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Abstract— In this paper, we describe efficient methods for
solving everyday mobile manipulation tasks that require object
pick-up. In order to achieve real-time performance in complex
environments, we focus our approach on fast yet robust solutions.
For 3D perception of objects on planar surfaces, we develop
scene segmentation methods that process Microsoft Kinect depth
images in real-time at high frame rates. We efficiently plan
feasible, collision-free grasps on the segmented objects directly
from the perceived point clouds to achieve fast execution times.
We evaluate our approaches quantitatively in lab experiments
and also report on the successful integration of our methods
in public demonstrations at RoboCup German Open 2011 and
RoboCup 2011 in Istanbul, Turkey.

Index Terms— Scene Segmentation, Grasp Planning, Mobile
Manipulation

I. INTRODUCTION

Mobile manipulation tasks in domestic environments require
a vast set of perception and action capabilities. The robot not
only requires localization, mapping, path planning, and obsta-
cle avoidance abilities to safely navigate through the environ-
ment. It also needs to integrate object detection, recognition,
and manipulation. A typical requirement for a service robot
is not just to achieve the task, but to perform it in reasonable
time. While much research has been invested into the general
solution of complex perception and motion planning problems,
only few work has been focused on methods that solve the
tasks efficiently in order to allow for continuous task execution
without interruptions.

In this paper, we present fast methods to flexibly grasp
objects from planar surfaces. To achieve fast performance,
we combine real-time object perception with efficient grasp
planning and motion control. For real-time perception, we
combine rapid normal estimation using integral images with
efficient segmentation techniques. We segment the scene into
the support plane of interest and the objects thereon. Our
perception algorithm processes depth images of a Microsoft
Kinect in real-time at a frame rate of approx. 16 Hz. From the
raw object point clouds our grasp planning method derives fea-
sible, collision-free grasps within about 100 milliseconds. We
consider grasps on objects from either the side or from above.
The planned grasps are then executed using parametrized
motion primitives. We integrate our approaches into a system
that we publicly evaluate at RoboCup competitions. We further
conduct experiments in our lab to demonstrate the robustness
and efficiency of our approaches.

This paper is organized as follows: after a brief system
overview in Sec. III, we detail our approaches to real-time

Fig. 1. Top: Cosero grasps a spoon and pours milk into a bowl of cereals. A
5 min video showing the complete demonstration at RoboCup GermanOpen
2011 is available at http://nimbro.net.

3D perception and efficient grasp planning in Sec. IV and
Sec. V, respectively. In Sec. VI, we evaluate our approaches
and report on successful public demonstrations at RoboCup
GermanOpen 2011 and at RoboCup 2011 in Istanbul, Turkey.

II. RELATED WORK

Many research groups currently develop systems for mobile
manipulation in everyday environments. A very prominent
example is the Personal Robot 2 (PR2) developed by Willow
Garage [5]. It is equipped with two 7 DoF compliant arms and
a parallel gripper with touch sensor matrices on the gripper
tips. Similar to our approach, they derive feasible, collision-
free grasps from the raw object point cloud [3]. They select
the best-ranked grasp and plan a collision-free motion for the
arm taking into account obstacles that are perceived by the
robot’s 3D sensors. While the authors demonstrate that the
approach can robustly grasp a variety of objects in a wide
range of configurations, the execution speed of the system
for perception and grasping is still far slower than human
performance.

Further systems that perform object manipulation in clut-
tered environments have been reported by Srinivasa et al. [8,
7]. In [8], the authors present a robotic busboy system in
which a mobile tray delivers mugs to a statically mounted
manipulator. The manipulator grasps the mugs and loads them
into a dishwasher rack. A real-time vision system that is
designed for the mugs estimates the pose of the mugs on
the tray. Since the objects are known, valid grasps on the
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mug are precomputed. The grasp planner then selects online a
best feasible grasp from several criteria like reachability and
collision avoidance. The authors report on a total duration
of 51 sec in average for executing a grasp and releasing the
mug in the dishrack. With the robot HERB [7], the vision
system has been extended to more general object recognition
and motion planning. While object recognition is aborted after
1 sec, the planning of motions is reported to take several
seconds. Our approach is not restricted to recognizable objects.

