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Abstract— Grasping individual objects from an unordered
pile in a box has been investigated in static scenarios so far.
In this paper, we demonstrate bin picking with an anthropo-
morphic mobile robot. To this end, we extend global navigation
techniques by precise local alignment with a transport box.
Objects are detected in range images using a shape primitive-
based approach. Our approach learns object models from
single scans and employs active perception to cope with severe
occlusions. Grasps and arm motions are planned in an efficient
local multiresolution height map. All components are integrated
and evaluated in a bin picking and part delivery task.

I. INTRODUCTION

Removing individual objects from an unordered pile of
parts in a carrier or box—bin picking—is one of the classical
problems of robotics research. It has been investigated by
numerous research groups over three decades [1], [2], [3].

Typical bin picking solutions consist of a 3D sensor
mounted above the box, a compute unit to detect the objects,
estimate their pose and plan grasping motions, and an
industrial robot arm that is equipped with a gripper.

So far, bin picking robots are stationary. In order to extend
the workspace of the robot and to make bin picking available
for environments that are designed for humans, we imple-
ment bin picking using an autonomous anthropomorphic
mobile robot. Mobile bin picking is made feasible by the
advances in sensing, computing, and actuation technologies,
but still poses considerable challenges to object perception
and motion planning. Our robot Cosero has been designed for
mobile manipulation and intuitive human-robot interaction
tasks, which were tested successfully in RoboCup@Home
competitions [4].

Here, our scenario is motivated by industrial applications.
We consider the task of grasping objects of known geometry
from an unordered pile of objects in a transport box. The
grasped object is to be transported to a processing station
where it is placed. Due to the operability of the robot in
environments designed for humans, this scenario is easily
transferable to a household scenario, e.g., clearing a shopping
box. Solving this mobile manipulation task requires the inte-
gration of techniques from mobile robotics, like localization
and path planning, and manipulation, like object perception
and grasp planning.

For mobility, we extend global navigation techniques by
precise local alignment with the transport box and the
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Fig. 1. Mobile bin picking scenario. Objects are grasped from a transport
box (lower right) and placed on a processing station (upper left).

processing station. For manipulation, we extend our previous
work on shape primitive-based object detection and grasp-
ing [5] by the learning of object models, active perception,
and object removal planning. We integrated all components
to perform the complete task and evaluated the performance
of the integrated system.

The remainder of this paper is structured as follows. In
the next section, we review related work on stationary bin
picking and mobile manipulation. Sec. III gives a high-
level overview of our mobile bin picking system. Object
detection and pose estimation are covered in Sec. IV and
new objects are learned in Sec. V. Sec. VI and VII cover
robot navigation and grasp planning, respectively. Detected
objects are fed back to view planning to cope with severe
occlusions (Sec. VIII). We report results on the experimental
evaluation of our approach in Sec. IX.

II. RELATED WORK

Despite of its long history, static bin picking is still an
active research area. One recent implementation of Papazov
et al. [6] utilizes a Microsoft Kinect sensor mounted above a
table to acquire depth images of the scene. Object models are
matched to the measured point cloud by means of a normal-
based RANSAC [7] procedure. Papazov et al. consider
tabletop scenes where multiple objects are arranged nearby,
including the stacking of some objects. They select the object
to be grasped based on the center of mass height (high
objects are preferred). Each object is associated with a list
of predetermined grasps, which are selected according to the
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orientation of the gripper (grasps from above are preferred)
and checked for collisions. The grasping is performed by a
compliant lightweight robot arm with parallel gripper. Bley
et al. [8] propose another approach of grasp selection by
fitting learned generic object models to point cloud data. In
contrast to our approach they manipulate separated objects.

Choi et al. [9] proposed a Hough voting-based approach
that extends point-pair features [10], [11], which are based on
oriented surface points, by boundary points with directions
and boundary line segments. Choi et al. use a structured-
light 3D sensor mounted on an industrial arm to acquire
point clouds of small objects in a transport box, estimate
their pose and grasp them with high success rate. Another
extension of Drost et al. [11] has been proposed by Kim and
Medioni [12]. They consider visibility in between the paired
surface elements to sort out false matches.

