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Abstract— Semantic visual perception for knowledge acqui-
sition plays an important role in human cognition, as well as
in the many tasks expected to be performed by a cognitive
robot. In this paper, we present a vision system designed for
indoor mobile robotic systems. Inspired by recent studies on
holistic scene understanding, we generate spatial information
in the scene by considering plane estimation and stereo line
detection coherently within a unified probabilistic framework
and indicate how the resultant spatial information can be
used for facilitating robust visual perception and reasoning
visual elements in the scene. We also demonstrate how the
proposed system facilitates and increase the robustness of two
robotics applications – visual attention and continuous learning.
Experiments demonstrate that our system provides plausible
representation of visual objects as well as accurate spatial layout
of the scene.

I. INTRODUCTION

Holistic scene understanding has been an ultimate goal
of computer vision research for more than five decades [1].
This goal starts from several sophisticated and ambitious
algorithms relying on heuristics which attempted understand-
ing 3D scene structure from a single image and in recent
years much progress has been made in this field under
coherent consideration of the spatial relationship between
objects and scene geometry [2][3][4][5]. This combination
of isolated object recognition and geometrical contextual
analysis provides a robust and efficient solution to the typical
chicken-and-egg problem of locating objects and reasoning
about 3D scene layout simultaneously. However, this ap-
proach is implemented by many researchers for better object
recognition/detection results rather than more accurate spatial
reasoning, since most of the sophisticated object recogniz-
ers/detectors can provide the probabilistic representations of
the recognition results and there is no general approach
producing spatial abstraction with probabilistic performance
measure.

On the other hand, motivated by functional interpretations
of spatial language term ”on”, and the need for cognitively
plausible and practical abstractions for mobile robots, the
authors of [6] present an important functional spatial relation
of mechanical support. They demonstrate that the spatial
reasoning through estimation of supporting surfaces is a
necessary part of linguistic interaction between robots and
human beings. The accurate estimation of the supporting
surfaces also paves the way to build up the hierarchical
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structure of a scene which helps indirect search in the
context of mobile robot. Hence, we consider planar surface
estimation as the general spatial abstraction and represent
the plane estimations probabilistically. We then unify the
estimated planes and detected features in a joint probabilistic
framework to produce refined supporting planar surfaces,
thereby facilitating various robotics tasks, such as robotic
visual attention and interactive learning.

The paper is organized as follows. In §II we introduce
the background and review state-of-the-art solutions. §III
describes how to use coherent stereo line detection and plane
estimation for reasoning about accurate spatial abstraction.
Subsequent sections present the experimental results with
synthetic scene, and real robotic applications. Conclusion is
given at the end of the paper.

II. RELATED WORK

In this section, we will present an overview of con-
ventional visual perception systems for mobile robot, then
introduce recent work on holistic scene understanding from
which we draw inspiration.

Mobile robotic systems usually group coherent features as
the visual information abstraction for segmenting irregular
regions from background (e.g., coloured blobs [7], object
proper motion [8], saliency detection [9], spatial reasoning
[10] or mixture of models [11]). In all these approaches,
planar surface estimation for spatial reasoning has attracted
the most widespread attention, since the studies in multiple
subjects, such as psychology [12], computer vision [13] and
robotics [6], have provided evidence that planar surface esti-
mation paves the way to build up the hierarchical structure of
a scene which constitutes behaviour-relevant entities as well
as dominates man-made real-world environments. However,
the aforementioned research obtains visual information using
plane estimation for spatial reasoning in isolation.

On the other hand, the availability of coherent spatial
abstraction and object detection can be a crucial advantage
for any visual component. This coherent processing, also
known as holistic scene understanding can provide significant
improvements by considering the relationships governing the
structure of the scene (spatial layout, objects in the scene,
etc.), thereby improving the performance of each sub-task
in the integrated process [4][2]. Hence, we unify a generic
plane estimation method and a bottom-up stereo line feature
detection in a joint probabilistic model to provide refined
supporting surfaces.

Note that our visual information abstraction system is built
atop the CoSy Architecture Schema (CAS) – a distributed
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Fig. 1: Graphical model of conditional independence of
competencies in our visual perception system.

asynchronous architecture [14], which facilitates inclusion of
other components that could bring additional functionality
to the system in a coherent and systematic way (such as
navigation and manipulation).

