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Abstract. Presented in this paper is a complete system for robust au-
tonomous navigation in cluttered and dynamic environments. It consists
of computationally efficient approaches to the problems of simultane-
ous localization and mapping, path planning, and motion control, all
based on a memory-efficient environment representation. These compo-
nents have been implemented and integrated with additional components
for human-robot interaction and object manipulation on a mobile ma-
nipulation platform for service robot applications. The resulting system
performed very successfully in the 2008 RoboCup@Home competition.

1 Introduction

Autonomous service robots that assist in housekeeping, serve as butlers, guide
visitors through exhibitions in museums and trade fairs, or provide care to elderly
and disabled people could substantially ease everyday life for many people and
present an enormous economic potential [7, 17, 19]. Robots for all these applica-
tions face, however, the challenging task of operating in real-world indoor and
domestic environments, such as those addressed by the RoboCup@Home league.
Domestic environments tend to be cluttered, dynamic, and are populated by
humans and domestic animals. In order to adequately react to sudden dynamic
changes and avoid collisions, these robots need to be able to constantly acquire
and process in real-time information about their environment. Furthermore, in
order to act in a goal-directed manner, plan actions and navigate effectively, a
robot needs an internal representation of its environment. Nature and complex-
ity of these representations highly depend on the robot’s task and application
space.

For a more concrete example, consider a domestic service robot that is given
the task to serve a cold drink from the refrigerator to a guest in the living room.
Aside of the activities like interacting with the host and the guest, grasping ob-
jects like a can of soft drink, or other manipulation tasks, the robot needs to solve
several problems related to navigation: If the environment is initially unknown,
the robot must i) explore the environment and ii) build a map. Both during this
exploration and map building phase and during everyday operation later on, the



robot needs to iii) localize itself and iv) localize task-relevant objects (such as the
refrigerator) within its environment representation. As self-localization requires
a map of the environment, while mapping requires the ability to self-localize,
these two problems need to be considered jointly as simultaneous localization
and mapping (SLAM). SLAM has not only been a substantial research focus in
the robotics community over the last decades but is also regarded as a major
precondition of truly autonomous robots [20]. For actually moving to certain
locations in the environment, the robot needs to iv) plan obstacle-free paths and
v) follow planned paths. Due to the fact that it operates in a dynamic environ-
ment, the robot must also constantly acquire information about the environment
during navigation, and use it to vi) update the map and vii) avoid collisions.

All of the above problems have been well researched in robotics, at least in
isolation. For each of these problems a large variety of sophisticated algorithms
have been proposed. They coexist legitimately, since they are designed or es-
pecially appropriate for a specific purpose. However, despite the huge body of
literature available, the problem of robust and computationally efficient naviga-
tion in domestic environments cannot be considered solved yet. The first issue
is robustness. Especially in RoboCup@Home, there is only a short preparation
time and only five to ten minutes to solve a complex task. Hence, algorithms
need to be robust and the overall system has to act reliably. Advancing robust-
ness, however, often comes with increasing complexity that affects the real-time

applicability of the algorithm and the overall system which is the second issue.
Scalability is another issue since the computational complexity of many sophis-
ticated approaches e.g. in SLAM either directly results in prohibitive memory
and runtime requirements if applied to realistically-sized or large real-world en-
vironments, or at least cannot be used online in a reasonable fast cycle time. The
forth issue is integration. The aforementioned problems are strongly interwoven
as, for example, the choice of the environment representation affects the choice of
localization and path-planning algorithms. Identified best-in-class solutions may
have different underlying assumptions hindering integration or necessitating pos-
sibly complex transformations from one representation into another. Efficiency
problems may occur especially if such transformations cannot be done once and
offline, but need to be done constantly or in regular intervals due to environ-
mental dynamics. Furthermore, if published implementations are available at
all, they are often not modular and easily re-usable as they depend on a specific
architecture, development framework or inter-module communication.

Instead of proposing yet another toolkit for navigational purposes, the goal
of our work is to design and implement a (complete) set of algorithms for au-
tonomously performing SLAM, planning paths, and controlling the motion of
a mobile service robot, i.e. an approach addressing the aforementioned prob-
lems ii) to vi) which is robust, efficient and scalable. Exploration and collision
avoidance are not addressed in the context of this paper. The algorithms are
implemented in a modular and reusable way. Dependencies on external libraries
are kept at a minimum. Primary design goals are robustness, simplicity and
real-time applicability of the algorithms and the overall system.