While the above methods for object detection work best
with objects that contain distinctive geometric features, other
approaches for object detection rely on the decomposition of
point clouds into geometric primitives. The method proposed
by Schnabel et al. [13], for example, is based on RANSAC
and efficiently detects planes, spheres, cylinders, cones, and
tori in the presence of outliers and noise. Another work
in this direction is Li et al. [14], which build a graph of
primitive relations and constraints. Assuming symmetry and
consistent alignments of shapes in man-made objects, the
orientations and positions of detected shapes are iteratively
refined.

The above approaches require dense depth measurements.
In contrast, Liu et al. [3] developed a multi-flash camera
to estimate depth edges, which is mounted on an industrial
robot arm. Detected edges are matched with object templates
by means of directional Chamfer matching and objects are
grasped with a three-pin gripper that is inserted into a hole
at a success rate of 94 %.

Some research groups used mobile robots to grasp objects
from piles. Klingbeil et al. [15], for example, utilized a Wil-
low Garage PR2 robot to grasp unknown objects from a pile
on a table and read their bar-codes to demonstrate a cashier
checkout application. Because the dense packing of objects
in a pile poses considerable challenges for perception and
grasping, Chang et al. [16] proposed pushing strategies for
the interactive singulation of objects. Gupta and Sukhatme
[17] estimate how cluttered an area is and employ motion
primitives to separate LEGO bricks on a pile.

Manipulation in restricted spaces like boxes and shelves
leads to difficult high-dimensional motion planning prob-
lems. To this end, Cohen et al. [18] proposed a search-based
motion planning algorithm that combines a set of adaptive
motion primitives with motions generated by two analytical
solvers.

All the above approaches are demonstrated with a static
robot. In contrast, Chitta et al. [19] proposed an approach to
mobile pick-and-place tasks, which integrates 3D perception
of the scene with grasp and motion planning. The approach
has been used for applications like tabletop object manipu-
lation, fetching of beverages, and the transport of objects. In

these applications, objects stand well-separated on horizontal
surfaces or are ordered in feeders.

Other systems for which mobile pick-and-place has been
realized include HERB [20], developed at the Intel Research
Lab Pittsburgh. HERB navigates around a kitchen, searches
for mugs and brings them back to the kitchen sink. Rollin’
Justin [21], developed at DLR Oberpfaffenhofen, Germany,
grasped coffee pads and inserted them into the coffee ma-
chine, which involved opening and closing the pad drawer.
The Armar robots [22], developed at KIT, Germany, demon-
strated tasks in a kitchen scenario that require integrated
grasp and motion planning. In the health care domain, Jain
and Kemp [23] present EL-E, a mobile manipulator that
assists motor impaired patients by performing pick and place
operations to retrieve objects. In Beetz et al. [24] a PR2
and the robot Rosie, developed at TU Munich, cooperatively
prepare pancakes, which involves mobile manipulation and
the use of a tool.

In most of these mobile manipulation demonstrations,
the handled objects are well-separated. To the best of our
knowledge, a mobile bin picking application has not been
realized so far.

III. SYSTEM OVERVIEW

We consider a scenario where unordered parts need to be
grasped from a transport box, as shown in Fig. 1. The objects
are transported to a processing station and placed there.

