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Abstract— Collaborative robots working on a common task
are necessary for many applications. One of the challenges for
achieving collaboration in a team of robots is mutual tracking
and identification. We present a novel pipeline for online vision-
based detection, tracking and identification of robots with a
known and identical appearance. Our method runs in real-
time on the limited hardware of the observer robot. Unlike
previous works addressing robot tracking and identification, we
use a data-driven approach based on recurrent neural networks
to learn relations between sequential inputs and outputs. We
formulate the data association problem as multiple classification
problems. A deep LSTM network was trained on a simulated
dataset and fine-tuned on small set of real data. Experiments
on two challenging datasets, one synthetic and one real, which
include long-term occlusions, show promising results.

I. INTRODUCTION

Multi-target tracking is a challenging and well-known

problem in computer vision, which has been studied for

decades [1], [2], [3]. In multi-target tracking, we find objects

of interests, assign them a unique ID, and follow them over

time. Multi-target tracking is used in many applications in-

cluding automated surveillance and traffic monitoring. Track-

ing by detection is one of the most common approaches,

which uses a detector to discard unnecessary information

from the video sequence, and reduces the problem to data

association for a smaller discrete set of detections. The data

association problem, especially in cluttered environments and

with multiple closely spaced and possibly occluded objects,

is one of the main reasons that multi-target tracking is a

fundamentally harder problem than single-target tracking.

Furthermore, the number of visible targets may be unknown

and vary over time. Initiation and termination of the tracks

should be robust to false positives and false negatives. Due

to the aforementioned difficulties, state of the art results are

still far from human-level accuracy [4].

In this work, we address tracking and identification of

multiple robots of identical appearance, which is a problem

with an additional level of difficulty. Moreover, we are not

using the internal location estimate calculated by each robot,

so that the system is usable even in situations when robots

are not localized. Despite the lack of visual cues, our system

is able to track the target robots, and in addition identify

which detection corresponds to which exact robot. This

is done using a deep Long Short-Term Memory (LSTM)

network, based on a set of detections that include heading
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Fig. 1. Overview of our approach. After robot detection, the heading
of each robot is estimated based on HOG features. Robot identification
is done using LSTM network by matching observed robot tracks to
headings reported by the robots using Wi-Fi. The calculated location is
then broadcasted by Wi-Fi to the robots for further use.

estimates from visual observations and heading information

provided by the robots. In our application, the output of

the system, which is the estimation of the relative location

and heading of each observed robot, is broadcasted to the

observed robots for further use in improving self-localization

or high-level cooperative behavior. The challenging nature of

our setup suggests that the proposed method is also suitable

for supporting other robot collaboration tasks. Fig. 1 gives

an overview of our system. A video of the experiment is

available at our website1.

Although in many application areas,— from computer

vision to machine translation,— deep learning approaches

are shaping the state-of-the-art, in multi-target tracking and

data association problems, there are surprisingly few works.

As identified by Milan et al. [5], the two most notable reasons

for this are the lack of available training data, and the large

amount of generalization required by the network to account

for the variability in the data. This includes the variability

in the viewpoints and length of sequences, and the unknown

cardinality of the input. The main contributions of this paper

include:

1) The introduction of a novel pipeline to visually identify,

track and localize a set of identical robots in real-time,

2) The use of a single RNN for the complete task, in-

cluding data association, initiation and termination of

targets, without prior knowledge about the environment,

robot dynamics and occlusions, and

3) The introduction of a generative model that can sample

an arbitrary number of data, allowing the dynamics of

real environments to be learnt largely from a simulated

dataset.

1http://www.ais.uni-bonn.de/videos/IROS_2017_LSTM
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II. RELATED WORK

We divide the discussion of related works into three

categories, multi-target tracking, deep learning, and robot

detection and tracking.

Multi-target tracking with no category information is

referred to as category-free tracking (CFT) [1]. With the

use of manual initialization, CFT approaches typically do

not require a pre-trained detector. By discriminating other

regions of the images, CFT methods work mainly based on

visual appearance. Two notable approaches, without deep

learning, are works by Yang et al. [2] and Allen et al. [3].

