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Abstract
Domestic service robots aim to bring more convenience to human life by performing
housework. Nowadays, open vocabulary brings an entirely new aspect: Different
domestic tasks do not necessarily need to be implemented individually beforehand.
In contrast, given a reasonable verbal task description, e.g., heat my lunch, bring
out the trash. The domestic service robot should be able to comprehend these
instructions along with the environment information it locates, e.g., RGB image
and depth information, and perform the task. Considering the challenge of this
task, more detailed step-by-step instructions are normally also given at the current
stage. This challenge is referred to as the Vision-Language Navigation (VLN) and
Vision-Language Manipulation (VLM) task.
We introduced LIAM. An end-to-end model that takes Language, Image, Action,
and Map information as input and predicts an action transcript. The language
and image input are encoded with CLIP-backbone, in which we designed two dif-
ferent pre-training tasks to fine-tune the existing weights and pre-align the latent
space. We froze the weight of both language and image encoders during the end-
to-end training and trained only on autoencoder-like projection heads. For the
action sequence and the semantic map, we used a learnable embedding layer and
a map encoder to encode, respectively. All embeddings were concatenated and
fed to a multi-modal Transformer encoder block, where modal-type encoding and
causal attention were applied. These Transformer layers are expected to fuse the
multi-modal inputs and learn a reasonable general representation, which can be
used eventually to predict an action sequence.
We conducted experiments on the ALFRED challenge dataset, a simulator-generated
benchmark for VLN and VLM tasks. Following previous approaches, we generated
semantic maps for each trial in the preprocessing stage, which include obstacles,
explored areas, class semantics, and pose as information.
We observed the CLIP models’ limitations on simulator-generated data. We
demonstrate the importance of pre-aligning embedding spaces from different modal-
ities and find that incorporating semantic maps enhances the end-to-end model’s
performance. Despite these improvements, a significant gap exists between our
approach and state-of-the-art methods. Proper training of an end-to-end model
that integrates all information from different modalities remains challenging.
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1 Introduction
With the rapid evolution of deep learning research, particularly in the natural lan-
guage domain, we have witnessed the emergence of enormous Transformer-based
models capable of generating high-quality texts and synthetic images (Brown et
al. 2020; Yixin Liu et al. 2024; Ramesh et al. 2022). The interest in applying
and evolving these methods in robotics, especially domestic service robots, is on
the rise. The ultimate goal for domestic robotics research is to comprehend and
perform complicated tasks successfully in every household from arbitrary verbal
descriptions.
Artificial intelligence research has mimicked the structure and mechanisms of hu-
man brain nerves since the beginning of perceptron (Rosenblatt 1958). As human
beings receive and process information in multiple modalities, for example, our
brain often processes egocentric images and language instruction simultaneously
to make a decision. In terms of deep learning, a model will receive input from
different modalities, e.g., text, visual, and audio, and output prediction based on
all this information. In 2021, OpenAI released a foundation model, CLIP, which
innovatively uses a contrastive learning training paradigm for connecting text and
images (Radford et al. 2021). The contrastive learning paradigm, which involves
learning representations of data by contrasting similar and dissimilar pairs, is
applied to textual and visual input. The model’s strength in open-vocabulary
zero-shot image classification draws much attention in multi-modality learning.
Many robotics applications soon utilized the CLIP-based model for the open-
vocabulary approach in different down-streaming tasks, e.g., instance segmenta-
tion (Shafiullah et al. n.d.). However, the research in training a model that helps
to predict the whole action transcript sequence based on the language instruction
and visual information (e.g., RGB image, depth information) is still in its early
phase. In terms of understanding arbitrary language instruction, which can be
a combination of countless different action sequences, is a challenge in itself. In
addition, realistic environments are very different from the setup, light conditions,
and other factors. Objects to interact with also have different shapes and textures,
which brings difficulties when it comes to interacting with those objects with the
robot arms. Training a model that understands all information combined and has
a strong generalisability requires a considerable amount of data.
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1 Introduction