For the experiments, we use our cognitive service robot
Cosero [25], shown in Fig. 1, which navigates on an eight-
wheeled omnidirectional base and has an anthropomorphic
upper body with two 7-DoF arms that end in grippers with
two Festo FinGripper fingers. Due to the Fin Ray effect,
the finger tips passively bend inwards, creating a closure
around a grasped object. To extend the workspace, the upper
body of the robot can be twisted around the vertical axis
and lifted to different heights. With only 32 kg, Cosero has a
low weight, compared to other service robots. Nevertheless,
its arms can lift a payload of max. 1.5 kg each. The robot
senses its environment in 3D with a Microsoft Kinect RGB-
D camera in the pan-tilt head. For obstacle avoidance and
tracking in farther ranges and larger field-of-views, it is
equipped with multiple laser-range scanners, of which one
in the chest can be pitched and one in the hip can be rolled.
Cosero’s main computer is a quadcore notebook with an Intel
i7-Q720 processor.

The mobile bin picking task is divided into the cognition
phase where the robot explores the transport box and rec-
ognizes the top-most objects, the pick-up phase where the
robot grasps a top-most object out of the transport box, and
the place phase where the robot places the object on the
processing station.

The autonomous robot behavior is generated in a modu-
lar control architecture, using inter process communication
infrastructure of the Robot Operating System (ROS) [26].
We implemented the mobile bin picking task as a finite-
state machine. It monitors the state of task fulfillment and
triggers individual behaviors in the appropriate order. The



task starts with the robot navigating to the transport box.
When the robot is in front of the transport box, it switches
to a local navigation mode that accurately aligns it to the box.
The next step is the acquisition of a 3D point cloud of the
entire transport box, which is then processed by the object
recognition module. The detected objects are fed to the grasp
planner, which selects an appropriate grasp and plans trajec-
tories for approaching the object and for removing it from the
box. After the planned grasping motion is executed, Cosero
navigates to the processing station using the environment
map and local alignment with the processing station. Finally,
our robot releases the object into the processing station. This
process continues until the transport box is empty.

IV. OBJECT RECOGNITION

Our method for 3D object recognition is based on sub-
graph matching: First, we convert both the searched object
and the scanned scene into an annotated graph. Nodes of the
graph are instantiated for simple shapes (spheres, cylinders,
planes) detected by an extended algorithm that is based on
Schnabel et al. [13]. Edges connect those simple shapes
which are neighbored in space and also store the relative
pose of the primitives.

We localize objects in a scene by identifying parts of our
search graph in the graph of the scene. Using the established
graph correspondences, we calculate a rigid transformation
to the assumed position and orientation of the object.

Finally, we verify this hypothesis with an object model
(cf. Sec. V) positioned by this transformation.

A. Scan Registration

For perception of the transport box, we use a Microsoft
Kinect camera that is mounted on the robot’s pan-tilt unit.
The sensor’s limited field-of-view results in an incomplete
scan of the box. Therefore, we employ scan registration of
three overlapping point clouds from different views (middle,
left, right) and align them to each other. We use the Iterative
Closest Point (ICP) algorithm [27] to align the scans. To re-
duce the size of the model point cloud, only non-overlapping
parts of consecutive scans are added to the model point cloud
(see Fig. 3). After acquiring and aligning the scans, the model
is stored in our planning representation (cf. Sec. VII-C).

B. Recognition

In the following, we give an overview of our recognition
pipeline (referring to Fig. 2):
◦ Graph matching: In a preprocessing step, we rapidly
calculate surface normals and remove outliers in the data.

Fig. 3. An acquired 3D scan (yellow) is aligned to the model point cloud
(black) using the ICP algorithm. New parts are added to the model.