III. VISUAL PERCEPTION SYSTEM

Our visual perception system processes the scene as a
whole using stereo pairs of images to detect the stereo
lines and estimate 3D planar surfaces, which is followed
by coherent consideration of these two elements as well
as their relations. The overall processing and conditional
independence of competencies are depicted in Fig. 1.

We first describe how to detect the stereo lines and
estimate planar surfaces independently. The unification of
the detected stereo lines and planes for producing holistic
scene understanding will be addressed in the latter part of
this section.

A. Stereo Line Detection

The stereo line extraction is a strict bottom-up approach,
First, edges are detected from image pairs with an adaptive
canny edge detector before we fit lines into the extracted
edgel chains using the method of Rosin and West [15]. To
estimate 3D information, we have to match the lines of the
stereo image pair. For this task, the mean-standard deviation
line descriptor (MSLD) of [16] together with the constraint of
epipolar lines is utilized in the calibrated stereo camera setup.
We then use line-based stereo matching of specific feature
points to calculate the proper geometric 3D localization of
the lines.

To assess a confidence value for stereo matched lines, we
take into account lines that are almost parallel to the epipolar
line as lines pointing away from the viewpoint typically have
higher errors in 3D reconstruction. The angles between the
epipolar line and the matched lines in the left and right
image (θ2Dl, θ2Dr) as well as the angle between the line
and the z-coordinate in the camera coordinate frame (θ3Dz),
after normalization between 0 and 1 are used to generate a
confidence value:

p(f) =
θ2Dl
π/2

· θ2Dr
π/2

· θ3Dz
π/2

(1)

Fig. 2: Three plane estimations (each contains 300 points
with Gaussian noise) are displayed. The blue dashed lines
are inlier boundaries, and green lines are the side views of
the estimated planes. The black arrows denote the average
normal vectors r̄ of each plane. In the top case, points are
evenly distributed and the average normal vector is also
approximately equivalent to the normal of the estimated
plane. In the center and bottom cases, the data points are
unevenly distributed but in different ways. Our assessment
criterion (Eq. 2) can effectively distinguish the center uneven
case and keep the bottom one as the correct estimation, while
the typical evaluation criteria (e.g. the average distance of all
the inliers to the estimated plane) can not.

Note that the resulting value p(f), although in the range
of [0, 1], is not a probability. Rather, this value denotes the
quality and correctness of the reconstructed lines. Thresh-
olding can produce a true/false judgement, which may be
applied in a qualitative reasoning framework, or for learning.
We use these quantities in the holistic scene understanding
model as the measure of expected likelihood of the correct
line detection, as discussed in §III-C.

B. Supporting Surface Estimation

The RANSAC [17] algorithm is commonly applied to
estimate planes with noisy point cloud data, and numerous
extensions and modifications have been derived from it. and
It has been verified in [18][19] that taking into account data
connectivity in evaluating hypotheses of RANSAC based
approaches can significantly improve performance in plane
fitting tasks. However, [18] applied CC-RANSAC to detect
multiple planes in situations with only two nearby planar
patches, such as steps, curbs or ramps. Unfortunately, the
estimated results of CC-RANSAC might be unreliable when
there are objects on the planar surfaces, especially when
objects cluster together on part of the planar surface (e.g.
Fig.4). We adopt CC-RANSAC [18] as the underlying plane
estimator and assign confidence values to the estimated
planes by calculating the average normal vector of connected
points. This confidence value is used for the joint probability
maximization and will be addressed in detail in §III-C. Our
plane refinement facilitates more reliable estimation than
using CC-RANSAC only (experiments in §IV).

