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Abstract—RGB-D cameras have attracted much attention in
the fields of robotics and computer vision, especially for object
modeling and environment mapping. A key problem in all these
applications is the registration of sequences of RGB-D images.
In this paper, we present an efficient yet reliable approach to
align pairs and sequences of RGB-D images that makes use
of local surface information. We extend previous works on 3D
mapping with micro aerial vehicles to sequences of RGB-D images.
The resulting alignment is based on a robust surface-to-surface
error metric and uses multiple surface-to-surface patch matches
between pairs of RGB-D images. Quantitative evaluations show
that our approach is competitive with state-of-the-art approaches.

I. INTRODUCTION

Consumer color and depth cameras (RGB-D cameras) have
huge potential in improving the perception capabilities of robots
and automated vision systems in general. They acquire color
(RGB) and depth (D) images both at high frame rates, e.g.,
30 Hz. Intrinsic and extrinsic calibration of the two image
sources yields colored 3D point clouds (see Fig. 1). Due to
their comparably low cost, low weight, and small form factor,
RGB-D cameras have attracted much attention in the fields of
robotics and computer vision, especially for object modeling
and environment mapping. What most applications have in
common is that they require RGB-D images to be taken from
multiple different viewpoints and that the acquired images need
to be reliably registered such that the overlapping regions in
the images match as well as possible. In the literature, this
problem is usually referred to as Simultaneous Localization
and Mapping (SLAM): building a map of the environment and
localizing the information acquiring sensor(s) therein so as to
consistently update and extend the map.

In recent years, many different approaches to visual odom-
etry [1]–[3], SLAM [4]–[9], and dense mapping [10]–[13]
have been proposed of which some are specifically tailored for
RGB-D cameras. These methods are either based on features
matched and tracked over sequences of images, or directly
operate on the (semi-) dense color and depth images. Most
approaches select a set of keyframes and optimize the resulting
pose graph in order to obtain a globally consistent trajectory
and map. State-of-the-art methods achieve globally consistent
trajectories with low errors in pose estimation at high frame
rates. We include some of them in a comparative evaluation.

In this paper, we state and address the problem of RGB-D
SLAM in terms of multi-view 3D registration based on point
correspondences between frames that encode a surface-to-
surface error metric. The approach is based on previous
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Fig. 1. Typical result of aligning a sequence of RGB-D images. Left:
approximate surface reconstruction (unfiltered) of the first cloud. Right: the
points of all aligned point clouds.

work [14] for 3D laser scan registration and mapping with micro
aerial vehicles. In order to compensate for the non-uniform
point densities within and between individual scan lines of the
fast rotating scanner, we approximated the underlying surface
and used a generalized error metric [15] for obtaining robust
registrations and accurate 3D maps of the sensed environmental
structures such as buildings. In this paper, we extend the
approach to be applicable to sequences of RGB-D images
and make the following contributions:

1) In order to reduce the drift during the initial tracking of
the camera, we register a newly acquired image against
a local window of frames as opposed to the last (key)
frame.

2) We integrate our previous works on range image segmen-
tation [16] for efficiently computing local features such as
surface normals on an approximate mesh representation,
and for edge-aware filtering of the underlying points and
the computed features to compensate for noise especially
in the depth images.

3) To cope with the larger amount of data of RGB-D images
in our multi-edge alignment approach, we efficiently sam-
ple both points in the images and found correspondences.

As a result, our approach of using multiple edges between
views that encode surface-to-surface constraints can be applied
to RGB-D video. Moreover, its performance is competitive
with other state-of-the-art approaches. In fact, the proposed
local window multi-edge alignment has a huge potential of
contributing to other SLAM and object modeling pipelines.
We present results of a thorough comparative experimental
evaluation that proof these claims.

II. RELATED WORK

Approaches to SLAM using monocular cameras, RGB-D
cameras and stereo cameras can in general be split into two
different categories: feature-based methods that compute and



track distinct repeatable key points and associate them using
feature descriptors, and direct methods densely registering the
acquired data.

For monocular cameras, a hybrid approach is the semi-
dense visual odometry method proposed by Engel et al. [3].
It first computes inverse depth maps which are then used to
align subsequent frames. A similar approach is followed by
Forster et al. [7]. Engel et al. [9] extend their approach to build
globally consistent maps even of large-scale environments.

Scherer and Zell [4] present an RGB-D SLAM approach
that is efficient enough to be computed onboard an autonomous
micro aerial vehicle. It is based on tracking FAST keypoints
and the fast hierarchical graph optimization of Grisetti et al.
[17]. The FAST corner detector is also used by Huang et al.
[2] in their visual odometry method FOVIS.