The remainder of this paper is organized as follows: Section 2 provides
a brief overview on the robot platform used for implementation and in the
RoboCup@Home competitions. Section 3 introduces sparse point maps as a
space efficient environment representation together with the proposed SLAM
algorithm. Path-planning based on this representation and the used motion con-
trollers are presented in Section 4 and Section 5, respectively. Finally, Section 6
contains some concluding remarks and an outlook on future work.

2 Base System

For evaluating the performance and robustness of the algorithms presented in
this paper, the mobile service robot Johnny Jackanapes was used (see Figure
1), which is based on a modular mobile robot platform called VolksBot [21].
VolksBot has been designed specifically for rapid prototyping and robot appli-

(a) (b) (c)
Fig. 1. (a) Robot platform ”Johnny Jackanapes”. (b) Simulation in Microsoft Robotics
Studio. (c) Simulation using Player/Stage (top) and view on the remote inspec-
tion/debug application (bottom).

cations in education, research and industry. The customized variant used has an
integrated manipulator, a Neuronics Katana 6M180 robot arm equipped with
six motors providing five degrees of freedom w.r.t. the gripper’s position and
orientation in its reachable workspace. It is mounted in a way to provide good
reachability and maneuverability. The overall platform size is (51×51×120)cm
(W×L×H) and its weight is 60 kg. The drive unit used for locomotion uses a
differential drive with two actively driven wheels, powered by two 150 W motors,
and two caster wheels to enhance rotating and stability under load. The robot’s
maximum velocity is 2 m/s.

For perceiving environmental structures, a SICK S300 2D laser scanner is
used. The size of the apex angle limiting the scan plane is 270◦, with an angu-
lar resolution of 0.5◦. For accessing other sensors and robot platforms as well
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Fig. 2. (a) Single laser scan taken from the data set used in [23]. (b) Map constructed
from all laser scans in the same data set. The couch table did not intersect the scan
plane and is neither perceived nor modeled in the map.

as simulation environments, wrappers and interfaces have been implemented
to interact with Microsoft Robotics Studio, Player/Stage and CARMEN (the
Carnagie Mellon Navigation Toolkit). However, the drawback of 2D laser range
finders for the purposes of collision avoidance and mapping is that objects not
intersecting the 2D scan plane cannot be perceived by the robot. See e.g. the
couch table that does not cause reflections in the 2D laser scan in Figure 2(a)
and is thus not modeled in the point map in Figure 2(b). While in some indoor
robot applications this drawback can be neglected, it plays an important role in
a human’s everyday environment, where typically many objects do not intersect
the measurement plane, but still pose a threat to the robot. Examples include
open drawers or small objects lying on the ground. In such environments, 3D
information becomes crucial. Although we currently do not use a 3D sensor on
the robot platform, like e.g. a 3D laser scanner or a time-of-flight camera, the
proposed SLAM algorithm is already applicable to both 2D and 3D information.

3 Simultaneous Localization and Mapping

Performing SLAM to build maps and localizing in preliminary built maps are
major preconditions for the autonomous operation of mobile robots in changing
or preliminary unknown environments. Approaches addressing mapping and lo-
calization differ, amongst others, in formulating the problem, the means to cope
with the addressed problem and in representing the environment. Occupancy
grids [14] are a popular metric map representation for navigation which can
be built from various kinds of simple range sensors like sonars and laser range
finders. These sensors deliver information that there is some kind of obstacle
in a certain distance. Occupancy grids provide a discretized representation of
this kind of occupancy information. Furthermore, they distinguish unoccupied
and not yet visited areas compared to feature-based representations that only
store certain features perceived in the environment or geometric primitives mod-
eling environmental structures. However, occupancy grid maps typically require
a large amount of memory and can be computationally expensive to handle.
On the other hand, feature-based approaches require robust feature extraction
mechanisms which may be computationally expensive.



When addressing SLAM in terms of range image registration, raw measure-
ments (i.e. point clouds) acquired with a laser scanner can directly be used to
model environmental structures and to localize a mobile robot by using a match-
ing algorithm. Hence, there is no need for applying additional feature extraction
mechanisms. The problem of registering point clouds can be formulated as fol-
lows. Given two point clouds M , called model set, and D, called data set, find a
transformation T that minimizes the alignment error between the two sets and
correctly maps D onto M . The essential problems derived from this formulation
are a) how to define the error function and b) how to minimize this error.