Next, we detect shape primitives and establish the graph of
spatially close primitives. We efficiently create the annotated
shape graph of the scanned point cloud and apply our sub-
graph matching approach following ideas of [13]. First, a
random start edge of the query graph is searched in the
scene graph comparing the shape attributes. We go through
the list of all similar edges and, for each edge, we try to
expand the match to adjacent edges in the query graph and
the scene graph simultaneously. This gives us a number of
partially matched graphs. For the best ones, we compute
a transformation matrix that encodes the estimated position
and orientation of the object in the scene. Then, we use this
transformation to verify our graph hypothesis.
◦ Computing position and orientation: We compute a relative
6-DoF transformation towards a common reference shape
position and orientation in our object model. For symmetric
objects, we can take any transformation around the self-
symmetry axis and compute a valid transformation. It is
possible to detect all self-symmetries in the model generation
phase (cf., [28]). We apply the transformation to the object
model, check for sufficient overlap with the scanned points,
and improve the accuracy by employing the ICP method of
Mitra et al. [27] to register the object model to the points.
◦ Fallback solution for difficult scenarios: In our exper-
iments, we encountered situations, where even the active
recognition was unable to identify a last remaining part in
the transport box. An example for this is shown in Fig. 4:
In this experiment, we emptied the box up to this one
pipe connector, which is standing on its smaller pipe. For
our graph-based recognition method, we need at least two
primitives, to robustly detect an object and its pose, but here
we are only able to scan just one cylinder. We developed a
fall-back solution for such situations: If no further object can
be detected, but the volume inside the box is not empty, we
allow the recognition with just one primitive—in this case

primitive−−−−→
detection

graph−−−−−→
matching

Fig. 2. Object recognition pipeline: Input scan - fast preprocessing, primitive detection - shape graph matching, transformation estimation and verification.



just one cylinder. Cylinders belonging to the box are ignored.

V. EXAMPLE-BASED OBJECT MODEL GENERATION

In our previous work the object graphs were derived
from exact CAD models. Though CAD models are typically
available in industrial applications, the situation is different
for the operation of a domestic service robot. To apply
our model-based approach in a household scenario, object
models have to be learned from example objects. To this end,
the exemplars are placed into a designated learning board
and a scan with the 3D sensor is taken. The learning board
holds multiple instances of the object in different roughly
known orientations, such that one scan is sufficient to obtain
all information needed in later processing steps. All further
processing is fully automated.
◦ Registration: As a first step, we preprocess the scanner
data, computing surface normals and removing outliers. We
use the primitive detection to detect the largest plane and
to register the scanned board to our internal model of the
board area and expected poses of the parts. Then we remove
all points of the board plane. All remaining points belong to
the object instances. Next, we segment the remaining point
cloud into the object parts and separate them into individual
point clouds. The result is equivalent to the same number of
scans taken from various viewpoints, with the difference that
we know a rough transformation for all of the scans.

For the registration of the object point clouds we follow a
coarse-to-fine approach. To improve the pose estimates of the
object instances, we adapted the object detection and pose
estimation method of Papazov and Burschka [29] to obtain
a better initial transformation for the fine alignment. They
compute point-pair features on a searched object and sample
them in a searched scene, trying to find matches. Output is
a pose estimate of the searched object in the scene. In our
case, we use one of the segmented scans as searched object
and the other one as target scene. This is a good setting for
the method as we have a large overlap of the two objects—
we always combine segments with close transformations and
the target scene contains the segmented part only. In contrast
to the original algorithm, we only allow transformations in
the RANSAC step that are close to our estimated ones. For
these reasons, we obtain very reliable pose results using
this method. The fine alignment of the point clouds is now
performed using ICP [27].
◦ Model Generation: We search for shape primitives in
the registered point cloud. Here, we set detection tolerance
parameters very tight and get a clean set of shape primitives
representing the object and a graph describing the relation of

Fig. 4. Discovering the final remaining object: Scan of a pipe connector
in the box, standing on the smaller pipe (left), The recognized primitives
are not sufficient for the graph-based recognition (middle), Our fallback
solution successfully identified the object in the box (right).

(a) (b)

(c) (d)
Fig. 5. Object reconstruction for model learning. Multiple instances of
the object with roughly known poses are scanned simultaneously (a). The
scan is segmented (b) and the resulting point clouds are registered using
feature- and point-based techniques (c). Finally, the surface is reconstructed
for visualization (d).

neighboring parts. The detected constellation of primitives is
stored with the object and used for our object recognition
method. The overall process of our registration and recon-
struction pipeline is depicted in Fig. 5.