A popular approach developed specifically for RGB-D
images is RGB-D SLAM [8], [18]. It uses the color image
to extract and match visual keypoints and descriptors (SURF,
SIFT and ORB). The alignment relies on the 3D coordinates of
keypoints obtained from the depth image. A similar approach
is followed by Henry et al. [5] with FAST keypoints.

One of the first successful demonstrations of dense registra-
tion and mapping has been presented by Newcombe et al. and
was coined KinectFusion [10]. KinectFusion uses signed dis-
tance functions in a grid-based environment representation and
ICP-based registration [19] for aligning newly acquired depth
images. All components are implemented on a GPU and allow
(near) real-time operation. Assuming the camera movements
between frames are small, this incremental registration can
reliably align the data and update the environment model. By
using more information than only a single frame against which
KinectFusion registers considerably reduces drift usually arising
in pairwise registration. In many cases, incremental registration
can achieve globally consistent environment maps without the
need for detecting loop closures and global optimization, e.g.,
as shown in a previous work on 2D laser-based mapping [20].
The drawback of incremental registration is that errors made
in the update of the used environment representation cannot
be corrected later. In this paper, we address the alignment of
captured frames in terms of multi-view registration and do not
build a particular environment representation.

Steinbruecker et al. [13] also use signed distance func-
tions for dense mapping but organize the map in an octree
structure. Stückler and Behnke [11] proposed a surfel-based
registration method for constructing multi-resolution surfel
maps (MRSMAPs) that are also represented in an octree. Kerl
et al. [6] follow a different visual SLAM approach (DVO-
SLAM) by minimizing the photometric and the depth error
over all pixels. We include RGB-D SLAM [18], MRSMAP [11],
DVO-SLAM [6], and an open source implementation of
KinectFusion [10] in a comparative experimental evaluation.

Recently, Maier et al. [21] presented an efficient approach to
RGB-D object modeling. They split the camera trajectory into
chunks of equal size, and first optimize the alignments within
the chunks before globally aligning the chunks to each other.
Since the camera is moved around the object to model, these
splits along the trajectory yield spatially coherent partitions.
We achieve a similar behavior by using local windows in the
initial alignment of newly acquired frames. Moreover, the local

windows include earlier frames in case of loop closures. The
local alignment can then compensate for the accumulated drift
or trigger a global optimization of the trajectory in case conflicts
are found. Our local alignment approach is inspired by the
double window approach in the SLAM framework of Strasdat
et al. [22].

In multi-view scan matching, poses are determined simul-
taneously by aligning all scans. In the 2D domain, a popular
approach is the one by Lu and Milios (LUM) [23]. Borrmann et
al. [24] extend this approach to six degrees of freedom for the
alignment of 3D scans and present methods to efficiently deal
with the resulting nonlinearities [24]. The resulting approach
first applies the ICP algorithm to align consecutive point clouds
and then builds a graph based on the determined connectivity
of view poses similar to our approach. Both the determined
transformations and the sets of point correspondences are
represented in the edges. From both, a measurement vector and
its covariance matrix are computed which are then fed as one
block into a large linear system for optimization. In contrast,
in our approach, every correspondence pair forms a block in
the final non-linear error function. Furthermore, LUM uses a
point-to-point error metric as in the original ICP algorithm.
Instead, we approximate the surface and use a probabilistic
surface-based error metric.

Similar to our multi-edge alignment step are the approaches
of Zlot and Bosse [25] and Ruhnke et al. [26]. For mapping
mines with a continuously spinning laser scanner, Zlot and
Bosse use non-rigid surfel registration and graph optimization
for aggregating point clouds and building consistent maps.
Ruhnke et al. also use raw point matches as constraints in the
graph and apply a surfel-based error metric to iteratively refine
both the sensor poses and the positions of the points. Their
approach can build highly accurate object models but requires
a rough initial alignment of the dense RGB-D data. Moreover,
by optimizing the position of every point in the resulting object
model, the approach is computationally complex. In contrast,
we aim at both initially aligning the acquired point clouds and
building globally consistent environment models while trying
to reduce the complexity of the involved processing steps, e.g.,
by using only descriptive subsets of the dense RGB-D data
and local windows. The idea behind this paper is to apply our
pipeline for 3D mapping with MAVs [14] to dense RGB-D
data, making the necessary adaptions to make it both applicable
and feasible, and to evaluate how the resulting system compares
to state-of-the-art RGB-D SLAM approaches.

