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Abstract— In this paper, we propose a complete micro aerial
vehicle platform—including hardware setup and processing
pipeline—that is able to perceive obstacles in (almost) all
directions in its surrounding. In order to compensate for
deficiencies of individual obstacle sensors, we make use of
different sensor modalities. Detected obstacles are fused and
accumulated in a three-dimensional egocentric obstacle map.
For avoiding collisions with detected obstacles, we employ a pre-
dictive potential field-based approach to relax the assumption
of classic approaches that the vehicle can change its dynamic
state instantaneously. We present results in simulation and with
the integrated robot.

I. INTRODUCTION

In the context of a larger project on three-dimensional
semantic mapping of inaccessible areas and objects, we aim
at developing a micro aerial vehicle (MAV) that is able to
autonomously navigate in suburban areas, especially in the
vicinity of buildings, vegetation, and other possibly dynamic
objects. In particular, we focus on fast and reliable perception
of obstacles in the vicinity of the MAV.

MAVs have attracted much attention in recent robotics
research. The level of autonomy of these robots varies,
ranging from basic hovering and position holding [1] over
trajectory tracking and waypoint navigation [2] to fully
autonomous navigation [3]. Limiting factors for increasing
autonomy and complexity of MAVs are limited onboard
sensing and processing power.

Particularly important for autonomous operation is the
ability to perceive obstacles and avoid collisions. Most of
today’s MAVs are equipped with ultrasonic sensors and
camera systems due to their minimal size and weight. Few
systems are equipped with 2D laser range finders (LRF) [4],
[5]. Hence, collision avoidance, if considered at all, is often
restricted to a two-dimensional LRF measurement plane or
the limited field of view of cameras [6].

In general, 3D LRFs are widely accepted for mobile robots
due to their accurate distance measurements and their large
field of view, but rarely used on lightweight MAVs (cf. [7])
due to their weight and size.

In this paper, we present an integrated MAV with multiple
sensing modalities, including a lightweight 3D laser scanner.
Furthermore, it is equipped with a high-performance onboard
computer to overcome the computational limitations of these
platforms.
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Fig. 1. CAD-model of our MAV with motor arrangement and sensor
setup: continuously rotating 3D laser range finder, two stereo camera pairs,
an optical flow camera, and a ring of ultrasonic distance sensors.

II. SYSTEM SETUP

We designed our MAV to be compact in order to be able to
maneuver in restricted spaces, close to man-made and natural
structures. To be able to carry a powerful onboard computer
and many sensors (see Fig. 1). We have chosen a design with
eight rotors mounted co-axially on four arms that is based
on the MikroKopter Octocopter kit. Our MAV has an overall
weight of 4.8 kg and a size of 85×85×35 cm. The system
is powered by an 8000mAh Lithium-Polymer battery pack,
yielding a flight time of approximately 10 minutes.

In order to perceive obstacles reliably, we incorporate
three different sensor modalities into our system: a 3D laser
scanner, stereo camera pairs, and ultrasonic sensors. We have
designed a continuously rotating LRF that is minimalistic in
terms of size and weight and thus is well suited for operation
on MAVs. It is depicted in Fig. 2 and consists of a Hokuyo
UTM-30LX-EW 2D LRF which is rotated by a Dynamixel
MX-28 servo actuator to create a three-dimensional field of
view. This particular Hokuyo LRF is able to measure up
to three echoes of a single emitted light pulse. The number
of reflected echoes depends on the surface of the object,
i.e. shape and reflectivity. For example, transparent material,
vegetation or edges of buildings often reflect more than
one echo. Hence, multi-echo detection is ideal for outdoor
applications. The LRF is electrically connected by a slip ring,
allowing for continuous rotation of the sensor. The axis of
rotation is pitched downward by 45◦ in forward direction,
which allows for a nearly omnidirectional acquisition of
scans with a conical blind spot located upwards behind
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Fig. 2. Our MAV is equipped with an lightweight 3D laser scanner. Point
clouds can be acquired at a rate of 2 Hz. The red line depicts the rotation
axis and the blue line depicts the measurement plane.

the MAV. A half rotation leads to a full 3D scan of the
environment with 21,600 points at a rate of 2Hz. A typical
3D laser scan acquired during flight is shown in Fig. 3.

In addition to the almost omnidirectional 3D laser scanner,
the MAV is equipped with two stereo camera pairs for
visual obstacle detection. Both camera pairs are slightly
tilted downwards and allow for seeing both ground and
environmental structures below and around the MAV. One
camera pair is mounted forwards, the other backwards. All
four cameras have fisheye lenses with an apex angle up to
185◦ providing a large field of view.

