartesian actions are numerically expressed in dimensionless
form relative to the nominal ground frame {N}, in units of either
the inverse leg scale Li or leg tip scale Lt (see Allgeuer, 2020).

(v) All rotation-based corrective actions are expressed as pure tilt
rotations relative to frame {N}, in the 2D tilt phase space rota-
tion representation (px, py) ∈ P2 (see Section 5.3.5.1, and Sec-
tion 10.2.2.3 for the one slight exception).

The corrective action activation values are all expressed in a dimen-
sionless manner so that near-identical values can be used for robots of
different scales. The same approach, for similar reasons, is followed
for all configurable constants used throughout the KGG algorithm.

10.2.2.2 Gait Generator Outputs

As required for the actuator control scheme (Chapter 3), the outputs
of the gait generator are as follows:

• The commanded joint positions qo ∈ RN , specifying the desired
angular positions of the N joints,

• The commanded joint efforts ξ ∈ [0, 1]N , specifying how stiff
each joint should be, and,

• The commanded support coefficients κl , κr for the left and right
legs respectively, specifying the proportion of the weight of the
robot that is expected to be supported by each.

The vector ξ of commanded joint efforts returned by the KGG is kept
constant at the desired manually configured values, and so does not
need to be further addressed.

As previously mentioned, all of the inputs, outputs and parameters
throughout the entire KGG have been chosen and expressed in such a
way that they are dimensionless. This is important, as it means that
their values are largely independent of size, scale and sample rate,
and can be ported directly between different robots (even if, naturally,
a renewed fine-tuning would still sometimes be of benefit). It is also
worth noting that the entire keypoint gait generator is formulated with
relatively few parameters and configuration variables to tune,5 which
offers the benefit of simplicity at least from the user’s perspective.

10.2.2.3 Swing Ground Plane Corrective Action

As explained on page 175, the purpose of the swing ground plane
input is to rotationally and positionally adjust the generated foot
motion profiles relative to the ground in order to account for any tilt
rotations of the robot torso. This can be done in many ways however,

5 At least, parameters that actually need to be tuned, and whose value are not just a
clear analytical design decision from the outset.

178 keypoint gait generator

and the exact choice of approach is quite important. In the CPG gait
(see Chapter 8), the virtual slope corrective action performs a similar
function to the swing ground plane (at least in the sagittal direction),
but is not quite as effective because it induces a moderate form of
positive feedback into the balance feedback loop—the more the robot
tilts forwards, the more the virtual slope makes the robot lift its legs
in front of its body, and therefore the more the robot will as a result
end up leaning even further forwards. Despite working as intended
to prevent premature foot strike, the problem with the virtual slope
corrective action is that it at no point inherently exerts a corrective
moment on the robot to counteract the current tilt deviation of the
torso. Due to its implementation via foot z-height adjustments, a
further problem of the virtual slope corrective action is that even if
foot strike occurs exactly when intended, the virtual slope changes
the effective commanded step sizes relative to the tilted ground.

The swing ground plane corrective action combats the first of these
two problems by ensuring that the foot-ground contacts implicitly
generate a restoring force that drives the torso of the robot back
towards its nominal orientation. This is done just after foot strike by
either intentionally extending the leg into the ground, or by retracting
it more than usual. In terms of the second of the two problems, the
swing ground plane leaves the exact desired footstep sizes untouched,
and just rotates them into the S plane for further processing. It is
assumed that the higher level controller(s) saturate the deviation
of the swing ground plane from the nominal ground plane, for
example through elliptical soft coercion (Allgeuer, 2020), to ensure that
the KGG is not commanded to perform unreasonable ground plane
adjustments.

Analogously to the N plane, the S plane is defined mathematically
with respect to the robot torso by the phase roll and phase pitch
variables (pxS, pyS) ∈ P2 (see Section 10.2.2.1), albeit not quite as
directly. The swing ground normal vector ẑB

S ≡ ẑS is defined to
be the local z-vector (see Section 5.3.2.1) corresponding to the inverse
tilt rotation of (pxS, pyS). That is,

ẑS = P l
ẑ
(
−pxS, −pyS, 0

)
, (10.5)

where P l
ẑ
(
• , • , •

)
is the local z-vector corresponding to the enclosed

relative tilt phase space parameters. The swing ground frame {S} is
then defined to be the frame that results when the pure tilt rotation
relative to {N} that rotates ẑN onto ẑS is applied to {N}. Mathematically,
the rotation RN

S is calculated by evaluating

ẑN
S = RB T

N ẑS, (10.6)

and subsequently converting ẑN
S to a full rotation matrix using the

constraint ψ = 0. The swing ground plane S is given by the xy plane

10.3 discussion 179

of the {S} frame, and is ideally set to correspond to the planar level of
the ground relative to the robot at every instant of time.

10.2.3 Keypoint Trajectory Generation

For a detailed discussion of the inner workings of the KGG motion
generation algorithm, refer to Allgeuer (2020).

10.2.4 Implementation

The Keypoint Gait Generator (KGG) and its surrounding gait architec-
ture have been implemented in both Matlab and C++, and released
open source in both cases (Allgeuer, 2018a; Team NimbRo, 2018).6 The
Matlab release serves as a reference implementation and test bed for
the algorithms involved, and includes extensive plotting of figures and
visualisations, as well as highly comprehensive unit testing to ensure
that every component functions exactly as it should. The C++ release
serves as the practical performance implementation, that through
deep-seated modularity achieves truly flexible and robot-agnostic gait
code, with zero code duplication. Virtually every single component
of the code is customisable and replaceable, without affecting any of
the other components at all (including notably the kinematics in use).
This is possible due to the well-designed and standardised internal
and external interfaces in use. The switching between available im-
plementations of the various components and modules can also be
performed freely at runtime. As such, the code is completely flexible
and applicable to any robot, any kinematics, any set of higher level
controllers, any step size generator, any gait odometry estimator, and
even hypothetically any gait generator.

10.3 DISCUSSION

There are many positive aspects of the design choices that were made
as part of the KGG. The main ones are discussed here.7

10.3.1 Characteristics of the Keypoint Gait Generator

A number of strategies for balanced walking were listed in Sec-
tion 10.1.1. Every one of these strategies was specifically addressed

6 Matlab: https://github.com/AIS-Bonn/keypoint_gait_generator
C++: https://github.com/AIS-Bonn/humanoid_op_ros/tree/master/src/

nimbro/motion/gait_engines/feed_gait

7 In order to fully understand some of the points of this discussion, more details about
the keypoint trajectory generation algorithm may be required. This section has been
included to at least discuss the benefits of the KGG, even if it is not easy to appreciate
the arguments without knowing the KGG’s inner workings (details in Allgeuer, 2020).

https://github.com/AIS-Bonn/keypoint_gait_generator
https://github.com/AIS-Bonn/humanoid_op_ros/tree/master/src/nimbro/motion/gait_engines/feed_gait
https://github.com/AIS-Bonn/humanoid_op_ros/tree/master/src/nimbro/motion/gait_engines/feed_gait

180 keypoint gait generator

by one or more of the corrective actions listed in Section 10.2.1. For
example,

• The swing leg trajectory adjustment was implemented in the
form of swing out tilt,

• The utilisation of ground normal forces to apply a restoring
moment to the robot was addressed by the handling of the
swing ground plane S, and,

• The adjustment of the foot tilt relative to the ground at the
instant of foot strike was realised as part of the continuous foot
tilting.

The corrective actions that were built into the KGG are highly inde-
pendent, and have very clear, specific functions and resulting effects
on the motion of the walking robot. This makes the process of tuning
relatively simple. As a result of all this, the corrective actions constitute
a solid underlying framework on which higher level controllers can
be constructed to stabilise the robot.

The desired properties of the gait generator were listed in Sec-
tion 10.1.3 as part of the motivation and aims. It can be seen from
the details of the KGG (Allgeuer, 2020) that each of these points have
been addressed, or in some direct manner have influenced the way
in which the trajectories are formed. For example, the desire to have
continuous velocities and accelerations flowed directly into the con-
straint equations that were used for the generation of the keypoint
velocities, as well as the final joining of the keypoints into abstract
space trajectories.

As prescribed by the list of desired gait generator properties, the
KGG was designed with the aim of minimal self-disturbances in mind,
especially in terms of the desire for a smooth CoM profile that does
not ‘bounce’ up and down during walking (which would require non-
negligible oscillations in vertical momentum). The use of a nominal hip
height Hnom for example, which accounts for the effects of the various
ground planes and leaning, ensures that the hip—and therefore the
CoM—remains at an essentially constant height off the ground for
as long as the walking velocity and kinematic workspace permit it.
Another example is the leg support keypoints, which are constructed
in a way that ensures that, during ideal walking (i.e. S ≡ N), all of
the support keypoints and paths between them are coplanar in the N
plane, leading to minimal changes in CoM height during the gait cycle.
The achieved coplanarity also leads to a diminution of ground impacts,
and produces zero instantaneous normal relative ground velocities at
foot strike and lift-off in the ideal case. The corresponding required
zero instantaneous tangential relative ground velocities during the
support phase—also listed as a desired property of the gait generator
in Section 10.1.3—are for example addressed during the reconciliation

10.3 discussion 181

phase in terms of the adjustment of the AC and BD line segments,
and by optimising all support keypoint velocities at once (Allgeuer,
2020).

Section 10.1.3 also listed other more specific considerations that
needed to be, and are indeed taken into account by the KGG. For
example, the fact that the robot torso is not always, not even nominally,
sagittally upright, is handled in great depth by the definition and use
of the N, S, I and J planes. Another example is the mitigation of
premature toe strike by adjustment of the ankle tilt during the swing
phase to account for torso tilt. This is achieved by the rotation of
the foot orientations at the F keypoints, from the N to the S plane
(Allgeuer, 2020). Numerous decisions were also made in the design of
the KGG to ensure that none of the corrective actions alter the step size
of the robot, avoiding effects such as some of the ones listed as specific
considerations in Section 10.1.3. Self-collisions were also explicitly
avoided through soft coercion of the required keypoints and poses at
suitable instances along the gait generation pipeline.

In summary, the chosen gait architecture (see Section 10.1.2), and
specifically the KGG, are advantageous and well-constructed because
the KGG:

• Is analytic, implying that the computational intensity is low, and
that there are guarantees about the properties of the generated
trajectories,

• Can work with any step size generator and arm base motion
generator, allowing the final generated trajectories to be made
to have a similar walking style and properties as any purely
open-loop gait that is known to essentially work on the robot,

• Can work with essentially any robot kinematics, with appro-
priate adjustment of the underlying robot-specific humanoid
kinematic conversions,

• Has the inherent ability to flexibly perform all corrective actions
that it requires, without a higher level controller ever later
intervening on a joint trajectory level,

• Utilises virtually all ‘normal’ ways that a robot may wish to keep
its balance while walking, somewhat similar to the reactions a
human may have when disturbed while walking, i.e. not just
step placement and timing,

• Works in a target-oriented manner that first establishes what
exact properties the keypoints and trajectories should have, and
then finds a way to calculate them so that they do, as opposed
to being a more ‘manually intuitively constructed’ approach like
the CPG, and,

182 keypoint gait generator

• Is guaranteed to be kinematically feasible and safe for both the
robot and human operator(s), through the extensive use of soft
coercion and limiting to ensure that all calculations are stable
and remain within the allowed workspace.

10.3.2 Advantages of the Abstract Space

The advantages of using the abstract space (Allgeuer, 2020) to help
generate the keypoint locations and final trajectories are multifold:

• The formulation of the gait generator, at least in part, in the
abstract space results in smooth and simple joint trajectories that
have few high frequency components or sudden changes, and
are more favourable for the servo motors. This comes about due
to the close relationship between the joint and abstract spaces.

• Use of the abstract space simplifies the approach of complying
with the workspace boundaries, i.e. ensuring that εl ≥ 0 and
that all joints are in range, and provides an easy to work with
guarantee of feasibility, along with a known margin thereof. It is
significantly more difficult in purely the leg tip space to optimise
and maximise a trajectory to ‘just fit’ inside the robot workspace,
and it is especially difficult to make any associated guarantees,
especially for varying robots and kinematics.

• Combined use of the abstract and leg tip spaces allows motion
profiles to be easily constructed that are simultaneously joint-
centred about a neutral halt pose, and inverse-centred in terms
of the workspace and balance of the robot.

• The parameters of the abstract space are by design more intuitive
and gait-related than both the joint and leg tip spaces, and allow
natural concepts like hip swing and leg retraction to be used.
This is especially useful for tuning, as using these, the required
configuration can be accomplished with fewer and more intuitive
parameters. Parameters relating to the abstract space are also
more directly portable between robots of different dimensions.

• Planning motions in the abstract space gives relatively direct
control over the associated joint velocities, unlike the leg tip
space, but still possesses good interpolation performance.

10.4 EXPERIMENTAL RESULTS

The Keypoint Gait Generator (KGG) has been implemented on the igus
Humanoid Open Platform and NimbRo-OP2X robots, as well as on a
virtual igus Humanoid Open Platform in physical simulation. Similar
to the open-loop Central Pattern Generator (CPG), the open-loop KGG

10.5 conclusion 183

allows for semi-stable walking—not for indefinite amounts of time,
and not in the face of medium to strong external disturbances—but is
good enough for basic locomotion. Due to the analytically computed
trajectory-sensitive nature of the gait, it has more difficulties than the
CPG dealing with backlash and looseness in the servos and robot, but
with use of the actuator control scheme these effects are at least for
the most part mitigated.

Figure 10.3 shows sample plots of the generated joint space wave-
forms for the left and right limbs of an igus Humanoid Open Platform
robot. The robot started from a standing position, was triggered to
commence walking at time t = 0.65 s, and accelerated to a constant
GCV of vi = (0.7, 0.4, 0.4) after first waiting 1.2 s to ensure that it gets
into the correct walking rhythm. During this wait time, pose blending
was applied to smoothly transition the robot from standing to walking.

After walking for a number of steps with the desired GCV, the robot
was triggered to stop walking at time t = 6.4 s. After decelerating
to a GCV of zero and stopping walking at the next completed step,
pose blending was used to return the robot to its halt pose. Note that
throughout the entire experiment no corrective actions were used, so
the visualised waveforms correspond directly to the open-loop KGG

gait. In Figure 10.3, the green curve in the top plot corresponds to the
instantaneous gait phase µi, which is propagated at a constant gait
frequency of fg = 2.4 Hz, and the cyan curve corresponds to the pose
blending factor b, for which a value of 0 means that the generated gait
pose should be used, while a value of 1 means that the gait halt pose
should be used. For intermediate values of b, linear interpolation is
used on a joint level.