Jain and Kemp develop EL-E [4], a mobile manipulator
that shall assist the impaired. EL-E consists of a Katana
manipulator on a vertical linear actuator mounted on a Erratic
differential drive. While we extract object information in real-
time from a depth image sensor, they segment measurements
of a 3D laser using connected components labelling to find ob-
ject clusters above table height. Similar to our approach, they
perform top grasps along the object’s principal axis. However,
side grasps are not considered. If an object is too high or
too wide to fit into the gripper, they also consider overhead
grasps on top-most points on the object. To ensure that the
grasping motion is not in collision, a cuboid volume from the
manipulator base to the object is checked for obstacles.

Morales et al. [11] propose a system that selects feasible,
collision-free grasps on objects from a database. They deter-
mine the set of feasible grasps on the object from its CAD
model in an offline phase. After the object has been recognized
and localized with a stereo vision system, a grasp simulation
framework (GraspIt! [6]) is used to select a collision-free
grasp among the potential grasps on the object. The authors
report 5 ms computation time for the recognition of objects in
a database of 5 objects. The time for planning of collision-free,
feasible grasps in GraspIt is reported to range from seconds
to several minutes in [6].

III. SYSTEM OVERVIEW

A. Design of Cognitive Service Robot Cosero
Domestic environments are designed for the specific capa-

bilities of the human body. It is therefore natural to endow the
robot with an anthropomorphic upper body scheme for similar
manipulation abilities. Furthermore, the actions of the robot
become predictable and interpretable, when they are performed
human-like. In such environments, robots also have to interact
closely with humans. By its lightweight design, Cosero is
inherently less dangerous than a heavy-weight industrial-grade
robot. Finally, the robot should also possess natural sensing
capabilities, e.g., vision and audio, since humans design their
environments salient and distinguishable in such perception
channels. We focused the design of Cosero on such typical
requirements for household settings.

We equipped Cosero with an omnidirectional drive to ma-
neuver in the narrow passages found in household environ-
ments. Its two anthropomorphic arms resemble average human
body proportions and reaching capabilities. A yaw joint in
the torso enlarges the workspace of the arms. In order to
compensate for the missing torso pitch joint and legs, a linear
actuator in the trunk can move the upper body vertically by
approx. 0.9 m. This allows the robot to manipulate on similar
heights like humans.

Cosero has been constructed from light-weight aluminum
parts. All joints in the robot are driven by Robotis Dynamixel
actuators. These design choices allow for a light-weight and
inexpensive construction, compared to other domestic service
robots. While each arm has a maximum payload of 1.5 kg and
the drive has a maximum speed of 0.6m/sec, the low weight
(in total ca. 32 kg) requires only moderate actuator power.
Compared to its predecessor Dynamaid [9], we increased
payload and precision of the robot by stronger actuation.

Cosero perceives its environment with a variety of comple-
mentary sensors. The robot senses the environment in 3D with
a Microsoft Kinect RGB-D camera in its head that is attached
to the torso with a pan-tilt unit in the neck. To improve the
robustness of manipulation, the robot can measure the distance
to obstacles directly from the grippers. We attached infrared
distance sensors to each gripper that point downward and
forward in the finger tips. Another sensor is placed in the
palm and measures distance to objects within the gripper.

B. Mobile Manipulation in Everyday Environments
We develop Cosero to perform a variety of mobile manip-

ulation tasks in everyday environments. For mobile manipu-
lation, we combine safe navigation of the robot through the
environment with motion control methods for the upper body.

1) Motion Control: We developed omnidirectional driving
for Cosero’s eight-wheeled mobile base [9]. The linear and
angular velocity of the drive can be set independently and can
be changed continuously. We determine the steering direction
and the individual wheel velocities of the four differential
drives, which are located at the corners of the rectangular base,
from an analytical solution to the drive’s inverse kinematics.

For the anthropomorphic arms, we implemented differential
inverse kinematics with redundancy resolution [9]. We also
developed compliance control for the arms [10]. For our
method we exploit that the servo actuators are back-drivable
and that the torque which the servo applies for position-control
can be limited. Compliance can be set for each direction in
task- or joint-space separately. For example, the end-effector
can be kept loose in both lateral directions while it keeps the
other directions at their targets. With these methods Cosero can
perform a variety of parameterizable motions like grasping,
placing objects, and pouring out containers.

