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Abstract— The parameterisation of rotations in three dimen-
sional Euclidean space is an area of applied mathematics that
has long been studied, dating back to the original works of
Leonhard Euler in the 18th century. As such, many ways of
parameterising a rotation have been developed over the years.
Motivated by the task of representing the orientation of a
balancing body, the fused angles parameterisation is developed
and introduced in this paper. This novel representation is
carefully defined both mathematically and geometrically, and
thoroughly investigated in terms of the properties it possesses,
and how it relates to other existing representations. A second
intermediate representation, tilt angles, is also introduced as a
natural consequence thereof.

I. INTRODUCTION

Numerous ways of representing a rotation in three-
dimensional Euclidean space have been developed and re-
fined over the years. Many of these representations, also re-
ferred to as parameterisations, arose naturally from classical
mathematics and have found widespread use in areas such
as physics, engineering and robotics. Prominent examples of
such representations include rotation matrices, quaternions
and Euler angles. In this paper, a new parameterisation of the
manifold of all three-dimensional rotations is proposed. This
parameterisation, referred to as fused angles, was motivated
by the analysis and control of the balance of bodies in
3D and the shortcomings of the various existing rotation
representations to describe the state of balance in an intuitive
and problem-relevant way. More specifically, the advent of
fused angles was to address the problem of representing the
orientation of a body in an environment where there is a
clear notion of what is ‘up’, defined implicitly, for example,
through the presence of gravity. An orientation is just a
rotation relative to some global fixed frame however, so fused
angles can equally be used to represent any arbitrary three-
dimensional rotation, much like Euler angles can be used
for both purposes for example. The shortcomings of Euler
angles that make them unsuitable for this balance-inspired
task are discussed in detail in Section II-D.

When analysing the balance state of a body, such as for
example a humanoid robot, it is very helpful to be able to
work with a parameterisation of the orientation that yields
information about the components of the rotation within each
of the three major planes, i.e. within the yz, xz and xy
planes. These components of the rotation can conceptually
be thought of as a way of quantifying the ‘amount of rotation’
about the x, y and z-axes respectively. It is desirable for these
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components to each offer a useful geometric interpretation,
and behave intuitively throughout the rotation space, most
critically not sacrificing axisymmetry within the horizontal
xy plane by the introduction of a clear sequential order
of rotations. The fusing of individual rotation components
to avoid such an order motivated the term ‘fused angles’.
Quaternions, a common choice of parameterisation in com-
putational environments, clearly do not address these require-
ments, as elucidated in Section II-C.

The fused angles rotation representation has to date found
a number of uses. Most recently in work published by
the same authors, an attitude estimator was formulated that
internally relied on the concept of fused angles [1] [2]. The
open source ROS software for the NimbRo-OP humanoid
robot [3], developed by the University of Bonn, also relies
on the use of fused angles, most notably in the areas of state
estimation and walking [4] [5]. Furthermore, a Matlab and
Octave library [6] targeted at the numerical and computa-
tional handling of all manners of three-dimensional rotation
representations, including fused angles, has been released.
This library is intended to serve as a common reference for
the implementation in other programming languages of a
wide range of conversion and computation functions. It is
seen by the authors as a test bed to support the development
of new rotation-related algorithms.

The convention is used in the following work that the
global z-axis points in the ‘up’ direction relative to the
environment. As mentioned previously, this accepted ‘up’
direction will almost always be defined as the antipodal
direction of gravity. This ensures that definitions such as that
of fused yaw make terminological sense in consideration of
the true rotation of a body relative to its environment. All
derived formulas and results could easily be rewritten using
an alternative convention if this were to be desired.

The contribution of this paper lies in the introduction of
the novel concept of fused angles for the representation of
rotations. A further contribution is the concept of tilt angles
(see Section III), an intermediary representation that emerges
naturally from the derivation of the former.

II. REVIEW OF EXISTING ROTATION REPRESENTATIONS

Many ways of representing 3D rotations in terms of a
finite set of parameters exist. Different representations have
different advantages and disadvantages, and which represen-
tation is suitable for a particular application depends on a
wide range of considerations. Such considerations include:
• Ease of geometric interpretation, in particular in a form

that is relevant to the particular problem,
• The range of singularity-free behaviour,



• Computational efficiency in terms of common opera-
tions such as rotation composition and vector rotation,

• Mathematical convenience, in terms of numeric and
algebraic complexity and manipulability, and

• Algorithmic convenience, in the sense of a represen-
tation potentially possessing properties that can conve-
niently be exploited for a particular algorithm.