Video 10.1 provides a detailed kinematic demonstration of the
trajectories generated by the KGG, including in particular sample
visualisations of the various implemented corrective actions. Forwards,
sidewards and turning motions are shown in isolation before being
combined with the stepping motion model (Allgeuer, 2020) to achieve
full 3D gait odometry. The effects of the individual corrective actions
are shown by manually setting activation values live with sliders and
visualising the resulting motions of the robot.

Further demonstrations of the KGG and its corrective actions are
performed implicitly in the next chapter (see Section 11.3) as part of
the evaluation of the tilt phase controller.

10.5 CONCLUSION

An analytic method for the generation of bipedal gait trajectories
was presented in this chapter. The method incorporates a myriad of
3D corrective actions for the purpose of gait stabilisation into the
underlying stepping motions of the robot. The so-called Keypoint
Gait Generator (KGG), along with its corresponding overarching gait

184 keypoint gait generator

Figure 10.3: Sample output waveforms of the Keypoint Gait Generator (KGG)
for an input GCV of vg = (0.7, 0.4, 0.4), and a constant input
instantaneous gait frequency of fg = 2.4 Hz. The top plot shows
the values of the gait phase µi and internal GCV vector vi (note
that viy is hidden by viz), as well as the dimensionless pose
blending factor b. The KGG gait is activated at time t = 0.65 s,
and receives the trigger to stop walking at time t = 6.4 s. After
a further two steps, during which the robot slows down to an
internal GCV of zero, the robot stops walking and blends back to
the halt pose. Note how the waveforms for the left limbs (middle
plot) are in general antiphase to the corresponding ones for the
right limbs (bottom plot). The effect of the initial GCV zero time
(1.2 s), in addition to the effect of the GCV slope limiting, can be
seen in the top plot.

10.5 conclusion 185

Video 10.1: Kinematic demonstration of the open-loop Keypoint Gait Gener-
ator (KGG), including the various corrective actions it is able to
actuate. The stepping motion model as applied to the KGG is also
demonstrated kinematically in the context of a soccer field.
https://youtu.be/XIfxTRLFbwI

Kinematic View of Keypoint Gait Generated Open-loop Walking

architecture, which was presented for the purpose of context, is a
powerful building block for the construction of complex feedback gaits
that require the ability to go beyond just step placement and timing.
The role and effect of each corrective action has preliminarily been
demonstrated, in anticipation of the tilt phase controller presented
in Chapter 11, which properly drives the corrective actions. Two
implementations of the KGG and the associated kinematics calculations
have been released open source, and can be complemented by higher
level controllers, like the tilt phase controller, that utilise the full
potential of the 3D corrective actions to preserve the balance of the
robot.

https://youtu.be/XIfxTRLFbwI

186

11
T I LT P H A S E C O N T R O L L E R

As discussed in detail in Section 10.1.1, many feedback strategies
exist by which a robot can seek to maintain its balance while walking
bipedally. In related works, the online adjustment of step size and
timing is often considered, e.g. by Kryczka et al. (2015). While these
are quite effective strategies if done right, numerous other forms of
feedback beyond just ankle torque, like for example arm motions and
swing leg trajectory adjustments, can also be employed to significantly
increase the stability of the robot, especially in a broader spectrum
of walking situations. For instance, step size feedback cannot help
when a robot is about to tip over the outside of one of its feet, and
cannot effectively correct for systematic biases in the robot. It also
has little effect until the next step is actually taken, meaning that
there is an inherent dead time until disturbances can be counteracted.
Furthermore, changing the target step size modifies the footstep
locations, and thus directly leads to the non-realisation of footstep
plans. As such, step size feedback is envisioned as a valuable tool
for gait stabilisation, but one that ideally only activates for large
disturbances, when there really is no other option. The corrective
actions presented as part of the Keypoint Gait Generator (KGG) in
Chapter 10 aim to address all of these issues. The tilt phase controller
presented in this chapter (see Figure 11.1) is a higher level controller
that suitably drives the corrective actions of the KGG, and solves the
more general problem of how to achieve balanced push-resistant
walking with minimal changes to the walking intent of the robot.

In the interest of reducing the required tuning effort and making
the tilt phase controller applicable to low-cost robots with cheap
sensors and actuators, the use of physical models in the feedback
path is avoided. Physical models usually require extensive model
identification and tuning to sufficiently resemble the behaviour of a
robot, and even then, cheap actuators lead to significant nonlinearities
that can often cause such models to have poor results or even fail.
Physical models are also frequently quite sensitive to small changes in
the robot, making frequent retuning necessary. The implementation
difficulty and cost of good sensors also limits the type and accuracy
of sensors that can be incorporated into a humanoid robot. In order to
facilitate the greatest possible portability of the developed gait between
robots of different builds and proportions—a design decision that is
supported by the nominally model-free nature of the gait—only the
presence of a 6-axis Inertial Measurement Unit (IMU) sensor is assumed.
Apart from that, no additional sensors, joint positions, robot masses or

187

188 tilt phase controller

xG

yG

zG zB
P 6-axis

IMU

Current Tilt

Phase P

Tilt Phase Controller

KGG Corrective Actions

Support Foot Tilt Arm Tilt

Continuous Foot Tilt Hip Shift

Swing Ground Plane Lean Tilt

Maximum Hip Height Swing Out

Step timing Step size

Expected Tilt

Phase P

B
Robot

B E

Figure 11.1: Overview of the tilt phase controller approach to walking, and
how the controller interacts with the robot, the IMU state estim-
ation, and the Keypoint Gait Generator (KGG). All ten different
corrective actions of the KGG are utilised and activated by the tilt
phase controller.

inertias are assumed at all for the tilt phase controller. The only further
‘assumptions’ that are made are trivial, like for example that tilting of
the support foot in one direction makes the robot tendentially tilt in
the other.

When compared to the direct fused angle feedback controller (see
Chapter 9), the main advancements of the tilt phase controller lie
in the methods of calculation of the various feedback components,
which are extensions of the direct fused angle controller only for the
Proportional-Derivative (PD), leaning and timing components. Many of
the corrective actions are also completely new or substantially revised,
with the remaining ones being extended to a full 3D treatment, so as in
particular not to treat the sagittal and lateral directions independently.
This is aided by the novel use of the tilt phase space as a source of
truly axisymmetric orientation feedback.

Ultimately, the tilt phase controller (in combination with the KGG)
seeks to demonstrate that not overly complex feedback mechanisms
with very limited information of the robot suffice to produce a very
stable gait, capable of rejecting significant disturbances. The presented
feedback controller has been released open source in C++1, and works
in conjunction with the Humanoid Open Platform ROS Software (Team
NimbRo, 2018).

1 https://github.com/AIS-Bonn/humanoid_op_ros/tree/master/src/nimbro/

motion/gait_engines/feed_gait/include/feed_gait/model/tilt_phase

https://github.com/AIS-Bonn/humanoid_op_ros/tree/master/src/nimbro/motion/gait_engines/feed_gait/include/feed_gait/model/tilt_phase
https://github.com/AIS-Bonn/humanoid_op_ros/tree/master/src/nimbro/motion/gait_engines/feed_gait/include/feed_gait/model/tilt_phase

11.1 gait architecture 189

11.1 GAIT ARCHITECTURE

As illustrated in Figure 10.1, and described in detail in Section 10.1.2,
the overall gait architecture consists of three layers, namely

• The actuator control scheme, responsible for generating the low-
level servo commands that are sent out to the robot hardware,

• The keypoint gait generator, responsible for generating the
required walking motions in the form of joint angle, joint effort,
and support coefficient waveforms, and,

• The higher level controller, i.e. the tilt phase controller in this
case, responsible for calculating the required activations (see
Section 10.2.2.1) of the KGG corrective actions based on the
estimated state of the robot and input Gait Command Velocity
(GCV). The implemented KGG corrective actions are listed in
Figure 11.1 and Section 10.2.1, and are illustrated in detail in
Figure 10.2.

11.1.1 Gait Command Velocity

The primary input to the tilt phase controller is given by the dimen-
sionless GCV vector

vg = (vgx, vgy, vgz) ∈ [−1, 1]3, (11.1)

referred to as the input GCV vector. Based on this, and the effects of
any step size feedback calculated from the robot state, the tilt phase
controller needs to calculate the required internal GCV vector

vi = (vix, viy, viz) ∈ [−1, 1]3, (11.2)

that the KGG should then use for the generation of the desired walking
waveforms. As a first step, p-norm limiting as per Equation (8.3) is
applied in order to limit the total magnitude of the input GCV.

As vg is an external input, and is thus not in any way guaranteed
to be smooth or continuous (for instance, it may come directly from a
joystick), care needs to be taken to apply appropriate GCV smoothing,
without thereby limiting the ability of the controller to react quickly
to large disturbances. The GCV smoothing approach used by the tilt
phase controller is to allow each component of the controller to add a
contribution to one of three intermediate output GCV vectors, namely
vLF, vHF and vEOS, where

• vLF is the low frequency GCV, which is significantly slope-limited
(yielding v̂LF) to ensure that it is safe for the robot no matter
what values are passed to it,

190 tilt phase controller

• vHF is the high frequency GCV, which is only mildly slope-
limited (yielding v̂HF) to ensure that more sudden deviations
in step size are possible, while still avoiding the possibility of
discontinuities, and,

• vEOS is the end-of-step GCV, which is a step size component that
is linearly faded to over the course of the current KGG step.

Thus, if v̂LF, v̂HF and v̂EOS are GCV vectors that start at 0 at the
beginning of the gait, then in each execution cycle of the tilt phase
controller, these vectors are updated using the equations

v̂LF ← v̂LF + ∆t coerce
(1

∆t (vLF − v̂LF), −kl f s, kl f s
)
, (11.3a)

v̂HF ← v̂HF + ∆t coerce
(1

∆t (vHF − v̂HF), −kh f s, kh f s
)
, (11.3b)

v̂EOS ← v̂EOS + ∆t coerce
(1

t̂s
(vEOS − v̂EOS), −keos, keos

)
, (11.3c)

where ∆t is the execution cycle time, t̂s is the current predicted time
to step, and k∗ are suitably configured 3D vector constants specifying
the required slope limits. The final GCV vector vi that is then passed
to the KGG in each cycle is given by

vi = v̂LF + v̂HF + v̂EOS. (11.4)

The low frequency GCV component vLF works much like the manual
GCV slope limiting used for the Central Pattern Generator (CPG) in
Section 8.1.1, and is set to the value of vg at the beginning of each
execution cycle of the tilt phase controller. The vHF component is
a high frequency version of vLF (albeit not also initialised to vg of
course), and the end-of-step GCV vEOS was inspired by the way the
CPG makes provisions for step size feedback (see Equation (8.12) in
Section 8.1.3.2).

11.1.2 The Tilt Phase Space

One significant difference between the tilt phase controller and the
direct fused angle controller from Chapter 9 is the full 3D treatment
given to the corrective actions, made possible in part by the use of
the tilt phase space (see Section 5.3.5) instead of fused angles (see Sec-
tion 5.3.4). While fused angles work very well for separate treatments
of the sagittal and lateral planes, the tilt phase space has advantages
for concurrent treatments, in particular in relation to magnitude axisym-
metry (see Section 6.2.4.3). This property is important in ensuring that
feedback magnitudes are the same scale no matter what continuous
direction the robot is tilted in. Furthermore, the tilt phase parameters
share all of the critical advantages (see page 83) that fused angles have
over lesser options, like in particular Euler angles, mainly due to the
tight relationship between the two representations. Further advantages

11.2 tilt phase controller formulation 191

of the tilt phase space include that it can naturally represent and deal
with tilt rotations of more than 180°, and that using it, tilt rotations can
be unambiguously commutatively added (see Section 5.3.5.3). Both of
these are useful features in feedback scenarios where rotation devi-
ation feedback components are scaled by arbitrary gains and need to
be combined in a well-defined and logical manner.

If (ψ, γ, α) ∈ T are the tilt angles parameters of a rotation, where
ψ is the fused yaw, γ is the tilt axis angle and α is the tilt angle (see
Section 5.3.3), the corresponding 3D tilt phase representation is given
by

P = (px, py, pz) = (α cos γ, α sin γ, ψ) ∈ P3. (11.5)

Omitting the yaw component, the 2D tilt phase representation of the
resulting tilt rotation component is given by

P = (px, py) = (α cos γ, α sin γ) ∈ P2. (11.6)

Note that the relative and absolute 2D tilt phase spaces (see Sec-
tion 5.3.5.2) are identical for pure tilt rotations (ψ = 0), so for the
majority of the rotation-based corrective actions, just the relative tilt
phase notation is used (i.e. no tildes).

11.2 TILT PHASE CONTROLLER FORMULATION

The aim of the tilt phase controller is to calculate corrective action
activation values that will keep the robot balanced and walking
in the intended direction. An overview of the feedback pipeline
corresponding to the tilt phase controller is shown in Figure 11.2.
How the activation values are calculated specifically for each of the
individual corrective actions is presented in detail in the following
subsections.

11.2.1 Preliminaries

We recall from the Keypoint Gait Generator (KGG) described in the
previous chapter that

• The nominal ground plane N (along with the corresponding
nominal ground frame {N}) is a plane in body-fixed coordinates
that reflects the nominal orientation of the ground relative to the
robot,

• All Cartesian corrective actions are numerically expressed in
dimensionless form relative to the nominal ground frame {N}, in
units of either the inverse leg scale Li or the leg tip scale Lt, and,

• All rotation-based corrective actions are expressed as pure tilt
rotations in the 2D tilt phase space relative to the {N} frame.

192 tilt phase controller

Ell. Smooth

Deadband

Mean

Filter

Timing

Weighting

Phase

Speed

Smooth

Deadband

Timing

Gain

Slope-limited

Low Pass

Coerced

Interpolation

Slope

Limiter
Hmax

fg
fnom

Ell. Arm Gain

Ell. Foot Gain

Ell. Arm Gain

Ell. Foot Gain

Ell. Smooth

Deadband

WLBF

Filter

Ell. Soft

Coercion

Ell. Soft

Coercion
Pa

Ps

Ell.