We start from the RANSAC hypotheses generation and
evaluate each hypothesis only on a set of points C = {ci, i =



1, 2, . . . ,m} that belong to the same connected planar com-
ponent, as in [18]. Consider three points, XCi , XCj , XCk

, the
normal vector of the plane generated by these three points
is rtijk = VLij

× VLjk
, where VLij

is the vector joining
XCi

and XCj
. The XCi

, XCj
, XCk

are removed from C and
operation proceeds by considering the next three neighboring
points and calculating rt+1

ijk , which proceeds until there are
less than 3 points left in C. The average normal vector r̄
of all the points in C is computed using the collection of
{r1ijk, . . . , rtijk, . . .}. We define θCS as the angle between the
average normal vector r̄ and normal vector n of the estimated
plane S, then we have the confidence value for the plane S,

Con(S) = (1− θCS
π/2

) · k
N

(2)

where k denotes the number of inliers belonging to the
estimated plane and N is the number of points in the entire
dataset. The first part of Eq. 2 measures how even the
points distribute in the inlier boundary (see fig. 2 for better
illustration), the second part of Eq. 2 favours planes with
more inliers. Eq. 2 in essence represents the continuation
and connectivity of all the inliers belonging to the estimated
plane. Higher confidence values denote better quality of the
estimated plane.

Again the above confidence does not explicitly represent a
probability. However, we can use these confidence values to
approximate a probability distribution by generating samples
around the estimated plane and weighting these samples with
confidences. Given the plane S returned by CC-RANSAC,
and S̃ a generated sample near S, we formulate the proba-
bilitiy distribution in the following way,

p(S̃|Con(S̃)) =
p(Con(S̃)|S̃)p(S̃)

p(Con(S̃))

=
[(Con(S̃) > t)]p(S̃)

p(Con(S̃))

(3)

Here t is a threshold and [ ] denotes the Iverson bracket:

[X] =

{
1, if X is TRUE
0, otherwise

(4)

With the Iverson bracket, the probability p(S̃|Con(S̃)) is
proportional to the prior for the sampled plane S̃ whenever
Con(S̃) > t, and 0 elsewhere. In other words, p(Con(S̃)|S̃)
facilitates thresholding of plane samples with low confidence.
We draw samples randomly from the neighboring area of
S to generate S̃, and S̃ ∼ N (µn, σn)N (µh, σh), where n
and h are the normal vector of plane S, and the distance of
plane S to the origin. Hence, p(S̃) is a Gaussian distribution
and assigns higher probabilities to the samples near to the
estimated plane.

C. Unified Probabilistic Framework

Given the likelihoods for representing the correct detection
of the detected stereo lines and estimated planes as shown
before, p(S) and p(E|W ) denote the prior probability of the
plane estimates S = {si} and probability of image evidences
E produced by the stereo line candidates W = {wi}. For

each line candidate wi, we introduce a boolean flag ti,
where ti = 1 denotes positive detection of the feature.
Therefore, the stereo line detection can be represented with
a combination of detection result and assigned flag, i.e.
W = {wi} = {fi, ti}, where f is the collection of the feature
detection results {f1, . . . , fM}.

According to Bayes’ theorem, p(E|W ) =
p(W |E)p(E)/p(W ), where P (W |E) is the detection’s
confidence returned by the detector as in §III-A. And
the p(E) and p(W ) can be considered to be uniformly
distributed, therefore p(E|W ) ∝ p(W |E).

With the probabilistic representation of planes and stereo
lines, we formulate the joint probability model of the holistic
scene as follows,

p(S,W,E) = p(S)

M∏
j=1

p(wj |S)p(E|wj)

=

K∏
i=1

p(S̃i|Con(S̃i))

M∏
j=1

p(fj , tj |S)p(ej |fj , tj)

(5)

where K,M are the number of plane estimates and line
candidates, respectively. p(fj , tj |S) is the probability of
feature detection with the underlying geometry, and denotes
the relation between supporting planes and detected features.
Since the boolean flag tj is determined by both scene geome-
try S and feature detection results f = {f1, . . . , fM}, and the
feature detection process is independent with scene geometry,
we have p(fj , tj |S) = p(tj |fj , S)p(fj |S) ∝ p(tj |fj , S).
Consequently Eq. 5 can be rewritten as

p(S,W,E) ∝
K∏
i=1

p(S̃i|Con(S̃i))

M∏
j=1

p(tj |fj , S)p(fj , tj |ej)

(6)