2) Mobile Manipulation: In typical everyday mobile ma-
nipulation scenarios, the workspace of a statically mounted
manipulator is too small. One possible solution to achieve
a larger workspace is to construct robots with a restricted
manipulator workspace but to extend it with a mobile base.
Since the robot is not statically mounted to the environment,
it has to estimate its pose in reference to static parts of the
environment like walls, dynamic objects, and persons. We
propose a coarse-to-fine strategy to align the robot to the
objects involved in mobile manipulation. For example, when
the robot grasps an object from a table, it first approaches the
table roughly within the reference frame of the static map.
Then, it adjusts in height and distance to the table. Finally, it
aligns itself to bring the object into the workspace of its arms.

Cosero grasps objects on horizontal surfaces like tables
and shelves in a height range from ca. 0.3 m to 1 m [9]. It
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(a) Example table scene (b) RGB point cloud (c) Detected objects

Fig. 2. (a) Example table top setting. (b) Raw point cloud from the Kinect with RGB information. (c) Each detected object is marked with a random color.

also carries the object, and hands it to human users. We also
developed solutions to pour-out containers, to place objects on
horizontal surfaces, to dispose objects in containers, to grasp
objects from the floor, and to receive objects from users.

When handing an object over, the arms are compliant in
upward direction so that the human can pull the object, the
arm complies, and the object is released. For receiving an
object from a person, we localize the handed object with the
depth camera and drive towards it. As soon as the object is
reachable with the arms, the robot grasps it.

IV. REAL-TIME 3D PERCEPTION

A typical task for a domestic service robot is to fetch and
deliver objects. This involves detecting objects in the robot’s
workspace and recognizing them. In household environments,
objects are usually located on planar surfaces such as tables.
In [9] we proposed to use the laser scanner in the lower torso
to detect such objects. This approach, however, is not able
to perceive valuable 3D information like the objects’ height
or principal axes. We therefore developed real-time 3D scene
segmentation with the RGB-D camera. In order to identify
objects, we extract texture and color information.

A. Real-Time 3D Scene Segmentation

Our approach to object detection processes images of a
depth camera such as the Microsoft Kinect at frame rates of
approx. 16 Hz. This enables our system to extract information
about the objects in a scene with a very low latency for further
decision-making and planning stages.

We base our approach on fast planar segmentation of
the scene. We achieve the high computational speed of our
approach by combining rapid normal estimation with efficient
segmentation techniques. The basic idea of the normal esti-
mation method is to determine local surface normals from
the cross product of two tangents to the surface. For each
pixel in the depth image, the tangents are estimated from
local pixel neighbors. In the simplest case, both tangents could
be calculated from just the horizontal and vertical neighbors,
respectively. However, this approach would be highly prone
to measurement noise. The tangent estimates should therefore
be averaged in an image neighborhood. By using integral
images, such averaging operations can be processed rapidly

in constant time independent of the neighborhood size. The
overall runtime complexity of this approach is linear in the
number of points for which normals are computed.

One way to find all planes in a scene would be to extract
planes from the local surface normals in a two-stage pro-
cess [2]. First, one could find clusters in normal orientation
which then are separated by clustering in plane distance to
the origin. Since we assume here that the robot as well as the
objects in the environment are typically standing on horizontal
surfaces, we instead focus our method on local surface normals
close to the vertical direction. On all points with such normal
orientation and within a 3D region of interest, we apply
efficient RANSAC [1] to determine the horizontal plane. Then,
we find the points above the plane and extract object clusters
which projections lie within the convex hull of the support
plane. For clustering we assume that there is a small space
between the objects. The size of this space has to be chosen
carefully, since due to occlusions, parts of an object may be
disconnected. Fig. 2 shows a typical segmentation result for a
table-top scene. A multi-object tracker is constantly updated
with the detected objects.

V. EFFICIENT GRASP PLANNING

Objects in everyday manipulation scenarios are highly vari-
able in shape and appearance. Furthermore, the configuration
of objects and obstacles in a scene is strongly unstructured. It
is therefore challenging to develop a grasp planning method
that can cope with any encountered situation. Our approach is
specifically suited for rigid objects which shape is symmetric
along the principal axes of the object. We also assume that
the center of gravity roughly coincides with the center of
the object. While many objects meet these assumptions, our
approach can also yield robust grasps for objects that violate
the constraints.

