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Abstract—The registration of 3D laser scans is an important
task in mapping applications. For the task of mapping with
autonomous micro aerial vehicles (MAVs), we have developed a
light-weight 3D laser scanner. Since the laser scanner is rotated
quickly for fast omnidirectional obstacle perception, the acquired
point clouds are particularly sparse and registration becomes
challenging. In this paper, we present a thorough experimental
evaluation of registration algorithms in order to determine the
applicability of both the scanner and the registration algorithms.
Using the estimated poses of the MAV, we aim at building local
egocentric maps for both collision avoidance and 3D mapping.
We use multiple metrics for assessing the quality of the different
pose estimates and the quality of the resulting maps. In addition,
we determine for all algorithms optimal sets of parameters for
the challenging data. We make the recorded datasets publicly
available and present results showing both the best suitable
registration algorithm and the best parameter sets as well as
the quality of the estimated poses and maps.

I. INTRODUCTION

Micro aerial vehicles (MAVs) such as quadrotors are used
in an increasing number of research projects and application
domains. Their size and weight limitations, however, pose a
problem in designing sensory systems for environment per-
ception. Most of today’s MAVs are equipped with ultrasonic
sensors and camera systems due to their minimal size and
weight. While these small and lightweight sensors provide
valuable information, they suffer from a limited field-of-view
and cameras are sensitive to illumination conditions. Only few
MAVs [1], [2], [3], [4] are equipped with 2D laser range finders
(LRF) that are used for navigation. These provide accurate
distance measurements to objects in the surroundings but are
limited to the two-dimensional scanning plane of the sensor.
Objects below or above that plane are not perceived.

3D laser scanners provide robots with distance measure-
ments in all directions, allowing them to detect obstacles om-
nidirectionally, build 3D maps, and localize in 6D. For the task
of mapping inaccessible areas with autonomous micro aerial
vehicles, we have developed a lightweight 3D scanner [5]
specifically suited for the application on MAVs. It consists
of a Hokuyo 2D laser range scanner, a rotary actuator and
a slip ring to allow continuous rotation. Just as with other
rotated scanners, the acquired point clouds (aggregated over
one full or half rotation) show the particular characteristic
of having non-uniform point densities: usually a high density
within each scan line and a larger angle between scan lines
(see Fig. 1). Since we use the laser scanner for omnidirec-
tional obstacle detection and collision avoidance, we rotate
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Fig. 1. Typical 3D scan (red) acquired with our continuously rotating laser
scanner during a mapping mission aligned to a ground truth colored 3D model
of a building.

the scanner quickly with 1 Hz, resulting in a particularly low
angular resolution of roughly 9◦. These non-uniform point
densities affect neighborhood searches and cause problems in
local feature estimation and registration when keeping track
of the MAV movement and building allocentric 3D maps. To
compensate for the non-uniform point densities, there are two
solutions: 1) addressing the non-uniform densities by non-
uniform neighborhood relations to allow the robust registration
of such 3D point clouds as in [6], or 2) aggregating acquired
scans over short periods of time in egocentric maps so as to
increase the point density as in [7]. In this paper, we focus
on the latter and build local egocentric maps that are used for
both collision avoidance while flying and registration (with
higher point densities) for 3D mapping. The main question
being investigated is which registration algorithm performs
best for building the egocentric maps and how it needs to
be parameterized to show this performance. Still, we include
a variant of [6] in the presented comparative experimental
evaluation. We make the following contributions:

1) We design a set of metrics for assessing the quality of
pose estimates and the quality of the resulting maps and
aligned point clouds, respectively.

2) Using Hyperopt [8], we determine optimal sets of param-
eters for all registration methods.

3) We recorded several datasets both in a smaller motion
capture volume to obtain ground truth pose estimates and
during real missions for mapping buildings with the MAV.
We make these datasets publicly available1.

4) We present the results of a thorough experimental eval-
uation using the datasets and report gained insights and
lessons learned.

1http://www.ais.uni-bonn.de/mav mapping9781-1-4673-9163-4/15/$31.00 c© 2015 IEEE
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Fig. 2. Lightweight 3D laser scanner. (a) CAD drawing. The Hokuyo 2D
LRF rotates its mirror around the green axis. It is continuously rotated around
the red axis. (b) The 3D laser scanner mounted on our MAV (marked with a
red circle).