Several simulator-generated datasets have been built eversince. Two major tasks
for understanding a multi-modal environment are Visual-Language Navigation
(VLN) and Visual-Language Manipulation (VLM). VLN requires the agent to
navigate in an environment and to reach a goal specified by a natural language
instruction. VLM requires the agent for more complicated manipulation of ob-
jects based on the natural language command. Most VLM datasets are built with
robotic arms, which have a fixed overhead camera (Vuong et al. 2023).
A combination of VLN and VLM for domestic service robots is genuinely a more
complicated task despite those datasets requiring less sophisticated interaction. In
this case, a correctly predicted instance mask and the correct action are counted
as a success case. In this thesis, we introduce an end-to-end multi-modal model
LIAM, which receives inputs from different modalities (Language, Image, Action
and Map) and predicts an action sequence. A CLIP-like pre-training paradigm
is introduced to pre-train the encoders for different modalities. We investigate
our ideas with the ALFRED Challenge, a benchmark task that requires a robot
to understand and execute complex natural language instructions in a simulated
environment (described in chapter 4).

Contribution of our thesis:

1. In our thesis, we introduced two CLIP-like self-supervised training paradigms.
These paradigms are designed to pre-align two or more different embedding
spaces during the pre-training stage, enhancing the model’s ability to un-
derstand and process multi-modal inputs. After the pre-training stage, we
further trained the end-to-end model by freezing the heavy-headed encoder
and training a light-designed projection adapter.

2. Semantic maps provide a high-level understanding of the environment and
are typically used with deterministic policy. In our model, we introduced
a novel approach that utilized semantic maps as an additional modality di-
rectly in addition to textual and visual inputs—the map modality is designed
to serve as a knowledge base for the model. We explored the potential of
a multi-modal model to fuse map information with visual and text inputs,
thereby enhancing the robot’s spatial understanding and decision-making
capabilities.
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3. Unlike most related works tackling the ALFRED challenge, which fine-tuned
or used pre-trained object detection models, e.g., MaskRCNN (He, Gkioxari,
et al. 2017). We followed FILM’s language processing module (Min et al.
n.d.), which predicts occurring objects from the language instruction for
each trial. Leveraging this approach, we built an object vocabulary, replaced
the detector with CLIPSeg (Lüddecke and Ecker 2022), and predicted the
instance mask in an open vocabulary fashion.

This thesis is organized in the following manner. Section 2 covers all the funda-
mental knowledge essential for this thesis. This includes the attention mechanism
of the transformer and the progression from fundamental contrastive learning in
computer vision to modern clip-based multimodal models. Chapter 3 presents all
related works to the ALFRED challenge, which our thesis followed and modified.
Chapter 4 describes the ALFRED dataset and the pre-processing stage, i.e., gener-
ating semantics maps. In Chapter 5, we describe our model design and methodol-
ogy in detail, including details of the pre-training and end-to-end training phases;
we also report implementation details. Chapter 6 shows all the experiment results
and our analysis of the different components. Chapter 7 concludes the thesis and
lists limitations and potential future works.
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2 Fundamentals

This chapter reviews all fundamental knowledge leading to the related work and
our approach.

2.1 Transformers
Sequence-to-sequence transduction tasks are usually tackled with the recurrent
neural network (RNN)-based architecture, e.g., Long Short-Term Memory (Hochre-
iter and Schmidhuber 1997). The biggest shortcoming of the RNN-based model is
its inability to parallel computation, i.e., the hidden state ht can only be computed
once ht−1 has been first computed. (Vaswani et al. 2017) introduces Transformer,
an encoder-decoder structure model. The core concept of the Transformer is its
multi-head attention mechanism. Given an input X, query, key, and value (Q, K,
V) are computed using three separate weight matrices (fully-connected layer). The
output of the Transformer is the weighted sum of the values, where these weights
are computed using the similarity score of the queries and keys. Mathematically,
the attention is defined as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V. (Vaswani et al. 2017)

