

Visual search

Pop-out experiments: basic features

(Treisman & Gelade '80)

The pop-out effect

▶ This stimulus results in a pop-out effect

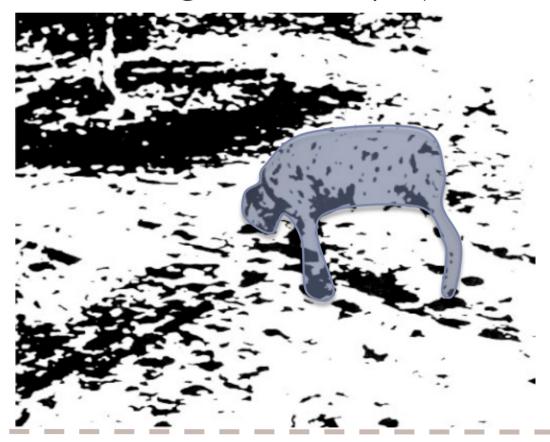
Efficient search for the target

Less efficient search

Find the) among (

Configural superiority

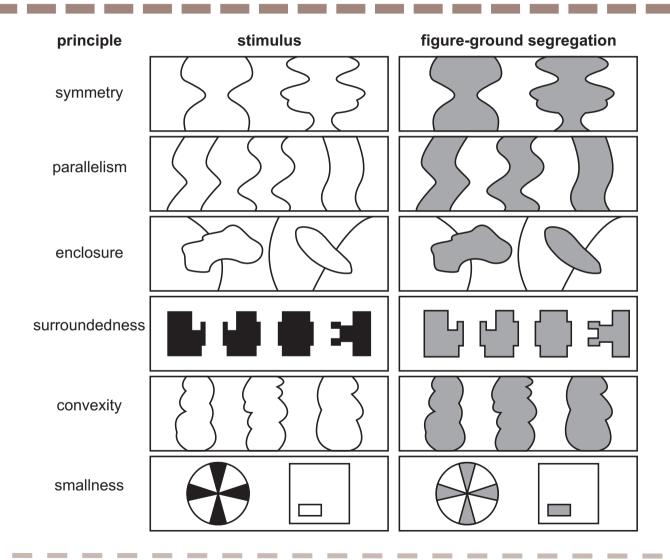
Now make it harder by adding more items


Configural superiority

- Search becomes more efficient
- Configural superiority
 - Not perception of 32 items, but 16 figures, () or ((
- Features

- Curvature
- Emerging features: symmetry and closure
- Higher-level features subsume basic features

Gestalt: From parts to wholes


The visual system has the tendency to group the parts into larger whole (objects/scenes).

Gestalt: Grouping

Gestalt: Figure-ground segregation

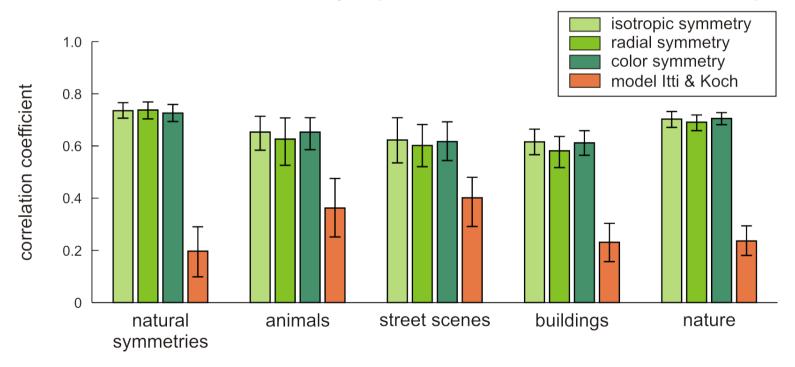
Visual Attention

Prediction of gaze: basic features

 Predictions of human eye fixations based on contrasts of basic features

Multi-scale symmetry model

 Calculation of local symmetry at different scales to obtain a symmetry-saliency map


Symmetry-saliency model: Results

Symmetry-saliency model: Results

Human eye fixations are better predicted using symmetry than using center-surround contrast

Correlations between saliency maps and combined human fixation distance maps

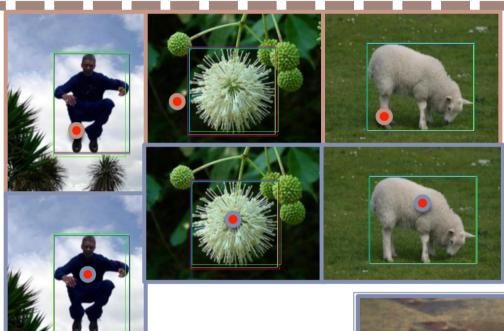
Gestalt in Machine Vision

- Machine vision also faces the problem of how to go from parts to wholes
- Gestalt principles can be used as bottom-up features for
 - Attention
 - Segmentation