II. RELATED WORK

For mobile ground robots, 3D laser scanning sensors are
widely used due to their accurate distance measurements even
in bad lighting conditions, and due to their large field-of-view
(FoV). For instance, autonomous cars often perceive obstacles
by means of a rotating laser scanner with a 360◦ horizontal
FoV, allowing for detection of obstacles in every direction [9],
[10]. Up to now, such 3D laser scanners are rarely used on
lightweight MAVs due to their payload limitations.

A similar setup to ours is described by Scherer and Cover
et al. [11], [12]. Their MAV is used to autonomously explore
rivers using visual localization and laser-based 3D obstacle
perception. In contrast to their work, we aggregate consecutive
laser scans in a local egocentric map by 3D scan registration
and use the resulting maps for both collision avoidance and
environment mapping.

For mobile ground robots, several approaches have been
proposed to estimate the motion of a robot by means of 3D
scan registration [13], [14], [15]. Most of these approaches are
derived from the Iterative Closest Points (ICP) algorithm [16].
Generalized ICP (GICP) [15] unifies the ICP formulation
for various error metrics such as point-to-point, point-to-
plane, and plane-to-plane. 3D Normal Distributions Transform
(NDT) [14], [17] discretizes point clouds in 3D grids and
aligns Gaussian statistics within grid cells to perform scan
registration. Recently, multiresolution surfel maps (MRSMaps)
have been proposed that match Gaussian statistics in mul-
tiresolution voxel representations to efficiently and accurately
register RGB-D images [18] and 3D laser scans [19]. In [7], we
extend the latter to use probabilistic data associations in order
to better cope with non-uniform density point clouds from fast
spinning laser scanners. We include ICP [16], GICP [15], 3D-
NDT [17], and the last-named surfel-based registration [7] in
our experimental evaluation. For an extensive survey on these
and other registration algorithms for 3D point clouds we refer
to the recent work of Pomerleau et al. [20].

Several works address the benchmarking of registration
methods. A comparative evaluation of ICP and NDT in
terms of registration accuracy was presented by Magnusson et
al. [21]. Wulf et al. [22] compare ICP-based pairwise and in-
cremental registration [23] and a 3D-variant [24] of Lu-Milios-
style graph SLAM [25]. A recent effort for benchmarking
SLAM algorithms for RGB-D cameras including datasets and
performance metrics for pose accuracy is the RGB-D SLAM

Dataset and Benchmark2 by Sturm et al. [26]. In order to
compare constructed maps based on their quality, Schwertfeger
et al. proposed a fiducial map metric [27]. In [7], we propose
an entropy-based metric to measure the quality of maps and the
alignment of point clouds. In this paper, we use metrics from
Sturm et al. [26] to measure pose accuracy, and the entropy-
based metric from [7] to measure map quality. In addition,
we introduce another metric based on mean plane variance
to evaluate the quality of alignment and map. As a final
measurement of map quality, we propose an ICP-like fitness
score derived from first aligning a built map with a ground
truth map acquired by a statically mounted 3D laser scanner,
and then searching for corresponding points and computing the
root mean square error of the distances between the found point
matches. The more the built map deviates from the ground
truth map, the higher the error in this fitness score is.

III. SENSOR SETUP

Our continuously rotating 3D laser scanner consists of a
Hokuyo UTM-30LX-EW 2D laser range finder (LRF) which
is rotated by a Dynamixel MX-28 servo actuator to gain a
3D FoV. As shown in Fig. 2, the scanning plane is parallel to
the axis of rotation, but the heading direction of the scanner
is twisted slightly away from the direction of the axis—in
order to enlarge its FoV. The 2D LRF is electrically connected
by a slip ring, allowing for continuous rotation of the sensor.
The sensor is mounted on our multicopter (Fig. 2(b)) pitched
downward by 45◦ in forward direction, which places the core
of the robot upwards behind the sensor. Hence, the sensor
can measure in all directions, except for a conical blind spot
pointing upwards behind the robot. The 2D laser scanner has a
size of 62×62×87.5 mm and a weight of 210 g. Together with
the actuator (72 g) and the slip ring, the total weight of the 3D
scanner is approximately 400 g.

The Hokuyo LRF has an apex angle of 270◦ and an angular
resolution of 0.25◦, resulting in 1080 distance measurements
per 2D scan, called a scan line. The Dynamixel actuator
rotates the 2D LRF at one rotation per second, resulting in 40
scan lines and 43,200 distance measurements per full rotation.
Slower rotation is possible if a higher angular resolution is
desired. For our setup, a half rotation leads to a full 3D scan
of most of the environment. Hence, we can acquire 3D scans
with up to 21,600 points with 2 Hz.