The similarity score function is defined using a scaled dot-product. In addition,
Transformer introduced the multi-head attention mechanism. An n-head Trans-
former layer is implemented using n trainable linear projections of the queries,
keys, and values. Thus, it allows the model to focus on different information scales
(global or local). However, the attention mechanism does not consider temporal
information since the dot-product-based similarity score won’t change if the order
of the sequence changes. Positional encoding is thus introduced to incorporate the
temporal information into the input embedding. Transformer used the sinusoidal
functions of different frequencies for its positional encoding (Vaswani et al. 2017).
The success of the Transformer-based model has also drawn attention in the com-
puter vision domain. The challenge in adapting a Transformer-based model in
computer vision is the proper way to tokenize an image. If each pixel in the image
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2 Fundamentals

is treated as an individual, then a general image resolution of 224 × 224 with three
channels would already be a vast computational cost. Vision Transformer (ViT)
(Dosovitskiy et al. 2020) divides the image into a certain number of patches with
size 16×16 as tokens, and these patch tokens will be further linearly embedded as
input. Figure 2.1 demonstrates ViT’s approach. ViT also applies positional en-

Transformer Encoder

MLP 
Head

Vision Transformer  (ViT)

*

Linear Projection of Flattened Patches
*  Extra learnable

     [ c l ass]  embedding

1 2 3 4 5 6 7 8 90Patch + Position 
Embedding

Class
Bird
Ball
Car
...

Embedded 
Patches

Multi-Head 
Attention

Norm

MLP

Norm

+L x

+

Transformer  Encoder

Figure 2.1: ViT architecture. An image is first split into 16 × 16 patches. The patch
tokens are further embedded using linear projection. (Dosovitskiy et al. 2020)

coding to all patches and feeds them forward to Transformer encoder layers. The
representation of the special ”[CLS]” token serves as the global representation of
the image and is utilized further for different vision down-streaming tasks.

2.2 Contrastive Learning
The research in contrastive learning aims to solve instance-level discrimination
instead of discriminating among classes. One of the most basic contrastive training
objectives is the following: Given a mini-batch of N images: Xorg

1 ,…, Xorg
N . Images

are first augmented to Xaug
1 ,…, Xaug

N . For each image Xorg
i , ∀i ∈ N , its encoded

feature representation fi,org is called an anchor. The only positive pair is itself and
the encoded feature of its augmented version fi,aug, and all Xorg

j ̸=i, X
aug
j ̸=i , ∀j ∈ N

are considered as negative. The training objective is to pull the encoded features
of positive pairs as close as possible to each other in the embedding space, and
negative pairs should be pushed away as their representations are dissimilar to the
anchor.
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2.3 CLIP: Contrastive Language-Image Pre-Training

(Wu et al. 2018) first proposed a feature memory bank-based approach. After
computing the feature of the current query, a non-parametric softmax classifier is
introduced. For given embedding v of image x, the probability that this image is
classified as i is following:

P (i | v) = exp(vTi v/τ)∑n
j=1 exp(v

T
j v/τ)

.

Instead of using the model output wT
i v as softmax classifier, they used exponen-

tial similarities vTi v. τ is a temperature scaling factor. This feature memory bank
stores all features vj, and it is periodically updated during training time. During
the classification inference time, they compute the cosine similarity of the test
image’s embedding with all the features stored in the memory bank; the k-nearest
classifier is used to output the final prediction.
SimCLR (T. Chen et al. 2020) designed a straightforward training objective.
The same image was augmented in two different ways, and the similarity of
both representations is trained to maximize their agreement. A projection head
(MLP+ReLU) was added after the encoding neural network, and this design was
essential and brought over 10% performance improvement. The model is trained
using a contrastive loss similar to the above.
Distillation with no labels (DINO) (Caron et al. 2021) is a more recent framework
in contrastive learning. It operates by passing two different augmentations of one
image sample to student and teacher networks separately. Both networks serve
as feature extractors, using ViT architecture as the backbone. DINO introduces
a centering operation in the teacher network to avoid model collapse, which is
done by subtracting the mean value of all samples. The training objective for the
student network is to predict the feature output from the teacher network.