A wide range of existing rotation representations are re-
viewed in this section as a basis for comparison. Due to the
dimensionality of the space of 3D rotations, a minimum of
three parameters are required for any such representation. A
representation with exactly three parameters is referred to as
minimal, while other representations with a greater number
of parameters are referred to as redundant.

A. Rotation Matrices

A rotation can be represented as a linear transformation
of coordinate frame basis vectors, expressed in the form of
an orthogonal matrix of unit determinant. Due to the strong
link between such transformation matrices and the theory
of direction cosines, the name Direction Cosine Matrix is
sometimes used. The space of all rotation matrices is called
the special orthogonal group SO(3), and is defined as

SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1}. (1)

Rotation of a vector v ∈ R3 by a rotation matrix is given by
matrix multiplication. For a rotation from coordinate frame
{G} to {B}, we have that

G
BR =

[
GxB

GyB
GzB

]
=
[
BxG

ByG
BzG

]T
, (2)

where GyB , for example, is the column vector corresponding
to the y-axis of frame {B}, expressed in the coordinates of
frame {G}. The notation G

BR refers to the relative rotation
from {G} to {B}. With nine parameters, rotation matrices are
clearly a redundant parameterisation of the rotation space.
They are quite useful in that they are free of singularities
and trivially expose the basis vectors of the fixed and rotated
frames, but for many tasks they are not as computationally
and numerically suitable as other representations.

B. Axis-Angle and Rotation Vector Representations

As stated by Euler’s rotation theorem, every rotation in the
three-dimensional Euclidean space R3 can be expressed as a
single rotation about some axis. As such, each rotation can
be mapped to a pair (û, θ) ∈ S2×R, where û is a unit vector
corresponding to the axis of rotation, and θ is the magnitude
of the rotation. Note that S2 = {v ∈ R3 : ‖v‖ = 1}, the 2-
sphere, is the set of all unit vectors in R3. A closely related
concept is that of the rotation vector, given by u = θû,
which encodes the angle of rotation as the magnitude of
the vector defining the rotation axis. Both the axis-angle
and rotation vector representations suffer from a general
impracticality of mathematical and numerical manipulation.
For example, no formula for rotation composition exists that
is more direct than converting to quaternions and back. The
Simultaneous Orthogonal Rotations Angle (SORA) vector, a
slight reformulation of the rotation vector concept in terms

of virtual angular velocities and virtual time, was presented
by Sašo Tomažič et al. in [7]. This formulation suffers from
drawbacks similar to those of the rotation vector represen-
tation. These drawbacks include a discontinuity at rotations
of 180◦, and a general lack of geometric intuitiveness.

C. Quaternions

The set of all quaternions H, and the subset Q thereof of
all quaternions that represent pure rotations, are defined as

H = {q = (q0,q) ≡ (w, x, y, z) ∈ R4},
Q = {q ∈ H : |q| = 1}. (3)

Quaternion rotations can be related to the axis-angle repre-
sentation, and thereby visualised to some degree, using

q = (q0,q) =
(
cos θ2 , û sin θ

2

)
∈ Q, (4)

where (û, θ) ∈ S2×R is any axis-angle rotation pair, and q is
the equivalent quaternion rotation. The use of quaternions to
express rotations generally allows for very computationally
efficient calculations, and is grounded by the well-established
field of quaternion mathematics. A crucial advantage of the
quaternion representation is that it is free of singularities. On
the other hand however, it is not a one-to-one mapping of
the special orthogonal group, as q and −q both correspond
to the same rotation. The redundancy of the parameters also
means that the unit magnitude constraint has to explicitly
and sometimes non-trivially be enforced in numerical com-
putations. Furthermore, no clear geometric interpretation of
quaternions exists beyond the implicit relation to the axis-
angle representation given in (4). For applications related to
the balance of a body, where questions arise such as ‘how
rotated’ a body is in total or within a particular major plane,
the quaternion representation yields no direct insight.