CFT methods are usually computationally inexpensive, but

they are prone to drift and cannot easily recover from

occlusions.

Another popular type of tracking methods is association

based tracking (ABT) [6], which works by means of a

discrete set of detections. In contrast to CFT, this approach

does not suffer from extreme model drifts. In ABT, contin-

uous target detections are linked over time to form tracks.

In many works, the probability of association is calculated

based on a fixed motion model or visual similarity. Global

track association is then computed either with the Hungarian

method [6], a Conditional Random Field (CRF) [7], or a

Markov chain Monte Carlo method [8].

Joint probability data association (JPDA) [9] was origi-

nally developed for radar and sonar tracking, and for a long

time was considered too computationally expensive for com-

puter vision applications. With proper approximation [10]

and a novel appearance model [11], JPDA has recently found

use in multi-target tracking.

Sousa et al. [12] proposed a non-visual human tracking

and identification method using a sensing floor and wear-

able accelerometer. They exploited room entrance time and

trajectory association for tracking and identification. Perez-

Escudero et al. [13] proposed the generation of a visual target

fingerprint, to track and identify targets based on appearance

differences. For multi-person tracking, Maksai et al. [14]

extracted behavioral patterns from the ground truth and then

used them to guide the tracking algorithm.

Deep Learning approaches have shown successful results

in a number of application domains— from speech recogni-

tion [15] to visual classification [16]. In these approaches, a

large number of parameters, which are designed to capture

the hierarchical representation of the data, are automatically

tuned based on a large amount of data. Two related works by

Ondruska et al. [17] [18] use deep learning approaches for

tracking. Note that they are using 2D laser scanner data in

pixel coordinates, making it unsuitable for our application.

The first of the two works [17] was only tested on simulated

data with a constant velocity motion model. So although

Ondruska et al. got very promising results in an unsupervised

fashion, their work is not applicable in our setting and on real

noisy data with a more complex underlying motion model.

Another more recent work is a unified RNN structure for

multi-tracking proposed by Milan et al. [5]. Although the

authors report compelling results, it is not straightforward

to adapt their work to our problem. They utilized a multi-

stage pipeline that needs to be trained separately for different

tasks like predictions, update, birth/death control, and data

association. Moreover, the approach works in image coor-

dinates and it is not clear how performance would change

for a different viewpoint. To make it work well in different

camera positions, one would need to give the network

enough samples from various camera angles to force learning

different camera transformations. A CFT-based approach

using a convolutional neural network (CNN) for single target

tracking has been proposed by Wang et al. [19]. One of the

best results on the multi-object tracking (MOT) benchmark

is a method recently proposed by Sadeghian et al. [20] that

is based on appearances and motion models using CNN and

deep RNNs. Their method is not applicable in our setting

mainly because of the appearance model used.

Robot Detection and Tracking targeted for robot soccer

has been done by Marchant et al. [21] using a combination of

ultrasonic and visually perceived data. Note that most of the

state-of-the-art object detection approaches [22], [23] cannot

be used in our setup, due to the absence of a GPU, and the

limitations in computing power on the observer robot. Arenas

et al. [24] proposed a real-time capable Aibo and humanoid

robot detector using a cascade of boosted classifiers. In a

more recent work, Ruiz-Del-Solar et al. [25] proposed nested

cascades of boosted classifiers for detecting legged robots.

In the follow-up work from Ruiz-Del-Solar et al. [26], the

gaze direction of a humanoid robot is estimated using a scale

invariant feature transform (SIFT) descriptor.

The authors of this work have previously used color

segmentation for humanoid robot detection in the context

of RoboCup soccer [27]. In another related work pertaining

to humanoid robot tracking and identification, the authors

exploited a Kalman filter for motion modeling, and the

Hungarian method for tracking and identification [28].