3.1 The ICP Algorithm

A widely used solution to the registration problem is the Iterative Closest Point
(ICP) algorithm by Besl and McKay [1], which determines T in an iterative
way. In each iteration step, the ICP algorithm determines pairs of corresponding
points from D and M using a nearest-neighbor search. These correspondences
are used to quantify and minimize the alignment error:

E(R, t) =

|M |
∑

i=1

|D|
∑

j=1

wi,j‖mi − (Rdj + t) ‖2, wi,j =

{

1, mi corresponds to dj

0, otherwise.
(1)

T =

(

RICP tICP

0 0 0 1

)

with (RICP , tICP ) = arg min
R,t

E(R, t) (2)

Finding the nearest neighbors and determining the correspondences is the com-
putationally most expensive step in the ICP algorithm (O(|D| |M |) for a brute-
force implementation), since for every point dj ∈ D the closest point mi ∈ M
needs to be determined. Here, we use an approximate kd-tree search [15], which
reduces the complexity of the algorithm to O(|D| log |M |).

To estimate the rigid transformation T, consisting of a rotation R and a
translation t, that minimizes Eq. (1) there are closed form solutions in both
the two- and three-dimensional case (see [13] for a comparison). Extensions to
the ICP algorithm for e.g. dealing with partial overlap of D and M or false
correspondences as well as weighting and rejecting correspondence pairs can be
found in [18]. The primary extension used here is to reject pairs for which the
point-to-point distance exceeds a certain threshold. This threshold exponentially
decays during the registration process. While initially permitting larger distances
between corresponding points guarantees fast convergence of E(R, t), smaller
distances in later iteration steps allow fine-tuning the registration result.

3.2 Incremental Registration Using the ICP Algorithm

For registering multiple range scans and constructing a consistent map that
models environmental surfaces, an incremental registration procedure is used.
The first laser scan D0 is used as the initial environment model M0. Thus,
the local coordinate frame of D0 forms the coordinate frame for the overall



map. All subsequent scans Di, i > 0 are matched against Mi−1. The resulting
transformation Ti is used to correct the position of all points contained in Di,
yielding the transformed point set Ďi = {ďi,j |ďi,j = Rdi,j + t}. As an initial

estimate T̂i for Ti in this incremental registration we use the transformation
from the last registration, i.e. T̂i = Ti−1. This speeds up the convergence in
the ICP algorithm and drastically reduces the probability of converging to a
local minimum possibly resulting in an incorrect registration result. If odometry
information is available, the estimate T̂i is further corrected taking into account
the estimated pose shift between the acquisition of Di−1 and Di. Furthermore,
we only register a new range scan Di if the robot traversed more than e.g. 50 cm
or turned more than e.g. 25◦ – a practice being quite common in recent SLAM
algorithms.

To account for possibly new information in Di, the transformed points are
than added to Mi−1. That is, after matching range image Di, the model set
Mi−1 computed so far is updated in step i to:

Mi = Mi−1 ∪ {ďi,j | ďi,j ∈ Ďi}. (3)

Thus, a model MN , constructed by incrementally registering N range images,
contains all points measured in the environment, i.e.

MN =
⋃

i=[0,N ]

{ďi,j | ďi,j ∈ Ďi}. (4)

3.3 Sparse Point Maps

The main problem of the incremental registration approach is its scalability with
respect to the size of the environment and the number of range images taken. To
fully cover a large environment, a lot of range images might be needed. When
registering and adding all acquired range images, the model set M can get quite
large, e.g. several million points for 3D scans taken in a large outdoor environ-
ment [16, 22]. However, when acquiring range images in parts of the environment
which are already mapped, lots of points would be added to M without provid-
ing new information about the environment. This is exploited by the following
improvement to our SLAM approach, which makes the point clouds sparse.

The key idea of sparse point maps is to avoid duplicate storage of points,
and thereby minimize the amount of memory used by the map, by conducting
an additional correspondence search. That is, to neglect points that correspond
to the same point in the real physical environment as a point already stored
in the map. Correspondence is, thereby, defined just like in the ICP algorithm,
i.e. a point ďi,j ∈ Ďi is not added to Mi−1, if the point-to-point distance to its
closest point mi−1,k ∈ Mi−1 is smaller than a minimum allowable distance ǫD.

