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Abstract
3D laser scanners composed of a rotating 2D laser range scanner exhibit different point densities within and between
individual scan lines. Such non-uniform point densities influence neighbor searches which in turn may negatively affect
feature estimation and scan registration. To reliably register such scans, we extend a state-of-the-art registration algorithm
to include topological information from approximate surface reconstructions. We show that our approach outperforms
related approaches in both refining a good initial pose estimate and registering badly aligned point clouds if no such esti-
mate is available. In an example application, we demonstrate local 3D mapping with a micro aerial vehicle by registering
sequences of non-uniform density point clouds acquired in-flight with a continuously rotating lightweight 3D scanner.

1 Introduction

3D scanners provide robots with the ability to extract spa-
tial information about their surroundings, detect obstacles
and avoid collisions, build 3D maps, and localize. In
the course of a larger project on mapping inaccessible ar-
eas with autonomous micro aerial vehicles (MAVs), we
have developed a light-weight 3D scanner [13] specifi-
cally suited for the application on MAVs. It consists of
a Hokuyo 2D laser scanner, a rotary actuator and a slip
ring to allow continuous rotation. Just as with other ro-
tated scanners, the acquired point clouds (aggregated over
one full or half rotation) show the particular characteris-
tic of having non-uniform point densities: usually a high
density within each scan line and a certain angle between
scan lines which depends on the rotation speed of the scan-
ner (see Figure 1). In our setup, we aggregate individual
scans of the continuously rotating laser scanner and form
3D point clouds over one half rotation (covering an omni-
directional field of view). To compensate for the MAV’s
motion during aggregation, we use visual odometry [18]
and inertial sensors as rough estimates, and transform the
scans into a common coordinate frame.

Since we use the laser scanner not only for mapping and
localization but also for collision avoidance, we rotate the
scanner fast resulting in a particularly low angular reso-
lution of roughly 9◦. This reduces the point density in
the aggregated point clouds but increases the frequency
with which we perceive (omnidirectionally) the surround-
ings of the MAV (2 Hz). The resulting non-uniform point
densities affect classic neighborhood searches in 3D and
cause problems in local feature estimation and registra-
tion. To compensate for the non-uniform point densi-
ties, we extend the state-of-the-art registration algorithm
Generalized-ICP [19] to include topological surface infor-
mation instead of the 3D neighborhood of points.
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Figure 1: Classic neighbor searches in non-uniform den-
sity point clouds may only find points in the same scan
line (red), whereas a topological neighborhood (green) can
better reflect the underlying surface

The remainder of this paper is organized as follows: af-
ter giving a brief overview on related work in Section 2,
we present our approach in Section 3. In experiments, we
demonstrate the superior performance of our approach and
discuss the achieved results in Section 4.

2 Related Work

2.1 Laser Scanners for MAVs
For mobile ground robots, 3D laser scanning sensors are
widely used due to their accurate distance measurements
even in bad lighting conditions and their large field-of-
view. For instance, autonomous cars often perceive ob-
stacles by means of a rotating laser scanner with a 360◦

horizontal field-of-view, allowing for the detection of ob-
stacles in every direction [12].
Up to now, such 3D laser scanners are rarely used on
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(a) Generalized-ICP (top view) (b) Ours (top view) (c) Generalized-ICP (detail view) (d) Ours (detail view)

Figure 2: Registering two point clouds (red and blue points) in an example scenario: the original Generalized-ICP imple-
mentation suffers from the degradation of the underlying covariance matrices and incorrectly aligns the two point cloud
origins and the individual scan lines (a,c). Our approach correctly registers the two point clouds (b,d).

lightweight MAVs—due to payload limitations. Instead,
two-dimensional laser range finders are used [1, 5, 6, 9, 20,
22]. A statically mounted 2D laser range finder restricts the
field-of-view to the two-dimensional measurement plane
of the sensor, however. This poses a problem especially for
reliably perceiving obstacles surrounding the MAV. When
moving however, and in combination with accurate pose
estimation, these sensors can very well be used to build
3D maps of the measured surfaces. Still, perceived infor-
mation about environmental structures is constrained to lie
on the 2D measurement planes of the moved scanner. In
contrast, we use a continuously rotating laser range finder
that does not only allow for capturing 3D measurements
without moving, but also provides omnidirectional sens-
ing at comparably high frame rates (2 Hz in our setup). A
similar sensor is described by Cover et al. [4] and Scherer
et al. [17]. Their MAV is used to autonomously explore
rivers using visual localization and laser-based 3D obsta-
cle perception. In contrast to their work, we use the 3D
laser scanner for both omnidirectional obstacle perception
and mapping the environment in 3D.