Coercion

Integral

Gain

Ell. Bounded

Integrator

Mean

Filter

Hip Shift Gain

Cts Foot Gain

s

Pc

pxB

WLBF

Filter

Crossing

Energies

One-sided

Smooth Deadband

Swing Out

X Gain

Hold

Filter

Interpolate

L/R

Swing

Out Y

Ell. Soft

Coercion
Po

vgx

vgz

WLBF

Filter

GainSlope

Limiter

Gain

Abs Val

PNS

T
il
t

p
h
a
se

 d
ev

ia
ti

o
n
 P

d

Gain

Mean

Filter

Soft

Coercion
pyl

Ell. Smooth

Deadband

Ell. Soft

Coercion
Gain PS

Pd

Pd

pyB

WLBF

Filter

Crossing

Energies

One-sided

Smooth Deadband

Step Size

Gain

Soft

Coercion
vEOSx

Hold

Filter

Combine

Fwd/Bwd

Figure 11.2: Overview of the entire tilt phase controller feedback pipeline, in-
cluding the calculation of the activations of all ten KGG corrective
actions. Refer to Section 11.2.2 for details on how the tilt phase
deviation Pd is calculated, and refer to Section 11.2.3 onwards
for more details about each individual calculation pipeline.

Aside from this, we also note that the tilt phase controller uses
a number of recurring filters and mathematical constructs, briefly
discussed as follows:

Filters The mean and Weighted Line of Best Fit (WLBF) filters used
in Chapter 9 have been taken and generalised to n dimensions.
The former computes the moving average of an n-dimensional
vector, while the latter performs weighted time-based linear least
squares regression to smooth and estimate the time derivative
of n-dimensional data. The advantages of WLBF filters over
alternatives for the numerical computation of derivatives are
discussed in depth in Section 9.3.2.

Coerced interpolation Standard linear interpolation can lead to ex-
trapolation outside of the interval domain. Coerced interpolation
limits the input variable to ensure that the output cannot be out-
side the range of the two data points.

11.2 tilt phase controller formulation 193

Soft coercion The soft coercion function that was used in Chapter 9
has been taken and extended ellipsoidally to n dimensions.
Given an input vector x, the principal semi-axis lengths a of
the required limiting ellipsoid E , and a scalar soft coercion
buffer b, scalar soft coercion is applied to the magnitude of x
based on b and the radius of E in that direction. This method
of higher dimensional soft coercion is significantly better than
applying soft limits along each axis independently, as the latter
would result in unexpectedly large radial limits on the diagonals
between the principal axes.

Smooth deadband The smooth deadband from Chapter 9 has been
taken and extended ellipsoidally to n dimensions. Given an input
vector x and the principal semi-axis lengths a of the deadband
ellipsoid E , scalar smooth deadband is applied radially along x
with a deadband radius corresponding to the radius of E in that
direction.

11.2.2 Deviation Tilt

In the tilt phase controller, most of the calculated corrective action
activation values depend directly on how the robot is currently tilted
relative to what is expected for the current gait phase µi. As such,
the first step in the feedback pipeline is to retrieve the current trunk
orientation from the attitude estimation (see Chapter 7), and express
it as a 2D tilt phase orientation

PB = (pxB, pyB). (11.7)

As only the tilt rotation component (i.e. no heading component) of
the trunk orientation is required to construct PB, a single 6-axis IMU

suffices for the estimation of PB (see Section 7.6.2).
The two estimated tilt phase parameters from Equation (11.7), pxB

and pyB, follow an expected periodic pattern as a function of the gait
phase during ideal undisturbed walking of the robot. We model this
periodic pattern as a function

fexp : (−π, π]→ P2, µi 7→ PE, (11.8)

where
PE = (pxE, pyE) (11.9)

is the so-called expected 2D tilt phase orientation. For the purposes
of the tilt phase controller, a sinusoidal function with an offset is
used to model each the expected phase roll pxE and phase pitch pyE,

194 tilt phase controller

as this was seen to sufficiently generalise and describe the observed
behaviour of the robot. As such, we define

pxE = keox + kemx sin(µi − kepx), (11.10a)

pyE = keoy + kemy sin(µi − kepy), (11.10b)

where k∗ are constants that are tuned based on walking experiments
to make PE closely track the observed PB data (for as long as the robot
is walking undisturbed).

It can be seen by definition that the deviation between PB and PE
is a measure of the magnitude and direction that the orientation of
the trunk is currently disturbed by. We therefore construct a trunk
orientation error feedback term that quantifies the unique 3D rotation
qd that rotates PE onto PB, up to a small possible deviation in fused
yaw ψd. What makes qd unique is that we constrain it to be a pure tilt
rotation relative to the nominal ground frame {N}, as all of the KGG

corrective actions that will use qd as a source of feedback are defined
to act relative to the N plane (see Section 11.2.1). Mathematically, if qB
and qE are the quaternions corresponding to the pure tilt rotations PB
and PE respectively, then we can express the quaternion qd as

qd ≡ qNE
B = qN

B qE
B qN ∗

B

= qN
B
(
q∗E qz(ψd)qB

)
qN ∗

B

= qy(pyN) q∗E qz(ψd) qB qy(−pyN), (11.11)

where qy(•) and qz(•) correspond to pure quaternion y and z-rotations
respectively, and pyN is the nominal phase pitch of the torso (see
page 173). The value of ψd is calculated by solving2

Ψ(qd) = 0, (11.12)

with ψd as the only unknown—i.e. by solving the aforementioned con-
straint that qd is a pure tilt rotation. The value of qd can subsequently
be evaluated using Equation (11.11), and converted to the 2D tilt phase
space representation to give the deviation tilt Pd = (pxd, pyd).

To summarise, the deviation tilt Pd is a quantity that indicates in
which direction the robot is tilted relative to the N plane away from
where it is actually normally expected to be (at that specific moment
of walking). Consequently, if the negative (i.e. inverse) of Pd were to
be used as the activation of a rotation-based corrective action (such as
the arm tilt Pa), it would be expected that the resulting effect on the
robot would be to tilt it towards its expected orientation PE, as desired.
This is the idea behind the proportional feedback in Section 11.2.3,
with additional measures being incorporated to address scaling and
sensor noise issues.

2 The notation Ψ(qd) refers to the fused yaw of the quaternion qd.

11.2 tilt phase controller formulation 195

11.2.3 PD Feedback: Arm and Support Foot Tilt

The most important thing for the stability of the robot in the short
term is to ensure that transient disturbances, such as pushes or steps
on larger irregularities in the ground, are swiftly counteracted with
little delay. 3D rotational proportional (P) and derivative (D) feedback
components, activating the arm tilt and support foot tilt corrective
actions, are used for this purpose. The arm tilt rotates the Centre of
Mass (CoM) of the arms out in the required direction relative to the N
plane, so as to bias the CoM of the entire robot and apply a reactive
moment on the torso that helps mitigate the disturbance. At the same
time, the support foot tilt applies smooth corrections to the tilt of
each foot during its respective support phase, to push the robot back
towards its expected orientation.

In order to reduce signal noise, the proportional feedback path
of the tilt phase controller first mean filters the deviation tilt using
a small filter order, yielding P̄d. This tilt phase is then elliptically
smooth deadbanded to ensure that P feedback only takes effect when
the robot is non-negligibly away from its expected orientation PE.
An elliptically directionally dependent gain is then applied to the
resulting tilt phase, once independently for each the arm tilt and the
support foot tilt, to get the corresponding P feedback components
(see upper purple section in Figure 11.2). The gain in each case is
calculated elliptically from specifications of the required gains in the
sagittal and lateral directions. Importantly, the directions of the final
proportional feedback components are both unchanged from P̄d —all
changes are purely radial.

In the derivative feedback path, a smoothed derivative of Pd is first
computed using a 2D WLBF filter. A WLBF filter was chosen for its
many advantages, including, amongst other things, its favourable bal-
ance between robustness to high frequency noise and responsiveness
to input transients (see Section 9.3.2). The computed derivative is
elliptically smooth deadbanded to ensure that D feedback only takes
effect if the robot torso has a non-negligible angular velocity relative
to its expected orientation. Then, as for the P feedback, independent
elliptically directionally dependent gains are applied to get the D
feedback components for the two nominated PD corrective actions.

Once the separate P and D components have been calculated, they
are combined using tilt vector addition (see Section 5.3.5.3) and
elliptically soft-coerced to obtain the final required activation values
Pa and Ps (see Section 10.2.2.1). Note that although it is not generally
acceptable to just add 3D rotations, the special properties of the tilt
phase space allow us to do just that in a meaningful, unambiguous,
self-consistent and mathematically supported way. In fact, the tilt
phase space turns tilt rotations into a well-defined vector space over

196 tilt phase controller

R, explaining why the scaling and addition of tilt phases used in this
chapter is actually mathematically valid and geometrically meaningful.

The tuning of the PD feedback paths is relatively straightforward, as
there are only a few gains, and each gain has a clearly visible effect
on the robot. The P feedback is tuned first, and then appropriated
with D feedback to add damping to the system and limit oscillatory
behaviour.

11.2.4 I Feedback: Hip Shift and Continuous Foot Tilt

The implemented PD feedback works well for rejecting the majority of
short-term transient disturbances, but if there are continued regular
disturbances or a systematic imbalance in the robot, the PD feedback
(in combination with other corrective actions) will constantly need to
act to oppose them. PD feedback can only act however, if there is a non-
zero position and/or velocity error present. Thus, without integral (I)
feedback, which in this case is applied in the form of the hip shift and
continuous foot tilt corrective actions, the system in such a case would
at best settle with a steady state deviation to normal walking, which is
undesirable. The continuous foot tilt applies continuous tilt corrections
to the generated orientations of the feet, while the hip shift applies
an offset to the generated hip positions relative to the feet. Both are
applied relative to the N plane, and bias the balance of the robot in the
desired direction to overcome systematic errors in the walking of the
robot. The implemented I feedback can effectively reduce the need for
fine tuning of the robot, and make the gait insensitive to small changes
in the hardware or walking surface that would otherwise have been
noticeable in the resulting walking quality.

Starting with the deviation tilt Pd, standard elliptical coercion is first
applied, the output of which is scaled by a scalar integral gain (see
lower purple section in Figure 11.2). A scalar gain is used instead of
a directionally dependent one, so as not to distort the ‘aggregated’
direction of measured instability once integration is applied. The initial
coercion is useful to ensure that the integrated value is determined
predominantly by small and consistent deviation tilts, rather than large
and brief transients, which have little correlation to the finer balance
of the robot. The coerced and scaled deviation tilt is passed to an
elliptically bounded integrator (Allgeuer, 2020). This kind of integrator
performs updates of 2D trapezoidal integration and elliptical soft
coercion in each step. Note that the two steps are interlinked, as
the output of the coercion is used as the starting point for the next
integral update. Apart from providing the required integral behaviour
to eliminate steady state errors, and ensuring that the integral remains
conveniently bounded, this special kind of integrator also inherently
combats integral windup in a more effective way than other options.
The initial coercion of Pd reduces the extent to which integrator

11.2 tilt phase controller formulation 197

windup is possible, but the elliptically bounded integrator ensures that
the integral can move away from the elliptical boundary as quickly
as it can approach it, and that it cannot get stuck there due to ‘over-
integration’. The dynamic response of the corrective actions is on a
much quicker time scale than the integration, so this is the main type
of windup concern in the integral feedback pipeline.

The integrated tilt phase value is passed through a final mean filter
to combat ripple, before being separately scaled to yield the final
corrective action activations Pc and s (see Section 10.2.2.1). The order
of the mean filter3 is chosen to correspond exactly to the duration
of an even number of steps at the nominal gait frequency. Due to
the periodicity and general regularity of the gait, this leads to almost
perfect cancellation of ripple. This would not be achievable with an
Infinite Impulse Response (IIR) low-pass filter, which would also have
the downside of not as efficiently ‘forgetting’, i.e. diminishing the
influence of, old data.

During tuning, it is attempted to keep at least one of the elliptical
integral bounds at 1. This form of normalisation makes the tuning of
the integral and corrective action gains relatively simple and intuitive,
as the former gain then inversely relates to the parameters of the initial
elliptical coercion, and the latter gain then corresponds to the desired
maximum magnitude of each respective corrective action.

11.2.5 Leaning

The lean tilt corrective action could be activated based on the integral
feedback path, but this would promote suboptimal tilted walking
postures of the robot, in part because the lean tilt directly changes the
measured orientation of the trunk without this necessarily ameliorat-
ing the overall balance of the robot. Leaning driven by the PD feedback
would also be possible, but although maybe not immediately intuit-
ively obvious, neither attempting to lean forwards nor backwards is
particularly useful for dissipating energy when the robot is disturbed
and for example falling dynamically forwards. Pure hip rotations are
only useful if they are performed quite significantly, early enough
so as to precede tipping, and in specifically controlled scenarios, e.g.
clean push disturbances, purely in the sagittal direction, with the robot
not walking or stopping walking immediately after the disturbance,
and so on. In most other situations, reactive leaning has a negative
impact on walking robustness. As such, only feed-forward leaning
components based on the Gait Command Velocity (GCV) are imple-
mented. These seek to avoid disturbances due to changes in walking
velocity before they even occur. The gait acceleration is first estimated
using a WLBF filter followed by a slope limiter (see orange section in
Figure 11.2). A linear combination of the sagittal velocity vgx, absolute

3 That is, the number of data points that are used in the evaluation of the mean filter.

198 tilt phase controller

turning velocity |vgz| and sagittal gait acceleration is then taken and
soft-coerced to give pyl (see Section 10.2.2.1).4 Feed-forward sagittal
leaning in particular helps during strong turns, and when starting or
stopping forwards walking.

11.2.6 Swing Out

The robot is said to be on a lateral crossing trajectory if it has enough
lateral momentum to tip over the outside of its support foot. This is a
difficult situation, as no simple reactive stepping or waiting strategy
can prevent the fall. Acting alongside the arm tilt and support foot tilt
actions, the swing out tilt was designed specifically to allow recovery
from lateral crossing trajectories. When significant lateral energy is
detected, the current swing leg is rotated outwards to bias the balance
of the robot, and to apply a reactive moment that dissipates crossing
energy.

The lateral tilt phase pxB is first smoothed and differentiated using a
WLBF filter. The line of best fit is evaluated at the mean of the recorded
data points so that the resulting estimated phase p̂xB (smoothed) and
phase velocity ˙̂pxB (differentiated) are synchronised in time. The values
of p̂xB and ˙̂pxB are used to calculate the left and right crossing angles
φL and φR respectively, as well as the corresponding crossing velocities
φ̇L and φ̇R, using the equations

φL = pxL − p̂xB, φ̇L = − ˙̂pxB, (11.13a)

φR = p̂xB − pxR, φ̇R = ˙̂pxB, (11.13b)

where pxL and pxR are tuned constants corresponding to the values
of p̂xB at the cusp of crossing for the left and right legs respectively.
Both φL and φR are normally negative during normal walking, but
become positive in the case of crossing over the respective leg, and
more positive as the robot then subsequently falls to the ground.