VI. NAVIGATION

To cope with the challenges of mobile bin picking, we use
a global-to-local strategy for approaching the transport box
and fetching the work piece. Fig. 6 depicts the map for global
localization and path planning and the local sensing used
during the final box approach. We use a global navigation
approach that utilizes a 2D map of the environment to
roughly approach a pose in the map and a local navigation
approach that accurately aligns the robot with the transport
box and the processing station.

A. Global Navigation

For global navigation, we employ state-of-the-art methods
for localization and mapping in 2D representations of the
environment. Adaptive Monte Carlo Localization is used to
estimate the robot’s pose in a given occupancy grid map
using a laser-range finder (see Fig. 6a). To plan a path from
its estimated pose in the map to the target location, A* search
[30] is applied to find short obstacle-free paths.

B. Local Navigation

In order to maximize the workspace of the robot and
allow for active perception, an accurate alignment between
the robot and the transport box is necessary. We use a 2D
laser range finder that is mounted in the robot’s trunk at a
height of 80 cm to measure the distance and orientation to
the transport box (see Fig. 6b).

To detect the transport box, we continuously extract line
segments from the 2D laser scan by comparing the distance
of neighboring points. We check the straightness of a line
segment by principle component analysis and neglect line
segments that exceed a given curvature. The closest remain-
ing line segment that fits the dimensions of the transport
box corresponds to the rim of the transport box. The box
is approached by locally navigating to a predefined pose
relative to the deduced box model.



(a) (b)
Fig. 6. Localization (pose estimates: red dots) and navigation to the box
(blue rectangle) and processing station (green rectangle) is performed in
a global frame using a known environment map (a). Local sensing and
navigation is utilized to ensure a good alignment with the box/station. (b)
depicts the robot’s model, sensor input and result of the box detector during
approach.

VII. GRASPING OF SHAPE PRIMITIVE COMPOUNDS

A. Grasp Planning

We plan grasps in an efficient multistage process that
successively prunes infeasible grasps in tests with increasing
complexity: In the first stages, we find collision-free grasp
poses on the object, irrespective of the pose of the object
and not considering its scene context (see Fig. 7b). These
poses can be pre-calculated efficiently in an off-line planning
phase. We sample grasp poses on the shape primitives. From
these poses, we extract grasps that are collision-free from
pre-grasp pose to grasp pose according to fast collision-check
heuristics.

During on-line planning, we examine the remaining grasp
poses in the actual poses of the objects to find those grasps
for which a collision-free solution of the inverse kinematics
in the current situation exists. We filter grasps before eval-
uation against our height map and finally search collision-
free inverse kinematics solutions for the remaining ones. We
allow collisions of the fingers with other parts in the transport
box in the final stage of the grasp, i.e., in the direct vicinity
of the object to grasp. The shape of the fingers allows for
pushing them into narrow gaps between objects. If a valid
solution is found, we employ motion planning to find a
trajectory.

B. Motion Planning

Our grasp planning module finds feasible, collision-free
grasps at the object. The grasps are ranked according to
a score which incorporates efficiency and stability criteria.
The final step in our grasp and motion planning pipeline
is now to identify the best-ranked grasp that is reachable
from the current posture of the robot arm. We solve this by
successively planning reaching motions for the found grasps.
We test the grasps in descending order of their score. For
motion planning, we employ LBKPIECE [31].

We split the reaching motion into multiple segments. This
allows for a quick evaluation if a valid reaching motion
can be found by planning in the descending order of the
probability that planning for a segment will fail.

(a) (b)

Fig. 7. (a) Selection of feasible grasps and arm motion planning is
performed with a multiresolution height map. (b) For each shape primitive
in an object compound, we sample grasps according to the parametric
description of the shape primitives. For the grasps, we determine pre-grasp
poses (visualized as arrows pointing in forward direction of the gripper;
color codes correspondence to shape primitives). We discard grasps that are
in collision within the object.

