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Abstract— Perception of the environment is crucial for many
robot applications. Thus, geometric and semantic mapping
using point cloud sensors is subject to many research activities.
In this paper, an approach to incrementally register point
clouds from time-of-flight cameras and create feature maps
is presented. Frustum culling ICP, key frame based plane
segmentation and aggregation of a feature map are presented
and evaluated on the service robot Care-O-bot® 3. The focus
is on table-top extraction for tele-operated robots.

Index Terms— Registration, frustum culling, table-top extrac-
tion, tele-operation

I. INTRODUCTION

Geometric and semantic mapping are very important tech-
niques for robotics as they enable a robot to perceive and
interact with the environment. Recently, it has been subject to
many research activities. Most approaches use laser scanners
or 3-D cameras as input, build point maps while or after robot
movement and try to extract geometric shapes from the point
map. Geometric properties and relationships can then be used
to generate semantic information about the environment.
In the field of tele-operated robots, requirements are different
from those for autonomous robots. First, real-time map
update plays an important role. The human remote user has to
be provided with continuous map updates as fast as possible.
Otherwise, controlling the robot in an intuitive way becomes
almost impossible. For automomous robots it is most of the
times sufficient to have a map update at a planned point
of time. Second, the map representation has to be usable
for visualization in tele-operation. The tele-operator has to
get a visual impression of the environment that he or she
can understand easily. Assistant functions like highlighting
regions of interest in the GUI can improve robot control
greatly. For instance, objects for manipulation are often
located on table-tops. Therefore, table-top segmentation can
be used for identification of regions of interest for object
detection.
In this paper, we present an approach for incremental table-
top extraction during tele-operated robot movement. The
focus is on computation time efficient registration of point
clouds and extraction of planar surfaces. To reduce the mean
computational load we try to limit the amount of sensor data
that has to be processed. Therefore, we use modifications of
well-known algorithms that mainly work on current sensor
data and only process selected key frames. Also, we use
laser range finder based 2D localization in order to ease the
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mapping problem. As our robot is equipped with a time-of-
flight camera, sensor data filtering also is an important part
of our architecture. We will show that our approach reduces
computation time compared to state-of-the-art methods while
it is able to keep a consistent map representation.
The remainder of this paper is structured as follows: an
overview of related work is given in Section II. Section III
presents our architecture for incremental extraction whereas
Section IV shows our filter efforts for time-of-flight sensors.
Section V describes the key frame selection and point cloud
registration. The table-top extraction is shown in Section
VI, followed by feature map and merging in Section VII.
Evaluation of our method is given in Section VIII. Finally,
conclusions and outlook are presented in Section IX.

II. RELATED WORK

Segmentation and detection of horizontal surfaces has
been presented in some recent publications. For example,
Rusu et al. used a tilting laser scanner to acquire point
clouds in [1] and performed planar segmentation using
RANSAC in order to find table surfaces. The detected
tables were used as a base for model fitting and surface
reconstruction of objects residing on the tables. Further
work by Rusu et al. shows semantic object labeling of
planar surface structures in kitchen environments like
cupboards, tables and drawers [2]. Geometric features like
width or height of the planes are used for classification.
Another recent approach to semantic mapping of surfaces
is presented in [3]. Trevor et al. show an extension to their
feature based mapping technique that is able to identify
and label horizontal planar surfaces during SLAM. They
rely on Rusu’s work for planar segmentation and are able
to add table locations to their map graph. However, all
those approaches use the point cloud of a whole area as
input data. Thus, table segmentation can only be done after
scanning larger parts of the environment. In contrast, we
propose an incremental method for table segmentation.
Also, all those methods use tilting laser scanners in order to
generate point clouds. Those are significantly different w.r.t.
accuracy, frame rate and field of view. Thus, they cannot be
applied without modification to time-of-flight camera data.
Aggregation of 3-D maps using time-of-flight cameras also
has been subject to various research activities. First of all,
measurements errors of time-of-flight cameras are much
higher than those from laser range finders. This leads to the
need of filter algorithms that are able to deal with the error
effects. Some effective filtering methods were proposed in
[4], namely amplitude filter and filtering of jump edges. In



addition, statistical outlier removal [5] is a powerful means
to reduce the amount of spurious measurements in the point
cloud.
Meanwhile, the Iterative Closest Point algorithm (ICP) [6]
is a common means for point cloud registration. It has
been used in various variants for building 3-D maps, e.g.
in [7], [8], [9], [10]. One interesting alternative – if the
robot position estimate is fairly accurate – is frustum ICP,
as proposed in [11]. The authors use knowledge about the
field of view of a sensor to achieve a pre-segmentation of
the input data for registration. This keeps the time needed
for registration constant with growing map size.