IV. METHOD

We asses the accuracy of the different registration methods
by three different measures. For datasets where ground truth
data is available, e.g., from a motion capture system, we
quantify mapping accuracy by the absolute trajectory error
(ATE) [26] based on the estimated and the ground truth
trajectory.

For assessing pose accuracy without pose ground truth,
we calculate two quantitative measures which evaluate the
sharpness of a map. These measures are the mean map entropy
and mean plane variance.

For completeness, we also report the measured runtimes,
i.e., the average processing time of one 3D laser scan for the

2http://vision.in.tum.de/data/datasets/rgbd-dataset
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Fig. 3. Visualization of the MME (a) and the MPV (b). The resulting entropy
on an synthetic, wedge-shaped dataset. The color of a point indicates the value
of the metric, from red/yellow (low) to green/blue (high).

different approaches and the optimized parameter sets. The
runtime is not used in the following parameter optimization.
Instead, we focus on the accuracy of the estimated trajectory
and optimize the parameters w.r.t. the absolute trajectory
error (ATE) [26]. Consequently, some approaches show larger
processing times than others simply because of using param-
eters that achieve (slightly) better ATE scores at the cost of
considerably longer runtimes.

A. Mean Map Entropy

Following [7], the entropy h for a map point qk is calcu-
lated by

h(qk) =
1

2
ln |2πeΣ(qk)|, (1)

where Σ(qk) is the sample covariance of mapped points in a
local radius r around qk. We select r = 0.3 m in our evaluation.
The mean map entropy (MME) H(Q) is averaged over all map
points

H(Q) =
1

Q

Q∑
k=1

h(qk). (2)

B. Mean Plane Variance

For the Mean Plane Variance (MPV) we make the assump-
tion that most parts of the environment are planar surfaces.
Therefore, we approximate a plane from the 3D points in a
given radius and calculate the distance of every point to this
plane.

The MPV H(V) is averaged over all map points

V (Q) =
1

Q

Q∑
k=1

v(qk), (3)

where v is the upper quartile of the distances in the radius.

Fig. 3 shows a visualization of the MME and MPV on a
synthetic dataset.

C. Parameter Optimization

The registration methods that are included in our evaluation
all have different parameters that affect the behaviour of the
method. Depending on the scenario or the data set, different

parameter values sometimes lead to a significantly different
registration result. In order to have a fair comparison between
the different registration methods, we optimize these param-
eters using Hyperopt and the Tree-of-Parzen-Estimators [8].
The parameters of the registration methods are described in
the following.

As parameters of the Iterative Closest Points (ICP) [16]
algorithm, we use dmax as general distance threshold and
ICPrecp to assure symmetric correspondences. Correspon-
dences are rejected if the point-to-point distance exceeds this
threshold dmax.

The second algorithm in our evaluation is the Generalized
Iterative Closest Points (GICP) [15]. We optimize the param-
eters dmax, ε, and GICPinner. As for the ICP algorithm,
dmax is a correspondence threshold. The parameter ε models
the noise in the data and the GICPinner determines the
maximum number of inner iterations to optimize the trans-
formation.

The parameters of the Normal Distributions Transform
(NDT) [14] are dmax, ε, NDTres, and NDTstep. While
the first two parameters are similar to the parameters of
GICP, NDTres controls the cell size in which the normal
distribution is computed and NDTstep is the step size used
for transformation optimization.

For the surfel-based soft assignment registration method
(Surfel) [7] we also use a parameter Sprior to model the noise
in the data. Besides that, we use three parameters to weight
the soft assignments. First, Ssize weights assignments by
the surfel size. Second, Spoints weights soft assignments by
the number of points they encompass. And lastly, Sneighbor

weights by the number of surfels in the vicinity.

In addition to parameters of the registration methods, we
also optimize for the parameters of the underlying multireso-
lution grid map: the resolution of the map, the number of map
levels, and the maximum number of points that are stored in
each grid cell (cell capacity).