III. PROBLEM FORMULATION

A robot, or possibly a stationary camera as a substitute,

is used to observe a collection of N moving robots with

the same appearance. Ideally, each visible robot should be

tracked and identified by the observer in each frame. In

practice, for arbitrarily short or long durations, each of the

robots can be fully or partially visible; or not visible at

all. The observed robots can perform a multitude of possi-

ble actions, including but not limited to walking, kicking,

standing, and getting up. With the use of an internal 9-

axis inertial measurement unit (IMU), each robot calculates

and broadcasts their absolute heading direction over Wi-Fi.

Wi-Fi quality is not ensured and can have delays or even

data loss. We utilized the NimbRo Network library [29]

for increasing the robustness of Wi-Fi communications. The

system is designed to detect, track and identify N moving

robots, solely based on images captured by the observer, and

the received heading information.



IV. VISION SYSTEM

A. Robot Detection

Unlike the existence of pre-trained detectors for pedes-

trians or animals, there is no robot detector that can work

out of the box for our application. Hence, we have designed

and implemented an igusr Humanoid Open Platform robot

detector that can work robustly under various robot configu-

rations and lighting conditions. We expect that our proposed

detector can work for other robots with proper retraining.

We used Histograms of Oriented Gradients (HOG) [30]

features because they are computationally efficient and in-

variant to changes of illumination. In contrast to the popular

pedestrian detection [31], which uses support vector machine

(SVM) with sliding-window, we saved computational cost

and used a cascade of rejectors with the AdaBoost technique

to choose which features to evaluate in each stage. Our

detector is similar to Zhu et al. [30]. HOG features are not

rotation and scale invariant, so we apply random transfor-

mations with normal distributions to expand the number of

images collected by the user.

We restrict random rotations to ±15°, to give the classifier

the chance to learn the shadow under the robot. We also

emulated partial occlusions by randomly cutting some por-

tion of the positive samples. For training, we gathered about

500 positive samples, 1000 negative samples, and we used

cascade classifier with 20 stages. On a standard PC, training

took about 12 h.

The best detection results are obtained at distances be-

tween 1m and 5m from the observer. After non-maximum

suppression, a bounding box for each detection is computed

and projected to egocentric world coordinates using the

calculated extrinsic camera matrix.

B. Heading Estimation

All robots are visually identical, and we did not use the

localization calculated by the observed robots. The robot

heading relative to the observer is used as primary cue for

robot identification. For visual heading estimation of each

robot torso, which needs to be invariant to leg orientations,

we analyze the features of the upper half of the detected

bounding boxes. We formulate this problem as a multiclass

classification problem that was solved using an SVM multi-

class classifier with an RBF kernel. The full heading range

was partitioned into ten classes of size 36°.

A dense HOG descriptor was applied on the grayscale

channel and on the “H” channel in HSV color space. The

resulting feature vector, plus the normalized center position

of the bounding box are forwarded to the SVM classifier.

Note that we included the center position because visual

features of the robot are different depending on robot’s

position in the observer camera coordinates. For implemen-

tation, the LIBSVM library [32] was used with k-fold cross-

validation and grid search for tuning hyperparameters. In our

experiments, the average error for heading estimation was

17°.

V. TRACKING AND IDENTIFICATION SYSTEM

Tracking targets in the image plane is very popular and

straightforward, but the often simple motion models break

very easily and have an unpredictable effect when the camera

or the observer moves. It is quite difficult to find a reliable

motion model that works well in the different regions of

the image. To address this issue, we propose tracking the

target in egocentric world coordinates. By doing this, we

can separate our problem into two different tasks. First, we

need to identify each detection and then we can update the

tracked positions of the robots based on the identification

probabilities. Note that this is an entirely different setup than

what we previously proposed [28], which was tracking in

the image plane, followed by identification for the existing

tracks.

Data association is the most challenging component of

the multi-target tracking problem. Although greedy solutions

like the Hungarian method lead to an acceptable result

with a low computational cost, they do not work well in

challenging situations, especially in the case of occlusions.