2.2 3D Scan Registration

The fundamental problem in 3D mapping and localization
is registration in order to align the acquired 3D point clouds
and estimate the poses (positions and orientations) where
the clouds have been acquired. Over the past two decades,
many different registration algorithms have been proposed.
Prominent examples for estimating the motion of mobile
ground robots using 3D scan registration are the works of
Segal et al. [19], Nuechter et al. [14], and Magnusson et
al. [10].
3D laser scanners built out of an actuated 2D laser range
finder are usually (especially on ground robots) rotated
comparably slower than ours to gain a higher and more
uniform density of points. Most of the approaches to regis-
ter such scans are derived from the Iterative Closest Points
(ICP) algorithm [3]. It consists of several processing steps
iteratively repeated until convergence (or until other ter-
mination criteria are met): it searches for corresponding
(closest) points in the target point cloud for all points in

the source point cloud to be registered, and minimizes the
distances between found correspondences w.r.t. some error
metric. In addition, source and target point cloud can be
subsampled, found correspondences can be rejected, and
residual correspondences can be weighted. All of these
steps can be modified and extended to improve the over-
all registration performance or to adapt the algorithm to
specific data (see [15] for an overview). Whereas modifi-
cations in all steps can considerably improve registration
performance, the error metric and its minimization have
the strongest effect on the convergence behavior.

A particularly robust registration algorithm is Generalized-
ICP [19]. It unifies the ICP formulation for various error
metrics such as point-to-point, point-to-plane, and plane-
to-plane. The effect of using this generalized error met-
ric is that corresponding points in two 3D point clouds are
not directly dragged onto another, but onto the underlying
surfaces. For our non-uniform density point clouds, how-
ever, Generalized-ICP tends to fail since the local neigh-
borhoods of points do not adequately represent the under-
lying surface (see an example in Figure 2). They either
miss neighbors in previous and following scans or have a
considerably higher density in the same scan. We adapt
the Generalized-ICP approach to use extracted topologi-
cal information from approximate surface reconstruction
in the acquired 3D point clouds. For sparse data, as the
non-uniform density point clouds acquired by our MAV,
our extension can compensate for this effect and success-
fully register aggregated point clouds.

3 Approach

Generalized-ICP [19] is a particularly robust registration
algorithm. Instead of minimizing the Euclidean distances
d
(T)
i =bi−Tai between corresponding points ai and bi as

in the original Iterative Closest Point (ICP) algorithm [2]:

T? = arg min
T

∑
i

‖d(T)
i ‖

2, (1)



to find the transformation T? aligning two point clouds A
and B, it minimizes a more general error metric:

T? = arg min
T

∑
i

d
(T)
i

T(
CBi + TCAi T

T
)−1

d
(T)
i . (2)

The effect is that corresponding points are not directly
dragged onto another, but the underlying surfaces repre-
sented by the covariance matrices CAi and CBi are aligned.
The covariance matrices are computed so that they express
the expected uncertainty along the local surface normal at
the point. Consequently, the convergence of Generalized-
ICP degrades with inaccurate estimates of the covariances
with classic neighborhood searches as illustrated in Fig-
ure 1.