D. Euler Angles

A step in the right direction of understanding the different
components of a rotation is the notion of Euler angles. In this
representation, the total rotation is split into three individual
elemental rotations, each about a particular coordinate frame
axis. The three Euler angles (α, β, γ) describing a rotation
are the successive magnitudes of these three elemental rota-
tions. Many conventions of Euler angles exist, depending
on the order in which the elemental axis rotations are
chosen and whether the elemental rotations are taken to be
intrinsic (about the rotating coordinate frame) or extrinsic
(about the fixed coordinate frame). Extrinsic Euler angles
can easily be mapped to their equivalent intrinsic Euler
angles representations, and so the two types do not exhibit
fundamentally different behaviour. If all three coordinate
axes are used in the elemental rotations, the representation
is alternatively known as Tait-Bryan angles, and the three
parameters are referred to as yaw, pitch and roll, respectively.
Tait-Bryan angles, although promising on first thought, do
not suffice for the representation of the orientation of a body
in balance-related scenarios. The main reasons for this are:
• The proximity of the gimbal lock singularity to nor-

mal working ranges, leading to unwanted artefacts due



to increased local parameter sensitivity in a widened
neighbourhood of the singularity,

• The fundamental requirement of an order of elemental
rotations, leading to asymmetrical definitions of pitch
and roll that do not mirror one another in behaviour,

• The asymmetry introduced by the use of a yaw def-
inition that depends on the projection of one of the
coordinate axes onto a fixed plane, leading to unintuitive
non-axisymmetric behaviour of the yaw angle.

As an example of the last of these points, consider the
intrinsic ZYX Euler angles representation and the previously
discussed convention that the global z-axis points ‘upwards’
(see Section I). Consider a body in space, assumed to be
in its identity orientation, and some arbitrary rotation of the
body relative to its environment. It would be natural and
intuitive to expect that the yaw of this rotation is independent
of the chosen definition of the global x and y-axes. This is
because the true rotation of the body is always the same,
regardless of the essentially arbitrary choice of the global x
and y-axes, and one would expect a well-defined yaw to be a
property of the rotation, not the axis convention. This is not
the case for ZYX Euler yaw however, as can be verified by
counterexample with virtually any non-degenerate case. The
yaw component of the fused angles representation, defined
in Section III, can be proven to satisfy this property.

E. Vectorial Parameterisations

Parameterisations are sometimes developed specifically to
exhibit certain properties that can be exploited to increase the
efficiency of an algorithm. A class of such generally more
mathematical and abstract rotation representations is given by
the family of vectorial parameterisations. Named examples
of these include the Gibbs-Rodrigues parameters and the
Wiener-Milenković parameters, also known as the conformal
rotation vector (CRV). Such parameterisations derive from
mathematical identities such as the Euler-Rodrigues formula,
and as such do not in general have any useful geometric
interpretation, and find practical use in only very specific
applications. Detailed derivations and analyses of vectorial
parameterisations can be found in [8] and [9].

III. FUSED ANGLES

The idea of fused angles was motivated by the lack of
an existing 3D rotation formalism that naturally deals with
the dissolution of a complete rotation into parameters that
are specifically and geometrically relevant to the balance
of a body, and does not introduce order-based asymmetry
in the parameters. None of the representations discussed in
Section II satisfy this property. The unwanted artefacts in the
existing notions of yaw (see Section II-D) also led to the need
for a more suitable, stable and axisymmetric definition of
yaw. This section defines the fused angles representation and
motivates the underlying mathematical derivation thereof.

We begin by defining an intermediate rotation represen-
tation, referred to as tilt angles. The tilt angles parameter
definitions are shown graphically in Fig. 1. Let {G} denote
the global fixed frame, defined with the convention that

zB

yB

γ

yA

α

zG, zA

v̂

ψ

yG

xB

xG

xA

Fig. 1. Definition of the tilt rotation and tilt angles parameters (ψ, γ, α).

the global z-axis points upwards in the environment, as
discussed in Section I. We define {B} to be the body-fixed
coordinate frame. For an identity orientation of the body, the
frames {G} and {B} should clearly coincide. Throughout this
paper we use the notation that GzB =

(
GzBx,

GzBy,
GzBz

)
,

for example, denotes the unit vector corresponding to the
positive z-axis of frame {B}, expressed in the coordinates
of frame {G}. The absence of a coordinate basis qualifier
implies that a vector is expressed relative to {G}.

