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Abstract. For planning grasps and other object manipulation actions
in complex environments, 3D semantic information becomes crucial. This
paper focuses on the application of recent 3D Time-of-Flight (ToF) cam-
eras in the context of semantic scene analysis. For being able to acquire
semantic information from ToF camera data, we a) pre-process the data
including outlier removal, filtering and phase unwrapping for correcting
erroneous distance measurements, and b) apply a randomized algorithm
for detecting shapes such as planes, spheres, and cylinders. We present
experimental results that show that the robustness against noise and
outliers of the underlying RANSAC paradigm allows for segmenting and
classifying objects in 3D ToF camera data captured in natural mobile
manipulation setups.

1 Introduction

Autonomous mobile robots need environment models in order to plan actions
and navigate effectively. Two-dimensional metric maps, built from 2D laser range
scans, became the de-facto standard to tackle navigation problems such as path
planning and localization of the robot platform. For planning arm motions and
grasps, however, 3D semantic information becomes crucial since:

1. Objects need to be detected in the presence of other objects (e.g., on a
cluttered table).

2. The robot needs to determine whether or not an object is graspable (e.g.,
with respect to its size).

3. The robot needs to determine the 3D pose of the object as a goal for its
end-effector.

4. The robot needs to determine the 3D pose (and boundaries) of neighboring
objects in order to plan an obstacle-free path.

The context of the work presented here is the RoboCup@Home league. This
league addresses service robot applications and focuses on navigation (and SLAM)
in dynamic environments, mobile manipulation and human-robot-interaction. A
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typical task for a mobile service robot is to fetch and deliver objects such as
beverages. This involves detecting and recognizing objects as well as planning
arm motions and grasps.

In previous work, we used a 2D laser scanner for detecting possible object lo-
cations on tables. The 2D positions of the object candidates were then projected
into the image plane of a color camera for feature-based object recognition. In
case of a successful recognition (i.e., the object to deliver was among the can-
didates), grasping of the object was initiated. The drawback of this approach
(as illustrated in Figure 1) is that objects can occlude each other in the two-
dimensional measurement plane of the laser range scanner.

(a) Laser Perception (b) ToF Perception

Fig. 1. Perceiving objects on the table. With the trunk laser scanner (a), the second
object is occluded and not perceived. Using the ToF camera (b), mounted in the robot’s
head, would allow for perceiving both objects.

In this work, we present our efforts in using Time-of-Flight (ToF) cameras
for perceiving semantic information in the robot’s workspace and, in particular,
detect tables and objects as well as their shapes.

One of the first applications in robotics considering ToF cameras as an alter-
native to laser scanning has been presented in 2004 by Weingarten, Grüner, and
Siegwart who evaluated a SwissRanger SR-2 camera in terms of basic obstacle
avoidance and local path-planning capabilities [14]. In 2005, Sheh et al. used
a ToF camera for human-assisted 3D mapping in the context of the RoboCup
Rescue league [12]. Ohno et al. used a SwissRanger SR-2 camera for estimating
a robot’s trajectory and reconstructing the surface of the environment in 2006
[9]. Recently, May et al. presented and evaluated different approaches for regis-
tering multiple range images of a SwissRanger SR-3000 camera in the context
of fully autonomous 3D mapping [6]. All the aforementioned approaches have
shown that ToF cameras require to take care of their complex error model (see
[6] for an overview).

The extraction of semantic information from 3D laser scan data has seen a
lot of progress in the last decade, of which we want to mention two approaches.



Nüchter et al. extract environmental structures such as walls, ceilings and driv-
able surfaces from 3D laser range scans and use trained classifiers to detect
objects, like for instance humans and other robots [8]. Rusu et al. extract hybrid
representations of objects consisting of detected shapes, as will be done here, as
well as surface reconstructions where no shapes have been detected [10]. Both
approaches show good results when processing accurate 3D laser range data.

The remainder of this paper is organized as follows (referring to Figure 2):
Section 2 covers pre-processing steps being necessary to cope with the complex
error model of ToF cameras. Section 3 deals with the detection of table tops,
the estimation of the corresponding planar models and the segmentation of in-
dividual objects. Section 4 finally covers the detection of primitive shapes in 3D
point clouds and the classification of the segmented objects.
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Fig. 2. System overview.