We model the behaviour of the lateral tilt phase p̂xB as approxim-
ately following the nonlinear pendulum model

φ̈X = C2 sin φX, (11.14)

where X = L, R, and C is the pendulum constant. This leads to the
core result, and thereby assumption, that the so-called orbital energy

EX
(
φX, φ̇X

)
= 1

C2 φ̇2
X + 2(cos φX − 1) (11.15)

remains constant over any undisturbed trajectory.5 Note that the
orbital energy has intentionally been divided by 1

2 C2 from its usual

4 Actually, to avoid possible discontinuities with vg (as it is an external input), v̂LF is
used as the basis of leaning feedback instead (see Section 11.1.1). For all intents and
purposes, v̂LF is essentially just a slope-limited version of vg though.

5 It is easy to prove that the nonlinear orbital energy stays constant by expanding
d
dt
(
EX
(
φX , φ̇X

))
.

11.2 tilt phase controller formulation 199

form so as to make it dimensionless. This is of significant benefit later
on when it comes to the tuning of the swing out feedback mechanism.

One can observe from Equation (11.15) that EX
(
φX, φ̇X

)
is the sum

of a kinetic energy component (based on φ̇X) and a potential energy
component (based on φX). Depending on the signs of φ̇X and φX,
these energy components either help or hinder crossing. As such,
we introduce the notion of the crossing energy CEX

(
φX, φ̇X

)
, which

incorporates this fact into the energy calculations, and constructs a
measure of how much energy is present in the robot that is going into
crossing. For X = L, R, we define

CEX
(
φX, φ̇X

)
= 1

C2 φ̇2
X sgn(φ̇X) + 2(cos φX − 1) sgn(φX). (11.16)

CEX is a C1 function of φX and φ̇X, is zero for lateral tilt phase
trajectories that come to rest exactly on the verge of crossing, and
is more positive the greater the severity of crossing.

In each execution cycle of the tilt phase controller, the crossing
energies CEL and CER are evaluated and individually passed through
a one-sided smooth deadband function (see upper blue section in
Figure 11.2). The result is scaled to give an initial measure of how
much swing out is required in the left and right lateral directions.
The one-sided deadband ensures that the swing out is zero below a
minimum crossing energy of CEmin, and that it smoothly transitions to
a linear relationship beyond that. A pair of hold filters (Allgeuer, 2020)
is applied to ensure that the greatest activation over the most recent
time is kept and used for each side. The filtered lateral swing out
values are then linearly interpolated based on the expected support
conditions of the robot (a function of the gait phase µi). At this point, a
sagittal swing out component is added that ensures that the resultant
swing out is, within limits, in the direction of P̄d (see Section 11.2.3).
The final resulting swing out tilt Po is then elliptically soft-coerced to
ensure that the swing out stays within reasonable limits.

The tuning of the swing out feedback mechanism is done by ex-
amining real crossing trajectories of the robot. The pxL and pxR values
are read from the average points of inflection of the observed curves,
and C is chosen to give the most constant observed profiles of EX
possible. A suitable value for CEmin can be calculated by choosing a
value of φX that is just less than zero, and calculating the crossing
energy that it would correspond to if the robot were at rest at that tilt.

11.2.7 Swing Ground Plane

While the ground nominally coincides with the N plane during
walking, if disturbances are present this is no longer the case. This can
cause premature or belated foot strike during leg swing, which is both
destabilising and prevents the robot from taking the intended step
sizes. The swing ground plane S (see Section 10.2.2.3) defines the plane

200 tilt phase controller

that is used to adjust the stepping trajectories to avoid such issues.
This is different to most implementations of virtual slope walking, e.g.
Missura (2015), in that it does not just linearly slant the foot motion
profile—it analytically computes a smooth trajectory that respects
the S plane at foot strike, yet intentionally presses into or eases off
the ground immediately after, so as to apply a restoring moment to
the robot. Standard virtual slope implementations can often actually
decrease walking robustness in non-extreme situations, as the more the
robot leans forwards for instance, the higher the feet are lifted at the
front, and thus the less resistance there is to falling further forwards.

The desired orientation of the S plane is first computed by finding a
pure tilt rotation PNS relative to N that makes the N plane coincident
with where the N plane would be if the robot had its expected
orientation PE. Using the same notation as in Section 11.2.2, the
required tilt rotation is mathematically given as

PNS = −Pq(qSN), (11.17)

where Pq(•) is a function that returns the 2D tilt phase representation
of a quaternion and

qSN = qy(pyN) q∗E qB qy(−pyN). (11.18)

Note that if the robot has its expected orientation, qB equals qE and
PNS = (0, 0), i.e. the identity 2D tilt phase rotation, so S ≡ N. To reduce
noise and prevent swing ground plane adjustments from happening
when walking is near nominal, a mean filter followed by elliptical
smooth deadband is applied to PNS (see red section in Figure 11.2).
A nominally unit gain is then applied to allow the strength of the S
plane feedback to be tuned if this helps with passive stability. The
resulting tilt phase is then passed through elliptical soft coercion to
ensure that it always stays within limits. This yields the final required
activation PS of the swing plane corrective action (see Section 10.2.2.1).

11.2.8 Maximum Hip Height

As a result of repeated disturbances or self-disturbances, it can occur
that the robot enters a semi-persistent limit cycle of sagittal oscillations.
In such situations, limiting the height of the hips above the feet
can help lower the CoM, and thereby increase the passive stability
of the robot, as greater rotations are then required for tipping. As
such, by temporarily restricting the maximum hip height of the robot,
unwanted oscillations of the robot can be dissipated.

A measure I of the instability of the robot is first computed by
applying a slope-limited low pass filter to normed speed values sd of
the mean-filtered deviation tilt P̄d, i.e. to

sd = 1
∆t‖∆P̄d‖. (11.19)

11.2 tilt phase controller formulation 201

Note that only changes in orientation contribute to I, so consistent
leaning in a particular direction, for instance, does not contribute to the
quantified ‘instability’ I of the robot. Note also that the slope-limited
low pass filter is nominally chosen to have a relatively long settling
time, and that ∆P̄d can optionally be masked to only include sagittal
components, if desired. Given the quantified instability I, coerced
interpolation is used to map this to a desired range of maximum
hip heights, so that greater levels of instability correspond to smaller
allowed hip heights. A final slope limiter ensures that all changes to
the resulting Hmax activation value occur continuously, and suitably
gradually.

The tuning of the maximum hip height feedback mechanism essen-
tially reduces to the choice of a settling time for the low pass filter,
usually on the order of a few seconds, and the choice of an instability
range to use for interpolation. The former is tuned based on how
responsive the maximum hip height is desired to be, and the latter
is tuned by artificially disturbing the robot and gauging as of what
measured instability hip height feedback would have been suitable.

11.2.9 Timing Adjustment

Timing is an important feedback mechanism for the preservation
of balance. In addition to its own stabilising effect, it also allows
other corrective actions like the swing out mechanism to work most
effectively. The approach to timing feedback that was used as part
of the direct fused angle feedback controller (see Section 9.3.4) is
also used for the tilt phase controller. The only modification is that
the calculated feedback is reformulated to be in terms of the lateral
deviation tilt pxd instead of the fused roll deviation dφ. As shown in
the green section in Figure 11.2, the final calculated frequency offset
fgo, given by Equation (9.9), is added to the nominal frequency fnom,
and used to drive the instantaneous gait frequency activation value fg,
as required (see Section 10.2.2.1).

11.2.10 Step Size Adjustment

Just like swing out is used to combat lateral crossing trajectories,
the step size adjustment corrective action is used to combat sagittal
crossing trajectories. While other corrective actions like the arm tilt
and support foot tilt do indeed dampen any sagittal disturbances that
are experienced, sometimes this damping is not enough to stabilise the
robot, and reactive steps need to be taken as a last resort of keeping
balance. Often, the fact that the robot is on a sagittal crossing trajectory
can be inferred from the state (i.e. sagittal energy) of the robot long
before the robot actually reaches its tipping point. This means that
there is frequently enough time for the robot to take a preemptive

202 tilt phase controller

step that avoids significant tipping altogether. The quantification of
the sagittal crossing energies of the robot, and conversion thereof
to suitable step size adjustments, is performed using the so-called
tripendulum model. This model is evaluated as a function of the
estimated phase pitch p̂yB ≡ θ and phase pitch velocity ˙̂pyB ≡ θ̇ of the
trunk, which are calculated by applying a WLBF filter to the raw phase
pitch data pyB, and by evaluating the resulting line of best fit at the
mean of the fitted data points.6

When the robot is standing on one foot, the sagittal transient
response of the robot has three distinct zones of behaviour. When the
robot is leaning far forwards, the contact patch of the robot reduces
to just the front edge of the foot, and a forwards-leaning tipping
behaviour results. This is referred to as the front zone of the sagittal
dynamics. Similarly, if the Centre of Pressure (CoP) moves to the back
edge of the foot, a backwards-leaning tipping behaviour results that is
referred to as the back zone. In between the front and back zones is a
passively stable middle zone that in general returns the robot back to
its nominal orientation when small disturbances are applied.

The three zones of behaviour of the sagittal dynamics of the robot
are modelled using the nonlinear tripendulum model (see Figure 11.3),
which can be summarised by the differential equation

θ̈ =


C2

f sin(θ − θ f) for θ ∈ [θs, ∞),

−C2
m sin(θ − θm) for θ ∈ (θt, θs),

C2
b sin(θ − θb) for θ ∈ (−∞, θt],

(11.20)

where

• θ is the WLBF-filtered phase pitch as before,

• C f , Cm and Cb are three separate pendulum constants,

• θ f , θm and θb are tuned constants that represent the centres (i.e.
the equilibrium points) of the three pendulum zones, and,

• θs and θt are two constants that are calculated such that Equa-
tion (11.20) is continuous.

The phase pitches θs and θt mark the two transition points between
the three pendulum zones, and are calculated using

θs = θ̄f m + atan2
(
(C2

f − C2
m) sin ∆θf m, (C2

f + C2
m) cos ∆θf m

)
, (11.21a)

θt = θ̄bm + atan2
(
(C2

b − C2
m) sin ∆θbm, (C2

b + C2
m) cos ∆θbm

)
, (11.21b)

where
θ̄f m = 1

2 (θ f + θm), θ̄bm = 1
2 (θb + θm), (11.22a)

∆θf m = 1
2 (θ f − θm), ∆θbm = 1

2 (θb − θm). (11.22b)

6 Recall that this is analogous to the way it was done for the swing out corrective action
in Section 11.2.6.

11.2 tilt phase controller formulation 203

Figure 11.3: An illustration of the tripendulum model, and how it divides up
the behaviour of the phase pitch angle θ of the torso into three
distinct zones—the front, middle and back pendulums. Note
that these pendulums are figurative—not literal—and are only
seen as a mathematical description of how the phase pitch angle
behaves for undisturbed trajectories of the robot. The centre
angles θ f , θm and θb of the pendulums (i.e. the equilibrium
points) are shown, as well as the corresponding pendulum
constants C f , Cm and Cb, and the transition angles θs and θt.
The dark yellow arrows indicate the direction and strength of
the angular acceleration θ̈, as calculated by Equation (11.20).

As was the case in Section 11.2.6 for the standard nonlinear pen-
dulum model, instead of using Equation (11.20) to make temporal
predictions of the behaviour of the robot and using this as a basis for
feedback, we begin by constructing a notion of orbital energy, and
use this to define a notion of crossing energy for the forwards and
backwards directions. Within the front, middle and back pendulum
zones, the following three respective expressions of orbital energy
remain constant:

Ef (θ, θ̇) = θ̇2 − 2C2
f
(
1− cos(θ − θ f)

)
, (11.23a)

Em(θ, θ̇) = θ̇2 + 2C2
m
(
1− cos(θ − θm)

)
, (11.23b)

Eb(θ, θ̇) = θ̇2 − 2C2
b
(
1− cos(θ − θb)

)
. (11.23c)

By identifying the kinetic and potential energy components of these
orbital energy expressions, and accounting for whether they help or
hinder sagittal crossing, the following expressions for the so-called

204 tilt phase controller

forwards and backwards crossing energies can be developed, similar
to as was done in Section 11.2.6:

CEf(θ, θ̇) = θ̇2 sgn(θ̇)− PEf(θ), (11.24a)

CEb(θ, θ̇) = −θ̇2 sgn(θ̇)− PEb(θ), (11.24b)

where PEf(θ) and PEb(θ) are expressions of ‘required potential energy
to crossing’ that are given by

PEf(θ) =



−2C2
f (1− cos(θ − θ f)) if θ ∈ [θ f , ∞),

2C2
f (1− cos(θ − θ f)) if θ ∈ [θs, θ f),

2C2
f (1− cs f) + 2C2

m(cos(θ − θm)− csm) if θ ∈ [θt, θs),

2C2
f (1− cs f) + 2C2

m(ctm − csm)

+2C2
b(ctb − cos(θ − θb))

if θ ∈ (−∞, θt),

(11.25a)

PEb(θ) =



−2C2
b(1− cos(θ − θb)) if θ ∈ (−∞, θb],

2C2
b(1− cos(θ − θb)) if θ ∈ (θb, θt],

2C2
b(1− ctb) + 2C2

m(cos(θ − θm)− ctm) if θ ∈ (θt, θs],

2C2
b(1− ctb) + 2C2

m(csm − ctm)

+2C2
f (cs f − cos(θ − θ f))

if θ ∈ (θs, ∞),

(11.25b)

where we use the shorthand cxy ≡ cos(θx − θy), for x, y = f , s, m, t, b.
Note that both PEf(θ) and PEb(θ), and thus CEf(θ, θ̇) and CEb(θ, θ̇),
are C1 functions of θ due to the way that θs and θt are calculated in
Equation (11.21). The value of the crossing energy CEf(θ, θ̇) can be
interpreted as the amount of energy that the robot has in the direction
of forwards falling (θ → ∞), while analogously, the value of CEb(θ, θ̇)

can be interpreted as the amount of energy that the robot has in
the direction of backwards falling (θ → −∞). Both crossing energy
values are respectively zero for trajectories that come to rest exactly
on the verge of crossing, i.e. exactly at the front or back pendulum
equilibrium points.