JPDA-like algorithms, which jointly consider all possible

assignment hypotheses, and form an NP-hard problem, are

too computationally expensive to be used in real-time ap-

plications. Hence, we need to use a suitable approximation

to obtain both the required accuracy and efficiency. RNNs,

in particular LSTM networks, are very powerful in captur-

ing spatial and temporal dependencies in input/output data

sequences. These characteristics are achieved by using non-

linear transformations and hidden-state memory built into the

LSTM cells.

We extend the method proposed by Milan et al. [5] for data

association. They suggested a two-layer LSTM network with

500 units for data association in the form of a single network

that is used multiple times to process multiple detections.

Although this architecture has the advantage of being able to

cope with variable numbers of detections, simply by applying

the network multiple times, it needs the predicted position

of each target at each time. Note also that while the number

of detections can vary, the number of targets must still be

pre-selected with this architecture. Another requirement of

their architecture is the need to manually choose a metric,

in their case the Euclidean distance, and compute a pair-

wise distance matrix C ∈ R
M×N between the measurement

and the predicted state of the target. A downside of this

approach is that each detection is associated independently,

so some potentially valuable information is discarded. In this

paper we propose a new end-to-end architecture for data

association that addresses the aforementioned issues.

A. Proposed Architecture

In the proposed architecture we seek to avoid imparting

prior information into the system through the choice of a

fixed motion model, like in the Kalman filter [28]. The use

of a secondary network for state prediction [5] is also avoided

to keep the system unified, and to only require a single loss

function and training set. Unlike Haarnoja et al. [33], who

proposed an approach for single object tracking, we gave the
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Fig. 2. The proposed deep network with five LSTM layers. Each output
submodule is shown with a red dashed box.

network the ability to define the content of its hidden states

without using a hand-crafted network architecture. Another

consideration while designing the network was the choice of

a deep network to give it the opportunity to learn hierarchical

representations.

We formulated the data association problem as a clas-

sification task that is performed on the maximum possible

number of targets. We used a single network architecture,

instead of multiple LSTM networks for different targets,

because we wanted to leverage the codependency of the

target assignments. The five layer proposed LSTM network is

depicted in Fig. 2. Each layer contains 64 LSTM units. Note

that by using one sub network for each target, the assignment

probability matrix would be calculated independent from

other target selections.

In our problem, we define the input vector It ∈ R
Q,

where Q = N + M(D + 1), as the vector containing all

available and observable states of the robots, where N is

the number of robots broadcasting their absolute headings,

and M is the maximum number of detections at each instant

in time t, with the assumption that M ≥ N . Observable

states for each detection are the position (x,y) in normalized

egocentric world coordinates, and the normalized absolute

estimated orientation (φ), such that D = |{x, y, φ}| = 3. In

addition to D, we input the detection probability γ ∈ [0, 1]
generated by the visual detector, which is necessary to be

able to deal with the unknown number of detections and

robots that are present. For training phase, we do put the

detections in random order, and for inference phase, the

detections can have random order as well. Note that if for any

reason the detector outputs more than M detections, the M

most probable detections are fed into the network. Extending

D to incorporate other perceived variables such as velocity

or robot appearance,— in case the robots were different,—

would be straightforward. In summary, the input to the

network contains all the detections and the corresponding

confidences and broadcasted heading from each of the robots.

The y component of the robot locations, which corre-

sponds to the rows of the image, is more accurately estimated

than the x component for two main reasons. First, the

estimation of x is more sensitive to errors in the projection

from image coordinates to egocentric world coordinates.

Second, detected bounding boxes in general were observed

to produce more error in the x direction than in the y. This

justifies the claim that inputting pure position and orienta-
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Fig. 3. The LSTM memory unit used in this paper.

tion to the network is a better choice than calculating the

Euclidean distance manually, because the network then has

the chance to learn the correlations between the dimensions

and effectively use something similar to, for example, the

Mahalanobis distance. Another reason against the use of the

manual Euclidean distance is the periodic nature of the φ

component.

Each detection can either correspond to one of the robots

or a false positive. This forms a total of K different situa-

tions, where K = N + 1. We used these K possible valid

outputs as different classes for each of the detections in an

output submodule. Each class in the output submodules is

encoding one possible association for each detection being

assigned to one of the N robots, or being a false positive.