C. Multiresolution Height Map

To speed up the process of evaluating collision-free grasp
postures and planning trajectories, we employ a multiresolu-
tion height map that extends our prior work on multiresolu-
tion path planning [32].

Our height map is represented by multiple grids that have
different resolutions. Each grid has M ×M cells containing
the maximum height value observed in the covered area
(Fig. 7a). Recursively, grids with quarter the cell area of
their parent are embedded into each other, until the minimal
cell size is reached. With this approach, we can cover the
same area as a uniform N ×N grid of the minimal cell size
with only log2((N/M) + 1)M2 cells.

Planning in the vicinity of the object needs a more exact
environment representation as planning farther away from it.
This is accomplished by centering the collision map at the
object. This approach also leads to implicitly larger safety
margins with increasing distance to the object.

D. Removal Planning

After the execution of the reaching motion, we check if
the grasp was successful. If the object is within the gripper,
a removal motion is planned with the object model attached
to the end-effector using the detected object pose. We allow
minor collisions of the object and the end-effector with the
collision map in a cylindrical volume above the grasp pose.
Finally, the work piece is deposited at the processing station.
To reach it, global navigation and local alignment are used
in the same way as for the box approach.

VIII. ACTIVE RECOGNITION

The complete geometry of top-level parts in a box can in
general not be acquired from a single scan due to occlusions.
In particular, with increasing geometric part complexity large
surface parts are likely to be occluded and cannot be acquired
from a single view point. The range data obtained from a sin-
gle scan is thus prone to being incomplete and provides only
fragments of the actual part surfaces. Fragmentation leads to
considerable uncertainty in the object recognition and thus
threatens robustness of the object pose detection as described



in Sec. IV. Furthermore, even if objects are recognized in
the first scan, overlying objects can obstruct collision-free
grasps if not yet recognized. To address the aforementioned
problems, and to achieve robustness of object perception with
respect to occlusions, we have developed an active object
perception method for actively moving the scanning device to
various view poses. This typically involves navigating locally
with the robot’s base.

A. Pre-Processing and Registration

To fuse acquired scans and aggregate information for view
planning, we incrementally build a volumetric model of the
transport box. For efficiency, we sort out all measurements
not belonging to the transport box employing the estimated
box pose from our 2D box detection (cf. Sec. VI-B). We
deduce an oriented bounding box and project it into the
acquired 3D range scan. Only measurements within the
bounding box are considered for further processing. More-
over, the estimate of the box pose allows for differentiating
between the box and its content, as well as predicting
the hitherto unseen transport box volume. For fusing and
aligning acquired scans, we incrementally build a model of
the transport box and register the acquired scans. The aligned
scan points are added to the model while avoiding to add
duplicate points in the model.

For representing the volumetric model of the transport box,
we use a multiresolution voxel grid map, based on [33]. It
is organized as an octree with leaves that model multiple
attributes of the underlying volume, e.g., the object detec-
tion’s interest in that region or the volume’s occupancy. The
latter allows us to explicitly model the difference between
seen free volume and previously unseen (unknown) volume,
as well as to integrate the identified regions of interest (to
guide the further acquisition of scans). For efficiency, our
algorithm operates only in the oriented bounding box of the
transport box model.

B. View Planning

For planning the next best view, we consider
• previously unseen or unknown volume (in order to

obtain more information),
• previously seen volume or occupied volume (in order

to obtain a sufficient overlap for the registration),
• and the recognition results fed back into the model of

the transport box (for focusing on regions where no
objects have been detected or where the detected objects
have only little confidence).