In each execution cycle of the tilt phase controller, the front and
back crossing energies are calculated and individually passed through
a one-sided smooth deadband function (see lower blue section in
Figure 11.2). The result is scaled to give a pair of appropriate GCV

adjustment values in the sagittal direction. These values are passed
through hold filters (Allgeuer, 2020) to ensure a more temporally
consistent activation of the step size adjustments, after which they are
combined through basic addition. Final soft coercion is applied to the
resulting combined sagittal GCV to ensure that the final adjustment
stays within reasonable ranges. The output of the soft coercion is
added to the x-component of the desired end-of-step GCV vEOS, which

11.3 experimental results 205

is then later used to calculate vi as described in Section 11.1.1. It is
a rare occurrence that both non-zero forwards tipping and non-zero
backwards tipping GCV adjustments are produced, but if this happens,
the calculated adjustments are in opposite directions, so the process of
adding them effectively selects an intermediate adjustment value that
balances the strengths of the desired adjustments in each direction.

Tuning of the implemented step size adjustment scheme essentially
amounts to tuning of the tripendulum model. While the values of θ f
and θb are tuned by examining the points of inflection of real sagittal
crossing trajectories of the robot, the value of θm is generally kept
constant at the nominal phase pitch pyN of the robot (see page 173). The
three pendulum constants C f , Cm and Cb are chosen so that the orbital
energies calculated in Equation (11.23) remain as constant as possible
within the three pendulum zones. The crossing energy thresholds
beyond which step size adjustments are invoked (a parameter of the
one-sided deadband function) are tuned by choosing a value of θ that
is close to the respective tipping point, and calculating the crossing
energy that a robot at rest at that tilt would have.

One important property of the presented approach to step size
adjustments is that adjustments are only made as a last resort if
they are really needed. The calculated crossing energies will always
be significantly negative in normal undisturbed walking situations,
leading to zero being emitted by the one-sided smooth deadband
functions. Only if significant disturbances are present that risk having
the robot tip over sagittally does the deadband function emit non-zero
values, and cause reactive steps to be taken.

11.3 EXPERIMENTAL RESULTS

The proposed feedback controller has been implemented in C++ in the
open-source igus Humanoid Open Platform ROS software (Team Nim-
bRo, 2018), which also supports the NimbRo-OP2 and NimbRo-OP2X
robots. The entire controller takes just 2.1 µs to execute on a single
3.5 GHz core. As such, it is expected that the implementation of this
method at 100 Hz on even a modest microcontroller would be possible.
Such portability is of great advantage in the area of low-cost robotics.
Also, given the relative complexity of the gait and the diverse range of
corrective actions, the number of important configuration constants
has been kept rather low. The constants are in all cases expressed in a
way that they are dimensionless, easy to understand and tune, and
more than often just the default values can be used due to these two
factors.

A short demonstration of some of the main corrective actions that
set the tilt phase controller apart from other controllers is shown in
Video 11.1. A more detailed demonstration and analysis of all of the
implemented corrective actions is shown in Video 11.2, with step size

206 tilt phase controller

Video 11.1: A short demonstration of bipedal walking in physical simulation
using the KGG and tilt phase controller. Not all corrective actions
are shown. Note that due to limitations of the version of Gazebo
used, uncontrollable fluctuations in the simulation log playback
speed resulted in noticeable speed fluctuations in the video.
https://youtu.be/ub0GvZ7AbLc

Short Demonstration of the Action of the Tilt Phase Controller

Video 11.2: Individual demonstrations of the effects of the various implemen-
ted KGG corrective actions, as activated by the tilt phase controller.
Plots of the experiments are provided in Figures 11.4 to 11.6.
https://youtu.be/spFqqktZ1s4

Demonstration of corrective actions: Bipedal walking with corrective
actions in the tilt phase space

https://youtu.be/ub0GvZ7AbLc
https://youtu.be/spFqqktZ1s4

11.3 experimental results 207

Video 11.3: Demonstration of step size adaptation using the tilt phase con-
troller and tripendulum model. The NimbRo-OP2X is pushed
repetitively in the sagittal direction and compared in performance
to the same gait without step size adaptation. A plot correspond-
ing to the second-last backwards push of the robot in the video
is provided in Figure 11.7.
https://youtu.be/R9gThzV1hTQ

Step Size Adaptation Using the Tripendulum Model

adaptation being handled separately in Video 11.3. The improvement
of the robustness of the gait when the tilt phase controller is enabled
is evident across all videos. In particular, in Video 11.3 one can see
that the closed-loop gait with step size adjustments enabled requires
significantly stronger pushes to make the robot fall than the open-loop
gait.7 Importantly, while the robot reacts quickly with large steps to
strong pushes, for small pushes no discernible change in step size
occurs. This ensures that the activation of the step size adjustment
remains a ‘last resort’ to combating disturbances, and does not cause
a change in walking behaviour for regular lightly-disturbed walking.
The size of the reactive steps taken in Video 11.3 was limited to an
internal sagittal GCV of 1.2. More severe reactive steps could have been
allowed by increasing this limit, but it is expected that at some point
with the increased resulting volatility of the robot, the overall reliability
of the gait would degrade and risk damaging the robot. Significant
unnecessary self-destabilisations would also be an issue (even if they
do not ultimately lead to a fall), e.g. like frequently observed for the
capture step controller.

The individual corrective action experiments shown in Video 11.2
have been plotted in detail in Figures 11.4 to 11.6. The experiments
were performed on a real igus Humanoid Open Platform, and were

7 In order to isolate the effect of the step size adaptation, the swing ground plane
corrective action was not enabled in the video. It is expected that in particular
forwards balance recovery would improve with this additional correction enabled.

https://youtu.be/R9gThzV1hTQ

208 tilt phase controller

specifically designed to isolate and contrast the walking performance
of the robot with and without the effect of the various individual
corrective actions. For almost all of the experiments, all corrective
actions except for the one in focus were turned off to better illustrate
the true effect of the feedback.

In Figure 11.4a, it can be observed that the tilt phase corresponds
closely to the expected waveforms until a large diagonal push disturbs
the robot. The PD activations quickly spike, preventing a forwards fall,
and aiding the robot in returning to its expected tilt phase trajectory.
Note that the plotted P and D components correspond to the outputs
of the elliptical smooth deadband blocks (see Figure 11.2), prior to
the application of the individual elliptical arm and foot gains. It can
be seen that when the robot starts returning to upright, the sign of
the derivative feedback changes quickly to dampen the system and
prevent excessive overshoot.

In Figure 11.4b, the robot begins by walking on the spot. At time
t = 1.5 s, a sudden unknown software offset (external to the gait
module) is applied to both ankles of the robot, causing the robot to
pitch and roll away from its nominal expected tilt phase waveforms.
In response, the I components pxI and pyI quickly integrate up the
observed 3D deviations in orientation and cause the robot to learn 2D
hip shifts and continuous foot tilts that perfectly negate the applied
software offsets. Note that the plotted I components correspond to the
output of the mean filter in Figure 11.2, i.e. the one that is used right
before the hip shift and continuous foot gains in the integral feedback
pathway. At approximately 10° of resultant rotation, and despite the
relative severity of the applied offsets, the robot returns to completely
upright nominal walking within 6.6 s.

In Figure 11.4c, the robot is made to start walking forwards, and
then slow down and stop again shortly after. Without the feed-forward
effects of the leaning corrective action, the robot falls backwards after
taking a few forwards steps. With leaning enabled, the robot tilts
slightly in the direction it is accelerating, both at the start and end of
walking, and thereby mitigates a fall. In the plot, the magnitude of
the sagittal leaning component pyl has been scaled up by a factor of
10 to make it more visible in relation to the other plotted quantities.
The plotted sagittal GCV acceleration is calculated by numerically
differentiating the sagittal GCV vgx in a smooth manner using a WLBF

filter followed by a slope limiter (see Figure 11.2).
In Figure 11.5a, a large lateral push is applied to the robot, putting

it on a crossing trajectory that would normally result in a lateral fall
over the outside of the support foot. The crossing energies CEL and
CER, calculated using Equation (11.16), are well below zero prior to
the push, but as the excess lateral energy is detected, the right foot
crossing energy CER quickly exceeds CEmin = −0.044 and causes
swing out of the left leg in the lateral direction. The counterbalancing

11.3 experimental results 209

(a) The effect of the arm tilt and support foot tilt PD feedback in recovering
balance after a diagonal push with significant destabilising power.

(b) The effect of the hip shift and continuous foot tilt integral feedback after
a sudden unknown software offset is applied to the ankles of the robot.

(c) The effect of leaning on sagittal walking. Without leaning (before cut),
the forwards GCV acceleration makes the robot tip over backwards. With
leaning (after cut), there is no fall.

Figure 11.4: Plots of the PD, I and leaning corrective actions on a real robot.
Refer to Video 11.2 for the corresponding footage.

210 tilt phase controller

(a) The effect of the swing out tilt in recovering from a lateral push that
would otherwise have led to a fall. The full 2D swing out allows the robot
to remain balanced sagittally as well in the 1.2 s it takes to return laterally.

(b) Effect of the swing ground plane in reducing premature foot strike,
demonstrated by applying a continuous force to the robot that induces
sagittal tilt. Before cut: S plane disabled, After cut: S plane enabled.

Figure 11.5: Plots of the swing out and swing ground plane corrective actions
on a real robot. Refer to Video 11.2 for the corresponding footage.

effect of the left leg dissipates some of the crossing energy, and makes
sure CER never significantly surpasses zero, which would indicate a
predicted non-returning trajectory. To maintain sagittal balance while
the robot waits to return from its lateral trajectory, the sagittal swing
out component pyo is used, first in one direction, and then the other.

In Figure 11.5b, a continuous forwards force is applied to the robot
during forwards walking, causing the robot to tilt forwards. Without
swing ground plane adjustment, the robot tends to walk ‘into the
ground’, and gets more stuck than if the swing ground plane is
enabled. This is evidenced by the factor-of-two difference in sagittal
gait odometry, also plotted. The S plane tilt phase pyS is opposite in
sign to the torso orientation pyB as, for example, leaning forwards

11.3 experimental results 211

(a) The effect of timing feedback in avoiding self-disturbances that can lead
to a fall. Before cut: Timing disabled, After cut: Timing enabled.

(b) Oscillations in the robot orientation, induced artificially here, cause the
calculated instability to increase and limit the allowed hip height.

Figure 11.6: Plots of the timing and maximum hip height corrective actions
on a real robot. Refer to Video 11.2 for the corresponding footage.

corresponds to a backwards tilt of the ground plane relative to the
robot.

In Figure 11.6a, lateral pushes are applied to the robot to disrupt
its natural walking rhythm. Without timing adjustments, this leads
to a lateral fall, as can be seen in the left half of the plot. With timing
adjustments however, the robot slows down its stepping motion as
soon as it detects the disturbance, and tries to place its next foot on the
ground exactly when the lateral tilt is close to zero again. Importantly,
during normal stable walking only negligible contributions of the
timing corrective action to the gait frequency can be observed.

In Figure 11.6b, the robot is artificially disturbed over multiple
seconds to demonstrate an extreme case of how oscillations lead to
a higher quantified level of instability, and subsequent reduction in
hip height. During real walking, this is relevant for situations where

212 tilt phase controller

Figure 11.7: Plots corresponding to the second-last backwards push of the
NimbRo-OP2X in Video 11.3, demonstrating the effect of step
size adjustment in maintaining the balance of the robot. The
crossing energies are plotted in units of J kg−1m−2 ≡ s−2, as
this normalises the values for each robot. This is because the
crossing energies then effectively become energy (J) per moment
of inertia (kg m2).

the robot gets stuck in a limit cycle of oscillations. This can (and
does) occur, but is difficult to replicate intentionally. Lowering the hip
height increases passive stability and changes the natural frequency
of the dynamics of the tilting motions. Both factors generally lead to
damping of the oscillations, as can be seen in the plot.

The second-last backwards push in Video 11.3, demonstrating the
action of the step size adjustment scheme, has been plotted in detail
in Figure 11.7. In the top plot, the instant is shown where the push
was applied, causing a significant drop in the phase pitch of the robot.
The calculated crossing energies up until that point were decisively
negative, but as the robot accelerated as a result of the backwards
push, the backwards crossing energy CEb quickly spiked well above
zero, meaning that the robot would have had no chance of avoiding
tipping over if it had not been for the reactive steps. The activation of
the reactive steps, in the form of an adjustment to the sagittal GCV, is

11.3 experimental results 213

shown in the bottom plot of Figure 11.7. The current support foot at
each instant is also plotted in the form of the support leg sign δt.

8

As the robot returned to upright, it had considerable forwards
angular momentum, as evidenced by the large rate of change of
phase pitch at the time. In order to avoid overshooting and potentially
falling forwards, it can be seen that the forwards crossing energy CE f
correctly predicted around time t = 3.6–3.9 s that this would be an
issue, and caused a small forwards step to be taken soon after, as can
be seen in the bottom plot. The result is that the robot had very little
overshoot in the forwards direction, and was able to return to normal
balanced walking very soon after the push. Note that at t = 3.6 s the
robot was still leaning backwards, far away from upright, yet it was
already aware at this time that the greater issue was falling forwards,
not falling backwards.

All together, the corrective actions and feedback pipelines imple-
mented by the tilt phase controller make a significant improvement
to walking robustness, both on real hardware (see previous exper-
iments), and in simulation. The dimensionless construction of the
feedback pipeline also allows the controller to be easily tuned and
ported between various robot platforms without significant changes.
The parameters of the feedback pipeline are generally relatively in-
sensitive to their value, so while tuning the capture step controller for
example often requires careful tuning methods and 3–4 digits of preci-
sion in order to be successful, for the tilt phase controller it is quite the
opposite. Video 11.4 shows the results of the very first walking tests
in simulation, after most of the configuration parameters had only
been ‘guessed’, and no previous tests had been done. The controller
performs remarkably well, and it takes two minutes of determined
pushing to ultimately make the robot fall.

The tilt phase controller has also been evaluated quantitatively, as
opposed to qualitatively, in Gazebo simulation. Maximum forwards
walking speed tests were performed over a 4 m distance with a
1 m run-up. A maximum mean velocity of 45.7 cm/s was achieved,
while with the direct fused angle feedback controller (see Chapter 9),
30.5 cm/s was achieved. A video of the associated walking speed
tests is provided in Video 11.5. While both gaits provide a good
walking performance, it can be seen from the video how the ‘smoother’
nature of the KGG allows it to achieve higher overall walking speeds
than the CPG before self-disturbances become a limiting factor. The
minimisation of self-disturbances for the purpose of maximising
walking speed was in fact one of the principal aims of the KGG (see
Section 10.1.3), and exactly this goal was distilled into a detailed list
of desired properties of the KGG that influenced its design at every
stage (see page 171).

8 The support leg sign is the limb sign of the current support leg. δt = 1 corresponds
to the left leg, and δt = −1 corresponds to the right leg.