Mi = Mi−1 ∪ {ďi,j | ďi,j ∈ Di, ∄mi−1,k ∈ Mi−1 : ‖ďi,j − mi−1,k‖ < ǫD} (5)

The threshold ǫD spans regions in the model in which the number of points is
limited to 1, thereby providing an upper bound on the point density in a sparse



point map M . Choosing a value of ǫD according to the accuracy of the range
sensor used will exactly neglect duplicate storage of one and the same point
assuming correct alignment of range images. Choosing, however, a larger value
allows to reduce the number of points stored in the map. Although some details
of the environment might not get modeled, a map constructed in this manner still
provides a coarse-grained model of the environment as can be seen in Figure 2(b).
In the actual implementation, the additional correspondence search is carried out
on the kd-tree built for the ICP algorithm using ǫD as the distance threshold in
the pair rejection step. However, here the rejected pairs are used to determine
the points in Ďi that need to be added to Mi−1.

3.4 Examples and Results

The proposed incremental registration approach is so computationally efficient
that it can be applied continuously during robot operation, thereby quickly re-
flecting changes in the environment. The runtime of the algorithm for register-
ing a 2D laser scan lies in the range of milliseconds and increases only slightly
(log |M |) for growing map sizes. Figure 3 illustrates that the maps and trajecto-
ries resulting from the application of the proposed SLAM procedure are not in-
ferior compared to those resulting from other state-of-the-art SLAM algorithms,
like e.g. Rao-Blackwellized Particle Filters [6].
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Fig. 3. Example on applying the proposed SLAM procedure on typical robot data sets
(here two data sets from Cyrill Stachniss and Giorgio Grisetti). The resulting maps
(a: 3092 out of 1 123 560 points, b: 2364 out of 1 975 680 points, ǫD = 15 cm) and
trajectories are shown in the upper plot. Maps provided with the data sets are shown
at the bottom.

Having larger loops in the robot’s trajectory, however, would require post-
processing such as global relaxation using e.g. Lu-Milios-like approaches [2] or



graph-based optimization [5]. Still, for the kind of environments addressed here,
e.g. apartments, the proposed stand-alone single-hypothesis approach seems suf-
ficient. Furthermore, the approach can be integrated into a particle filter frame-
work for multihypotheses SLAM.

An example of matching 3D laser scans to construct a 3D model of the
environment and to localize the robot with all six degrees of freedom in space is
shown in Figure 4.
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Fig. 4. Example of applying the proposed SLAM procedure on 3D data sets (here a
data set from Oliver Wulf). Shown are a topview (b) with ǫD = 2m and detail views
(a+c) of a model with ǫD = 20 cm. Map sizes are 10 060 points (ǫD = 2 m) and 550 979

points (Dmin = 20 cm) out of approx. 10
7 points.

4 Path Planning

Grid maps already have an internal structure that can be used directly for path-
planning purposes. The sparse point maps used here, however, lack this ability.
Instead, path-planning is addressed as a graph-search problem in the Voronoi
diagram of the map points. Planning on the Voronoi diagram may not result
in the shortest path, but when traveling along a path planned, the robot will
always maintain a maximum distance to the obstacles represented in the map.

The Voronoi diagram is constructed using Fortune’s Sweep-Line Algorithm
[3]. The runtime complexity of this algorithm is O(n log n) with space complexity
O(n) for n points. A typical result of applying this algorithm to sparse point maps
is shown in Figure 5. However, as shown in Figure 5(b), the Voronoi diagram
constructed contains edges that lie outside of the modeled environment. Other
edges cannot be traversed by the robot as the distance to the nearest obstacles
is too short. Therefore, we prune the Voronoi diagram, first by removing all
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Fig. 5. Voronoi diagram construction and pruning based on a sparse point map ac-
quired during the RoboCup GermanOpen in Hannover.

edges lying outside of or intersecting the convex hull for the map points, and
second by removing all edges whose distance to neighboring points is smaller
than half of the robot’s width plus some safety distance (e.g. 5 cm). The latter
pruning step can directly be integrated into Fortune’s algorithm not affecting
its complexity. The convex hull is computed by Graham’s Scan Algorithm [4],
which has a runtime complexity of O(n log n) for n map points. The results of
both pruning steps are shown in Figure 5(c) and Figure 5(d).