III. METHOD

Our approach is split into three stages. In the first stage,
we approximate, for each frame, the underlying surface in the
form of a quad mesh. The mesh serves three purposes: it allows
1) computing features such as surface normals directly on the
mesh, 2) extracting neighborhoods from the mesh topology,
and 3) caching values such as computed distances and normal
deviations in its edges. Referring to Fig. 2, the extracted mesh
is then smoothed and used for feature extraction. In the second
stage, both the mesh and the computed features are fed into
the local alignment so as to keep track of the camera pose. If
loop closures are detected, the so far estimated trajectory is
globally optimized in the third stage.
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Fig. 2. System overview and data flow. For a newly acquired point cloud, we first approximate the underlying surface reconstruction. Using the mesh topology,
we compute approximate local surfaces and apply a multilateral filter to smooth both points and normals. We then compute local covariances and feed the point
clouds as well as the computed features into the local alignment. Global optimization then yields globally consistent trajectories.

A. Approximate Surface Reconstruction

Surface reconstructions are compact representations of the
underlying sensed environmental structures and can become
handy in a variety of pre-processing tasks such as computing
point neighborhoods, local surface normals or smoothed (and
upsampled or downsampled) representations [16]. In order to
compute an approximate surface reconstruction, we traverse an
organized point cloud P once and build a simple quad mesh by
connecting every point p = P (u, v) (in the u-th row and the
v-th column) to its neighbors P (u, v+1), P (u+1, v+1), and
P (u+ 1, v) in the next row and column. We only add a new
quad to the mesh if P (u, v) and its three neighbors are valid
measurements, and if all connecting edges between the points
are not occluded. The first check accounts for possibly missing
or invalid measurements in the organized structure. For the
latter occlusion checks, we examine if one of the connecting
edges falls into a common line of sight with the viewpoint
v = 0. If so, one of the underlying surfaces occludes the other
and the edge is not valid:

valid = (|cos θi,j | ≤ cos εθ) ∧
(
di,j ≤ ε2d

)
, (1)

with θi,j =
(pi − v) ·

(
pi − pj

)
‖pi − v‖ ‖pi − pj‖

, (2)

and di,j = ‖pi − pj‖2, (3)

where εθ and εd denote maximum angular and length tolerances,
respectively. The latter accounts for sensor noise, i.e., tolerable
depth continuities such as quantization effects in the depth
images. We use a simple isotropic noise model for Microsoft
Kinect cameras that we developed for range image segmenta-
tion [16]. It depends on the measured distance z:

εd(z) = n
√

2 σ(z), (4)
with σ(z) = 0.00263z2 − 0.00519z + 0.00755, (5)

where n is the subsampling factor applied, i.e., using only
every n-th row and column for constructing the quad mesh.
If both distance and occlusion checks pass, we add a new
quad. Otherwise, holes arise. After construction, we simplify
the resulting mesh by removing unused vertices.

B. Multilateral Filtering

Naturally, sensor measurements are affected by noise.
Especially depth images suffer from distance-dependent noise

and quantization effects. In order to compensate for local noise
in depth measurements, we apply a filter for smoothing both the
points and their normals while preserving edges in the sensed
geometric structures. The formulation of our filter is motivated
by the concept of multilateral filtering [27] and measures the
similarity of points w.r.t. their position, surface orientation, and
appearance. We filter both a point pi and its normal ni over
its 1-ring-neighborhood Ni, i.e., all points that are directly
connected to pi by an edge in the mesh:

pi =

∑
j∈Ni

wijpj∑
j∈Ni

wij
, and ni =

∑
j∈Ni

wijnj∑
j∈Ni

wij
, (6)

with wij = e−α‖pi−pj‖︸ ︷︷ ︸
distance term

e−β‖ni−nj‖1︸ ︷︷ ︸
normal term

e−γ(Ii−Ij)/cI︸ ︷︷ ︸
intensity term

. (7)

The normalization constant cI is used to scale the intensity
differences to lie in the interval [0, 1]. Weights α, β, and
γ can be used to adjust the behavior of the filter. Equally
weighting distance, surface normal and color deviation term
already achieves considerable smoothing while preserving edges
and corners (α = β = γ = 1). Depending on the desired
smoothing level, we extend the point neighborhood to include
the neighbors of neighbors and ring neighborhoods farther away
from the point.