214 tilt phase controller

Video 11.4: Summary video of the first walking and balance tests that were
performed (in simulation) to evaluate the effectiveness of the tilt
phase controller. The simulated igus Humanoid Open Platform
withstood two minutes of strong pushes before eventually falling.
https://youtu.be/A_HQQfCRhDE

First Walking and Balance Test of the Tilt Phase Controller

Video 11.5: Maximum forwards walking speed test using the Keypoint Gait
Generator and tilt phase controller.
https://youtu.be/yY0kpUZpjO4

Maximum forwards walking speed test: Bipedal walking with corrective
actions in the tilt phase space

https://youtu.be/A_HQQfCRhDE
https://youtu.be/yY0kpUZpjO4

11.3 experimental results 215

Video 11.6: Push resistance test performed on an igus Humanoid Open
Platform in simulation. The robot is walking on the spot with the
KGG gait, and is disturbed in random directions by impulses of
various magnitudes. The effectiveness of the tilt phase controller
with and without step size adaptation enabled is evaluated.
https://youtu.be/OSvHgVIYquc

Tilt Phase Controller Simulated Push Resistance Test

The tilt phase controller has also been put to the test in the context
of push recovery. As shown in Video 11.6, sets of 20 pushes at a
time were applied to an igus Humanoid Open Platform walking on
the spot in simulation. Each set of 20 pushes maintained the same
impulse strength, in the range from 1.2–2.8 s N, but the pushes were
applied in random directions. The aim of the test was for the robot to
withstand as many of the 20 pushes as possible. Table 11.1 compares
the push recovery performances of the direct fused angle feedback
controller, tilt phase controller without step size adaptation, and tilt
phase controller with step size adaptation. This data is plotted in
Figure 11.8, alongside the corresponding curve for the open-loop CPG

gait. It is clear that all controllers provide a great margin of stability
beyond the passive stability of open-loop walking. It can be observed
however, that the tilt phase controller without step size adjustment
(in order to make it a fair comparison) outperforms the direct fused
angle controller evenly across all push impulses, with the number
of withstood pushes at 2.6 s N, for example, being 7 compared to 3.
With step size adaptation enabled, the tilt phase controller makes even
further improvements over the direct fused angle controller, with the
number of withstood pushes at 2.6 s N, for example, increasing to 12.
Note that for reference of scale, a push impulse of 2.8 s N is expected
to cause an instantaneous change in CoM velocity of about 42–56 cm/s
for the igus Humanoid Open Platform, which is very severe given its
CoM height of only 55 cm.

https://youtu.be/OSvHgVIYquc

216 tilt phase controller

Table 11.1: Number of withstood simulated pushes (out of 20) for various
controllers and controller configurations

Impulse (s N) 1.2 1.5 1.8 2.0 2.2 2.4 2.6 2.8

Direct fused angle 19 19 15 12 11 8 3 3

Tilt phase (no steps) 20 20 17 16 14 9 7 4

Tilt phase (full) 20 20 18 16 15 15 12 10

Figure 11.8: Plot of the ratio of withstood pushes against push impulse mag-
nitude for a simulated igus Humanoid Open Platform walking
on the spot with the direct fused angle feedback controller, tilt
phase controller without step size adaptation enabled, and full
tilt phase controller. A push resistance curve for the open-loop
Central Pattern Generator is provided as a reference. The raw
data corresponding to the plot is given in Tables 9.1 and 11.1.

Although the step size adaptation makes slight improvements for
moderate pushes, the true power of the reactive steps is seen for strong
pushes, where it makes a decisive difference in the ability of the robot
to capture its imbalances. Importantly however, this added stability
does not come at the cost of interfering with the reaction of the robot
to milder pushes, as it visibly does for the capture step controller.

To further quantify the positive stabilising effects of the tilt phase
step size adjustment scheme, in particular in combination with the
arm tilt corrective action, push experiments were performed on a
real NimbRo-OP2X robot. As can be seen in the excerpts shown in
Video 11.3, sagittal pushes were applied to the robot while it was
walking on the spot, and the transient responses were recorded. The
push recovery performance of the open-loop and tilt phase feedback
gaits are compared in Figure 11.9 by means of a phase plot. The blue
trajectories are the pushes and subsequent transient responses that
were successfully withstood by the robot, while the red trajectories
show pushes that led to a fall. It is immediately apparent that the
closed-loop gait has much greater push recovery ability than the open-
loop gait. The open-loop gait, for example, can only deal with phase
pitch velocities from −0.5 to 0.45 rad/s, while the closed-loop gait has

11.3 experimental results 217

Figure 11.9: Plots of the phase response of a walking NimbRo-OP2X robot
when sagittal pushes of various strengths are applied. The phase
pitch velocity ṗyB is plotted against the phase pitch pyB for each
individual push trajectory, and the resulting curve is coloured
according to whether the robot successfully withstood the push
(blue) or not (red). The beginning of each trajectory is marked
with a solid dot. The top plot corresponds to the performance
of the robot with the tilt phase controller disabled (open-loop),
and the bottom plot shows how this performance improves with
the controller enabled (closed-loop), including in particular with
step size adjustments enabled. Refer to Video 11.3 for videos of
a subset of the performed pushes.

218 tilt phase controller

a stable range closer to −0.72 to 0.75 rad/s. The maximum values of
phase pitch that occurred during stable blue trajectories also increased
from −0.2 to 0.2 rad for open-loop, to −0.35 to 0.27 rad for closed-loop.
This increase is mostly attributed to the step size adjustment scheme,
as it allows otherwise irrecoverable phase pitches (beyond the sagittal
tipping point of the robot) to be recovered through a change of contact
point with the ground. Note that the natural tipping point of the
NimbRo-OP2X is less than for the igus Humanoid Open Platform due
to differences in mass distribution and foot size to height ratio.

The difference between stable and unstable trajectories is relatively
clear-cut in the open-loop case, as the situation is relatively simple.
In the closed-loop case however, the use of reactive steps complicates
the response of the robot, and makes it more dependent on the gait
phase of the robot at the time of the push. As an effect of this, the
exact line of separation between falling and non-falling trajectories
becomes somewhat less well-defined. In fact, for two of the failed
backwards pushes, the robot actually fell forwards after recovering
from the backwards direction.

The data in Figure 11.9 can alternatively be viewed as a heat map, as
shown in Figure 11.10. The states in the phase space are divided into
cells (i.e. bins), and the trajectories that pass through any one cell are
collected and used to calculate a success rate for the cell. The success
rate is a value in the range [0, 1], and corresponds to the proportion of
trajectories that pass through the cell that did not end in a fall. Overall,
Figure 11.10 shows once again the significant improvement in stability
that can be attributed to the tilt phase controller, and how it effectively
leads to a robust humanoid gait.

11.4 CONCLUSION

Walking does not always require overly complex stabilisation mechan-
isms to achieve high levels of robustness. In this chapter, a feedback
controller for robust bipedal walking has been presented that relies
solely on measurements from a single 6-axis IMU, and is applicable to
low-cost robots with noisy sensors, imperfect actuation and limited
computing power. No highly tuned or complex physical models are
required, and great portability is ensured through the use of dimen-
sionless parameters and configuration constants. The wide variety of
corrective actions that are employed cover many different aspects of
balanced walking, including both short-term and long-term stability.
In summary, although conceptually relatively simple, the tilt phase
controller, in combination with the Keypoint Gait Generator (KGG),
achieves genuinely good walking results with minimal assumptions
about the robot hardware and performance.

11.4 conclusion 219

 -
0.

43
0

 -
0.

40
3

 -
0.

37
6

 -
0.

34
9

 -
0.

32
3

 -
0.

29
6

 -
0.

26
9

 -
0.

24
2

 -
0.

21
5

 -
0.

18
8

 -
0.

16
1

 -
0.

13
4

 -
0.

10
7

 -
0.

08
1

 -
0.

05
4

 -
0.

02
7

 0
.0

00
 0

.0
27

 0
.0

54
 0

.0
81

 0
.1

08
 0

.1
34

 0
.1

61
 0

.1
88

 0
.2

15
 0

.2
42

 0
.2

69
 0

.2
96

 0
.3

22
 0

.3
49

 0
.3

76
 0

.4
03

 0
.4

30

Phase pitch (rad)

 0.86
 0.78
 0.70
 0.63
 0.55
 0.47
 0.39
 0.31
 0.23
 0.16
 0.08

 -0.00
 -0.08
 -0.16
 -0.23
 -0.31
 -0.39
 -0.47
 -0.55
 -0.63
 -0.70
 -0.78
 -0.86

Ph
as

e
pi

tc
h

ve
lo

ci
ty

 (
ra

d/
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

None

 -
0.

43
0

 -
0.

40
3

 -
0.

37
6

 -
0.

34
9

 -
0.

32
3

 -
0.

29
6

 -
0.

26
9

 -
0.

24
2

 -
0.

21
5

 -
0.

18
8

 -
0.

16
1

 -
0.

13
4

 -
0.

10
7

 -
0.

08
1

 -
0.

05
4

 -
0.

02
7

 0
.0

00
 0

.0
27

 0
.0

54
 0

.0
81

 0
.1

08
 0

.1
34

 0
.1

61
 0

.1
88

 0
.2

15
 0

.2
42

 0
.2

69
 0

.2
96

 0
.3

22
 0

.3
49

 0
.3

76
 0

.4
03

 0
.4

30

Phase pitch (rad)

 0.86
 0.78
 0.70
 0.63
 0.55
 0.47
 0.39
 0.31
 0.23
 0.16
 0.08

 -0.00
 -0.08
 -0.16
 -0.23
 -0.31
 -0.39
 -0.47
 -0.55
 -0.63
 -0.70
 -0.78
 -0.86

Ph
as

e
pi

tc
h

ve
lo

ci
ty

 (
ra

d/
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

None

Figure 11.10: Plots of the open-loop vs. closed-loop walking stability of a
NimbRo-OP2X robot in the form of a phase space heat map.
The blue areas indicate phase states corresponding to stable
walking (1.0 = 100% success rate), while the red areas indicate
states where the robot tendentially lost balance and fell over
(0.0 = 0% success rate). In-between colours indicate that certain
binned states were encountered multiple times with different
outcomes. The entirety of the data from the push tests has been
incorporated into this figure, including also the states of normal
balanced walking between pushes. The grey cells correspond
to phase states that were not encountered during the tests.

220

12
C O N C L U S I O N

Bipedal walking does not always require overly complex stabilisation
mechanisms to achieve high levels of robustness. The tilt phase and
direct fused angle feedback controllers developed in this thesis are
a demonstration of this fact. Both controllers extend an underlying
open-loop gait with a diverse array of corrective actions that apply
effective long and short-term adjustments to the balance of the robot.1

With just the pitch and roll orientations of the trunk as the sole source
of feedback, the controllers apply relatively simple yet well-thought-
out feedback pipelines to activate the required corrective actions at
the required times. It is a very important feature of the controllers
that they do not apply corrective actions at all if the robot is walking
within a certain margin of its nominal orientation limit cycle. The
application of step size adjustments is crucially also only used as a
last resort for keeping balance, i.e. only in cases where the deviation
from normal walking is predicted to be too severe for the remaining
corrective actions to be able to deal with it. This is important as it
minimises the effect that the balance controllers have on disturbing
the intended walking direction and footstep placements of the robot.

The use of open-loop gait generators as the underlying principle of
walking is advantageous, as it reduces an otherwise high-dimensional
control problem into an interface that has just a few very manage-
able corrective action inputs. Further advantages of the use of gait
generators include the flexibility in manual correction and tuning
that they provide, and the observation that they allow robots to find
their own natural rhythm while walking, instead of imposing one that
was calculated from some trajectory optimisation problem. Both the
Central Pattern Generator (CPG) and Keypoint Gait Generator (KGG)
are analytically formulated, and along with their respective aforemen-
tioned balance controllers, are very computationally inexpensive due
to this trait.

Most of the methods presented in this thesis were specifically
designed with low-cost robots in mind. Low-cost robots often do
not have a wide variety of sensors available, and the sensors that
they do have are not always of good quality. As a result, the feedback
controllers that were designed to stabilise the gaits in this thesis were
formulated in such a way that they only assumed the presence of a
single 6-axis Inertial Measurement Unit (IMU). This makes the gaits
extraordinarily portable between robots, as there is no requirement

1 Examples of such corrective actions include step size, timing and arm/foot tilt
adjustments.

221

222 conclusion

for force-torque sensors, foot contact sensors, or anything of the
like. Extensive thought was also put into calibration and filtering
of the sensor data, to make the most of the signal amongst the
noise. One particular success in this direction was the introduction
of the gyroscope bias autocalibration scheme, which significantly
increased the integration accuracy of the attitude estimator presented
in Chapter 7.

In addition to their general limitations in sensing, low-cost robots
are also fundamentally imprecise about the motions they try to execute.
Problems such as low power-to-weight ratios, structural non-rigidities,
joint backlash and stiction make the tracking of any precise trajectories
difficult, or even impossible. The use of tuneable gait generators in
combination with a feed-forward actuator control scheme helped
deal with these limitations. The sparing use of any physical and/or
dynamic models of the robot also contributed to a wider and arguably
easier field of applicability of the developed feedback gaits.

Many of the developments in state estimation and bipedal walking
that were made in this thesis were founded on other developments
that were made in the field of 3D rotation theory. The most significant
of these developments were the novel use of fused yaw and tilt to
partition 3D rotations into highly problem-relevant rotation subcom-
ponents, and the corresponding development of the tilt angles, fused
angles and tilt phase space representations. In addition to providing
mathematically and geometrically useful concepts of ‘yaw’, ‘pitch’
and ‘roll’, these developments in 3D rotation theory also led to the
introduction of the concept of tilt vector addition. This concept proved
to be very useful throughout the formulation of the KGG and the
corresponding tilt phase controller.

Validated by experiments that were performed in both simulation
and on real robot hardware, the core principle of this thesis can
be summarised as follows—if the sensor management and feedback
chains are carefully constructed, comparatively simple model-free and
robot-agnostic feedback mechanisms can successfully and robustly
stabilise a generic bipedal gait.

12.1 FUTURE DIRECTIONS

Several possible directions of future research exist that would build
on this thesis. These directions include:

• Investigating the use of multiple intentionally non-aligned gyro-
scope and accelerometer sensors for the purposes of increased
attitude estimation fidelity and better rejection of noise and
outliers.

12.1 future directions 223

• Applying the nonlinear tripendulum model to the lateral plane
of motion as well, and activating the lateral step size (and
possibly swing out) corrective action based on that.

• Using learning methods to learn the interplay between lateral
step size and timing and the respective effects on the progression
of the lateral tilt of the robot, in order to concurrently predict
suitable activation values.