General Objectives

- Detection and segmentation of unknown objects
- No prior knowledge, so bottom-up methods
- Purpose
 - To be able to interact with the scene
 - To be able to learn new objects in the scene

Object Detection


- The symmetry-saliency model selects fixation points that are:
 - Often on the salient objects in a scene
 - Close to the center of the object

0.2

Object Detection Results

Contrast

Symmetry

Symmetry

Contrast

Object Segmentation

Super Pixels and Similarities

- We use a super-pixel representation
 - From 300.200 pixels to hundreds of super pixels
 - More reliable depth and plane information
- Markov Random Field
- ▶ Three similarity cues for segmentation

Object Segmentation

Iterative: from fixation point to segment

- ▶ Results, compared to (Mishra et al 2009)
 - Better segmentation
 - Much faster (50-100ms)

Segment Evaluation

Segment Evaluation

- ▶ The bottom-up methods can fail
 - ▶ Failure of object-detection method to find object
 - ▶ Failure of segmentation method to correctly find the object borders.
- Goal of evaluation
 - Find best segment among candidates

Segment Evaluation

- Use Gestalt principle of figural goodness
 - Nice, ordered, simple forms have high goodness

Gestalt measures for goodness

Segment goodness

- Good continuation
- 2. Color contrast
- 3. Plane contrast
- 4. Symmetry
- 5. Parallelism
- 6. Color uniqueness
- 7. Out-of-planeness

Results

Measure	Correlation	R^2 measure
good continuation	0.56	0.31
color contrast	0.58	0.34
plane contrast	0.64	0.41
symmetry	0.63	0.39
parallelity	0.61	0.37
color uniqueness	0.71	0.51
out-of-planeness	0.77	0.59
Linear combination	_	0.80
Neural network	0.93	0.87

- ▶ R² measure of individual measures reasonable
- ▶ Linear combination: improvement
 - Shows that measures are complimentary
- ▶ Trained neural network outperforms linear comb.

Results

Discussion

Discussion

- Gestalt principles for
 - Prediction of eye movements (symmetry)
 - Object detection (symmetry)
 - Object segmentation (proximity, similarity)
 - Segment evaluation (7 principles)
- Gestalt principles provide good features for bottom-up and autonomous object detection and segmentation

Speed

- Symmetry detection
 - ▶ CPU: 50 ms for 460x480 images
 - ▶ GPU: 5-10 ms
- Super-pixel segmentation
 - CPU:
 - Super pixels, Lab, stats: 100 ms
 - ▶ Graph-cut segmentation: 4-8 ms
- Evaluation
 - ▶ CPU: 5-10 ms

Thank you for you attention

kootstra@kth.se

Symmetry-saliency model

Symmetry as a salient feature

Do this for all pixel pairs in kernel

$$S_{ij} = \left(1 - \cos\left(\gamma_i + \gamma_j\right)\right) \cdot \left(1 - \cos\left(\gamma_i - \gamma_j\right)\right)$$

$$S(p) = \sum_{ij \in \Gamma} s_{ij} \cdot w_{ij}$$

Good continuation

- True object boundaries are generally smooth
- **b** Based on the curvature φ_i

Color contrast

- Contrast of color at left and right side of contour usually high at true object boundaries
- $c_i = \sqrt{0.3(r_i r_b)^2 + 0.59(g_i g_b)^2 + 0.11(b_i b_b)^2}$

Plane contrast

- Left and right side of true object boundaries are usually in different plane
- Contrast based on difference in depth and orientation of the super-pixel planes

Symmetry

Total amount of symmetry of the segment

- Comparing all contour elements $(r_1 < d < r_2)$ with each other
- $egin{array}{lll} oldsymbol{\xi}_{i,j} &=& \cos^2(\gamma_i+\gamma_j)\cdot \left(\sin^2(\gamma_i)\cdot \sin^2(\gamma_j)
 ight) \ \lambda_{i,j} &=& \log(1+c_i)\cdot \log(1+c_j) \ s_{i,j} &=& \xi_{i,j}\cdot \lambda_{i,j} \end{array}$

Parallelism

Similar to symmetry, but now for parallel contour elements

Color uniqueness

- The object usually has a distinct color from the background
- Comparing the Lab color histograms of the segment with the complete image

Out-of-planeness

- Assumption: objects are placed on a supporting surface, which can be detected as dominant plane
- Comparison of planes of the super pixels in the segment and the dominant plane