C. Approximate Normal and Covariance Estimates

In order to estimate local surface normal and covariance
matrix of a point, we directly extract its local neighborhood
from the topology in the mesh instead of searching for
neighbors. We compute the normal ni for a point pi directly
on the mesh as the weighted average of the plane normals of
the NT faces surrounding pi (extracted from the topology):

ni =

∑NT

j=0(pj,a − pj,b)× (pj,a − pj,c)

‖
∑NT

j=0(pj,a − pj,b)× (pj,a − pj,c)‖
, (8)

with face vertices pj,a, pj,b and pj,c. We then compute the
local covariance matrix Σi as in [15]:

Σi = Rni

(
ε 0 0
0 1 0
0 0 1

)
Rni

T (9)

with a rotation matrix Rni
so that ε reflects the uncertainty

along the approximated local surface normal ni. The intuition



behind this is that we assume the point to lie on the approxi-
mated surface while not knowing where the point is lying on the
surface. The lower the uncertainty ε the more we assume local
planarity around measured points. Consequently, with a low
value (0 < ε ≤ 10−3), the registration error to be minimized
(introduced in the following) converges to a plane-to-plane
error metric.

D. Surface-to-Surface Alignment

In order to align, respectively, two approximated surfaces
and two organized point clouds A and B, we search for closest
neighbors in B for points ai ∈ A and iteratively minimize the
distances between the found matches. Instead of minimizing
the point-to-point distances d

(T )
ij =bj−Tai of the set of found

correspondences C to determine the transformation T as in
the original Iterative Closest Point algorithm [19], we use the
generalized error metric introduced by Segal et al. [15]. It
generalizes over the different available error metrics (point-
to-point, point-to-plane, plane-to-plane) and thus takes into
account information about the underlying surface. Instead of
minimizing the distances d

(T )
ij between corresponding points

ai and bj , it models the distribution

d
(T )
ij ∼ N

(
bj − Tai, ΣB

j + RΣA
i R

T
)

(10)

where R is the rotation matrix of T under the assumption
that both points in A and points in B are itself drawn from
independent normal distributions, i.e., ai ∼ N (âi,Σ

A
i ) and

bj ∼ N (b̂j ,Σ
B
j ). Given the correspondences ij ∈ C, the

optimal transformation T ? best aligning A to B can then be
found using maximum likelihood estimation (MLE):

T ? = arg max
T

∏
ij∈C

p
(
d
(T )
ij

)
= arg max

T

∑
ij∈C

log
(
p
(
d
(T )
ij

))
' arg min

T

∑
ij∈C

d
(T )
ij

T(
ΣB
j + RΣA

i R
T
)−1

d
(T )
ij .︸ ︷︷ ︸

= simplified Likelihood L(T )

(11)

The effect of minimizing (11) is that corresponding points are
not directly dragged onto another, but the underlying surfaces
represented by the covariance matrices ΣA

i and ΣB
j are aligned.

In previous work [14], we have used this approach for
3D SLAM with a light-weight continuously rotating 3D laser
scanner carried by a micro aerial vehicle. In order to compensate
for smaller inaccuracies in pair-wise registration, we used
multiple edges between neighboring poses in the final trajectory
optimization, where every single edge encoded a surface-to-
surface error correspondence using the error metric in (11). In
this paper we no longer distinguish between pairwise initial
alignment and subsequent global optimization. Instead, both the
initial alignment in the local windows and the global trajectory
optimization in case of loop closures are formulated in exactly
the same multi-edge graph optimization approach.

E. Multi-Edge Graph Optimization

In a graph G(V, E), neighboring poses in the trajectory form
the vertices vi ∈ V and spatial constraints (transformations)
between two vertices vi and vj are represented by edges
eij ∈ E . Instead of adding only a single edge between two

vi−1 vi v0

i
i−1T

i
0T

Fig. 3. Example of connecting a frame at vertex vi to the first frame v0 and
the last frame vi−1. Instead of using a single edge encoding the transformations
(dashed lines), we use one edge per point correspondence. Instead of repeatable
features, we use raw points and iteratively refine the matching.

vertices that encodes a transformation and the corresponding
covariance matrix, we search for corresponding points between
the respective point clouds and add multiple edges, one for
each found correspondence (see Fig. 3).