2.3 CLIP: Contrastive Language-Image Pre-Training
Open-vocabulary approaches have garnered significant attention in the field of
computer vision. In the past decade, most vision downstream tasks were trained
via datasets with a fixed number of classes. The CLIP model, with its contrastive
learning paradigm, brings a promising solution for inferencing open vocabulary
vision tasks. The text encoder is a 12-layers Transformer encoder block with eight
attention heads (Radford et al. 2021). The model offers two alternatives for image
encoders: a ResNet-50-based feature encoder or a Vision Transformer (ViT)-based
backbone (Dosovitskiy et al. 2020; He, X. Zhang, et al. 2016). After embedding
the text and image using separate encoders, CLIP is trained by maximizing the
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I1·T2 I1·T3 …

I2·T1 I2·T3 …

I3·T1 I3·T2 …

⋮ ⋮ ⋮

I1·T1

I2·T2

I3·T3

(1) Contrastive pre-training

Image
Encoder

Text
EncoderPepper	the

aussie	pup

Pepper	the
aussie	pup

Pepper	the
aussie	pup

Pepper	the
aussie	pup

T1 T2 T3 …

I1

I2

I3

⋮

(2) Create dataset classifier from label text

plane

car

dog

⋮

bird

A	photo	of
a	{object}.

⋮

Text
Encoder

T1 T2 T3 TN

…

(3) Use for zero-shot prediction

Image
Encoder

I1 I1·T2 I1·TNI1·T1

…

…

A	photo	of
	a	dog.

TN

IN·T1 IN·T2 IN·T3

I1·TN

I2·TN

I3·TN

⋮

…IN

…

⋮ ⋱

IN·TN

I1·T3

Figure 2.2: Diagram of CLIP main approach. (1) illustrates the CLIP pre-training stage,
which matches the image and its corresponding label. (2) & (3) illustrates
how image and text encoders are used in zero-shot inference. (Radford et al.
2021)

similarity score of the representation of corresponding image and text pairs.
Both image and text feature representations If and Tf are first normalized to Ie
and Te using L2 normalization. The similarity score for both embeddings is chosen
based on a scaled cosine similarity. Each entry (i, j) in the similarity matrix S is
thus computed by:

Sij = I ie · T j
e .

Similarity matrix S is then scaled to compute the final logits, logits = S · exp(τ),
where τ is the temperature hyperparameter. CLIP constraints that in each mini-
batch, one image has only one corresponding label, and both sequences are put
in corresponding order, namely, the i-th image and the i-th label are pairs. Thus,
the ground truth label can be arranged as an identity matrix IN , where N is the
batch size (32768). CLIP computes both text-to-image and image-to-text losses
using cross-entropy loss with the log-softmax, mathematically defined as:

Ltext-to-image = − 1

N

N∑
i=1

log

(
exp(Sii/τ)∑N
j=1 exp(Sij/τ)

)
,

Limage-to-text = − 1

N

N∑
j=1

log

(
exp(Sjj/τ)∑N
j=1 exp(Sij/τ)

)
,

The total contrastive loss is the average of both losses:

Ltotal =
1

2
(Ltext-to-image + Limage-to-text).
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2.3 CLIP: Contrastive Language-Image Pre-Training