III. SYSTEM ARCHITECTURE

As the focus of the table-top extraction system is on
application in tele-operation, incremental construction of a
feature map and fast map update has to be assured. The
architecture which is used for achieving this is shown in
figure 1. Raw data from a time-of-flight camera is used as
input. First, the sensor data has to be processed in a filter
cascade in order to improve the point cloud quality. Several
filter methods are applied in a carefully chosen order. To
reduce the amount of redundant sensor information, only key
frames are further processed. The key frames are selected
w.r.t. to the robot motion so that they have a certain overlap.
In the next step, field-of-view dependent registration of key
frames takes place. This is done to reduce the amount of
data and therefore the time needed for registration. The
registered point clouds are stored in the point map and used
for subsequent registration steps.
The registered key frame is passed to the object extraction

component that performs planar decomposition and generates
a convex hull for each table-top surface in the current view.
This enables a fast extraction at a limited point cloud size.
As the same table-top can be extracted from different key
frames, the convex hulls have to be merged. This is done
by a polygon clipping algorithm. The merged table-tops are
finally stored in the object map.
This architecture allows an incremental update of both the
point map and the feature map. In contrast, working on the
full dataset would slow down the system over time as more
and more data is added to the point map and both registration
and extraction would require an increasing computational
effort. The problem of keeping the feature map up-to-date
is overcome by a simple merging method.

IV. TOF DATA FILTER

In order to improve the quality of the sensor data, it
has to be filtered. The main error types are presented in
[12]. In a first step, jump edges are filtered. These occur
at sudden transitions between surfaces in the environment,
e.g. between an object on a table and the background.
Jump edges can be filtered by comparing geometric relations
between neighboring pixels. Because other filter methods like
amplitude filtering remove points from the point cloud and
therefore destroy relevant neighbor relations, the jump edge
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Fig. 1. System architecture

filtering has to be done first. Calculation of the angle between
neighboring points is done according to [4], i.e.

ξi = max arcsin

(
‖pi,n‖

‖pi,n − pi‖
sinϕ

)
(1)

with the angle ξi between the vector pi and the difference
vector between pi and one of the eight neighboring points
pi,n. ϕ depicts the apex angle between two neighboring
pixels. If ξi > ξth, pi is considered to be part of a jump
edge and neglected.
In a second step, errors caused by low illumination or mea-
surements outside the non-ambiguity range can be handled
by amplitude thresholding: Sensor values with a low ampli-
tude In < Ith usually indicate a low confidence and can be
removed. Some time-of-flight sensors provide a confidence
map that hold a probability of confidence for each pixel. The
confidence value can provide additional information on how
the respective pixel should be treated.
To reduce Gaussian noise and spurious pixels remaining
after previous steps, statistical outlier removal is an effective
algorithm. As proposed in [4], [5], for all points in the point
cloud, the mean distance to neighboring points is calculated.
Afterwards, thresholding w.r.t. the deviation of the distance
can take place and thus, points with a higher distance from
their neighbors than the mean are filtered.
All those filter mechanisms are well evaluated in literature.
However, the filter sequence can have a huge influence on the



quality of the resulting point cloud. We propose to perform
jump edge filtering first because the geometric structure of
the point cloud should be unchanged for that. The amplitude
filter should be applied next as it is a reliable indicator of
measurement errors. The statistical outlier removal is applied
at last as it does not account for the physical principle of
errors and just removes spurious pixels that remain after
amplitude and jump edge fitering. Furthermore, the two
initial filters are not able to filter all erroneous measurements,
but at least reduce the density of the point cloud in erroneous
regions. This increases the effectiveness of the statistical
outlier filter in those regions.

V. KEY FRAMES AND REGISTRATION

The filtered point clouds are registered in the next step.
Although we rely on laser range finder based localization,
registration of point clouds is still necessary as the localiza-
tion is inaccurate especially when the robot does rotational
movement. However, only selected key frames are processed
in registration. The selection process uses information about
the robot motion, i.e. the position change of the platform
since registration of the last key frame, to determine new key
frame candidates. The parameters of the selection process
mainly depend on the sensor properties (opening angle,
maximum range) and the average distance of environment
structures. Subsequent key frames must have a certain over-
lap in order to guarantee successful registration. Registration
of key frames only reduces the mean computational load
over time in the way that it avoids multiple registration of
redundant sensor data.
ICP is a well established method for point cloud registration.
However, when registering to the full map, the time needed
for one iteration grows over time. Therefore, we use an ICP
variant proposed in [13] called frustum ICP. The idea behind
is, that if the robot position is known at least approximately,
the current sensor data can be registered to the subset of the
map residing in the current field of view of the sensor.
Calculation of the field of view is done once for each sensor.