Each edge in the graph encodes two entities: a local
contribution to the measurement error e and an information
matrix H which represents the uncertainty of the measurement
error. The information matrix is defined as the inverse of the
covariance matrix, i.e., it is symmetric and positive semi-definite.
For the error measurement between, respectively, two vertices
vi and vj and the correspondence pair (pi,m,pj,n), we use the
point-to-point difference vector and approximate its information
matrix using the error generalized error metric (11):

mean eij,mn(ijT ) = pj,n − i
jTpi,m, (12)

and Hij,mn(ijT ) =
(
ΣPj
m + RΣPi

n RT
)−1

. (13)

The effect is that every edge contributes its approximate surface-
to-surface error term to the system information matrix—thus
automatically giving lower influence on incompatible or false
correspondences and quickly leading to alignment even in case
of larger initial displacements.

For the actual optimization, we follow an iterative procedure
by 1) estimating correspondence pairs for all (or a subset of)
points pi,m ∈ Pi in Pj for every two vertices (vi,vj) that
are to be connected and 2) optimizing the resulting linearized
system for a maximum of ten inner iterations. We repeat these
two steps for a maximum of ten outer iterations. For a fast
initial coarse alignment in early and an accurate refinement
in later outer iterations, we use a linearly decreasing distance
threshold for correspondence pairs, starting with 2 m (∞ in
the first iteration) and going to two times the expected local
noise (4). In every outer iteration step, the graph is optimized
using dense Cholesky decomposition and Levenberg Marquardt
within the g2o framework [28]. For both inner and outer
iterations, we stop when the system has converged. Convergence
in graph optimization (inner iterations) can be detected based
on the changes in both view poses and system error as well
as the damping factor applied by Levenberg Marquardt. For
detecting convergence in the overall graph refinement in the
outer iterations, we check whether the view pose connectivity
and the correspondences between connected view poses have
changed. When no more changes are found and the inner
optimization has converged, we stop optimizing the trajectory.

F. Local Window Alignment

In order to estimate a rough initial pose estimate for a newly
acquired frame, standard SLAM procedures would first register
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Fig. 4. Alignment in local windows as opposed to pairwise alignments.
Aligning a frame (x-axis red, y-axis green, and z-axis red) to multiple other
frames tends to be more stable and to drift less. In this example of a camera
moving along a circular trajectory, the local window around the vertex vi
includes the last frame (at vi−1) and the starting pose v0 upon loop closure.

the new frame against the last (key) frame, and then search
for possible loop closures for a subsequent global optimization.
Instead, we determine a local window of neighboring poses
and simultaneously align the new frame against all frames
acquired at poses within the local window. Referring to Fig. 4,
for a pose at vi we search for closest poses (i.e., camera
origins) in 3D. The found candidates are checked for a
similar viewing direction by means of the angle between the
camera z axes. This rough initial check suffices since the
following alignment accurately deals with overlapping and non-
overlapping measurement volumes. We define the local window
to contain 1) the last acquired frame and the last acquired key
frame, respectively, as well as 2) all poses within a radius r
around the camera origin w.r.t. the current pose estimate that
have a similar orientation. In order to obtain constant-time
initial alignments, we additionally use an upper limit of w
for the number of neighboring poses in the local window and
sample the matches in between neighboring frames to keep
both the number of vertices and the number of edges in the
constructed subgraph constant.

Once the local window is determined, the newly acquired
frame is aligned to all frames in the local window by estimating
only the pose of the frame being aligned. The other poses are
fixed during optimization. In contrast to pairwise registration,
this one-to-many alignment is more stable and tends to drift
less (see the experimental evaluation in Sec. IV). Moreover,
it allows for efficiently detecting loop closures and possible
inconsistencies in the trajectory estimate as described next.

G. Loop Closure Detection and Global Optimization

Our primary mean for detecting loop closures is to inspect
the poses found in the local window. Naturally, if a similar
pose is found that has been acquired long ago (in terms of time
and frame index), a loop closure is detected. Since our local
initial alignment is quite stable without considerable drifts, loop
closures can be easily detected as long as the camera trajectory
is bound to a single room. In larger environments, drifts in the
local alignments accumulate and more sophisticated means for
recognizing previously visited places are needed [29].

Once, the local window contains an earlier pose along
the trajectory, we compare the transformations obtained from
the alignment in the local window with those in the so far
built global graph. In case of conflicts, e.g., larger jumps in
the estimated pose or no convergence in the optimization, we

trigger an alignment in an extended local window. This extended
window includes the 1-ring neighborhood of the local window.
For the alignment, all poses in the local window are now
optimized, and only the poses in the extended border (i.e.,
in the 1-ring neighborhood) are fixed. If the extended local
window contains earlier poses or shows conflicts after local
alignment, global trajectory optimization is triggered.