3.1 Approximate Surface Reconstruction
In order to get a better estimate of the underlying covari-
ances, we perform an approximate surface reconstruction
as done in our previous work [7] in the context of range
image segmentation. We traverse an organized point cloud
S once and build a simple quad mesh by connecting every
point p = S(u, v) (v-th point in the u-th scan line) to its
neighbors S(u, v + 1), S(u + 1, v + 1), and S(u + 1, v)
in the same and the subsequent scan line (see Figure 1).
In the original approximate surface reconstruction [7], we
only add a new quad to the mesh if S(u, v) and its three
neighbors are valid measurements, and if all connecting
edges between the points are not occluded. The first check
accounts for possibly missing or invalid measurements in
the organized structure. For the latter occlusion checks, we
examine if one of the connecting edges falls into a com-
mon line of sight with the viewpoint v = 0 from where
the measurements were taken. If so, one of the underlying
surfaces occludes the other and the edge is not valid:

valid =
(∣∣cosφi,j

∣∣ ≤ cos εφ
)
∧
(
di,j ≤ ε2d

)
, (3)

with φi,j =
(pi − v) · (pi − pj)

‖pi − v‖ ‖pi − pj‖
, (4)

and di,j = ‖pi − pj‖2, (5)

where εφ and εd denote maximum angular and length tol-
erances, respectively.
In addition to the measured angle φi,j , checking the length
of edges plays an important role in obtaining accurate ap-
proximations of the underlying surface. For segmenting
range images [7], we have learned empirical noise models
for this distance threshold εd. In this paper, we adapt εd to
reflect the expected distances between points on the same
physical surface by exploiting the (measurable or known
in advance) angles in between individual scans and points
therein. In particular, we neglect all edges (and quads) be-
ing longer than the expected quad diagonal (times 1.5 to
account for noise):

εd = 1.5
√

2 tan θ. (6)

3.2 Approximate Covariance Estimates

For estimating the covariance matrix of a point, we di-
rectly extract its local neighborhood from the topology in
the mesh instead of searching for neighbors. Depending
on the desired smoothing level (usually controlled with the
search radius), we can extend the neighborhood to include
neighbors of neighbors in the topology and ring neighbor-
hoods farther away from the point.
Instead of computing the empirical covariances as in [19],
we approximate them using the local surface normals. We
compute the normal ni for point pi directly on the mesh as
the weighted average of the plane normals of the NT faces
surrounding pi:

ni =

∑NT

j=0(pj,a − pj,b)× (pj,a − pj,c)

‖
∑NT

j=0(pj,a − pj,b)× (pj,a − pj,c)‖
, (7)

with face vertices pj,a, pj,b and pj,c. We then compute
CAi and CBi as in [19]:

CAi = RA
ni

(
ε 0 0
0 1 0
0 0 1

)
RA

ni

T
, CBi = RB

ni

(
ε 0 0
0 1 0
0 0 1

)
RB

ni

T
(8)

with rotation matrices RA
ni

and RB
ni

so that ε reflects the
uncertainty along the approximated normals nAi and nBi .
Since the used Hokuyo laser range finder is quite accurate,
we choose ε to be small (1 cm).

4 Experiments and Results
Registration problems considerably vary depending on the
availability and quality of pose estimates. Assuming an
optimal (ground truth) pose estimate, the point clouds are
already aligned and a correct registration result is equal to
the initial estimate. That is, any transformation applied by
registration is considered an error in translation and rota-
tion. For our non-uniform density point clouds, standard
registration algorithms tend to drag individual scan lines
onto another instead of aligning the environmental struc-
tures thus diverging from the optimal solution.
In order to assess the performance and reliability of our
approach, and to evaluate both its divergence behavior
and convergence behavior, we use two different data sets
that we make publicly available1. In a final experi-
ment, we show that we can build 3D maps by register-
ing non-uniform density point clouds (angular resolution
of roughly 9◦) acquired in-flight by a micro aerial vehicle.

4.1 Data Set and Error Metric

In order to evaluate convergence and divergence behav-
ior of our approach for different angular resolutions, we
have created a dataset of organized point clouds containing
ground truth pose information. It was recorded using the

1Data sets are available at: http://www.ais.uni-bonn.de/mav_registration
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Figure 3: Evaluation of the divergence behavior on four scan pairs (a-d). Registration (translation) errors increase with
an increasing angle θ between scan lines. Our approach can compensate for non-uniform densities and achieves fairly
acceptable results even for larger angles between scans.