As zG and zB are vectors in R3, a rotation about an axis
perpendicular to both vectors exists that maps zG onto zB .
We choose an axis-angle representation (v̂, α) of this tilt
rotation such that α ∈ [0, π]. The angle α is referred to as the
tilt angle of {B}, and the vector v̂ is referred to as the tilt axis
of {B}. We define coordinate frame {A} to be the frame that
results when we apply the inverse of the tilt rotation to {B}.
By definition zA = zG, so it follows that v̂—and trivially
also xA—must lie in the xAyA plane. The angle γ about zA
from xA to v̂ is referred to as the tilt axis angle of {B}. The
tilt rotation from {A} to {B} is completely defined by the
parameter pair (γ, α). We now note that the rotation from
{G} to {A} is one of pure yaw, that is, a pure z-rotation, and
so define the angle ψ about zG from xG to xA as the fused
yaw of {B}. It is important to note that the choice of using
the x-axes in this definition of yaw is arbitrary, and a similar
definition using the y-axes would be completely equivalent.
The complete tilt angles representation of the rotation from
{G} to {B} is now defined as

G
BT = (ψ, γ, α) ∈ (−π, π]× (−π, π]× [0, π] ≡ T. (5)

From the method of construction it can be seen that all
rotations possess a tilt angles representation, but this is not
always unique. Most notably when α = 0, the γ parameter
can be arbitrary. To remedy this, we introduce the concepts of
fused pitch and fused roll. Let vx and vy be the projections
of the zG vector onto the body-fixed yBzB and xBzB planes
respectively. We define the fused pitch of {B} as the angle
θ between zG and vx, of sign − sgn

(
BzGx

)
. By logical
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Fig. 2. Valid domain of fused pitch and roll, as per the sine sum criterion.

completion, the magnitude of θ is taken to be π
2 if vx = 0.

We similarly define the fused roll of {B} as the angle φ
between zG and vy , of sign sgn

(
BzGy

)
. The magnitude of

φ is taken to be π
2 if vy = 0. Conceptually, fused pitch and

roll can simply be thought of as the angles between zG and
the yBzB and xBzB planes, respectively.

From inspection it can be seen that the fused pitch and roll
only uniquely specify a tilt rotation up to the z-hemisphere.
To resolve this ambiguity, the hemisphere of a rotation is
defined as sign

(
BzGz

)
= sign

(
GzBz

)
, where sign(0) = 1.

The complete fused angles representation of the rotation from
{G} to {B} can now be defined as
G
BF = (ψ, θ, φ, h)

∈ (−π, π]× [−π2 , π2 ]× [−π2 , π2 ]× {−1, 1} ≡ F̂. (6)

The (θ, φ, h) triplet in (6) replaces the (γ, α) pair from the
the tilt angles representation to define the tilt rotation. Al-
though also evident by a geometrical argument, mathematical
analysis of the above definitions reveals that the tilt rotation
depends only on the value of BzG, and vice versa. As such,
the following expressions can be derived as an alternate
mathematical definition of the tilt rotation parameters:

γ = atan2
(
−BzGx,BzGy

)
∈ (−π, π] (7)

α = acos
(
BzGz

)
∈ [0, π] (8)

θ = asin
(
−BzGx

)
∈ [−π2 , π2 ] (9)

φ = asin
(
BzGy

)
∈ [−π2 , π2 ] (10)

h = sign
(
BzGz

)
∈ {−1, 1}. (11)

Analysis of the geometric definition of fused yaw also reveals
an alternate mathematical definition, given by

ψ =

{
wrap

(
atan2

(
GzBx,−GzBy

)
− γ
)

if α 6= 0

atan2
(
GxBy,

GxBx
)

if α = 0
(12)

where wrap is a function that wraps an angle to (−π, π]. It
can be seen from (9–11) that BzG is given by a well-defined
multivariate function fz : (θ, φ, h) 7→ BzG, defined by

BzG =
(
− sin θ, sinφ, h

√
1− sin2 θ − sin2 φ

)
. (13)

The domain of fz , and hence the general domain of fused
pitch and roll on which the fused angles representation is
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Fig. 3. Cones of constant fused pitch θ (left) and fused roll φ (right).

valid, is given by the restriction of [−π2 , π2 ] × [−π2 , π2 ] ×
{−1, 1} to sin2 θ + sin2 φ ≤ 1. The restriction of F̂ by this
sine sum criterion is denoted F, the set of all valid fused
angles representations. Note that the sine sum criterion is
precisely equivalent to |θ| + |φ| ≤ π

2 . The domain of valid
fused pitch and roll angles is shown graphically in Fig. 2.