We developed flexible grasping motions to grasp objects
from the side or from above. When the robot encounters a
new situation, it plans and executes a feasible collision-free
grasp on the object of interest. The robot perceives the scene
with its depth camera. It interprets the raw point representation
of the objects on the grasp surface which is provided by our
real-time 3D perception method (s. Sec. IV-A).
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Fig. 3. Left: We extract object pose and shape properties from the object
points. The arrows mark the bounding box of the objects by the principal
axes. Right: We rank feasible, collision-free grasps (red, size prop. to scores)
and select the most appropriate one (larger RGB-coded coordinate frame).

A. Grasp Motion Primitives

We distinguish two kinds of grasps for which we apply
parametrizable motion primitives. Side-grasps are designed to
approach the object along its vertical axis by keeping the
parallel grippers aligned horizontally. To grasp objects from
the top, we pitch the end-effector by 45◦ downwards to grasp
objects with the finger tips.

Both kinds of grasps are flexible in the orientation around
the vertical upward direction. However, we limit the yaw
orientation to a range between 0◦ and 90◦ (for the right
arm) due to kinematic constraints of the robot arm and torso.
Orientations beyond this range are grasped in the closest limit
angle. Alternatively, the robot can simply choose its left arm
to grasp within the reachable range.

The motion primitives approach the pre-grasp poses on a di-
rect line with open gripper. We establish the yaw orientation at
the pre-grasp pose by smooth interpolation along the reaching
trajectory. Once the pre-grasp pose is reached, the side-grasp
motion primitive simply approaches the object and closes the
gripper. For the top-grasp motion, we do not establish the pitch
orientation of the pre-grasp pose until the pre-grasp position
has been reached. We assume that the pre-grasp positions are
placed at a fixed distance (0.1m in our case) behind the grasp
position along the grasp direction. We use the IR distance
sensors in the gripper to determine premature contact with the
object or the support plane. In such a case, the approach of
the object is stopped. After the object has been grasped, the
end-effector moves back to its initial pose.

B. Planning of Collision-Free Grasps

The grasp planner selects a feasible collision-free grasp for
the object of interest. It samples grasp candidates, removes
infeasible and colliding grasps, and ranks the remaining grasps
to find the most promising one.

The planner outputs a pre-grasp pose to parametrize the
grasping motion. A grasp pose directly corresponds to the pose
of the end-effector which we define as follows: We place the
grasp at the center of the gripper. The x-axis and y-axis of the
grasp pose align with the direction from wrist to finger tips
and the direction from the right to the left finger, respectively.

1) Sampling of Grasp Candidates: We sample grasp can-
didates depending on pose and shape properties of the object.
In order to determine these properties we project the raw

Fig. 4. For each sampled grasp (final position: black dot, pre-grasp at frame
origin, x-direction: red arrow, y-direction: green arrow) we check for collisions
that may occur during the execution of the grasp motion primitive. All points
on obstacles are projected into the horizontal plane. We require the region
around the shoulder (right yellow circle) within upperarm length distance ru
to contain no obstacles. We further require that the gripper and the forearm
can move towards the object by checking a cone with opening angle α and
forearm length rf behind the grasping pose. We extend the cone towards the
robot’s center position to cover the area swept during the reaching motion.
At the final grasp position (black circle) the gripper is not in collision, when
there is no obstacle within a distance of rg .

points on the object into the horizontal plane and measure
the principal axes of the point distribution. In addition, we
determine height, center, and bounding box (aligned with the
principal axes) of the object.

Once the shape and pose of the object are known, we
determine feasible grasps on the object. For the side-grasps,
we sample pre-grasp poses on an ellipse in the horizontal plane
in equally sized angular intervals. The center and axes of the
ellipse directly correspond to the properties of the object’s
bounding box. The diameters of the ellipse add the distance
towards the grasp point to the diameters of the bounding
box (0.1m in our implementation). We grasp the objects as
low as possible above the surface at a specific height. This
makes the grasping more robust for measurement and control
inaccuracies. Otherwise, the object could easily topple over,
when the robot touches the object while moving in grasping
direction. We set the grasp height to half the height of the
gripper plus a safety padding of 0.03m.