same rotating laser scanner but on a mobile ground robot
standing still while acquiring 3D point clouds—thus avoid-
ing inaccuracies in laser scan aggregation. The dataset
contains point clouds from eight different poses with a
total of 6890 2D laser scans acquired over multiple full
rotations at each pose to obtain comparably dense point
clouds. The total trajectory length between the eight poses
is roughly 50 m. It was recorded by Schadler et al. [16]
in the arena of the DLR SpaceBot Cup2 competition for
semi-autonomous exploration and mobile manipulation in
rough terrain. For the dataset, we collected all 2D scan
lines acquired at each of the poses, sorted them by rota-
tion angle and re-organized the data to obtain eight full
resolution (θ ≈ 0.3◦) organized point clouds. We anno-
tated each point cloud with the ground truth pose estimate
obtained from an accurate multi-resolution surfel mapping
approach for dense point clouds [16]. For the experimen-
tal evaluation, we generated thinned out versions of these
eight original point clouds with different angular resolu-
tions and angles θ ∈ [1◦, 90◦], respectively.
For the evaluation, we measure registration success in
terms of the registration error. In particular, for consec-
utive point clouds acquired at times i and i+ 1, we inspect
the relative deviations Ei with

Ei :=
(
Q−1
i Qi+1

)−1 (
P−1
i Pi+1

)
(9)

between ground truth poses Q and estimated poses P. As
suggested in [21], we focus on the translation error et with

et = ‖trans (Ei (∆)) ‖2, (10)

i.e., the Euclidean distance between the estimated (relative)
pose estimates.

4.2 Divergence Behavior
In order to evaluate the divergence behavior of our ap-
proach for different angular resolutions, we have chosen
pairs of consecutive point clouds from the data set and reg-
istered the respective thinned out copies. In a compara-
tive evaluation, we registered the scans of each pair using
both the original Generalized-ICP algorithm and our vari-
ant with topological surface information. Figure 3 shows
the results of this comparison with decreasing angular res-
olution (increasing angle θ between scans).
The presented results include only four of the seven pairs
of consecutive point clouds; all results are available on-
line together with the data set. Both algorithms achieve
optimal registration results for the dense point clouds with
deviations from ground truth of only few centimeters. In
fact, it is hard to tell whether the pose estimate used as
ground truth is better or worse than the achieved alignment.
For increasing angles between scan lines, the Generalized-
ICP algorithm quickly starts to fail showing the aforemen-
tioned behavior of dragging individual scan lines (and the
scan origins) onto another instead of aligning sensed en-
vironmental structures. In its extreme, both scan origins
coincide and the maximum error in the registration results
reflects the Euclidean distance between the ground truth
pose estimates. Our approach achieves fairly acceptable
results even for very low angular resolutions (angles be-
tween scans of θ > 15◦). For smaller angles (θ ≤ 10◦),
the resulting alignments are very accurate.

4.3 Convergence Behavior
The evaluation of the divergence behavior is particularly
important for the type of data and registration problem that
we address in this paper. Still, pose estimates of such high

2NimbRo Centauro at the DLR SpaceBot Cup: http://www.ais.uni-bonn.de/nimbro/Centauro
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Figure 4: Evaluation of the convergence behavior on four scan pairs (a-d): registration success for different deviations
from the ground truth pose estimates (θ = 9◦). Registration success is measured w.r.t. translation error using a strict
threshold (green) and a weaker threshold (yellow). Each subplot encodes seven initial orientations from−80◦ to 80◦ with
0◦ pointing along the x axis. Note that the original Generalized-ICP algorithm fails in all cases as can be expected from
the evaluation of its divergence behavior at this angular resolution.

quality are rare, especially on a flying micro aerial vehicle.
Instead, initial pose estimates tend to be noisy and may
considerably deviate from the optimal alignment. Here,
the central question is if and how well a registration algo-
rithm converges to the optimal solution.

In order to evaluate the convergence behavior of our ap-
proach, we have used the same four pairs of point clouds
as in the evaluation of the divergence behavior. Instead of
using all available angular resolutions, we focus on the ex-
pected angular resolution of our scanner when flying (i.e.,
θ = 9◦). For each scan pair, we registered the respective
point clouds using our approach while using different devi-
ations from the ground truth pose estimates. In particular,
we simulate inaccuracies in the initial pose estimates using
translation errors of up to 2 m along the x and y axes (i.e.,
the plane the robot is moving on) and rotation errors of up
to 80◦ about the z axis (i.e., affecting the robot’s heading
estimate).