To sum up, our joint probabilistic model consists of three
parts, (1) the probability that the estimated plane is at S̃,
(2) the likelihood of positive stereo line detection with the
underlying plane estimation, (3) the confidence value of
detected lines returned by the stereo line detection algorithm.
The first and last probabilities are given using Eq. 3 and Eq. 1
respectively. The second probability is determined by the
distance and angle between detected stereo lines and planes:

p(tj = 1|fj , S) =


| cos 2θj | ·

αε

dj
if 0 ≤ θj <

π

4

| cos 2θj | ·
ε

dj
if
π

4
≤ θj <

π

2

(7)

where θj is the angle between line j and estimated plane,
dj denotes the distance of the mid-point of the line j to the
plane. As defined in RANSAC, the inlier scale parameter ε
is used to collect points, which are at a distance smaller than
ε from the estimated plane. Eq. 7 in essence gives a higher
confidence value to lines which are parallel or perpendicular
with the estimated plane, as well as lines which are geomet-
rically close to the plane. Since approximately parallel lines
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Fig. 3: Generatic synthetic data of two nearby planes.

are more likely to be found on top of objects, the distances of
these lines to the estimated plane are usually larger than the
approximately perpendicular lines. Hence, we use a weight
parameter α (empirically set to 10), which denotes that the
approximately parallel lines will be taken into account when
the distances of these lines to the supporting plane are less
than αε.) to trade off these two kinds of lines.

To maximize the joint probability, we present the optimiza-
tion problem as arg maxsi,tj (ln p(S,W,E)), the logarithmic
formulation can be rewritten as,

ln p(S,W,E) =

K∑
i=1

ln p(Si|Con(Si))

+

M∑
j=1

[ln p(tj |fj , S) + ln p(fj , tj |ej)]
(8)

where Si, tj are the parameters to be estimated. We select
the plane which has the highest confidence value of all the
plane estimation results, and only consider this plane as the
scene geometry for the joint probabilistic model optimiza-
tion. Then the first part of Eq. 8 is a constant and the second
part can be calculated independently through M 3D matched
lines comparisons of ln p(tj = 0|fj , S) + ln p(fj , tj = 0|ej)
with ln p(tj = 1|fj , S) + ln p(fj , tj = 1|ej). After labeling
all the stereo lines, the pose of the plane with the highest
confidence is refined by searching the nearby planes S̃. This
refined pose should satisfy the criterion of maximizing the
number of stereo lines parallel or orthogonal to it.

IV. EVALUATION WITH SYNTHETIC SCENE

In order to compare the performance of the proposed joint
probabilistic approach with CC-RANSAC [18], we generate
a synthetic dataset with noisy 3D points. A simple scene
consisting of one supporting plane and object clutter is used.
All points belonging to the dominant plane (points shaded
red in left image of Fig. 3)) have been manually removed
and replaced with two synthetic supporting planar patches
(parallel to the original plane), modeling two supporting
surfaces at different heights. This synthetic scene facilitates
qualitative comparison of CC-RANSAC and the proposed
method with different scales of inlier noise. These planar
patches have been generated with 15000 points (7500 each),
corrupted by Gaussian noise of standard deviation σ. The
coloured points (total number of points of three objects is
8039) in right image of Fig. 3 represent the objects.

In Fig. 4 we compare the plane estimation results of
RANSAC, CC-RANSAC and the proposed approach on the
synthetic dataset. The red points represent the typical results
of inliers belonging to the detected planes (as seen from

(a) RANSAC (b) CC-RANSAC (c) proposed approach

Fig. 4: Comparison of plane estimation results of RANSAC,
CC-RANSAC and the proposed method using synthetic data
(side view). Points on the planes are corrupted by Gaussian
noise with σ = 0.01, the height between two planes is 0.05m.
The typical estimation results of the three tested methods are
illustrated with red points.
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Fig. 5: Qualitative comparison of RANSAC, CC-RANSAC
and the proposed method with various inlier noise scale.

the side view) and the proposed method clearly outperforms
RANSAC and CC-RANSAC. The estimated plane using CC-
RANSAC is tilted towards the objects because of the higher
density of points in that area. The isolated plane estimation
with CC-RANSAC is also worse because RANSAC based
methods always converge to the largest plane near the
optimum, which in this case is the diagonal plane.