The global optimization of the trajectory follows the same
principle as the local alignment. In order to save processing
time, however, the global graph does not contain all poses but
only a limited set of keyframes.

H. Keyframe Selection

Several strategies exist to select whether or not to add a new
key frame, e.g., adding every n-th frame, applying rotational and
translational thresholds, or applying thresholds on registration
error variances or the number of matched features. We apply
a rotational threshold and a translational threshold as fixed
upper limits in order to avoid larger distances between key
frames even if the alignments in between are good. In addition,
we use a measure based on matching quality and uncertainty
along the dimensions of the transformation. After the local
alignment of a newly acquired frame, we inspect the determined
transformation T to the last keyframe and compute an estimate
of the uncertainty. We use the approximation by Censi [30] to
compute the covariance matrix:

ΣT ≈
(
∂2L

∂x2

)−1
∂2L

∂c∂x
Σ(c)

∂2L

∂c∂x

T (
∂2L

∂x2

)−1
, (14)

where L is the simplified likelihood function in (11), c
denotes the individual found correspondences C between the
two point clouds Pi and Pj , and Σ(c) is the covariance
of the correspondence pairs. Note that in (14), the relative
transformation between two view poses is not represented as a
homogeneous transformation matrix T , but in a parameterized
form x = (t, q)T with translation t and rotation by the unit
quaternion q. We then follow the approach of Kerl et al. [6]
to compute an entropy-based measure

H (T ,ΣT ) ∝ ln (|ΣT |) , (15)

using the determinant of ΣT . The entropy of the current
transformation (against the last key frame) is then compared to
the stored entropy of the last key frame (when it was added).
If the ratio between the two entropy measures falls below a
predefined threshold, the last (not the currently aligned) frame
is added as a key frame, and the local alignment is repeated.

I. Point Subsampling and Correspondence Filtering

An important aspect in the alignment is determining
correspondences between frames. Every such correspondence
will contribute in the form of an edge to both subgraph
and global graph optimization. In order to use only a small
number of correspondences without loosing much information,
we follow a multi-stage strategy: we first subsample query
points from the frame to be aligned and then reject found
correspondences that are unlikely to contribute to the alignment.

We sample query points from two distributions: uniformly
over the rows and columns of the image and uniformly in
normal space. The intuition behind the latter is that we want to



TABLE I. RELATIVE POSE ERROR (RPE) IN INITIAL ALIGNMENTS (WITHOUT GLOBAL OPTIMIZATION), RMSE of RPE(∆) in m/s with ∆ = 1 s

Pairwise Mesh Registration∗ Mesh Registration + Filtering∗∗ (n=4) Local Alignment∗∗∗ + Filtering (n=4, k=4)

Dataset n=1 n=2 n=4 k=1 k=2 k=3 k=4 w=2 w=3 w=4 w=5 w=10

fr1 xyz 0.204 0.216 0.199 0.192 0.172 0.159 0.156 0.119 0.087 0.068 0.052 0.041
fr1 rpy 0.197 0.205 0.189 0.181 0.175 0.160 0.162 0.127 0.101 0.099 0.081 0.059
fr1 desk 0.303 0.313 0.324 0.235 0.218 0.207 0.201 0.165 0.138 0.108 0.094 0.084
fr1 desk2 0.457 0.436 0.429 0.324 0.301 0.281 0.256 0.152 0.129 0.117 0.102 0.096
fr1 room 0.383 0.375 0.390 0.281 0.262 0.239 0.241 0.189 0.148 0.120 0.098 0.084
fr1 360 0.831 0.802 0.806 0.651 0.612 0.495 0.492 0.271 0.229 0.191 0.171 0.162
fr1 teddy 0.102 0.148 0.114 0.101 0.099 0.098 0.098 0.089 0.085 0.081 0.078 0.078
fr1 plant 0.143 0.152 0.141 0.135 0.136 0.131 0.131 0.111 0.083 0.074 0.059 0.052
fr2 desk 0.198 0.192 0.201 0.152 0.148 0.138 0.139 0.091 0.072 0.051 0.039 0.030
fr3 long office . . . 0.103 0.124 0.101 0.093 0.093 0.091 0.089 0.071 0.06 0.055 0.041 0.034

Avg. improvement — -1.5% 1% 20% 24% 31% 32% 52% 61% 66% 72% 75%
∗ Mesh Registration: the input images are subsampled by using only every n-th row and column, e.g., n = 4 corresponds to a 160×120 image.