In order to measure registration success for the different
initial conditions, we have chosen two thresholds for the
final translation error et (Eq. 10): a stricter one (0.25 m)
and a weaker one (1 m) similar to the evaluation of regis-
tration algorithms by Magnusson et al. [11]. The intuition
behind the two thresholds is that poses within the stricter
translation threshold are difficult to tell apart for a human
observer; poses within the weaker threshold are inaccurate
but still fairly well aligned. We consider a registration as
failed if the translation error exceeds the weaker threshold.

Figure 4 reports the results of the evaluation with different
initial conditions for the same four scan pairs as used in
the evaluation of the divergence behavior (Section 4.2). As
can be seen, our approach fails in only very few cases (with
high initial rotational error and/or high translational error).
In the majority of registrations (even with high initial ro-
tational and translational errors), our approach achieves an
acceptable alignment even with the strict threshold.



4.4 Registration of In-flight 3D Scans
In a final experiment, we have recorded a dataset with the
continuously rotating laser scanner on the flying MAV. The
MAV was flying through a parking garage of 40×20 m.
Overall, the dataset contains a total of 4420 2D scan lines
which are aggregated to 200 3D scans (each aggregated
over one half rotation of the scanner). The overall tra-
jectory length is 73 m (traveled in 100 s). We used two
fish-eye stereo camera pairs on the MAV and visual odom-
etry [18] to estimate the motion of the MAV and aggregate
the individual 2D laser scans to 3D point clouds.
In order to provide a proof-of-concept of our approach to
register non-uniform density point clouds acquired by a
flying MAV using a lightweight scanner, we have selected
four sequences of consecutive aggregated 3D point clouds
(data sets A-D, with 10 point clouds each) from the orig-
inal data set. Using our registration approach, we aligned
all pairs of consecutive point clouds in a data set, and
used the resulting pose estimates to build a 3D occupancy
map [8] of the surrounding environmental structures. Fig-
ure 5 shows detailed results (including all aligned scan
pairs) for data set A. As can be seen, our approach ac-
curately aligns all scans and allows for constructing lo-
cally consistent 3D maps of the environment. Whereas
Generalized-ICP failed for every single scan pair, our ap-
proach yields consistent alignments for all four data sets
(see Figure 6). We report runtimes of our approach (av-
eraged over all 199 scan pairs in the original data set, on
a single core of a 2.7 GHz Intel Core i7 notebook CPU
without parallelization) in Table 1. As can be seen, we can
register point clouds as they are acquired in real time.

Table 1: Runtimes for preprocessing and registration
Preprocessing (per point cloud)

Organization & aggregation �1 ms
Approx. surface reconstruction ≈1 ms
Normal and covariance estimation <1 ms

Registration (per pair of consecutive clouds)
Setting up the search tree ≈2 ms
GICP w. approx. covariances 60±17 ms

5 Conclusion and Future Work
Point clouds acquired by 3D laser scanners that are com-
posed of rotating 2D laser range finders have the particu-
lar characteristic of having non-uniform point densities: a
high density in each laser scan and a certain angle between
laser scans. With increasing angle, these non-uniform den-
sities influence neighborhood searches which in turn neg-
atively affect scan registration. In order to register such
point clouds reliably, we have extended the state-of-the-art
Generalized-ICP algorithm to include topological informa-
tion from approximate surface reconstructions.
Using own data sets (that we make publicly available), we
demonstrated that our approach adequately registers non-

uniform density point clouds in case of good initial esti-
mates, and in the case of badly aligned point clouds if no
such estimate is available. Furthermore, we have shown
that our approach can be used to build locally consistent
3D maps of the surroundings with a light-weight 3D laser
scanner on a flying micro aerial vehicle.
W.r.t. limitations, as a pure registration algorithm, our ap-
proach can only be used to align pairs of point clouds ac-
quired close to each other, or to build local 3D maps over
short sequences of acquired point clouds. In order to build
globally consistent maps, a back-end for simultaneous lo-
calization and mapping is needed. It is a matter of future
work to extend our registration approach to a fully fledged
SLAM framework for mapping with micro aerial vehicles.
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