The concepts of fused pitch and roll can be visualised in
3D by consideration of the level sets of fz , shown in Fig. 3.
The level sets are drawn as loci in 3D of BzG for constant
fused pitch and roll. It is important to note that the plots
are in the body-fixed frame {B}, and not in the global fixed
frame {G}. Combining specifications of θ and φ into a value
for BzG is equivalent to intersecting the corresponding cones
of constant pitch and roll. Which of the two intersections is
used is directly given by the h parameter. Failure to intersect
is equivalent to a violation of the sine sum criterion.

IV. CONVERSIONS TO OTHER REPRESENTATIONS

Fused angles serve well in the analysis of body orienta-
tions, but even so, conversions to other representations are of-
ten required for mathematical computations such as rotation
composition. The equations required for the conversion of a
fused angles representation F = (ψ, θ, φ, h) ∈ F to and from
tilt angles, rotation matrix and quaternion representations are
presented in this section. The proofs of these equations are
not difficult, but beyond the scope of this paper.

1) Fused angles↔ Tilt angles: The yaw parameters ψ of
these two representations are equal, so the conversion from
fused angles to tilt angles can be completely summarised as

γ = atan2(sin θ, sinφ) (14)

α = acos
(
h

√
1− sin2 θ − sin2 φ

)
, (15)

where in the latter equation one may use the trigonometric
identity 1 − sin2 θ − sin2 φ = cos(θ + φ) cos(θ − φ) for
numerical computation. We interestingly note from (15) that

sin2 θ + sin2 φ = sin2 α. (16)

The conversion from tilt angles to fused angles is

θ = asin(sinα sin γ)

φ = asin(sinα cos γ)
h =

{
1 if α ≤ π

2 ,
−1 otherwise.

(17)



2) Fused angles ↔ Rotation matrix: In order to convert
the fused angles vector F into a rotation matrix, the equiv-
alent tilt angles representation (ψ, γ, α) ∈ T must first be
calculated using (14–15). Based on the geometrical definition
of tilt angles provided in Section III, the rotation matrix
representation of F can then be expressed as follows. We
use the abbreviations sx ≡ sinx, cx ≡ cosx and β = ψ+γ.

R =

cγcβ + cαsγsβ sγcβ − cαcγsβ sαsβ
cγsβ − cαsγcβ sγsβ + cαcγcβ −sαcβ

−sθ sφ cα

 (18)

Note that R31 = −sθ = −sαsγ and R32 = sφ = sαcγ .
The inverse conversion from R to F follows from (7–11). If
Rm = max{R11, R22, R33} and Rz = 1−R11−R22 +R33,
then the rotation matrix to fused angles conversion can be
summarised mathematically as

ψ̃ =


atan2(R21 −R12, 1 + tr(R)) if tr(R) ≥ 0

atan2(Rz, R21 −R12) if Rm = R33

atan2(R32 +R23, R13 −R31) if Rm = R22

atan2(R13 +R31, R32 −R23) if Rm = R11

(19)

ψ = wrap(2ψ̃), θ = asin(−R31), (20)
φ = asin(R32), h = sign(R33). (21)

The corresponding tilt angles parameters can be shown to be

γ = atan2(−R31, R32), α = acos(R33). (22)