Neither the laser point cloud nor the visual obstacle
detection can perceive very small or transparent obstacles
reliably. In order to compensate for this shortcoming and
cover these cases, our MAV is equipped with additional eight
ultrasonic sensors covering the near space around the MAV.

This sensor setup allows the MAV to perceive obstacles
almost omnidirectionally. All sensor information is processed
onboard in real-time on an Intel Core i7 quad-core processor
with 8 GB RAM. In order to retrieve higher-level mission
plans and exchange information with advanced components
on a base station computer, we use a WIFI link. With a
maximum output power of 2W it allows for a reliable
communication even over long distances.

III. SENSOR PROCESSING

Due to the large field of view of the laser range scanner, a
considerable amount of points is either measured directly
on the robot itself, or caused by occlusion effects. We
filter such measurements by checking the robot-centric point
coordinates against a simplified model of our robot.

After filtering out self measurements, we use the acquired
3D laser scans to obtain an accurate height estimate. We first
compute the set of points below the robot and then find the
most dominant (nearly) horizontal plane for these points. We
use the distance of the robot to the estimated ground plane as

Fig. 3. Example of an acquired 3D laser scan with points color-coded
by height. The MAV (circled) is flying in a height of approx. 7.5m and
measures points on the ground as well as buildings and trees surrounding
it.

a height estimate. In addition, we can distinguish the ground
from other obstacles around the MAV.

The distance measurements outside the MAV are ac-
cumulated in an egocentric 3D grid-based map which is
centered around the robot. For each distance measurement
the corresponding map cell is marked as occupied.

Along with the occupancy information, each cell also
maintains its 3D scan points. These 3D points can be
used for point-based scan processing, for example 3D scan
registration.

We aim for efficient map management for translation and
rotation. To this end, individual grid cells are stored in a
circular buffer to allow shifting of elements in constant time.
We interlace multiple circular buffers to obtain a map with
three dimensions. The length of the circular buffers depends
on resolution and size of the map. In case of a translation of
the MAV, the circular buffers are shifted whenever necessary
to maintain the egocentric property of the map.

Since rotating the map would necessitate to shuffle all
cells, our map is oriented independently of the MAV’s
orientation. We maintain the orientation between the map and
the MAV and use it to rotate measurements when accessing
the map.

Our visual obstacle detection is based on KLT feature
tracks matched between the two video streams of one stereo
pair. These matched tracks yield 3D points on objects that
are not necessarily visible in the LRF measurements at a
higher rate than the LRF.

IV. STATE ESTIMATION AND CONTROL

To control the MAV, we need an accurate estimate of the
dynamic state of the MAV at a rate equal or higher than the
control frequency. The plurality of installed sensors provides
us with measurements of subsets of the state variables.



Fig. 4. Artificial forces (red) estimated by our potential field-based
approach to collision avoidance are applied to different parts of the MAVs
bounding volume (blue). Obstacles do not need to be enlarged by the radius
of the volume and multiple obstacles can contribute to the repulsive force.

Furthermore, not every sensing modality is available in every
situation. We fuse these measurements to a single state
estimate using an extended Kalman Filter (EKF) based on
the Bayesian Filtering Library [8].

Up to a height of 5 m we incorporate velocity measure-
ments from an optical flow camera [9] at 100 Hz. Other
means of velocity measurements are visual odometry using
our fisheye cameras with PTAM [10] at approximately 20Hz
and GPS velocity measurements at 5Hz coming from an u-
blox LEA-6S GPS chip. This sensor is also the only source
of absolute position information, if needed.

The main source for height measurements is the baromet-
ric sensor on the MikroKopter FlightControl board. In the
initialization routine of the MAV, the sensor is calibrated
and initialized to zero height. This sensor works under all
conditions and at a high rate, but is subject to drift over
time. Thus, it is mainly a good source of relative height
changes. We correct these measurements with ultrasonic
height measurements within the operational range of the
PX4FLOW camera and with laser range measurements at
2Hz up to a height of 30m. The attitude of the MAV is
estimated using the inertial measurement unit (IMU) on the
FlightControl board.

Low-level attitude control of the MAV is performed by
the FlightControl board using gyroscope and accelerometer
measurements from its onboard IMU. Commands are in the
form (roll, pitch, vyaw, throttle). To control the velocity
of the MAV, we employ PID controllers on the onboard
computer. Input to these controllers are the state estimate
from the EKF and a target velocity v = (vx, vy, vz, vyaw).
The control outputs are sent to the FlightControl board via
a serial link at a rate of 20Hz.