2 Pre-processing 3D Point Clouds

Besides a large variety of systematic and non-systematic errors (see [6]), ToF
cameras show two problems that are characteristic for their measurement prin-
ciple. The first problem is the ambiguity of distance measurements. The second
problem is that the acquired point clouds contain phantom measurements oc-
curring at distance discontinuities, i.e., at the boundaries of surfaces partially
occluding each other. Both problems cause spurious measurements that do not
correspond to any object in the real physical environment. By means of phase
unwrapping and jump edge filtering both problems are addressed when pre-
processing the acquired point clouds.



2.1 Probabilistic Phase Unwrapping

ToF cameras illuminate the environment by means of an array of LEDs that
emit amplitude-modulated near-infrared light. The reflected light is received
by a CCD/CMOS chip. Depth information is gained for all pixels in parallel by
measuring the phase shift between the emitted and the reflected light. This phase
shift is proportional to the object’s distance to the sensor modulo the wavelength
of the modulation frequency. This characteristic results in a distance ambiguity.
That is, objects farther away from the sensor than the maximum measurable
distance dmax are, respectively, wrapped and projected into the interval [0, dmax].

A common way to handle these distance ambiguities is to neglect measure-
ments based on the ratio of measured distance and intensity. The amplitude of
the reflected signal decreases quadratically with the measured distance. Sort-
ing out points not following this scheme, e.g., points with a low intensity at a
short distance, removes the majority of wrapped measurements but also valid
measurements on less reflective surfaces.

In contrast to these approaches, we correct the wrapped measurements in-
stead of neglecting them. We apply phase unwrapping techniques to reconstruct
depth measurements behind the sensor’s non-ambiguity range. The goal of phase
unwrapping is to infer a number of phase jumps from the wrapped signal. Un-
der the assumption that neighboring measurements are more likely close to each
other than farther apart, relative phase jumps between neighboring pixels can
be extracted. The signal can be unwrapped by integrating these phase jumps
into the wrapped signal. We use a probabilistic approach based on [3] that re-
lies on discontinuities in the image to infer these phase jumps. In addition to
depth discontinuities, we incorporate the intensity of the reflected signal, since
it depends on the object’s distance and can indicate inconsistencies between a
measured and the corresponding real distance.

(a) Scene (b) Wrapped cloud (c) Unwrapped cloud

Fig. 3. Phase unwrapping. By correcting the depth image at detected phase jumps,
we can obtain valid measurements from objects being farther away from the sensor
than the maximum measurable distance dmax. Here the red measurements need to be
corrected, the green points naturally lie in the interval [0, dmax].



2.2 Jump Edge Filtering

Jump edges are known to cause spurious measurements that should either be
corrected or neglected when processing ToF depth information. For simply ne-
glecting these measurements, sufficient results are achieved by examining local
neighborhood relations. From a set of 3D points P = {pi ∈ R

3|i = 1, · · · , Np},
jump edges J can be determined by comparing the opposing angles θi,n of the
triangle spanned by the focal point f = 0, point pi and its eight neighbors
Pn = {pi,n|i = 1, · · · , Np : n = 1, · · · , 8} with a threshold θth:

θi = max arcsin

(

||pi,n||

||pi,n − pi||
sinϕ

)

, (1)

J = {pi|θi > θth} , (2)

where ϕ is the apex angle between two neighboring pixels. That is, neighboring
points that lie on a common line-of-sight to the focal point f are, respectively,
removed from the point cloud and marked as being invalid. A typical result of
applying this filter is shown in Figure 4.

(a) Scene (b) Unfiltered cloud (c) Filtered cloud

Fig. 4. Sorting out jump edges. Shown are a photo of an example scene (a), the cap-
tured unfiltered point cloud (b) and the filtered cloud (c). It can be seen that the
majority of erroneous measurements caused by jump edges, e.g., between table and
floor in (b), are sorted out in the filtered cloud (c).

3 Table and Object Detection

The detection of tables and objects in the filtered point clouds is conducted
in three steps: We first compute local surface normals and variations for all
points. This information is then used to detect larger horizontal planes and
fitting corresponding planar models into the data. Points above these planes but
inside their boundaries are then clustered in order to form the object candidates
for later shape detection and feature-based recognition.