The network learns to limit the assignments, such that each

of the robots can be assigned to at most one detection.

As the loss function for each of the output submodules,

we used the common negative log-likelihood of true scene

state given the input. That is,

Ŵ = argminW −

ρ∑

i=1

logP (Oi|Ii;W ) + λ

d∑

j=0

W 2

j (1)

where Oi is the desired output for input Ii, W is the weight

matrix, d is the length of W , and λ is the regularization

coefficient.

Among all different variations of LSTMs, we used the one

that was used in [34]. The LSTM update formula for time

step t is,

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wwoxt +Whoht−1 + bo)

gt = tanh(Wxcxt +Whxht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(2)

where xt is the input, ht is the hidden unit, ft is the forget

gate, it is the input gate, ot is the output gate, ct is the

memory cell, and gt is the input modulation gate. Note

that σ(x) and tanh(x) are sigmoid and hyperbolic tangent

nonlinearity for squashing gates to the respective range. As

it depicted in Fig. 3, xt, ht−1, and ct−1 are inputs to each

LSTM cell.



Fig. 4. Two screenshots of our simulator for M = 10 and N = 7.

B. Training Data

Deep networks need a large amount of training data

in order to converge to a solution without overfitting and

while still generalizing well to previously unseen samples.

Gathering a huge dataset like ImageNet [35] with ground

truth labels, is very time-consuming and next to impossible

in our setup. One solution that works in an unsupervised

fashion for multi-tracking using deep learning, if raw input

coordinates are used, has been proposed by Ondruska et

al. [17], but in our situation that solution is not applicable

because we need a discrete data association for identification.

Even in the well-known problem of pedestrian tracking, there

are a very limited number of datasets. Another solution might

be the synthetic generation of data by sampling distributions

generated from real data, as proposed by Milan et al. [5].

They used two features, start position, and average velocity.

Although this is a good idea to extend pedestrian tracking

datasets, it still needs a considerable amount of samples to

model different realistic motions.

We used a 2D simulator that can realistically simulate our

problem and generate an unlimited number of sequences.

In the simulator, we can specify different velocities and

accelerations for the position (x, y) and rotation (φ). We did

not restrict our motion model, so effectively the robots were

assumed to walk omnidirectionally. To simulate perception

noise, we added Gaussian noise to resemble detection and

projection noises. Note that to simulate more realistic data

samples, we added more perception noise in the x direction

than in the y. φ estimation noise was calculated and utilized

with similar statistics to our visual estimation algorithm

(Sec. IV-B). Occlusions and walking out of the field of

view is simulated as well. Moreover, false positives and

false negatives similar to the detector’s characteristics are

simulated. Two screenshots of our simulator are shown

in Fig. 4. To force the network to learn the actual relations

between unordered detection inputs, we randomly indexed

the detections in both training and inference phase. It was

important to reset the cell states and hidden states after

each simulated training sequence, to prevent learning some

relations which were not intended due to backpropagation

through time.

C. Hyperparameters

There is still no known proper solution for selecting

correct hyperparameters for LSTMs [36]. To find a suitable

set of hyperparameters, we did cross-validation and random

search over log space [37]. These parameters were network

size, depth, and learning rate. We used the Adam optimiza-

tion method [38] for training. The learning rate started with

0.004 and decayed with a rate of 0.0001. To regularize the

network, we used L2 regularization. Note that for training of

the network, we cannot shuffle the sequences of the dataset

because the network is learning the sequential relations

between inputs and outputs. We used ρ = 150 previous steps

in the memory for backpropagation through time. This is

approximately 5 seconds at 30Hz. In our experience, adding

dropout reduces the performance of the network.

The training dataset was divided into mini-batches of

sequences of size 500. We used the popular zero-mean

and unit variance input data normalization. Training was

performed on a computer which was equipped with four

Titan X GPUs and a 32-core CPU. Multi-GPU training

took two days on the synthetic data. For getting the best

performance in the real setup, we used one of our recorded

real sequences for fine-tuning of the network. This process

took only one hour and boosted our performance in real

experiments.