We compare RANSAC, CC-RANSAC and the proposed
holistic method on synthetic data with different inlier noise
scales, each method is given 20 trials and the results in
average are collected. The recall rate measures the proportion
of estimated inliers in actual inliers of the model, and the
precision rate presents the proportion of correctly estimated
inliers in all the estimated inliers. From Fig. 5 we see with
increasing inlier noise scale, the proposed method produces
the best plane estimation in terms of accuracy and stability.

V. ROBOTIC VISUAL ATTENTION APPLICATION

Typical robotic visual attention mechanisms generate
saliency maps from 2D image features, often over several
scales [20][9]. We combine our spatial abstraction from
the estimated planes with the 2D saliency-based method,
implemented by suppression of saliency belonging to the
plane area (most likely to be the texture on the supporting
surfaces) and encouraging the saliency near the objects
features. First, the filtered features are separated into two
categories – potential object features and plane texture fea-
tures, according to the distances of features’ center points
to its supporting plane. Then all the potential object features
are smoothed with a 2D Gaussian filter to generate object
likelihood as in [21]. Fig. 6 illustrates the generation of
object likelihood for a multi-layer shelf scenario. Our CogX



robot1 was supposed to search for various objects located on
arbitrary supporting surfaces using the proposed approach.
The search results, processing data flow and comparison with
2D-feature saliency [20] are shown in Fig. 7.

VI. INTERACTIVE ROBOTIC LEARNING APPLICATION

An interactive learning robotic system requires sophisti-
cated functionality from the underlying visual system: 1) The
bottom-up visual attention mechanism, required to generate
focus of attention without any prior information about the
objects and scene. 2) The exhaustive modelling of objects
in the scene, which forms the underlying base of high-level
conceptual properties, such as colour, 3D shape properties
and pose. 3) Instantaneous knowledge acquisition of objects
at the first available learning opportunity.

The proposed visual perception mechanism meets all the
aforementioned requirements – it produces the accurate
supporting planar surfaces by considering the bottom-up
stereo line detection and plane estimation coherently, it
facilitates automatic trigger of interactive robotic learning by
grouping the points “sticking out” from the estimated planes.
These remaining points are segmented using 3D flood-filling
and the resulting clusters yield the space of interest (SOI)
bounding spheres, which contain exhaustive information of
the potential objects.

Note that the bounding sphere is taken to be slightly
larger than the actual point cluster to ensure that it also
contains a part of the plane points, needed for the following
segmentation step. Fig. 8 shows a multi-layer shelf scene and
corresponding reconstructed point cloud. The detected planes
are represented in terms of different colours and remaining
points “sticking out” are shown in yellow. Because of the
inherent limitation of stereo reconstruction at poorly textured
surface parts and shadowing effects between left and right
camera, the resulting SOIs require further refinement using
2D colour based segmentation.

Fig. 9 illustrates the test in the multi-layer shelf scene,
it demonstrates sample object segmentations. In each pane,
the top images show the position of reprojected 3D points
(light green for object, red for background, dark green for
unknown) and the segmentation (grey for object, white for
background), the bottom images represent the graph cut
cost functions for object and background where the brighter
colour denotes greater cost. We can see that despite the
fact that the reprojected 3D points are not very precise due
to rather large noise, the graph-cut segmentation can be
successfully initialised and provides a precise object contour.
We observe that the yellow carton box is neglected due
to the inherent limitation of the color-based 2D graph-cut
segmentation. So we can use the reprojected SOI directly as
the object mask in case the graph-cut segmentation returns
trivial mask.

VII. CONCLUSION

In this paper, we present a visual information abstraction
mechanism and detail how it performs in two real robotic

1The robot can be seen in action in the video accessible at http://cogx.eu.

Fig. 8: 3D point cloud representation of the plane estimation
results, note that the figure is best viewed in color.

Fig. 9: Sample objects with segmentation results in multi-
layer shelf scene.

tasks: robotic visual attention and continuously learning. We
generate spatial information in the scene by considering
plane estimation and stereo line detection coherently within a
unified probabilistic framework, and show how the resultant
spatial information can be used indirectly for facilitating
more accurate visual perception or be used directly for
reasoning visual elements in the scene. Experiments demon-
strate that our system can produce more accurate spatial
information, thereby providing robust and plausible repre-
sentation of visual objects.
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