The method used models the measurement cone as a frustum
(see Figure 2). Five clipping planes are defined regarding the
sensor properties like horizontal and vertical opening angle
and maximum range. For each clipping plane the normal
vector

ni = vl × vm (2)

is calculated. The normal vectors are used to determine
whether a point is inside or outside the frustum by testing

(xp − x0)ni,x + (yp − y0)ni,y + (zp − z0)ni,z < 0 (3)

The field-of-view frustum has to be transformed from Fcam

to FW in each time step according to the current robot
position estimate.

VI. TABLE-TOP EXTRACTION

Our table-top extraction method is similar to those already
proposed in literature like [1]. The difference is, that it is
applied to each key frame and not to the full point map.

Fig. 2. Field of view of a time-of-flight camera modeled as a frustum.

First, Eucledian clustering is applied to the key frame to
identify connected parts of the point cloud. For each cluster
of at least a minimum size, the point normals are estimated to
enhance the next step, plane segmentation. We use RANSAC
to fit a plane model to each cluster in order to identify the
dominant plane.
For each segmented plane certain rules are evaluated in
order to calculate the confidence that it is indeed a table-
top. Evaluation consists of two steps:

1) Each plane with a number of inliers below a threshold
is neglected as we only want to process planes of a
certain size

2) The plane has to be horizontal and at a certain height
interval

If these conditions are fulfilled, the plane is considered part
of a table-top.
The next step is then to calculate the convex hull for the
inliers of the plane. This is done according to [?] and the
output is a 2D hull consisting of some tenths of points. Each
convex hull is passed to the merger for incorporation in the
feature map.

VII. MERGING AND FEATURE MAP

The merger works on the feature maps and tries to
incorporate the convex hulls coming from the table-
top extractor in the feature map. The convex hulls can
be considered polygons. Therefore, a polygon clipping
algorithm can be applied to merge incoming hulls to those
already residing in the map.

We use an algorithm derived from the separating axis
theorem [?]. It says that for two convex shapes in 2D
space there exists a line onto which the projections of
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their points are separate if and only if they are not
intersecting. This means, we have to check for each side
of the two polygons whether the projections of all points
of the two shapes on a line perpendicular to the side are
separate (see Fig. 3). The detailed sequence of calculation is:

1) For two adjacent points of a polygon pn and pn+1 the
linear equation of the perpendicular line is formed by

~x = ~pn + λ~g (4)

with

~g =

(
−(pn+1,y − pn,y)
pn+1,x − pn,x

)
(5)

2) The projection si of each point qi of the polygons on
the line is calculated by

(~si − ~qi) ◦ ~g = 0 (6)

3) si is part of the line and can be expressed by equation
(4). Together with equation (6), the line parameter for
each projected point can be calculated by

λi =
~si ◦ ~g − ~pn ◦ g

g2x + g2y
(7)

4) In order to decide whether the current perpendicular
line is a separating line, the condition

[λ1,min, λ1,max] ∩ [λ2,min, λ2,max] = ∅ (8)

with the line parameters λ1, λ2 corresponding with the
points of polygon 1 and 2 respectively, has to hold.

If there is at least one separating line, the two polygons
are considered to be non-intersecting. Otherwise, the two
convex hull polygons have to be merged. A simple method
is to concatenate the two input hulls and calculate a new
convex hull for the concatenation. In the case of intersecting
polygons, the respective feature in the map is updated. If
merging with all features in the map fails, a new feature is
added.

VIII. RESULTS

The incremental table-top extraction method is evaluated
on the service robot Care-O-bot® 3 [14] in the Fraunhofer
IPA robot lab. Comparison of computation time between our
method and state-of-the-art was done. Quality of the table
extraction was tested empirically.

A. Robot Platform

The Care-O-bot® 3 platform (see Fig. 4) is a service robot
product vision developed by Fraunhofer IPA. It consists of
an omni-directional base with three laser range finders used
for localization and navigation. For manipulation tasks, it
is equipped with a 7 degree-of-freedom light-weight arm
and a three-finger gripper. On the agile head, two color
cameras and a SwissRanger™ SR4000 time-of-flight camera
is mounted. The SR4000 is used as sensor for the method
described in this paper.