We consider the box to be explored and stop the explo-
ration if no more unknown or unseen volume exists within
the transport box.
◦ Sample generation and travel cost: We apply a sampling-
based approach for determining the next best view. We first
generate a set of sample poses and then estimate, for every
sample pose, the involved traveling cost and the expected
information gain. The pose with highest utility, i.e., with a
high information gain and low traveling cost, is selected as
the next best view. Since approaching a new view pose close

to the box only involves local navigation with the robot’s
omnidirectional base, we approximate the involved traveling
cost by the Euclidean distance between the robot’s current
pose and the base positions of the sampled view poses.
◦ Identifying regions of interest: In Sec. IV, we described our
approach for detecting basic geometric shape primitives and
objects composed of shape primitives. The object detection
component gives us detailed feedback on all regions in an
input point cloud to guide the further acquisition of scans
to regions having no or only little confidence in detected
objects. When a point is detected to lie on a primitive that
is not belonging to the object’s shape primitive compound
we are searching for, the region around the point is less
interesting than regions where object detections are still
possible.
◦ Information gain estimation: Classic approaches to view
planning consider previously unseen volume and previously
seen surface. We have developed an approach to view plan-
ning that seamlessly integrates with classic approaches, but
also considers how interesting a certain region actually is.

For the task of detecting objects in a transport box, we
integrate the possible outcomes of shape primitive compound
detection into the built model of the transport box, and
use it to derive regions of interest (Fig. 8). View planning
then focuses on sensing regions of interest in addition to
considering previously unseen volume and previously seen
surface. The interest score is stored in our volumetric model
in addition to the occupancy. Regions that possibly contain an
object but where no object has been detected yet are more
interesting. The final information gain for a sampled view
is the sum of interest values over all cells visible from the
sensor pose. For efficiency, we first extract all unknown cells
(previously unseen volume) from the transport box, as well
as all occupied cells (previously seen surface). If regions
of modeled free space are considered interesting, they are
handled extra and in addition to the extracted cells. We
remove cells that lie outside the sensor’s view frustum. For
the remaining cells, we conduct a reverse ray-casting from
the cell to the view pose to determine the cell’s visibility.
To further speed up this step, we limit resolution and depth
in the tree. Furthermore, we only consider those segments
of the ray that are contained in the oriented bounding box
of the transport box model. Overall, our approach allows for
focusing the acquisition of new range scans in regions where
we expect to find objects. For planning these views, we can
compute 100 samples per second.

IX. EXPERIMENTS

We tested the integrated system in our lab with our
cognitive service robot Cosero.

A. Model Learning

We reconstructed two different objects, the pipe connec-
tor and a cross clamping piece. All reconstructions could
be performed within 12 to 15 seconds. We compared the
parameters of the detected primitives in the reconstruction to
ground truth parameters and observed deviations of about 2%



(a) (b) (c) (d)

Fig. 8. Detecting objects and updating regions of interest, detected cylinders draw the robot’s attention to closely inspect this region finally leading to the
detection of all objects: (a) First scan with detected objects (green), detected cylinders (blue), primitives not being searched for (yellow), in the shown case
a wrong primitive has been fitted due to yet missing information, and unassigned points (red). (b) After incorporation of a second scan more objects and
cylinders are detected. (c) First model with two detected objects (yellow) and larger interesting regions on the right, color-coded from interesting (blue) to
not interesting (red). (d) Updated model with six detected objects.

TABLE I
RESULTS FOR CROSS CLAMPING PIECE (CCP) AND PIPE CONNECTOR

Object Type CCP Pipe Overall Average
Visible Objects 48 47 47.5
Pose Estimable 48 36 42
Ours 11 / 0 17 / 0 14 / 0
PPF 19 / 16.5 12.5 / 9.5 15.8 / 13

(true positives / false positives)

to 3%, using a precise 3D scanner. To judge the quality of our
detected primitives for the object recognition, we compared
the models learned from the scans with handcrafted models
based on ground truth data. The observed recognition results
were similar.

B. Object Recognition

We compared our method with the method from Papazov
and Burschka [29] using point-pair features (PPF). For
both object types, we created five piles of ten objects and
scanned them. To annotate ground truth poses, we manually
placed 3D models in the scene. For some visible objects,
no manual pose could be estimated because of ambiguities
(pose estimable in Tab. I). We averaged the results for the
randomized PPF algorithm over ten runs. The comparative
results are given in Tab. I. On average our method found
slightly less objects. The advantage of our method is, that it
did not produce any false-positives. Thus, it is better suited
for our grasp planning approach.