V. LOCAL OBSTACLE AVOIDANCE

Our concept for the navigation of the MAV is based on
a multi-layer approach. Between low-level control and high-
level planning layers, we employ a fast reactive collision

Fig. 5. We predict the influence of a motion command by rolling out
the robot’s trajectory (green) using a motion model. The current artificial
repulsive forces are depicted in red.

avoidance module based on artificial potential fields [11].
This enables the MAV to immediately react to nearby obsta-
cles and deviations from a planned path.

In contrast to the standard potential field-based approach,
we relax the assumption that the robot is an idealized particle.
We account for the shape of the MAV by discretizing it
into cells of the size of our 3D grid map (see Fig. 4). The
center points of these cells are individual particles to the
algorithm. Hence, obstacles induce repulsive forces and the
target waypoint induces an attractive force on each of these
cells. Thus, multiple obstacles can induce forces on different
parts of the MAV. The resulting force to the MAV is now
the average of the weighted sums of the individual attractive
and repulsive forces.

Standard potential field approaches assume that the motion
of a vehicle can be changed immediately. To overcome this
limitation, we predict the MAV’s future trajectory Tt given
the current dynamic state xt and the probable sequence of
motion commands ut:t+n for a fixed discrete-time horizon n
(Fig. 5). This time horizon is tightly bound by the property
that multicopters can quickly stop or change their motion.
To predict the trajectory, we employ a motion model of the
MAV and the estimated resulting forces along the trajectory.
The magnitudes of the velocity commands are calculated
according to the predicted future forces.

We model the MAV as linear dynamic system with state
transition matrices A and B. The prediction of the future
trajectory for the next n time steps is then given by

Tt = pt:t+n = (pt, pt + 1, . . . , pt+n) ,

pi+1 = Axi +Bui + pi i ∈ [t : t+ n− 1] ,

ui = C ~Fpi
.

The future control commands ui are predicted by mapping
the estimated forces ~Fpi at a position pi to a control com-
mand with matrix C. If a given force threshold is exceeded



TABLE I
EFFECT OF SLOWING DOWN WITH 1 S TRAJECTORY LOOK-AHEAD

COMPARED TO THE STANDARD POTENTIAL FIELD APPROACH (PF).

Time (s) Avg. Force Frac. of PF
PF 11.9 (0.5) 0.44 (0.06) 1
Adaptive Vel. 1 s 12.9 (0.8) 0.3 (0.01 ) 0.68

at any point pi of the trajectory, we reduce the velocity v of
the MAV to

vnew =

(
1

2
+

i

2n

)
vmax.

We can learn a motion model (time-discrete linear dy-
namic system) by flying with a MAV within our motion
capture system. In addition to predicting the trajectory for
the purpose of collision avoidance, this model can be utilized
in low-level velocity controllers [12] and for kinodynamic
motion planning [13]. Furthermore, we use it in our Gazebo-
based simulation environment (cf. [14]) to ensure realistic
behavior of the simulated multicopter.

In addition to guiding the MAV collision free to waypoints,
our approach can act as a safety copilot to assist a human
pilot. As the human pilot sends direct motion commands
instead of coordinates relative to the MAV, we omit the
attractive force in this case. Instead, we directly influence
the control command given by the pilot if the MAV operates
in the vicinity of obstacles. Repulsive forces induce a delta
command that is added to the original control command,
yielding a stop or deviation from the commanded direction.

VI. EXPERIMENTS

We evaluated the effect of slowing down the MAV ac-
cording to predicted future artificial forces in simulation. In
a waypoint following scenario through walls with windows
of different size the average repulsive force applied to the
MAV using the predictive potential field approach were 68%
of the force occurring during the flights without trajectory
prediction. The average flight time was slightly increased
from 11.9 s to 12.9 s. Tab. I summarizes the results. Overall,
the resulting trajectories are smoother as the MAV is not
repulsed so much from obstacles, especially between parallel
walls. Experiments on the integrated robot up to now have
shown that the hovering octocopter can perceive and avoid
approaching obstacles. We also tested the proposed safety
layer successfully on our MAV. It stayed away from static
obstacles while flying remote controlled.

VII. CONCLUSIONS

We presented a MAV equipped with a multi-modal sensor
setup for robust obstacle detection using ultrasonic sensors,
fisheye stereo cameras and a lightweight 3D LRF. Based
upon this setup, we developed a fast, reactive collision
avoidance layer to quickly react on new measurements of

nearby obstacles. Experiments in simulation revealed that our
predictive collision avoidance leads to smoother trajectories,
keeping the MAV further away from obstacles than a classic
potential field approach without prediction. The simulated
MAV was able to fly through passageways of its size plus a
safety margin.

In future work we will extend our control architecture with
high-level planning layers to avoid obstacles on a coarser
time-scale and to accomplish more complex mission goals.
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