D. Filtered Locations

For tracking the real position of the detected robots, we

use a first-order low pass filter to smooth each of the robots

position relative to the observer, using the probability that

comes from the last layer of the network. For updating each

robot location we use the following formula.

T
j
i = αLk

i + (1− α)T j
i−1

(3)

Where α is the smoothing factor for the measurement

update, which is the likelihood of the classification for each

of the robot. T
j
i is the location of the robot j in current frame

i and Lk
i is the location of detection k which the network

assigned to target j. By doing this, we can track the position

of the robot in egocentric world coordinates of the observer

very robustly. The calculated location is then broadcasted to

each robot for further use.

VI. EXPERIMENTAL RESULTS

Due to the unique setup of our problem, there is not

publicly available benchmark that we can demonstrate our

method on. We instead compared our approach with three

commonly used baseline methods, on our own collected

datasets. For each of these baselines, we first detect the robots

and form tracks as described by [28]. Then we associate

these tracks to the robots and perform robot identification.

In all these baselines, we applied the widely used Kalman

filter with a constant acceleration model. The main difference

between them is their data association method and techniques

for maintaining the tracks. Similar to Milan et al. [5], the bi-

partite matching for the Kalman-HA method is solved using

the Hungarian algorithm without any heuristics, time delay
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Fig. 5. Detection, tracking, and identification results obtained by our system
on a single sequence.

TABLE I

ROBOT IDENTIFICATION RESULTS ON THE SYNTHETIC DATASET.

Setup M=3, N=2 M=5, N=3 M=10, N=7

Human 94.3% 86.3% 67.3%

Kalman-HA 75.6% 72.2% 53.1%

ours 96.2% 87.1% 66.5%

or post-processing. Tracks are initiated and terminated as

soon as the detection appears or is missed. The Kalman-HA2

method extends this with a set of heuristics to handle false

positives and false negatives in an additional post-processing

step, similar to [28]. The JPDA method used as the third

baseline is inspired by the JPDAR method from [10], but

without using the m-best approximation in order to get the

full capacity of JPDA. The tracks are maintained using the

JPDA algorithm, and the linear assignment problem, which

is a necessary step for identification, is solved using the

Hungarian algorithm. In all experiments, the success rate is

calculated by counting the total number of correct assignment

and dividing it by the total number of detections for the entire

sequence.

A. Simulation Experiment

To demonstrate the capability of our proposed approach,

we first performed experiments on simulated data using three

different setups—two targets with up to three detections,

three targets with up to five detections, and seven targets

with up to ten detections. The dataset used for testing

was different from datasets for training and validation. We

tested Kalman-HA on our simulated dataset, and measured

over 10 different sequences of 1000 frames each. These

results are shown in Table I. We also chose four of those

sequences randomly and ask four different persons to solve

the association problem by clicking on the right color choice

for each detection.For human-level performance experiment,

we asked the participant to select the correct associations

between the detections and targets in each frame. The user

TABLE II

AVERAGE LOCALIZATION ERROR FOR TRACKING.

Baseline Kalman-HA Kalman-HA2 JPDA Ours

Average error 0.67m 0.30m 0.29m 0.22 m

can see the reported heading from the robot as well as

the detected location and orientation. A correct association

selection is done when the color of each detection matches

the corresponding robot color. By left/right clicking on each

detection, the user can change the color in forward or

reverse order. We observe a superior result of our method

compared to human-level performance on the three and five

detection setups, and also a comparable result on the ten

detections setup. Also observe superior results on all cases

of our method in comparison to Kalman-HA. Note that

the other two baseline methods cannot easily be tested on

the simulated dataset because they are purely formulated in

image coordinates, as opposed to the required normalized

egocentric world coordinates. In the simulated dataset, we

observed that the typical case of failure was at frames in

which randomly generated detections were spatially close to

one of the targets. Our results on the simulated dataset for

wide range of target number emphasizes the scalability of

our network.