∗∗ Filtering: the local neighborhood used by the multilateral filter is sequentially expanded to include the 1 to k-ring neighrborhoods.
∗∗∗ Local alignment: the window size w determines the number of (closest) vertices used for optimization of the subgraph.

draw samples from all surface orientations in the scene so as
to robustify the alignment along all dimensions. Note that the
sampled set of query points is stored for later correspondence
searches if the frame is added as a keyframe.

In order to search for corresponding points in the other
frames, we first project each query point into the camera
coordinate frame of the target frame and check whether it
is visible by frustum culling [31]. If the query point lies within
the view frustum of the target frame, we use the closest point
in the smoothed mesh of the target point cloud. The resulting
set of correspondences is then filtered again 1) to remove false
correspondences that can negatively affect the alignment, and
2) to further reduce the number of correspondences. We remove
correspondences that include surface boundary points (e.g.,
introduced by occlusions), and apply filters on the residual
correspondence pairs that remove 1) pairs whose point-to-
point distance exceeds the median point-to-point distance
over all correspondences, 2) pairs whose local surface normal
orientations considerably deviate, and 3) pairs that contain the
same matching point in the target frame. In the latter case, only
the pair with the smallest point-to-point distance is kept. The
local surface normals are considered to avoid that points with
normals pointing in opposite directions form a correspondence.

IV. EVALUATION

In order to assess the performance of our approach, we
use the datasets and error metrics from the publicly available
RGB-D SLAM Benchmark1 by Sturm et al. [32].

A. Accuracy of Local Alignments

For measuring the drift in initial alignments (without global
optimization), we use the relative pose error (RPE) [32]. It
computes the root mean square error (RMSE) of the transla-
tional errors between the estimated poses and the corresponding
ground truth poses in an interval ∆. We use ∆ = 1 s to measure
the drift in meters per second (m/s). For different datasets, we
compare the results in terms of the RPE for different processing
steps and parameters. In particular, we focus on the effect of
subsampling the input image (in order to reduce processing
time), filtering (to smooth the underlying data), and the size of
the local window. We report all results in Table I. Note that in
these experiments, global trajectory optimization is disabled.

1http://vision.in.tum.de/data/datasets/rgbd-dataset

For all processing steps and parameter sets, we computed the
average translational drifts and compared them with the average
drift of the plain pairwise registration as a baseline to obtain an
average improvement. The subsampling experiments indicate
that, since both the query points and the found correspondences
are already drastically sampled, the effect of subsampling the
input image in the course of approximate surface reconstruction
is only minor. For this reason, we have chosen to process
160× 120 images (n = 4) to reduce computations in the pre-
processing steps which are conducted for every single frame.

In contrast, smoothing the underlying data (and thus also the
surface normals used in the alignment) significantly improves
the alignments and reduces the translational drift. In most of
the datasets, a larger portion of the data is not sensed on the
object of interest (e.g., the teddy, the plant, or the desks), but
on environmental structures such as walls farther away from the
sensor. Therefore, the respective depth measurements are more
affected by quantization effects. With an increasing smoothing
factor (the included k-ring neighborhoods), the multilateral filter
can effectively smooth over the emerging depth discontinuities
while preserving edges. We achieved the best results with k = 4
and suggest to not use ring neighborhoods farther away (i.e.,
k ≥ 5), since especially the local surface normals become
too inaccurate and details will be smoothed away. Overall, an
improvement of roughly 30 % can be achieved for pairwise
registration if the data is smoothed before alignment.

Compared to pairwise registration that only uses the last
keyframe (i.e., w = 1), using a local window for the alignment
drastically reduces the drift. The more other frames are used
in the alignment, the more stable and accurate the estimated
pose becomes. However, this improvement comes at the price
of optimizing a larger subgraph (see Fig. 5). Since the average
improvement does not considerably increase for larger local
windows, we use a window size of w = 5 as it allows locally
aligning new frames at roughly 10 Hz.