The mesh-based registration [6] is used with the default
parameters. Here, no parameter optimization has been con-
ducted. In [6], it is distinguished between initial pairwise
registration of the raw non-uniform density scans and global
optimization of the complete trajectory and map. In order to
emulate the behavior of incremental registration against a local
egocentric map, we do not use the original pairwise registration
as presented in [6] but a variant [28] in which a newly acquired
3D scan is aligned in a local window of multiple 3D scans
(five in our experiments). Consequently, the behavior of the
resulting approach can be compared to aligning against a local
egocentric map containing the points of five 3D laser scans.

V. EXPERIMENTS

In order to assess the performance of the registration
methods in terms of pose accuracy and map quality, we have
recorded different datasets with our MAV in flight. The first
two datasets are acquired in a Motion Capture (MoCap) system
that provides ground truth pose information. For these datasets,
the Absolute Trajectory Error (ATE) can be calculated based
on the MoCap poses. We use one dataset from the MoCap
system to optimize the parameters of the different registration



methods (training dataset) and another dataset of the MoCap
system to evaluate the different methods (test dataset).

Furthermore, we use this test dataset to evaluate our
quantitative in-map measures by comparing the MME and the
MPV to the ATE of the ground-truth poses. As a fourth metric
for the evaluation, we estimate the registration accuracy by
computing the point-to-point root mean square error (RMSE)
between the constructed map and a ground truth map (GT-
RMSE). For this metric, we first align the first point cloud of
the dataset manually to the ground truth map and apply the
determined transformations of the registration methods. We
then search for closest points in the ground truth map for all
points in the aligned 3D laser scans and compute the RMSE
of the distances between the found point pairs. In the best
case, the constructed map and the ground truth map overlap
perfectly in the end and the GT-RMSE is close to zero.

We also use an outdoor dataset (Frankenforst dataset)
recorded during a mission where the MAV is mapping a
building (shown in the form of a colored ground truth point
cloud in Fig. 1). Since ground truth pose information is not
available in this dataset, we use the GT-RMSE as well as the
MME and the MPV of the aligned point clouds to evaluate the
registration methods. For both indoor and outdoor datasets, we
also compare the runtime needed for every method to process
the whole dataset.

In this section, we discuss the parameter optimization for
the different methods together with the found parameters, as
well as the results of the final evaluation (using the found
parameter sets). Furthermore, we investigate the correlation
between the MAP-MME and the MAP-MPV, and discuss
insights gained during the evaluation.

A. Parameter Optimization and Parameter Sets

Before comparing the different registration methods, we
search, for each method individually, for the best parameters
that minimize the ATE in the training dataset. Parameter search
is performed using Hyperopt as previously described. We
report the found parameter sets in Table I.

To illustrate the applied parameter estimation, we first
optimize a single parameter for a single method (the Ssize

factor of the surfel registration). We show the results of this
optimization in Fig. 4. The minimum ATE can be achieved
for a Ssize factor of roughly 0.375. In the actual parameter
optimization, it is not only a single parameter being optimized
but the set of all parameters the registration method has. In
comparison, in this particular example, the best found param-
eter set includes Ssize = 0.45. This clearly shows how the
different parameters influence each other and the achievable
result.

In addition to the parameter sets, we evaluated three
different types of registration:

1) pairwise registration, where scans are sequentially regis-
tered against the last acquired scan,

2) incremental registration, where all so far aligned scans
form a map that is used as the target point cloud for
aligned newly acquired scans, and

3) incremental registration using multiresolution surfel maps
(with point lists for methods not using surfels).

Fig. 4. Optimized Ssize parameter of the surfel registration method. The
plot shows the characteristics of the parameter in relation to the ATE (other
parameters fixed).

TABLE I. PARAMETER VALUES OF THE EVALUATED REGISTRATION
METHODS AFTER OPTIMIZATION.

Parameter Value Range

IC
P dmax: 2.5206 [2.5 - 30]

ICPrecp False {True, False}
G

IC
P dmax 12.3845 [2.5 - 30]

ε 0.4169 [0 - 1]
GICPinner 13 [5 - 30]

N
D

T

dmax 9.7048 [2.5 - 30]
ε 0.8568 [0.1 - 0.9]
NDTres 0.1431 [0.05 - 1]
NDTstep 0.6596 [0.05 - 0.95]

Su
rf

el

Sprior 0.25 [0.05 - 0.95]
Ssize 0.45 [0.05 - 1]
Spoints 0.9 [0.1 - 1]
Sneighbor 10 [1 - 10]

For all registration algorithms individually, the method of
incremental registration using multiresolution surfel maps
achieved the best results. We report the different parameters for
the multiresolution surfel map for each registration algorithm
in Table II. The results reported in the following have all been
obtained by using a multiresolution surfel map as the map for
incremental registration. The map is updated after every laser
scan registration. The surfel-based registration directly uses the
computed surfel statistics, the other methods use point lists
stored in ring buffers in the multiresolution grid cells.