3.1 Computing Local Surface Normals and Curvature Changes

A common way for determining the normal to a point pi on a surface is to
approximate the problem by fitting a plane to the point’s local neighborhood
Pi in a least squares error sense. This neighborhood is formed either by the k
nearest neighbors or by all points within a radius r from pi.

Searching for nearest neighbors is computationally expensive. Even special-
ized algorithms like approximate search in kd-trees [7] can cause longer runtimes
when building the search structure for a larger point set. Instead of really search-
ing for nearest neighbors, we approximate the problem and exploit the order of
the measurements in the point cloud (176 × 144 distance measurements). We
build a lookup table storing, for every point index, the ring-neighborhood being
formed by the k closest indices in index space. That is, starting from pi we circle
around the image index (x = i/176, y = i mod 176) in anti-clockwise order and
store the point index for the traversed pixels in the lookup table. When process-
ing a new point cloud we only update the squared distances from every point pi
to its k neighbors as provided by the lookup table.

The approximated nearest neighbors do not resemble the true nearest neigh-
bors in the vicinity of transitions between different surfaces or partial occlusions,
and if the point cloud is highly affected by noise and erroneous measurements.
To take this into account, we check the computed squared distances and mark
those being larger than some threshold r2 as being invalid. That is, our local
neighborhood Pi is bounded by both a maximum number of neighbors k and a
maximum distance r.

Given the local neighborhood Pi, the local surface normal ni can be estimated
by analyzing the eigenvectors of the covariance matrix Ci ∈ R

3×3 of Pi. An
estimate of ni can be obtained from the eigenvector vi,0 corresponding to the
smallest eigenvalue λi,0. The ratio between the smallest eigenvalue and the sum
of eigenvalues provides an estimate of the local curvature ∆ci.

(a) Intensities (b) Normals (c) Curvature

Fig. 5. Computing local surface normals and curvature changes. Shown are the input
point cloud with intensity information (a) as well as the computed surface normals (b)
and local curvature changes (c). The used parameters are k = 40 and r = 20 cm.

The aforementioned neighborhood approximation drastically decreases the
computational complexity of the surface normal and curvature estimation. How-
ever, more important is that the involved inaccuracies did not considerably de-



graded the results in our experiments. Figure 5 shows a typical example of local
surface normals and curvature changes as computed for a pre-processed point
cloud.

3.2 Detecting the Table Plane

For detecting tables in the vicinity of the robot, we extract those points pi from
the point cloud that satisfy the following constraints: 1.) the surface normal ni is
nearly parallel to the z-axis (i.e., ni ‖ Ẑ) and 2.) the surface around pi is smooth
(i.e., ∆c ≈ 0). Points satisfying these constraints have likely been measured on
the surface of a table and form an initial set of table points T . In order to
distinguish multiple tables, we examine the distribution in the measured heights
pzi ,pi ∈ T and split T into multiple sets T1, . . . , Tn in case of larger fluctuations.
The same is done for larger variations in the position (pxi p

y
i )
T of the points.

In order to obtain an efficient representation of tables and to segment in-
dividual objects, we fit a planar model into each table point set Ti using the
M-Estimator Sample Consensus (MSAC) framework – an extension to the well-
known RANSAC paradigm where inliers receive a certain score depending on
how well they fit the data [13]. This M-Estimator is particularly robust against
noise and outliers. For the point cloud from Figure 5, all points in T belong to
the same table. The result of fitting a planar model to T is shown in Figure 6.a.
The planar model that best fits the data is almost parallel to the xy-plane and
is supported by 20 731 inliers. It can already be seen that, despite some points
on the table’s boundaries, the outliers correspond to the objects on the table.

Once the planar model has been found, we project all inliers onto the detected
plane and compute the 2D convex hull by means of Graham’s Scan Algorithm
[4]. The convex hull for the 20 731 points from Figure 6.a is shown in Figure 6.b.
It consists of 9 points and accurately represents the table top.

(a) Inliers supporting the model (b) Polygonal approximation

Fig. 6. Detecting the table plane. Shown are the inliers (red) supporting the planar
model (a) as well as the 3D polygonal approximation (b) formed by the two-dimensional
convex hull of the inliers (projected onto the table plane).