B. Trajectory Optimization and Global Alignment

In a final series of experiments, we used our complete
pipeline with global trajectory optimization enabled. We
subsample the point clouds with n = 4 in the approximate
surface reconstruction, include all local neighbors for smoothing
up to ring k = 4, and initially align newly acquired point clouds
in a local window of size of w = 5. For measuring the errors
in the final optimized trajectory, we use the absolute trajectory
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Fig. 5. Average runtimes of the local alignment per frame, measured over all
datasets (with 10 complete runs per dataset) on a single core of an Intel Core
i7-3740QM CPU (2.70GHz).

error (ATE) [32]. It determines a transformation best aligning
the estimated trajectory and the ground truth trajectory in order
to compute errors between individual frames regardless of the
used base coordinate frame. We compare both our local and
our global alignment approaches to DVO-SLAM by Kerl et al.
[6], MRSMAP by Stückler and Behnke [11], RGB-D SLAM
by Endres et al. [8], [18], and KinFu, the PCL open source
implementation of KinectFusion by Newcombe et al. [10].
Since we have not been able to produce better results than
Kerl et al. in our experiments, we compare against the values
reported in [6]. As in the case of the translational drift, we
report the RMSE in Table II with example results in Fig. 6.

Naturally, our multi-view registration approach cannot
outperform sophisticated state-of-the-art dense visual SLAM
methods specifically designed for RGB-D data. For example,
both DVO-SLAM [6] and MRSMAP [11] apply a coarse-to-fine
registration on different resolutions. In contrast, we use only
the initially sampled subsets of points and the found matches
during the alignment. Hence, our alignment neglects details
such as smaller objects on the tables or texture details in general.
This is reflected in a slightly higher ATE for our approach(es).
The higher error stems from minor local inaccuracies in the
overall globally consistent trajectory estimates. Still, we get a
better ATE in two datasets (fr1 desk2 and fr1 plant).

While, on average, DVO-SLAM [6] and MRSMAP [11]
outperform the other approaches, our global alignment comes
in third and achieves a lower average ATE than both RGB-D
SLAM [18] and KinFu. Most notably, however, is that our local
alignment approach (without global optimization), achieves very
good initial trajectory estimates without the need of optimizing
more than a local window. Hence, we believe, that our approach
has a large potential for inspiring related approaches and for
contributing to other SLAM pipelines.

V. CONCLUSIONS

We have presented a complete pipeline for aligning pairs
and sequences of RGB-D images. Our approach is based
on approximating the underlying surface in the form of a
quad mesh, and using the mesh for fast feature estimation
(normals, covariances, etc.) and edge-aware smoothing. The
alignment makes use of graph optimization with multiple edges
between vertices, where every edge encodes a surface-to-surface
error constraint. In order to reduce computation time, we
efficiently subsample both points and used correspondences

TABLE II. ABSOLUTE TRAJECTORY ERRORS (ATE), RMSE in m

Dataset Ours
(local)

Ours
(global)

DVO-
SLAM∗

MRS-
MAP∗

RGB-D
SLAM∗

KinFu∗

fr1 xyz 0.051 0.013 0.011 0.013 0.014 0.026
fr1 rpy 0.131 0.028 0.020 0.027 0.026 0.133
fr1 desk 0.052 0.028 0.021 0.043 0.023 0.057
fr1 desk2 0.081 0.039 0.046 0.049 0.043 0.420
fr1 room 0.142 0.073 0.053 0.069 0.084 0.313
fr1 360 0.254 0.082 0.083 0.069 0.079 0.913
fr1 teddy 0.082 0.090 0.034 0.039 0.079 0.154
fr1 plant 0.051 0.025 0.028 0.026 0.091 0.598
fr2 desk 0.090 0.046 0.017 0.052 — —
fr3 long . . . 0.043 0.037 0.035 — — 0.064

Average 0.097 0.046 0.034 0.043 0.054 0.297

— ∗As reported by Kerl et al. [6]. —

between frames for almost constant-time local alignments. Our
experiments show that aligning newly acquired images in a
local window as opposed to pair-wise alignment with the last
frame reduces drift and achieves low relative pose estimation
errors. Optimizing the complete graph after loop closures and
as a last processing step yields globally consistent alignments
and trajectory estimates.

In experiments, we could show that our approach is
competitive with state-of-the-art approaches in terms of pose
estimation accuracy. Naturally, our approach cannot be as
good as sophisticated (RGB-D) SLAM approaches in terms of
detail and speed (e.g., compared to the multi-resolution surfel
maps [11]). However, our approach, and especially the surface-
based alignment in local windows, have a huge potential for
contributing to other SLAM frameworks. Moreover, the multi-
edge approach can be easily extended to include point-to-point
correspondences, e.g., from matching visual or 3D features.

In its current implementation, our approach distinguishes
only local and global alignment. A logical next step would
be to extend it to a hierarchical approach with the complete
trajectory and subgraphs on higher levels, and sub-regions and
single points in images on lower levels so as to allow the
alignment to correct individual measurements and inaccuracies
within 3D point clouds.
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