We sample the top grasps equidistant along both principal
axes through the center of the bounding box. For kinematic
constraints of our anthropomorphic arms, we constrain the
pitch of the grasp to 45◦ in downward direction. We place
the pre-grasp pose 0.1m above the object’s height, but at
least 0.1m above the support plane.

2) Filtering for Feasible and Collision-Free Grasps: Since
the sampling stage does not consider any feasibility constraints
or collisions, we filter the grasp candidates in a post-processing
step. We take the following criteria into account:

• Grasp width. We reject grasps, when the object’s width
orthogonal to the grasp direction does not fit into the
gripper.

• Object height. Side-grasps are likely to fail when the
object is too small.

• Reachability. We do not consider grasps that are outside
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processing stage mean (std) in msec
normal estimation 7.2 (2.4)

scene segmentation 11.9 (1.4)
object clustering 41.6 (1.5)
grasp planning 98.1 (9.1)

TABLE I
COMPUTATION TIME OF INDIVIDUAL PROCESSING STAGES.

of the arm’s workspace.
• Collisions. We check for collisions during the reaching

and grasping motion.
Fig. 3 shows an example for grasps that satisfy our criteria.

One possible solution for collision checking would be to
search for collisions of all robot limbs during the complete
trajectory of the grasping motion. However, we propose to
use simple geometric constraints to find all possible colli-
sions (s. Fig. 4). While our method is more conservative, we
can find collisions with only little computational effort.

We first project all points on obstacles into the horizontal
plane. In order to avoid collisions of the upperarm, we search
for collisions within a circle around the shoulder with a radius
equal to the upperarm length. We further require that the
gripper and the forearm can move towards the object by
checking a cone with opening angle and forearm length behind
the grasping pose. We extend the cone towards the robot’s
center position to cover the area swept during the reaching
motion. Finally we search for collisions within a small circle
at the final grasp position. The radius of this circle is set to
the maximum diameter of the open gripper.

3) Ranking of Grasps: We rank the feasible and collision-
free grasps for several criteria such as

• Distance to object center. We favor grasps with a smaller
distance to the object center.

• Grasp width. We reward grasp widths closer to a preferred
width (0.08m).

• Grasp orientation. Preference is given to grasps with a
smaller angle between the line towards the shoulder and
the grasping direction.

• Distance from robot. We support grasps with a smaller
distance to the shoulder.

Fig. 3 illustrates this process with example rankings.
From the ranked grasps, we find the best top- and side-

grasps and select the most appropriate one. This decision
depends on the relation of the object height to the largest
extent of the object in the horizontal plane. We integrate a
small bias towards the faster side grasps.

VI. EXPERIMENTS

A. Quantitative Results

1) Run-Time Efficiency: In Table I, we summarize aver-
age run-times of several stages of our perception and grasp
planning pipeline in the scene shown in Fig. 2. For a depth
image resolution of 160×120, our table-top segmentation
approach achieves an average frame rate of approx. 16 Hz.
The experiments have been carried out on an HP Pavilion
dv6 notebook with an Intel Core i7 Q720 processor. Using

Fig. 5. Example grasps, segmentations, and grasp planning results for each
of the 8 household objects used in the experiments.

the integral image approach, normals can be estimated rapidly
for the 19200 image pixels within only 7.2 msec in average.
The segmentation of the scene into vertical points, applying
RANSAC to find the support plane, and determining the
points above the support plane requires 11.9 msec (avg.). The
clustering of the points into objects takes 41.6 msec (avg.).
The computation time in this step depends on the number
of objects in the scene. Our approach to grasp planning
requires computation time in the same magnitude as the
segmentation, i.e., 98.1 msec (avg.). The timings demonstrate
that our approaches are very performant and yield results in
short computation times.

We also measured the time for the complete object pick-
up process. The robot has already approached the table. It
perceives the objects on the table and plans a grasp on the
closest object in front. It executes the grasp and moves the
gripper back to its starting pose. The overall process takes
approx. 15 sec for a side-grasp and 25 sec for a top-grasp.