3.3 Clustering Outliers and Detecting Objects

All outliers from fitting the planar model as well as the points that have not
been considered for the table point set T are potential object points. That is,
they could have been measured on the surface of an object. Since we are only
interested in objects on top of the table, we first sort out all points lying below
the table plane as well as those points that do not lie within the bounding
polygon. In order to obtain point sets that represent a common object, we apply
a simple clustering based on the Euclidean distance between neighboring points.
Neighboring points whose point-to-point distance is below a threshold dmax are
recursively merged into clusters. Clusters whose cardinality exceed a minimum
number nmin of support points are considered as object candidates.

The resulting segmentation of the ongoing examples from Figure 5 and Figure
6 is shown in Figure 7. In order to use the segmented object clusters for motion
planning, we compute the centroid as well as the oriented bounding box for all
points in each cluster. For planning grasps, however, we need to determine the
shape of the objects.

(a) Outliers from planar fit (b) Object candidates

Fig. 7. Detecting object candidates. Shown are the unclustered outliers (a) and the ob-
ject candidates (b) obtained from Euclidean clustering. Object candidates are colored.
The remaining points are gray. Here, the parameters are dmax = 2.5 cm and nmin = 250.

4 Randomized Shape Detection

In order to robustly detect different kinds of geometric primitives, we employ
an efficient RANSAC algorithm that directly operates on the point clouds and
the associated surface normal information. Indeed, in our setting we can closely
follow a simplified version of the approach proposed by Schnabel et al. [11].
While the original method focuses on achieving efficiency even on huge point
clouds, the point clouds in the considered application are comparatively small
and thus not all optimizations worthwhile.

Given a point cloud P = {pi ∈ R
3|i = 1, . . . , Np} with associated nor-

mals {ni, . . . ,nNp}, the output of the algorithm is a set of primitive shapes
Ψ = {ψ1, . . . , ψn} with corresponding disjoint sets of points PΨ = {Pψ1

⊂
P, . . . , Pψn ⊂ P} and a set of remaining points R = P \

⋃

ψ Pψ.



The shape extraction problem is framed as an optimization problem defined
by a score function σP . In each iteration of the algorithm, the primitive with
maximal score is searched using the RANSAC paradigm. New shape candidates
are generated by randomly sampling minimal subsets of P . Candidates of all

considered shape types are generated for every minimal set and all candidates
are collected in the set C. Thus, no special ordering has to be imposed on the
detection of different types of shapes. After new candidates have been generated,
the candidate m with the highest score is computed employing the efficient lazy
score evaluation scheme presented in Sec. 4.3. The best candidate is only ac-
cepted if, given the number of inliers |m| of the candidate and the number of
drawn candidates |C|, the probability that no better candidate was overlooked
during sampling is high enough (see [2]). If a candidate is accepted, the cor-
responding points Pm are removed from P and the candidates Cm generated
with points in Pm are deleted from C. The algorithm terminates as soon as the
probability of detection for a shape with a user defined minimal size τ is large
enough.

4.1 Shape Estimation

The shapes we consider in this work are planes, spheres, cylinders, cones and tori
which have between three and seven parameters. Every 3D-point pi fixes only
one parameter of the shape. In order to reduce the number of points in a minimal
set, we also use the unoriented approximate surface normal ni for each point,
so that the direction gives us two more parameters per sample. That way it is
possible to estimate each of the considered basic shapes from at most three point
samples. However, always using one additional sample is advantageous because
the surplus parameters can be used to immediately verify a candidate and thus
eliminate the need of evaluating many relatively low scored shapes [5].

4.2 Score

The score function σP is responsible for measuring the quality of a given shape
candidate. We use the following aspects in our scoring function: 1.) To measure
the support of a candidate, we use the number of points that fall within an ǫ-band
around the shape. 2.) To ensure that the points inside the band roughly follow
the curvature pattern of the given primitive, we only count those points inside
the band whose normals do not deviate from the normal of the shape more than
a given angle α. 3.) Additionally we incorporate a connectivity measure: Among
the points that fulfill the previous two conditions, only those are considered that
constitute the largest connected component on the shape.

4.3 Score Evaluation

Obviously the cost of evaluation would be prohibitive without any optimizations
because in a naïve implementation, the distance to all points in P would have to



be computed together with a normal at a corresponding position on the shape
for each candidate. But since in each run we are only interested in the candidate
that achieves the highest score, using the entire point cloud P when computing
σP (ψ) is not necessary for every shape candidate.