• Using learning methods to learn a higher level controller for the
KGG, and all of its corrective actions.2

• Reformulating the capture step controller to avoid the complete
asynchronicity of the RX and MX models. Gradual total dissoci-
ation of the states of these two models is the leading observed
cause of failure of tuning of the capture step controller.

• Modelling the changing z-rotations of the feet in a more explicit
way in terms of how it affects the balance of the robot through-
out the duration of a step, and appropriately modifying the
constructed feedback controllers in light of this.

• Extending the capture step controller to a full 2.5D treatment
(2D position plus heading), to avoid the segregated treatment of
the sagittal and lateral planes of motion, and avoid the lack of
consideration of the effects of foot yaw.

2 As a step in this direction, for example, Bayesian optimisation for feedback stabilisa-
tion of the CPG gait has been performed (Rodriguez et al., 2018).

224

B I B L I O G R A P H Y

J. Allali, R. Fabre, L. Gondry, L. Hofer, O. Ly, S. N’Guyen, G. Passault,
A. Pirrone and Q. Rouxel (2018). “Rhoban Football Club: RoboCup
Humanoid Kid-Size 2017 Champion Team Paper”. In: RoboCup 2017:
Robot World Cup XXI. LNCS 11175, Springer, pp. 423–434.

J. Allali, L. Gondry, L. Hofer, P. Laborde-Zubieta, O. Ly, S. N’Guyen,
G. Passault, A. Pirrone and Q. Rouxel (2019). Rhoban Football Club –
Team Description Paper. Tech. rep. University of Bordeaux.

P. Allgeuer (Aug. 2016). Attitude Estimator. url: https://github.com/
AIS-Bonn/attitude_estimator.

P. Allgeuer (Jan. 2018a). Keypoint Gait Generator (Reference Matlab
Implementation). url: https://github.com/AIS-Bonn/keypoint_
gait_generator.

P. Allgeuer (Jan. 2018b). Matlab/Octave Rotations Library. url: https:
//github.com/AIS-Bonn/matlab_octave_rotations_lib.

P. Allgeuer (Jan. 2018c). Rotations Conversion Library. url: https :

//github.com/AIS-Bonn/rot_conv_lib.
P. Allgeuer (2020). “Analytic Bipedal Walking with Fused Angles and

Corrective Actions in the Tilt Phase Space”. Full version of this thesis.
PhD thesis. University of Bonn. url: https://arxiv.org/pdf/
2011.10339.

P. Allgeuer and S. Behnke (2013). “Hierarchical and State-based Archi-
tectures for Robot Behavior Planning and Control”. In: 8th Workshop
on Humanoid Soccer Robots, International Conference on Humanoid Ro-
bots (Humanoids). Atlanta, USA.

P. Allgeuer and S. Behnke (2014). “Robust Sensor Fusion for Robot
Attitude Estimation”. In: International Conference on Humanoid Robots
(Humanoids). Madrid, Spain.

P. Allgeuer and S. Behnke (2015). “Fused Angles: A Representation
of Body Orientation for Balance”. In: International Conference on
Intelligent Robots and Systems (IROS). Hamburg, Germany.

P. Allgeuer and S. Behnke (2016). “Omnidirectional Bipedal Walking
with Direct Fused Angle Feedback Mechanisms”. In: International
Conference on Humanoid Robots (Humanoids). Cancún, Mexico.

P. Allgeuer and S. Behnke (2018a). “Bipedal Walking with Corrective
Actions in the Tilt Phase Space”. In: International Conference on
Humanoid Robots (Humanoids). Beijing, China.

P. Allgeuer and S. Behnke (2018b). “Fused Angles and the Deficiencies
of Euler Angles”. In: International Conference on Intelligent Robots and
Systems (IROS). Madrid, Spain.

225

https://github.com/AIS-Bonn/attitude_estimator
https://github.com/AIS-Bonn/attitude_estimator
https://github.com/AIS-Bonn/keypoint_gait_generator
https://github.com/AIS-Bonn/keypoint_gait_generator
https://github.com/AIS-Bonn/matlab_octave_rotations_lib
https://github.com/AIS-Bonn/matlab_octave_rotations_lib
https://github.com/AIS-Bonn/rot_conv_lib
https://github.com/AIS-Bonn/rot_conv_lib
https://arxiv.org/pdf/2011.10339
https://arxiv.org/pdf/2011.10339

226 bibliography

P. Allgeuer and S. Behnke (2018c). “Tilt Rotations and the Tilt Phase
Space”. In: International Conference on Humanoid Robots (Humanoids).
Beijing, China.

C. Azevedo, P. Poignet and B. Espiau (2002). “Moving Horizon Control
for Biped Robots Without Reference Trajectory”. In: International
Conference on Robotics and Automation (ICRA). Washington, USA.

J. Balaram (2000). “Kinematic Observers for Articulated Rovers”.
In: International Conference on Robotics and Automation (ICRA). San
Francisco, USA.

C. Brasseur, A. Sherikov, C. Collette, D. Dimitrov and P.-B. Wieber
(2015). “A Robust Linear MPC Approach to Online Generation of
3D Biped Walking Motion”. In: International Conference on Humanoid
Robots (Humanoids). Seoul, Korea.

S. Caron (2019). “Biped Stabilization by Linear Feedback of the
Variable-Height Inverted Pendulum Model”. In: arXiv preprint
1809.07073 [cs.RO].

S. Caron, A. Kheddar and O. Tempier (2019). “Stair Climbing Stabil-
ization of the HRP-4 Humanoid Robot using Whole-body Admit-
tance Control”. In: International Conference on Robotics and Automation
(ICRA). Montréal, Canada.

A. Cavallo, A. Cirillo, P. Cirillo, G. De Maria, P. Falco, C. Natale
and S. Pirozzi (2014). “Experimental Comparison of Sensor Fusion
Algorithms for Attitude Estimation”. In: 19th International Federation
of Automatic Control World Congress 47.3, pp. 7585–7591.

J. Crassidis, F. Markley and Y. Cheng (2007). “A Survey of Nonlinear
Attitude Estimation Methods”. In: Journal of Guidance, Control and
Dynamics 30.1, pp. 12–28.

H. Diedam, D. Dimitrov, P.-B. Wieber, K. Mombaur and M. Diehl
(2008). “Online Walking Gait Generation with Adaptive Foot Posi-
tioning Through Linear Model Predictive Control”. In: International
Conference on Intelligent Robots and Systems (IROS). Nice, France.

J. Englsberger, G. Mesesan and C. Ott (2017). “Smooth Trajectory
Generation and Push-recovery Based on Divergent Component of
Motion”. In: International Conference on Intelligent Robots and Systems
(IROS). Vancouver, Canada.

J. Englsberger, G. Mesesan, A. Werner and C. Ott (2018). “Torque-based
Dynamic Walking – A Long Way from Simulation to Experiment”. In:
International Conference on Robotics and Automation (ICRA). Brisbane,
Australia.

J. Englsberger, C. Ott and A. Albu-Schäffer (2013). “Three-dimensional
Bipedal Walking Control Using Divergent Component of Motion”.
In: International Conference on Intelligent Robots and Systems (IROS).
Tokyo, Japan.

J. Englsberger, C. Ott and A. Albu-Schäffer (2015). “Three-dimensional
Bipedal Walking Control Based on Divergent Component of Mo-
tion”. In: IEEE Transactions on Robotics 31.2, pp. 355–368.

bibliography 227

J. Englsberger, C. Ott, M. Roa, A. Albu-Schäffer and G. Hirzinger (2011).
“Bipedal Walking Control Based on Capture Point Dynamics”. In:
International Conference on Intelligent Robots and Systems (IROS). San
Francisco, USA.

M. Euston, P. Coote, R. Mahony, J. Kim and T. Hamel (2008). “A
Complementary Filter for Attitude Estimation of a Fixed-Wing
UAV”. In: International Conference on Intelligent Robots and Systems
(IROS). Nice, France.

M. Felis (2017). “RBDL: An Efficient Rigid-body Dynamics Library
Using Recursive Algorithms”. In: Autonomous Robots 41.2, pp. 495–
511.

S. Feng, B. Xinjilefu, C. Atkeson and J. Kim (2015). “Optimization
Based Controller Design and Implementation for the Atlas Robot in
the DARPA Robotics Challenge Finals”. In: International Conference
on Humanoid Robots (Humanoids). Seoul, Korea.

D. Gebre-Egziabher, R. Hayward and J. D. Powell (2004). “Design of
Multi-Sensor Attitude Determination Systems”. In: IEEE Transactions
on Aerospace and Electronic Systems 40.2, pp. 627–649.

R. Griffin, S. Bertrand, G. Wiedebach, A. Leonessa and J. Pratt (2017).
“Capture Point Trajectories for Reduced Knee Bend Using Step
Time Optimization”. In: International Conference on Humanoid Robots
(Humanoids). Birmingham, UK.

R. Griffin and A. Leonessa (2019). “Model Predictive Control for Stable
Walking Using the Divergent Component of Motion with Footstep
Location and Yaw Adaptation”. In: International Journal of Humanoid
Robotics 16.5.

K. Harada, S. Kajita, K. Kaneko and H. Hirukawa (2004). “An Ana-
lytical Method on Real-time Gait Planning for a Humanoid Robot”.
In: International Conference on Humanoid Robots (Humanoids). Santa
Monica, USA.

K. Harada, S. Kajita, K. Kaneko and H. Hirukawa (2006). “An Analyt-
ical Method on Real-time Gait Planning for a Humanoid Robot”. In:
International Journal of Humanoid Robotics 3.1, pp. 1–19.

B. Hengst (2014). rUNSWift Walk2014 Report RoboCup Standard Platform
League. Tech. rep. University of New South Wales.

B. Henze, M. A. Roa and C. Ott (2016). “Passivity-based Whole-
body Balancing for Torque-controlled Humanoid Robots in Multi-
contact Scenarios”. In: International Journal of Robotics Research 35.12,
pp. 1522–1543.

K. Hirai, M. Hirose, Y. Haikawa and T. Takenaka (1998). “The Devel-
opment of Honda Humanoid Robot”. In: International Conference on
Robotics and Automation (ICRA). Leuven, Belgium.

M. Hofmann, I. Schwarz, O. Urbann and A. Larisch (2018). Nao Devils
Team Report 2018. Tech. rep. Technische Universität Dortmund.

M. Hopkins, D. Hong and A. Leonessa (2014). “Humanoid Locomotion
on Uneven Terrain Using the Time-Varying Divergent Component of

228 bibliography

Motion”. In: International Conference on Humanoid Robots (Humanoids).
Madrid, Spain.

K. Jensen (2011). “Generalized Nonlinear Complementary Attitude
Filter”. In: Journal of Guidance, Control and Dynamics 34.5, pp. 1588–
1592.

S. Kajita, M. Benallegue, R. Cisneros, T. Sakaguchi, S. Nakaoka, M.
Morisawa, H. Kaminaga, I. Kumagai, K. Kaneko and F. Kanehiro
(2018). “Biped Gait Control Based on Spatially Quantized Dynam-
ics”. In: International Conference on Humanoid Robots (Humanoids).
Beijing, China.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi and
H. Hirukawa (2003). “Biped Walking Pattern Generation by Using
Preview Control of Zero-Moment Point”. In: International Conference
on Robotics and Automation (ICRA). Taipei, Taiwan.

S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi and H. Hirukawa (2001).
“The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a
Biped Walking Pattern Generation”. In: International Conference on
Intelligent Robots and Systems (IROS). Maui, USA.

M. Khadiv, S. Kleff, A. Herzog, A. Moosavian, S. Schaal and L.
Righetti (2016). “Stepping Stabilization Using a Combination of
DCM Tracking and Step Adjustment”. In: International Conference on
Robotics and Mechatronics (ICROM). Tehran, Iran.

M. Kim, D. Lim and J. Park (2019). “Online Walking Pattern Gener-
ation for Humanoid Robot with Compliant Motion Control”. In:
International Conference on Robotics and Automation (ICRA). Montréal,
Canada.

T. Koolen, S. Bertrand, G. Thomas, T. de Boer, T. Wu, J. Smith, J.
Englsberger and J. Pratt (2016). “Design of a Momentum-based
Control Framework and Application to the Humanoid Robot Atlas”.
In: International Journal of Humanoid Robotics 13.1.

T. Koolen, T. de Boer, J. Rebula, A. Goswami and J. Pratt (2012).
“Capturability-based Analysis and Control of Legged Locomotion,
Part 1: Theory and Application to Three Simple Gait Models”. In:
International Journal of Robotics Research 31.9, pp. 1094–1113.

P. Kryczka, P. Kormushev, N. Tsagarakis and D. Caldwell (2015).
“Online Regeneration of Bipedal Walking Gait Optimizing Footstep
Placement and Timing”. In: International Conference on Intelligent
Robots and Systems (IROS). Hamburg, Germany.

P. Kryczka, Y. Shiguematsu, P. Kormushev, K. Hashimoto, H.-o. Lim
and A. Takanishi (2013). “Towards Dynamically Consistent Real-
time Gait Pattern Generation for Full-size Humanoid Robots”. In:
International Conference on Robotics and Biomimetics (ROBIO). Shen-
zhen, China.

S. Kuindersma, F. Permenter and R. Tedrake (2014). “An Efficiently
Solvable Quadratic Program for Stabilizing Dynamic Locomotion”.

bibliography 229

In: International Conference on Robotics and Automation (ICRA). Hong
Kong, China.

S. Madgwick, A. Harrison and R. Vaidyanathan (2011). “Estimation of
IMU and MARG Orientation Using a Gradient Descent Algorithm”.
In: International Conference on Rehabilitation Robotics. Zürich, Switzer-
land.

R. Mahony, T. Hamel and J.-M. Pflimlin (2008). “Nonlinear Com-
plementary Filters on the Special Orthogonal Group”. In: IEEE
Transactions on Automatic Control 53.5, pp. 1203–1218.

S. McGill, S.-J. Yi, D. Hong and D. Lee (2015). Team THORwIn: Team
Description for Humanoid AdultSize League of RoboCup 2015. Tech. rep.
University of Pennsylvania.

G. Mesesan, J. Englsberger, G. Garofalo, C. Ott and A. Albu-Schäffer
(2019). “Dynamic Walking on Compliant and Uneven Terrain using
DCM and Passivity-based Whole-body Control”. In: International
Conference on Humanoid Robots (Humanoids). Toronto, Canada.

G. Mesesan, J. Englsberger, C. Ott and A. Albu-Schäffer (2018). “Con-
vex Properties of Center-of-Mass Trajectories for Locomotion Based
on Divergent Component of Motion”. In: IEEE Robotics and Automa-
tion Letters 3.4, pp. 3449–3456.