B. Real-Robot Experiment

Including the observer, three igusr Humanoid Open Plat-

form robots [39] were used for the verification of the

approach on real-world data. In our setting, the observer

was the goalkeeper observing the reset of the team. For

performing real-world tests, we took the model that was

trained on simulated data, and fine-tuned it on real-world

data captured by the observer robot. The dataset used for

testing was different from datasets for fine-tuning. Note that

for a valid comparison in the real-world dataset, we used the

same inputs coming from the robot detector for all methods.

For each of three different sequence lengths, we tested the

methods on four randomly chosen sequences of that length.

The chosen sequence lengths were 200, 400 and 800, frames

respectively. The methods were also evaluated on the entire

dataset, for a total of 3140 frames. The collected dataset

included partial, short term and long term occlusions, as

well as varying lighting conditions. Our results on a frame

sequence is shown in Fig. 5. We observed a superior result

of our method compared to all tested baselines. In Table III

we report the average success rates for the various methods

and test cases.

Although the average distance from the actual position

of the robot is heavily dependent on the sensitivity of

the projection, it is fair to compare results from different

algorithms, if all of them share the same projection operation.

Average distance is calculated by averaging all present robot

location errors compared to the ground truth. Our method

gained less average localization error in comparison to the

other methods as reported in Table II.

In a control experiment, we tested feeding sequences to



TABLE III

ROBOT IDENTIFICATION RESULTS ON THE REAL DATASET.

Frames 200 400 800 Total

Kalman-HA 73.2% 75.5% 72.1% 73.8%

Kalman-HA2 87.2% 84.0% 86.3% 85.5%

JPDA 87.1% 84.6% 85.6% 86.3%

Deep LSTM (ours) 89.8% 90.3% 92.4% 91.1%

the network in a random order and the results were quite

poor, indicating that the network is using temporal relations

between the inputs, and does not act like a feed-forward

network.

A single forward pass of our network on the igusr

Humanoid Open Platform took about 4ms (≈250Hz). As

another test, we replaced the LSTM cells with the more

recent Gated Recurrent Units (GRUs) [40]. We did not

observe any considerable benefit for our application.

The fact that our proposed network can learn to solve

the highly complex problem of data association based solely

on learning is promising. We observed that when a target

enters the field of view, instead of an instant increase in the

total number of associated robots in the output, which is

the case in greedy approaches like the Hungarian algorithm,

the output set changes only after a few frames. This is a

very useful feature to address false positives. Overall, this

indicates that the recurrent architecture of the network can

handle augmenting the set of visible robots well. Another

crucial part of the system is the ability to recover from an

incorrect data association. We tested the robustness of our

network by forcing it to make incorrect data associations. In

order to do so, we artificially swapped the input headings,

and only restored them once the identifications had become

incorrect. We observed that the network was reliably able

to recover the correct solution. Note that if we ignore more

difficulties for visual detection and visual heading estimation,

we can use this method for moving observer if we know the

motion model of the walking observer. This can be done by

adding the observer motions to the detection locations. The

network is trained on simulated random motions with random

velocity and acceleration, so it can generalize to any unseen

motion behavior. As we normalize the field dimensions in

a preprocessing step, we can use the network on any field

dimension. The network has the ability to learn long-term

dependencies as well as statistics of the detections and the

relations between them. These are the main reasons that our

network outperforms other model-driven methods.

VII. CONCLUSION

In this work, we proposed a practical pipeline for real-

time visual tracking and identification of robots with the

same appearance. Experimental results indicates that the

proposed method can work well on simulated and real data

and can cope with difficulties like long-term occlusions,

despite a lack of visual differences between the robots. We

achieved this by formulating the problem as a deep learning

task and exploiting the sequences in the models, in the

form of an RNN. The proposed system utilized heading

estimation and spatial information for robot identification.

Our system has applications in real-world scenarios including

robot collaboration tasks, monitoring a team of robots, and

cooperative localization and mapping.
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