We significantly reduce the number of points that have to be considered in
the evaluation of σP (ψ) by splitting the point cloud P into a set of disjoint
random subsets: P = S1

⋃

. . .
⋃

Sr.
After a shape candidate was generated and successfully verified, the candidate

is only scored against the first subset S1 and no connected component is extracted
yet. From the score σS(ψ) on a subset S ⊂ P an estimate σ̂P (ψ) for the score
σP (ψ) on all points can be extrapolated using the well known induction from
inferential statistics:

σ̂P (ψ, S) = −1 − f(−2 − |S|,−2 − |P |,−1 − |Sψ|) , (3)

where f(N,x, n) =
xn±

√

xn(N−x)(N−n)
N−1

N
(4)

is the mean plus/minus the standard deviation of the hypergeometric distribu-
tion. σ̂P (ψ) is a confidence interval [lψ, uψ] that describes a range of likely values

for the true score σP (ψ). The expected value E(σP (ψ)) is given by
lψ+uψ

2 . With
this extrapolation the potentially best candidate ψm can be quickly identified by
choosing the one with the highest expected value. Since the uncertainty of the
estimation is captured in the confidence intervals, the truly maximal candidate
can be found by comparing the confidence intervals of the candidates.

If the confidence intervals of ψm and another candidate ψi overlap, the score
on an additional subset is evaluated for both candidates and new extrapolations
are computed, now taking into account the scores on all subsets that have already
been computed. The more subsets have been considered, the smaller becomes
the range of the confidence intervals, since the uncertainty in the estimation
decreases. Further subsets are included until the confidence intervals of ψi and
ψm no longer overlap and it can be decided if either ψi or ψm is better.

The advantage of this priority-based candidate evaluation is that it is less
dependent on the random order in which candidates are generated. Compared
to the related but order-dependent approach of David Capel [1], we achieve a
20% speedup on average on a single core machine.

Results of applying the shape detection algorithm to the object clusters from
Section 3 are shown in Figure 8.

5 Conclusion

We have presented a simple, yet efficient and robust, tool chain for extracting
semantic information from ToF camera data. It comprises techniques for correct-
ing erroneous measurements caused by the ambiguity in distance measurements
as well as for filtering points on jump edges. By means of a MSAC-based ap-
proach and the information about the surface in a point’s local neighborhood,



Detected shapes

Object o1

Object o2

Object o0

Table

Detected Objects and Shapes (all units in m)

Table

20 753 points supporting the planar model

Normal vector: [−0.0232 − 0.0156 0.9996]

Distance to 0: 0.742 795

Object o0 (cup)

758 points in the cluster, detected primitive: Cylinder

Centroid: [0.6847 − 0.0166 0.7885]

Radius: 0.0314 (ground truth: 0.034)

Axis direction: [0.0869 − 0.0120 0.9961]

Object o1 (ball)

1738 points in the cluster, detected primitive: Sphere

Centroid: [0.6871 0.2058 0.8598]

Radius: 0.0778 (ground truth: 0.082)

Object o2 (cup)

815 points in the cluster, detected primitive: Cylinder

Centroid: [0.6847 − 0.0166 0.7885]

Radius: 0.0284 (ground truth: 0.032)

Axis direction: [0.1028 0.0080 0.9915]

Residual points
1185 points on jump edges

95 points not assigned to table or object clusters

Fig. 8. Typical result of table, object, and shape detection. TOP: After fitting the
planar model, the 20 753 inliers are removed and the table is represented solely by the
model parameters and the convex hull of the inliers. The remaining 4591 points are
segmented into 3 clusters (random colors) and successfully classified as being a sphere
and two cylinders (see table below). BOTTOM: Example of a more complex scene with
one false detection (the left side of the box is detected as a cylinder due to the highly
inaccurate data in this region). Colors are red (plane), green (cylinder) and yellow
(sphere).



we are able to detect table tops and objects thereon. Furthermore, we presented
an approach for detecting primitive shapes in the detected objects that allow,
e.g., for planning grasping motions.

In its current state, the presented approach can process complete point clouds
of 25 344 points (i.e., without working on a sub-sampled copy of the cloud) with
2.5 Hz to 5 Hz. In future, we plan to further speed up the processing tool chain
for being able to track objects with much higher frame rates. Furthermore, it
is planned to use the extracted semantic information for registration and to
construct 3D semantic maps of the robot’s workspace.
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