M. Missura (2015). “Analytic and Learned Footstep Control for Robust
Bipedal Walking”. PhD thesis. School of Mathematics and Science.
url: http://hss.ulb.uni-bonn.de/2016/4268/4268.pdf.

M. Missura and S. Behnke (2013). “Self-stable Omnidirectional Walking
with Compliant Joints”. In: 8th Workshop on Humanoid Soccer Robots,
International Conference on Humanoid Robots (Humanoids). Atlanta,
USA.

M. Morisawa, K. Harada, S. Kajita, K. Kaneko, J. Sola, E. Yoshida, N.
Mansard, K. Yokoi and J.-P. Laumond (2009). “Reactive Stepping
to Prevent Falling for Humanoids”. In: International Conference on
Humanoid Robots (Humanoids). Paris, France.

M. Morisawa, K. Harada, S. Kajita, S. Nakaoka, K. Fujiwara, F. Kane-
hiro, K. Kaneko and H. Hirukawa (2007). “Experimentation of Hu-
manoid Walking Allowing Immediate Modification of Foot Place
Based on Analytical Solution”. In: International Conference on Robotics
and Automation (ICRA). Roma, Italy.

M. Morisawa, F. Kanehiro, K. Kaneko, N. Mansard, J. Sola, E. Yoshida,
K. Yokoi and J.-P. Laumond (2010). “Combining Suppression of
the Disturbance and Reactive Stepping for Recovering Balance”.
In: International Conference on Intelligent Robots and Systems (IROS).
Taipei, Taiwan.

R. Munguía and A. Grau (2014). “A Practical Method for Implementing
an Attitude and Heading Reference System”. In: International Journal
of Advanced Robotic Systems 11.4, pp. 1–12.

K. Nishiwaki and S. Kagami (2010). “Strategies for Adjusting the
ZMP Reference Trajectory for Maintaining Balance in Humanoid

http://hss.ulb.uni-bonn.de/2016/4268/4268.pdf

230 bibliography

Walking”. In: International Conference on Robotics and Automation
(ICRA). Anchorage, USA.

A. Pajon and P.-B. Wieber (2019). “Safe 3D Bipedal Walking through
Linear MPC with 3D Capturability”. In: International Conference on
Robotics and Automation (ICRA). Montréal, Canada.

J. Pratt, J. Carff, S. Drakunov and A. Goswami (2006). “Capture
Point: A Step Toward Humanoid Push Recovery”. In: International
Conference on Humanoid Robots (Humanoids). Genova, Italy.

J. Pratt, T. Koolen, T. de Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson
and P. Neuhaus (2012). “Capturability-based Analysis and Control
of Legged Locomotion, Part 2: Application to M2V2, a Lower-
body Humanoid”. In: International Journal of Robotics Research 31.10,
pp. 1117–1133.

J. Pratt, B. Krupp, V. Ragusila, J. Rebula, T. Koolen, N. van Nieuwen-
huizen, C. Shake, T. Craig, J. Taylor, G. Watkins, P. Neuhaus, M.
Johnson, S. Shooter, K. Buffinton, F. Canas, J. Carff and W. Howell
(2009). “The Yobotics-IHMC Lower Body Humanoid Robot”. In:
International Conference on Intelligent Robots and Systems (IROS). St.
Louis, USA.

D. Rodriguez, A. Brandenburger and S. Behnke (2018). “Combining
Simulations and Real-robot Experiments for Bayesian Optimiza-
tion of Bipedal Gait Stabilization”. In: 22nd RoboCup International
Symposium. Montréal, Canada.

T. Röfer, T. Laue, A. Baude, J. Blumenkamp, G. Felsch, J. Fiedler, A.
Hasselbring, T. Haß, J. Oppermann, P. Reichenberg, N. Schrader
and D. Weiß (2019). B-Human Team Report and Code Release 2019.
Tech. rep. University of Bremen.

Q. Rouxel, G. Passault, L. Hofer, S. N’Guyen and O. Ly (2015). “Rhoban
Hardware and Software Open Source Contributions for RoboCup
Humanoids”. In: 10th Workshop on Humanoid Soccer Robots, Interna-
tional Conference on Humanoid Robots (Humanoids). Seoul, Korea.

M. Schwarz and S. Behnke (2013). “Compliant Robot Behavior using
Servo Actuator Models identified by Iterative Learning Control”. In:
17th RoboCup International Symposium. Eindhoven, Netherlands.

B. Stephens and C. Atkeson (2010). “Push Recovery by Stepping for
Humanoid Robots with Force Controlled Joints”. In: International
Conference on Humanoid Robots (Humanoids). Taipei, Taiwan.

J. Stuelpnagel (1964). “On the Parametrization of the Three-Dimen-
sional Rotation Group”. In: SIAM Review 6.4.

T. Takenaka, T. Matsumoto and T. Yoshiike (2009). “Real Time Motion
Generation and Control for Biped Robot 1st Report: Walking Gait
Pattern Generation”. In: International Conference on Intelligent Robots
and Systems (IROS). St. Louis, USA.

T. Takenaka, T. Matsumoto, T. Yoshiike, T. Hasegawa, S. Shirokura,
H. Kaneko and A. Orita (2009). “Real Time Motion Generation and
Control for Biped Robot 4th Report: Integrated Balance Control”. In:

bibliography 231

International Conference on Intelligent Robots and Systems (IROS). St.
Louis, USA.

T. Takenaka, T. Matsumoto, T. Yoshiike and S. Shirokura (2009). “Real
Time Motion Generation and Control for Biped Robot 2nd Report:
Running Gait Pattern Generation”. In: International Conference on
Intelligent Robots and Systems (IROS). St. Louis, USA.

Team NimbRo (Sept. 2018). Humanoid Open Platform ROS Software. url:
https://github.com/AIS-Bonn/humanoid_op_ros.

R. Tedrake, S. Kuindersma, R. Deits and K. Miura (2015). “A Closed-
form Solution for Real-time ZMP Gait Generation and Feedback
Stabilization”. In: International Conference on Humanoid Robots (Hu-
manoids). Seoul, Korea.

J. Urata, K. Nishiwaki, Y. Nakanishi, K. Okada, S. Kagami and M.
Inaba (2011). “Online Decision of Foot Placement Using Singular
LQ Preview Regulation”. In: International Conference on Humanoid
Robots (Humanoids). Bled, Slovenia.

O. Urbann, I. Schwarz and M. Hofmann (2015). “Flexible Linear Inver-
ted Pendulum Model for Cost-effective Biped Robots”. In: Interna-
tional Conference on Humanoid Robots (Humanoids). Seoul, Korea.

J. Vaganay, M. Aldon and A. Fournier (1993). “Mobile Robot Attitude
Estimation by Fusion of Inertial Data”. In: International Conference on
Robotics and Automation (ICRA). Atlanta, USA.

M. Vukobratović and B. Borovac (2004). “Zero-Moment Point — Thirty
Five Years of its Life”. In: International Journal of Humanoid Robotics
1.1, pp. 157–173.

P.-B. Wieber (2006). “Trajectory Free Linear Model Predictive Control
for Stable Walking in the Presence of Strong Perturbations”. In:
International Conference on Humanoid Robots (Humanoids). Genova,
Italy.

S.-J. Yi, D. Hong and D. Lee (2013). “A Hybrid Walk Controller for
Resource-Constrained Humanoid Robots”. In: International Confer-
ence on Humanoid Robots (Humanoids). Atlanta, USA.

S.-J. Yi, B.-T. Zhang, D. Hong and D. Lee (2011). “Online Learning of a
Full Body Push Recovery Controller for Omnidirectional Walking”.
In: International Conference on Humanoid Robots (Humanoids). Bled,
Slovenia.

https://github.com/AIS-Bonn/humanoid_op_ros

	Analytic Bipedal Walking with Fused Angles and Corrective Actions in the Tilt Phase Space
	Dedication
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Videos
	List of Acronyms
	1 Introduction
	1.1 Key Contributions
	1.2 Publications
	1.3 Outline

	2 Related Work
	2.1 ZMP-based Gait Generation
	2.1.1 Preview Control
	2.1.2 Model Predictive Control

	2.2 Capture Point and Divergent Component of Motion
	2.3 RoboCup Walking Approaches
	2.4 Discussion

	3 Actuator Control
	3.1 Servo Motor Model
	3.1.1 DC Motor Model
	3.1.2 Compensated Motor Control

	3.2 Feed-forward Torque Estimation
	3.2.1 Single Support Models
	3.2.2 Joint Torque Estimation

	3.3 Experimental Results
	3.4 Discussion

	4 Sensor Calibration
	4.1 Inertial Measurement Unit Calibration
	4.1.1 IMU Orientation Calibration
	4.1.2 Gyroscope Scale Calibration
	4.1.3 Gyroscope Bias Calibration
	4.1.4 Online Gyroscope Bias Autocalibration

	4.2 Sensor Calibration in the Bigger Picture

	5 Representations of 3D Rotations
	5.1 Motivation and Aims
	5.1.1 Amount of Rotation in the Major Planes
	5.1.2 Partitioning of Rotations into Yaw and Tilt

	5.2 Existing Rotation Representations
	5.2.1 Rotation Matrices
	5.2.2 Axis-angle and Rotation Vector Representations
	5.2.3 Quaternions
	5.2.4 Euler Angles
	5.2.4.1 Intrinsic ZYX Euler Angles
	5.2.4.2 Intrinsic ZXY Euler Angles

	5.3 Partitioning Rotations into Yaw and Tilt
	5.3.1 Fused Yaw
	5.3.2 Tilt Rotations
	5.3.2.1 Z-vector Parameterisation
	5.3.2.2 Quaternion Parameterisation

	5.3.3 Tilt Angles Representation
	5.3.4 Fused Angles Representation
	5.3.5 Tilt Phase Space
	5.3.5.1 Relative Tilt Phase Space
	5.3.5.2 Absolute Tilt Phase Space
	5.3.5.3 Tilt Vector Addition

	5.4 Rotation Representation Conversions
	5.4.1 From Tilt Angles To
	5.4.2 From Fused Angles To
	5.4.3 From Tilt Phase Space To
	5.4.4 From Quaternion To
	5.4.5 From Rotation Matrix To

	5.5 Singularity Analysis
	5.5.1 Fused Yaw Singularity
	5.5.2 Other Singularities

	5.6 Selected Properties of Yaw-Tilt Rotations
	5.6.1 Links Between Quaternions and Fused Yaw
	5.6.2 Links Between Fused Angles and Euler Angles

	5.7 Discussion
	5.7.1 Rotation Representation Aims
	5.7.2 Application Examples

	6 Why Not Euler Angles?
	6.1 Euler Angles Conventions
	6.2 Problems with Euler Angles
	6.2.1 Singularities and Local Parameter Sensitivities
	6.2.2 Mutual Independence of Rotation Parameters
	6.2.2.1 Mutual Dependence of Yaw and Roll
	6.2.2.2 Mutual Dependence of Pitch and Roll
	6.2.2.3 Purity of the Axis of Rotation

	6.2.3 Axisymmetry of Yaw
	6.2.3.1 Mathematical Model of Axisymmetry
	6.2.3.2 Visualising Yaw Axisymmetry

	6.2.4 Axisymmetry of Pitch and Roll
	6.2.4.1 Axisymmetry of Tilt Angles
	6.2.4.2 Axisymmetry of Fused Angles
	6.2.4.3 Axisymmetry of the Tilt Phase Space
	6.2.4.4 Non-axisymmetry of Euler Angles
	6.2.4.5 Visualising Pitch/Roll Axisymmetry
	Visualisation A
	Visualisation B
	Visualisation C

	6.3 Conclusion

	7 Attitude Estimation
	7.1 Related Work
	7.2 Problem Definition and Notation
	7.3 Sensor Inputs
	7.4 Complementary Filtering
	7.4.1 1D Linear Complementary Filter
	7.4.2 Extension to 3D Nonlinear Filtering
	7.4.3 3D Nonlinear Passive Complementary Filter

	7.5 Measured Orientation Resolution Methods
	7.5.1 Magnetometer Resolution Method
	7.5.2 Fused Yaw Resolution Method

	7.6 Extensions to the Estimator
	7.6.1 Quick Learning
	7.6.2 Estimation without Magnetometer Data

	7.7 Experimental Results
	7.8 Discussion

	8 A Central Pattern Generator for Walking
	8.1 CPG Gait Interfaces
	8.1.1 CPG Gait Inputs
	8.1.2 CPG Gait Outputs
	8.1.3 Provisions for Closed-loop Feedback
	8.1.3.1 Timing Feedback
	8.1.3.2 Step Size Feedback

	8.2 CPG Motion Generation
	8.3 Experimental Results

	9 Direct Fused Angle Feedback Controller
	9.1 Gait Structure
	9.2 Corrective Actions
	9.3 Fused Angle Feedback Mechanisms
	9.3.1 Proportional Feedback
	9.3.2 Derivative Feedback
	9.3.3 Integral Feedback
	9.3.4 Timing Feedback
	9.3.5 Virtual Slope Feedback
	9.3.6 Tuning of the Feedback Mechanisms

	9.4 Experimental Results
	9.5 Conclusion

	10 Keypoint Gait Generator
	10.1 Motivation
	10.1.1 Strategies for Balanced Walking
	10.1.2 Gait Architecture
	10.1.3 Aims for the Gait Generator

	10.2 Keypoint Gait Generation
	10.2.1 Corrective Actions
	10.2.2 Gait Generator Interface
	10.2.2.1 Gait Generator Inputs
	10.2.2.2 Gait Generator Outputs
	10.2.2.3 Swing Ground Plane Corrective Action

	10.2.3 Keypoint Trajectory Generation
	10.2.4 Implementation

	10.3 Discussion
	10.3.1 Characteristics of the Generator
	10.3.2 Advantages of the Abstract Space

	10.4 Experimental Results
	10.5 Conclusion

	11 Tilt Phase Controller
	11.1 Gait Architecture
	11.1.1 Gait Command Velocity
	11.1.2 The Tilt Phase Space

	11.2 Tilt Phase Controller Formulation
	11.2.1 Preliminaries
	11.2.2 Deviation Tilt
	11.2.3 Arm and Support Foot Tilt
	11.2.4 Hip Shift and Continuous Foot Tilt
	11.2.5 Leaning
	11.2.6 Swing Out
	11.2.7 Swing Ground Plane
	11.2.8 Maximum Hip Height
	11.2.9 Timing Adjustment
	11.2.10 Step Size Adjustment

	11.3 Experimental Results
	11.4 Conclusion

	12 Conclusion
	12.1 Future Directions

	Bibliography