B. Evaluation of Registration Algorithms

After optimizing the parameters on the training dataset, we
evaluate the different registration methods on two test datasets.
The first test dataset was also acquired in our MoCap volume.
We report the results obtained using the different metrics in
Table III.

In terms of pose accuracy, both ICP and GICP could not
improve the initial pose estimates from visual odometry. We



TABLE III. RESULTS FOR THE TWO DATASETS (POSE ACCURACY, MAP QUALITY, AND RUNTIMES).

Method ATE-RMSE [m] GT-RMSE [m] MAP-MME [] MAP-MPV [m] Runtime∗ [s]
M

ot
io

n
ca

pt
ur

e VO 0.029977 0.0058409 -2.52013 0.1193130 —
ICP 0.033751 0.0036989 -3.65248 0.0495859 1.6659 ± 0.3866
GICP 0.039058 0.0031005 -3.41114 0.0576033 1.3534 ± 1.1927
NDT 0.025246 0.0021494 -3.74142 0.0460792 5.2497 ± 1.7360
Mesh 0.024969 0.0019273 -3.80589 0.0455877 0.1097 ± 0.0382
Surfel 0.024224 0.0020391 -3.80874 0.0446906 0.0466 ± 0.0140

Fr
an

ke
nf

or
st

VO — 0.2722540 -2.33082 0.199625 —
ICP — 0.0660561 -2.65460 0.136387 1.0264 ± 0.3828
GICP — 0.0640025 -2.55505 0.151351 0.3196 ± 0.2355
NDT — 0.0697013 -2.63396 0.148460 2.0627 ± 0.7125
Mesh — 0.0421434 -2.72391 0.137231 0.1314 ± 0.0415
Surfel — 0.0937490 -2.81387 0.121531 0.3508 ± 0.1522

∗ Runtimes are measured per 3D scan being registered and given with mean and standard deviation.

TABLE II. OPTIMAL PARAMETERS FOR THE MRSMAPS

Method Resolution Levels Cell capacity
ICP 18 2 2950
GICP 6 3 1150
NDT 11 2 4050
Surfel 20 2 300

note that in the smaller MoCap volume, the visual odometry
produces already very accurate relative pose estimates and
a globally consistent trajectory. Hence, it is not surprising
that plain registration methods could not considerably improve
the absolute trajectory error (ATE). However, by accurately
aligning the acquired laser scans, they achieve better values
in the MAP-MME and MAP-MPV scores, compared to visual
odometry. This is caused by the fact that the acquired laser
scans are locally better aligned than in case of the visual odom-
etry while the global trajectory is slightly more inaccurate, e.g.,
due to small drifts.

The surfel registration could achieve very good values in
almost all metrics. It produces a considerably more accurate
trajectory estimate, compared to visual odometry solely. Fur-
thermore, the laser scans are very well aligned. The surfel
registration is also the fastest of the compared algorithms.
Note, however, that especially the parameter optimization
focused only on the accuracies of trajectory and map rather
than runtime. The map obtained from this best trajectory
estimate is shown in Fig. 5. Only in the GT-RMSE map quality
metric, the mesh-based registration achieves a better score than
the surfel registration. It follows a very similar mechanism of
aligning Gaussian statistics to perform robust scan registration,
but on approximate surface reconstructions of the 3D scans.

The mesh-based registration is considerably slower than
the surfel registration, but achieves both a comparable ATE
and comparable map quality metrics. Overall, both approaches
achieve very similar results although they follow two com-
pletely different approaches. An interesting fact is that the
local window alignment applied in the mesh-based registration
achieves a considerably better trajectory estimate (without any
drifts) compared to the pairwise registration as reported in [6].

Fig. 5. Topview of the resulting map of the MoCap volume. The map has
been registered with the surfel registration method (lowest ATE). The thin
walls indicate accurate registration.

In fact, the obtained scores in both absolute trajectory estimate
and MAP-MME do not rank behind the globally optimized
trajectory in [6]. A likely cause is the aforementioned simplic-
ity of the environment allowing for robustly optimizing the
trajectory although it is only optimized in local windows.