3) Fused angles ↔ Quaternion: The conversion of a tilt
angles rotation T = (ψ, γ, α) ∈ T to the corresponding
quaternion representation is robustly given by

q = (cᾱcψ̄, sᾱcψ̄+γ , sᾱsψ̄+γ , cᾱsψ̄), (23)

where ᾱ = α
2 and ψ̄ = ψ

2 . For fused angles, the equivalent
quaternion is the normalisation of either q̃p or q̃n, where

q̃p =
(
cψ̄C

+
α , sφcψ̄ − sθsψ̄, sφsψ̄ + sθcψ̄, sψ̄C

+
α

)
(24)

q̃n =
(
sαcψ̄, cψ̄+γC

−
α , sψ̄+γC

−
α , sαsψ̄

)
, (25)

with C+
α = 1 + cα and C−α = 1− cα. It is recommended to

use (24) if h = 1, and (25) if h = −1. Note that α never
needs to be calculated, just cα and sα. By inversion of (23),
and with use of (20–21), the fused angles representation of
a quaternion q = (w, x, y, z) ∈ Q can be shown to be

ψ = wrap
(
2 atan2(z, w)

)
, θ = asin

(
2(wy − xz)

)
, (26)

h = sign(w2 + z2 − 0.5), φ = asin
(
2(wx+ yz)

)
. (27)

Note that this expression for ψ is insensitive to the quaternion
magnitude, and far more direct than an expression derived
from (19–20) would be. Note also that the angle wrapping
of ψ is at most by a single multiple of 2π. The tilt angles
representation of a quaternion can be shown to be

γ = atan2(wy − xz,wx+ yz) (28)

α = acos
(
2(w2 + z2)− 1

)
. (29)

V. SINGULARITY ANALYSIS

When examining rotation representations, it is important to
identify and precisely quantify any singularities. Singularities
are unavoidable in any minimal parameterisation, and may
occur in the form of:
• A rotation that cannot unambiguously be resolved into

the required set of rotation parameters,
• A rotation for which there is no unambiguous equivalent

parameterised representation,
• A rotation in the neighbourhood of which the sensitivity

of the rotation to parameters map is unbounded.
The entries of a rotation matrix are a continuous function
of the underlying rotation and lie in the interval [−1, 1]. As
such, from (20–21) and the continuity of the appropriately
domain-restricted arcsine function, it can be seen that the
fused pitch and fused roll are continuous over the entire
rotation space. Furthermore, the hemisphere parameter of the
fused angles representation is uniquely and unambiguously
defined over the rotation space. As a result, despite its
discrete and thereby technically discontinuous nature, the
hemisphere parameter is not considered to be the cause of
any singularities in the fused angles representation. The fused
yaw parameter, on the other hand, can be seen from (26) to
have a singularity at w = z = 0, due to the singularity of
atan2 at (0, 0). From (23), this condition can be seen to be
precisely equivalent to α = π, the defining equation of the
set of all rotations by 180◦ about axes in the xy plane. The
fused yaw singularity is a singularity of both the first and
third type as per the characterisation given previously, and
corresponds to an essential discontinuity of the fused yaw
map. Moreover, given any fused yaw singular rotation R,
and any neighbourhood U of R, for every ψ ∈ (−π, π] there
exists a rotation in U with a fused yaw of ψ. Conceptually,
the fused yaw singularity can be seen as being as ‘far away’
from the identity rotation as possible. This is by contrast not
the case for Euler angles.

The tilt angles representation trivially has the same singu-
larity in the fused yaw as the fused angles representation. In
addition to this however, from (22), the tilt axis angle γ also
has a singularity when R31 = R32 = 0. This corresponds
to θ = φ = 0, or equivalently, α = 0 or π—that is, either
rotations of pure yaw, or rotations by 180◦ about axes in
the xy plane. The tilt angle parameter α is continuous by
(8) and the continuity of the arccosine function, and as such
does not contribute any further singularities.

VI. RESULTS AND PROPERTIES OF FUSED ANGLES

The fused angles representation possesses a remarkable
number of subtle properties that turn out to be quite useful
both mathematically and geometrically when working with
them. One of these properties, relating to the axisymmetry
of the representation, has already been stated without proof
in Section II-D. Further more complex properties of fused
angles, involving for example the matching of fused yaws
between coordinate frames, were invoked in [1] to derive a
computationally efficient algorithm to calculate instantaneous



measurements of the orientation of a body from sensor data.
Some of the more basic but useful properties of fused angles
are presented in this section.