2) Robustness: We evaluate the robustness of our percep-
tion and grasp planning pipeline in a series of experiments.
We chose 8 typical household objects and executed 10 grasps
with the right arm that cover the range of feasible object
orientations for this arm. Fig. 5 shows an example grasp for
each object. Table II summarizes the results of the experiment.
The robot could grasp the most objects very reliably. For the
tissues, it sometimes chooses a top-grasp along the shorter
side of the object. In one situation it missed the object with
this grasp. Our approach also estimates the tea box to be high
enough to be grasped from the side in some configurations.
Despite the fact that the clothes strongly violate our assump-
tions that objects are rigid and are shaped symmetric along
principal axes, our method succeeds robustly for this object.

B. Public Demonstration

While one can assess the quality of individual system
components in the laboratory, it is difficult to compare robot
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object side-grasp top-grasp
filter box 10 / 10 0 / 0
tea box 1 / 1 9 / 9
banana 0 / 0 10 / 10

cup 10 / 10 0 / 0
chewing gums 0 / 0 10 / 10

tissues 0 / 0 9 / 10
cloth 3 / 3 7 / 7
pen 0 / 0 10 / 10

TABLE II
SUCCESS RATES (SUCCESS / TRIALS) WHEN GRASPING OBJECTS 10 TIMES

IN RANDOM ORIENTATIONS.

systems with others. In recent years, competitions such as the
DARPA Grand and Urban Challenges and RoboCup, play an
important role in assessing the performance of robot systems.

The international RoboCup competitions include the
@Home league for domestic service robots. In this compe-
tition, the robots have to perform tasks defined by the rules of
the competition, in a given environment at a predetermined
time. In addition, there are open challenges and the final
demonstration, where the teams can highlight the capabilities
of their robots in self-defined tasks. The simultaneous presence
of multiple teams allows for a direct comparison of the systems
by measuring objective performance criteria, and by subjective
judgment of the scientific and technical merit by a jury.

With Cosero, we won the RoboCup GermanOpen 2011
competition. In the finals, Cosero and Dynamaid prepared
breakfast within the 10 min demonstration slot. Dynamaid
fetched orange juice out of the refrigerator, which it opened
and closed successfully. It delivered the bottle on the breakfast
table. In the meantime, Cosero grasped a bottle of milk,
opened the bottle, and poured the milk into a cereal bowl.
Cosero disposed the empty bottle into the trash bin. It then
moved to another table and successfully grasped a spoon with
a top-grasp. A jury member placed the spoon in an arbitrary
orientation. Cosero put the spoon next to the cereal bowl and
finally waited for an instruction to leave the room. Another
jury member pointed towards one of two exit doors using a
pointing gesture. Cosero successfully recognized the pointing
gesture and left the room through the correct door. The jury
awarded us the highest score for the finals.

We also won the @Home competitions at RoboCup 2011
in Istanbul, Turkey. Early in the competition in the open
challenge, Cosero demonstrated to prepare cereals to a jury
of team leaders of other teams. In the demo challenge, Cosero
cleaned up the appartement by picking up laundry from the
ground and putting it into the correct laundry basket. A human
user could before show in which baskets to put colored and
white laundry using gestures. Afterwards, Cosero picked up 3
objects from a table using the perception and grasping pipeline
proposed in this paper. In the first attempt to pick up a carrot,
it had to choose a grasp perpendicular to the carrot’s principal
axis and failed to keep grip on the object. However, in the
second attempt, it picked up the carrot successfully along its
principal axis. Finally, it grasped a tea-box with a top-grasp.
The objects have been placed randomly. We could convince the

jury with this demonstration and achieved the highest score. 1

VII. CONCLUSION

In this paper, we proposed highly efficient means to perceive
objects on planar surfaces and to plan feasible, collision-free
grasps on the object of interest. We integrate our methods
into a mobile manipulation system, that robustly executes
object pick-up in reasonable time without longer processing
interruptions, i.e. interruptions in the milliseconds to seconds.

For object perception, we segment depth images of a Mi-
crosoft Kinect camera in real-time at a frame rate of up to 6 Hz.
We demonstrated that our perception and planning modules
yield their results in a very short time. In the integrated system
this allows for short and steady execution of the task. Our
experiments demonstrate that our method is fast yet robust.

In future work, we plan to integrate feedback from touch
sensors into the grasp execution. By including top-grasps at
high points on the objects we could further extend the range
of graspable objects (bowl-like shapes, for instance). We could
also improve our grasping pipeline through knowledge on how
to grasp specific objects.
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