Fig. 4. Care-O-bot® 3, used for evaluation

B. Data Sets

The dataset for evaluation was recorded in the IPA kitchen
environment. The robot was driven manually on a circle-
like trajectory around a table. Sensor and localization data
was recorded untriggered during movement. On the whole,
the dataset covers about 52 s of robot operation. The scene
consists of a small table with three objects on top, a second
table with computer monitors on top in the background and
also areas that are out of range of the time-of-flight camera.
This yields noisy measurements. Fig. 5 shows a picture of
the kitchen environment.

C. Evaluation

First of all, the filters were evaluated. The quality of the
filtered point cloud was rated empirically by visualizing the
data. The filters were adjusted in order to filter a least all



Fig. 6. Sensor data filtering: raw data, jump edge filter, amplitude filter, statistical outlier removal

Fig. 5. Fraunhofer IPA kitchen environment

erroneous measurements. As most parts of the scene are seen
from multiple views during movement, rather strong filtering
is the better choice.
Fig. 6 shows the unfiltered point cloud and the filtered clouds
after jump edge, amplitude and statistical outlier filtering.
As can be seen, jump edge and amplitude filtering already
remove most of the noise. The statistical outlier removal
only discards single remaining pixels in this case. Thus, the
influence of the point cloud quality is rather low. This leads
to the conclusion that this kind of filtering is obsolete for
most of the images. Well-working filter parameters are an
amplitude threshold of 4000, an angle threshold of 170° for
jump edges and a mean K of 50 with a standard deviation
multiplier of 1 for the statistical outlier removal.
Keyframe selection only passes a new frame to registration if
a certain robot pose change occured. There should be at least
50% of overlap between consecutive key frames to ensure
correct registration. For our dataset, we identified proper
parameters to be 5° for rotational movements and 0.3 m for
translation.
In the next evaluation step, standard ICP is compared to
frustum culling ICP regarding computation time. In order to
get meaningful results, we measured the time for the first
iteration. Otherwise, the number of iterations has a huge
influence on the total registration time which makes it hard
to get comparable values. Fig. 7 shows the computation time
for the first iteration for 15 consecutive key frames. While
the computation time using standard ICP is growing over
time due to the growing map size, the computation time for
frustum ICP stays constant after an initial increase because it
takes some frames until the collected data covers the whole
frustum. However, for our rather small dataset of 15 key

frames, the impact on the whole registration time is not very
distinct. Yet it will grow for larger data sets. ICP was able
to converge in the correct minimum for all key frames in
the scene, regardless whether we used the standard method
or frustum culling. Hence, there is no difference in quality
between both methods.
Table-top extraction is evaluated by comparing the computa-
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Fig. 7. Comparison of the computation time for the first iteration between
standard ICP and frustum ICP.

tion times between using the full point map in each extraction
step and only the aligned key frame with successive merging.
Fig. 8 depicts the computation time over key frames for
our dataset. It can be seen that the time needed for table-
top extraction grows boundlessly when using the full map
whereas it is nearly constant when only using the key frame.
Merging is very cheap as the convex hulls consist of few
points only and the number of features in the map is low for
a typical household scene.
The resulting point map and feature map can be seen in Fig.

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10  12  14

Ti
m

e
 (

se
c)

Key Frame

full map extraction
key frame extraction + merging

Fig. 8. Comparison of the computation time for table-top extraction on
the full cloud and on the key frame only with successive merging.



9 and Fig. 10. Fig. 9 shows the maps after key frame 2. The
table-top is uncomplete. Fig. 10 depicts the final maps with
a completely merged table-top.

Fig. 9. Point and feature map after key frame 2.

Fig. 10. Final point and feature map after key frame 15.

IX. CONCLUSIONS AND FUTURE WORK

We presented an approach for incremental registration and
table-top extraction on a tele-operated robot. The focus was
on reduced computation time. This was achieved by limiting
the amount of data the algorithms work on. For registration,
the frustum culling variant was used to enable working on
data in the current field of view only. Table-top extraction
was performed on key frames only to reduce computation
effort. However, resulting table-tops from different frames
had to be merged in a feature map, which is computationally
cheap.
Future work will focus on improved feature maps. For ex-
ample, different geometric shapes identifying walls, shelves,
doors could be extracted and incorporated in the feature map.
Parts of the point cloud that cannot be described by simple
geometric shapes could at least be clustered or processed by
surface mesh generation. The long-term goal is to describe

most parts of the environment by geometric features. The
main benefit from this is a serious reduction of the amount of
data to be transferred to a remote user and easy visualization.
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