Path planning is performed on the resulting graphs using A⋆ search [8]. The
Euclidean distance to the target position (xgoal) is used as an admissible heuristic
in the cost function. Therefore, A⋆ is optimal and guaranteed to find the shortest
path, if a solution exists. The overall cost function for a path from the start
position through a node n to the goal is thereby defined as:

f(n) = g(n) + h(n) =

(

n
∑

i=1

‖xi − xi−1‖

)

+ ‖xgoal − xn‖ (6)

where x0 = xstart and the sequence < x0,x1, . . . ,xn > represents the shortest
path between xstart and xn. As A⋆ can only plan paths between nodes in the
graph, representatives for the true start and goal poses need to be found. The
algorithm simply chooses the closest nodes in the graph and in cases where mul-
tiple nodes have similar distances to the true poses, we prefer the nodes in the
direction of the other true pose. A result from applying this path-planning pro-
cedure is shown in Figure 6(a). Also shown in the map is a part of a topological
layer on top of the map, storing a vector of learned and predefined objects with
positions, orientations, shapes and names used to communicate with a human
user.

5 Motion Control

To actually follow a planned path and reach a target location and orientation, we
subsequently apply two non-linear motion controllers which have been especially
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Fig. 6. (a) Path planning and following in a map of the RoboCup@Home arena at the
GermanOpen 2008. Shown are the path graph (thin red lines), the planned path (thicker
black lines) and the trajectory of the robot (dotted blue lines). (b) Local coordinate
frames (thin black axes) in the path-tracking controller for an example path (thicker
red lines).

designed for motion control of non-holonomic vehicles. The first motion controller
by Indiveri and Corradini [11] is for tracking linear paths and is applied until
the robot reaches the immediate vicinity of the target location. Then a second
controller is used, which controls both linear velocity v and angular velocity
ω of the robot, to reach the target pose while traversing a smooth trajectory
[10]. The latter motion controller has previously been successfully used in an
affordance-based robot control architecture in the EU FP6 project MACS [12].

For the application of the path following controller, planned paths are repre-
sented as a chain of local coordinate frames, as shown in Figure 6(b). Transform-
ing the robot’s pose into the local coordinate frame of the currently traversed
graph edge allows for directly applying Indiveri’s steering control law

ω = −hvy
sin θ

θ
− γθ : h, γ > 0 (7)

where the controller gains h and γ are calculated depending on the current
situation, i.e. whether the robot is regaining or maintaining the currently tracked
path segment. Furthermore, transforming the latest laser scan into the local
frame allows for checking whether the current segment is obstacle-free and can be
traversed. If the segment is block, the corresponding edge is marked as being not
traversable and the path is re-planned. In addition, the robot performs reactive
collision avoidance [9]. The x-axes X̂i of the local frames are formed by the
path segments, whereas y, θ form the error signal of the controller (position and
orientation deviation). The linear velocity v can be freely chosen and adapted.
For details on both motion controllers it is referred to [10] and [11].



6 Concluding Remarks

We presented a complete system for autonomous navigation, including algo-
rithms for SLAM, path planning and motion control. Using the ICP algorithm
in an incremental registration procedure and sparse point maps, simulated and
real robots were able to construct memory-efficient environment representations
online. Path-planning on the resulting point maps has been done using A⋆ and
fast algorithms for computing Voronoi diagrams and convex hulls for obtain-
ing a pruned path graph. Using non-linear motion controllers for non-holonomic
systems, simulated and real robots were able to robustly follow planned paths
and reach target poses while localizing in and updating the sparse point map.
All algorithms are highly efficient and run within the main control loop of the
mobile robot platform (50-100Hz).

Future work will focus on the development of efficient exploration and in-
spection strategies based on and consistent with the proposed algorithms. Ex-
tensions to this system for 3D collision avoidance and filtering out dynamics
from raw range data can be found in [9]. The proposed algorithms as well as
further details will be made publicly available through the RoboCup@Home
Wiki1. Videos showing the proposed system in action and the performace of the
presented SLAM algorithm are available at http://www.b-it-bots.de/media.
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