The second test dataset—the Frankenforst outdoor
dataset—has been recorded during a flight along the facade
of a building of Gut Frankenforst—a research station operated
by the Institute for Veterinary Research at the University of
Bonn (see Fig. 6). In the acquired laser scans the building,
surrounding vegetation with trees and the ground are visible.
This dataset is far more challenging since the surroundings of
the building are cluttered and the scene contains fewer visible
distinct environmental structures compared to the small indoor
motion capture volume. Due to missing ground truth pose
estimates in this dataset, we cannot compute the ATE and only
report the other performance measures in Table III.

For this dataset, all registration methods improved the
initial visual odometry estimates. Here, the trajectory estimate
by the visual odometry shows a significant drift. The map
obtained from the mesh-based registration achieves the best
GT-RMSE. Furthermore, by using a constant number of edges



Fig. 6. Resulting map of the Frankenforst outdoor dataset obtained by the
surfel registration (lowest MAP-MME).

between scans being aligned and a constant size of the local
window, it achieves nearly constant-time updates and the best
runtime for this dataset. In terms of MAP-MME and MAP-
MPV, the surfel-based registration shows the best results. The
map obtained by the surfel-based registration is shown in
Fig. 6.

C. Evaluation of Mean Map Entropy and Plane Variance

In order to evaluate the two proposed in-map measures
(MME and MPV), we did a direct comparison. Since we have
all four measures available for the indoor MoCap datasets, we
can compare MME and MPV with the ATE for all parameter
sets tested during optimization. The correlation between the
two in-map measures and the ATE of the ground truth poses
is shown in Fig. 7. One can see that both relate to the ATE.
If the ATE is low both MME and MPV are also low.

A particular shortcoming of both metrics, however, is
that they can only be applied in case of globally consistent
trajectory estimates. Large registration errors can cause the
map of all aligned laser scans to contain regions where points
are scattered. In these regions, both the neighborhood searches
for the computation of the metrics and our assumption of
roughly aligned environmental structures fail. Consequently,
both metrics may yield smaller values than those obtained from
correct trajectory estimates. Moreover, in case of similar ATEs,
MME and MPV can in the aforementioned cases suggest
that a solution actually being worse is better. In order to
demonstrate this effect, we present a particular example of
two parameter sets in Fig. 8. They both achieved similar
ATEs in the evaluation with their (not very good) trajectory
estimates. The slightly better trajectory, however, obtains a
higher MME. In this example, the worse trajectory estimate
causes larger volumes around the actual room where single
points are scattered. They negatively effect the overall metric
since ill-formed neighborhoods are not explicitly handled.
Hence, we suggest to only use metrics such as the MME and
the MPV to evaluate the laser scan alignments in combination
with trajectory errors such as the ATE, or together with visually
inspecting the resulting trajectory and map to guarantee global
consistency.

VI. CONCLUSIONS

In this paper, we evaluated registration algorithms on data
of a light-weight 3D laser scanner mounted on a micro aerial
vehicle. The registration of this data is particularly challenging
due to the sparsity of the data. Besides a comparison of our

(a) Low MME in scattered regions (b) Better, but higher MME

Fig. 8. Snapshots of two maps (similar ATEs) where the obviously worse
alignment (a) achieves a lower/better MME than the better alignment in (b).

surfel-based registration method to state-of-the-art registration
methods, we presented different metrics for assessing the
quality of the resulting maps. In addition, we determined
optimal sets of parameters for all algorithms—except for the
mesh-based registration—in a hyper parameter optimization.

For our experimental evaluation, we have recorded datasets
in a motion capture volume with ground truth pose information
and in an outdoor scenario. The datasets are made publicly
available. Our evaluation shows that the surfel registration
achieved the best values in the Motion Capture dataset (except
for the GT-RMSE) and produces a considerably more accurate
trajectory estimate compared to visual odometry. Only the
mesh-based registration achieves a slightly better score in the
comparison of the aligned 3D scans to a ground truth map of
the environment (GT-RMSE).

By evaluating the different performance measures, we
showed that the introduced MAP-MME and MAP-MPV map
metrics correlate to the ATE of the ground truth poses.
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[22] O. Wulf, A. Nüchter, J. Hertzberg, and B. Wagner, “Ground truth eval-
uation of large urban 6d slam,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2007, pp. 650–657.
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