C. Mobile Bin Picking

The transport box was filled with up to ten pipe connectors
(Fig. 1). We split the complete task in single runs where
the robot picks up one pipe connector and delivers it. In
total, we have recorded 32 runs. In 28 runs, the robot could
successfully grasp a pipe connector and deliver it to the
processing station. In nine of these successful runs, the
robot first failed to grasp an object, detected its failure, and
performed another grasp. This was the case, for instance,
when the object slipped out of the gripper after grasping. In
four runs, the object was not successfully delivered to the
processing station. In three out of the four failed runs the
last object could not be detected. In one instance, the object
slipped out of the gripper after lifting. This is caused by
the fact that we have to allow collisions between the gripper
and other objects during the grasp. Occasionally, these minor
collisions can cause changes in the object’s pose that can

TABLE II
TIME NEEDED FOR PHASES OF THE BIN PICKING DEMONSTRATION.

Duration (in sec.)
Phase Mean Std. dev.
Navigation (transport box) 20 8
Approaching (transport box) 16 11
Cognition phase 83 41
- Grasp selection 19.9 14.4
- Motion planning 3.8 2.6
Grasping 36 7
Navigation (processing station) 26 9
Approaching (processing station) 22 9
Putting the object on the processing station 18 2

Fig. 9. Left: Cosero grasps a pipe connector out of the transport box,
brings it to the processing station, and finally deposits it. Right: Public
demonstration of mobile bin picking at RoboCup 2012.

make the chosen grasp impossible or unstable. Fig. 9 shows
some images from a successful run. Tab. II shows the mean
and standard derivation of the measured phase durations for
the 32 individual runs. Please note, that the timings for the
grasp selection and motion planning within the cognition
phase are averaged over the ten runs it took to clear one
completely filled box. One can see that the longest phase
is the cognition phase where objects are detected and the
grasping motion is planned. This phase also includes the
transmission of the sensor data to the object recognition
module on a physically distinct computer. We omitted bin
picking experiments with the cross clamping piece, as that
industrial part is too heavy for our service robot.

D. Active Recognition

We conducted a set of experiments to demonstrate the
feasibility of our approach. Fig. 8 shows typical examples
where the active perception component leads to new object
detections (a-b) or a complete model of the transport box
and all objects contained therein (c-d). Object detections are
successively integrated into the model. Regions where no
object was detected, but which could contain objects are
represented in the model and draw the robot’s attention when
planning the next view.



X. CONCLUSION

In this paper, we presented an integrated system for a
mobile bin picking application. This requires a combination
of navigation and manipulation skills, like global navigation,
local precise alignment, 3D environment perception, object
recognition and motion planning. We recognize objects using
an efficient noise-resistant approach using RANSAC and
sub-graph matching. In order to obtain the necessary shape
composition graphs, we derive models automatically from
3D point cloud data or CAD models.

Grasping objects is realized as a multistage process from
coarse, i.e., global navigation in the environment, to fine,
i.e., planning a collision-free end-effector trajectory within
a multiresolution collision map. Intermediate steps align our
robot to the transport box and the processing station using
local sensing and navigation and evaluate the graspability of
objects using fast heuristics. To cope with occlusions in the
unordered pile of objects in the transport box, we developed
view planning techniques, involving active sensor positioning
and navigation of the robot’s base around the box.

We showed the applicability of our approaches in a mobile
bin picking and part delivery task in our lab, where our
service robot Cosero cleared a transport box with pipe
connectors. A video summarizing our work is available on
our website1. Among other skills, we demonstrated mobile
bin picking in the @Home final of RoboCup 2012 in Mexico,
where our robots convinced the high-profile jury and won
the competition. In future work we aim at improving the
object detection performance by extending our approach with
contour primitives.
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