A. Fundamental Properties of Fused Angles

The following fundamental properties of fused angles
hold, and form a minimum set of axiomatic conditions on
the fused angles parameters.
• A pure x-rotation by β ∈ [−π2 , π2 ] is given by the fused

angles representation (0, 0, β, 1) ∈ F.
• A pure y-rotation by β ∈ [−π2 , π2 ] is given by the fused

angles representation (0, β, 0, 1) ∈ F.
• A pure z-rotation by β ∈ (−π, π] is given by the fused

angles representation (β, 0, 0, 1) ∈ F.
• Applying a pure z-rotation to an arbitrary fused angles

rotation is purely additive in fused yaw.
Further fundamental properties of fused angles include:
• The parameter set (ψ, θ, φ, h) ∈ F is valid if and only

if |θ|+ |φ| ≤ π
2 , i.e. the sine sum criterion is satisfied.

• The parameter set (ψ, θ, φ, h) ∈ F can be put into
standard form by setting h = 1 if |θ| + |φ| = π

2 , and
ψ = 0 if θ = φ = 0 and h = −1 (i.e. α = π).

• Two fused angles rotations are equal if and only if their
standard forms are equal.

B. Inverse of a Fused Angles Rotation

The fused angles representation of the inverse of a rotation
is intricately linked to the fused angles parameters of a
rotation. This is an almost unexpected result when compared
to for example Euler angles, but follows trivially from the
formulas and properties presented in this paper thus far. Con-
sider a fused angles rotation (ψ, θ, φ, h) with an equivalent
tilt angles representation (ψ, γ, α). The parameters of the
inverse rotation are given by

ψinv = −ψ, γinv = wrap(ψ + γ − π), (30)

αinv = α, θinv = asin
(
− sinα sin(ψ + γ)

)
, (31)

hinv = h, φinv = asin
(
− sinα cos(ψ + γ)

)
. (32)

The first equation in (30) represents a remarkable property
of fused yaw, one that other definitions of yaw such as ZYX
Euler yaw do not satisfy. This property is referred to as
negation through rotation inversion. It is worth noting that if
a rotation has zero fused yaw, i.e. it is a pure tilt rotation, the
inverse fused pitch and roll also satisfy the negation through
rotation inversion property. That is,

ψ = 0 ⇔
{
ψinv = −ψ, θinv = −θ,
hinv = h, φinv = −φ. (33)

C. Characterisation of the Fused Yaw of a Quaternion

For rotations away from the singularity α = π, that is,
for rotations where the fused yaw is well-defined and unam-
biguous, inspection of (23) reveals that the z-component of
a quaternion q = (w, x, y, z) ∈ Q is zero if and only if the
fused yaw is zero. That is,

z = 0 ⇔ ψ = 0. (34)

Furthermore, it can be seen that the quaternion corresponding
to the fused yaw of the rotation can be constructed by zeroing
the x and y-components of q and renormalising. That is,

qyaw = 1√
w2+z2

(w, 0, 0, z). (35)

This leads to one way of removing the fused yaw component
of a quaternion—something that is a surprisingly common
operation—using the expression

qtilt = q∗yawq = 1√
w2+z2

(
wq + z(z, y,−x,−w)

)
. (36)

The fused yaw can also be computed using (26) and manually
removed. Equations (35–36) fail only if w = z = 0, which
is precisely equivalent to α = π, the fused yaw singularity.

VII. CONCLUSIONS

Two novel ways of parameterising a rotation were formally
introduced in this paper. The main contribution of these,
the fused angles representation, was developed to be able
to describe a rotation in a way that yields insight on the
components of the rotation in each of the three major
planes of the Euclidean space. These components of rotation
were termed the fused yaw, fused pitch and fused roll. The
second introduced parameterisation, tilt angles, was defined
solely as an intermediate representation between fused an-
gles and other existing representations. Nevertheless, the
tilt angles representation proves to be visually, conceptually
and mathematically useful. Many properties of the fused
angles and tilt angles representations were derived, often
in highlight of their simplicity, and the relations of these
two representations to other commonly used representations
were explicitly given. The computational efficiency of the
two representations can be seen by inspection of [6]. Due
to their many special properties, fused angles fill a niche in
the area of rotation parameterisation that is left vacant by
alternative constructs such as Euler angles and quaternions,
and are expected to yield valuable information and results,
in particular in applications that involve balance.
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