The power of the CLIP models is the ability of zero-shot inference. CLIP creates
the data classifier using a simple prompt: “A photo of {object}”, where object is
the name of the class label. All the text is then forwarded using the pre-trained
text encoder. The new given unseen image is also forwarded using the pre-trained
image encoder. A cosine similarity score is computed between all text embeddings
and the single image embedding. The result of the classification is the text with
the highest score.
A massive amount of work is built on CLIP models for different down-streaming
tasks, e.g., Image classification (W. Kim, Son, and I. Kim 2021), Object Detection
(Gu et al. n.d.; Zhou et al. 2022), semantic segmentation (Lüddecke and Ecker
2022; J. Xu et al. 2022), 3D recognition (R. Zhang et al. 2022), action prediction
(H. Luo et al. 2022; Wang, Xing, and Yong Liu 2021). These approaches have
designed similar methods adapted to their specific vision downstream tasks. For
example, GroupViT first uses a group-based approach for semantic segmentation
by introducing learnable group tokens to the ViT architecture (J. Xu et al. 2022).
During inference time, each group is assigned the semantic label with the highest
similarity score representing the text input.
Despite the outstanding performance of CLIP models, latency is always an im-
portant factor when people apply models in real life. A couple of works aimed
to replace heavy Vision Transformer-based backbone with some mixture models.
Mobile CLIP introduces Text-RepMixer, a hybrid text encoder of 1-d convolu-
tions and self-attention layers, instead of the transformer architecture used in the
CLIP model along with MCi. This hybrid image encoder is an improved ver-
sion of FastViT (Vasu, Gabriel, et al. 2023). In addition, MobileCLIP utilizes a
well-designed reinforced dataset for the pretraining. These design choices and ar-
chitecture modifications not only accelerated CLIP (VIT-B/16) with 2.3 × speed
but also a better average performance on 38 different datasets (Vasu, Pouransari,
et al. 2024).
The CLIP contrastive training paradigm can also be adapted (Figure 2.3) when

faced with tasks of sequential information, such as action recognition task. In
this case, the model should learn to encode the corresponding video sequence and
its annotated label to have a high cosine similarity score. The only challenge is
to compute a reasonable sequence representation of the video sequence from the
video encoder. Action CLIP proposes three approaches Wang, Xing, and Yong
Liu 2021: a) non-parametric mean pooling operation, which computes the mean
value of all separate frame representations straightforwardly. This method brings
efficiency to the model training but does not have the ability to learn the tempo-
ral information in the video sequence. The other two more advanced approaches
add a learnable 1D convolution layer/LSTM layer, or transformer blocks and take

9
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Figure 2.3: Unlike classical action recognition training, ActionCLIP proposes adapting
the CLIP training paradigm by learning the similarity mapping from text
and video modality (Wang, Xing, and Yong Liu 2021).

the temporal information also into consideration. A subsequent mean pooling is
also applied to compute the final action representation. Another modification in
ActionCLIP is the training loss. Since the amount of the video is larger than the
number of labels, a CLIP-like one-hot ground truth matrix can not be formed, and
thus, Kullback-Leibler (KL) divergence loss is used as an alternative to the cross
entropy loss. For two given discrete probability distributions, KL divergence loss
is mathematically defined as:

DKL(P ∥ Q) =
∑
i

P · log
(
P (i)

Q(i)

)
.

For continuous probability distributions:

DKL(P ∥ Q) =

∫ ∞

−∞
P (x) · logP (x)

Q(x)
dx.

In the case of ActionCLIP, P is the softmax-normalized similarity matrix and
Q is the ground truth matrix (Wang, Xing, and Yong Liu 2021). The softmax-
nomarlized similarity score is thus defined as

Pvideo-to-text =
exp(s(x, yi)/τ)∑N
j=1 exp(s(x, yj)/τ)

,

where s(·, ·) denotes the consine similarity of video x and its corresponding label

10



2.3 CLIP: Contrastive Language-Image Pre-Training

yi. Similarly,
Ptext-to-video =

exp(s(y, xi)/τ)∑N
j=1 exp(s(y, xj)/τ)

.

The total loss is defined as:

L =
1

2
E(x,y)∽D [KL(Pvideo-to-text, Qvideo-to-text +KL(Ptext-to-video, Qtext-to-video)] ,

where D denotes the dataset.
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3 Related Works
This chapter introduces related works for Vision-Language Navigation (VLN) and
Vision-Language Manipulation (VLM) task that have been benchmarked on the
ALFRED challenge.

3.1 End-To-End Models
ALFRED’s baseline model is a Convolutional Neural Networks-Long Short-Term
Memory (CNN-LSTM) architecture (Shridhar et al. 2020). ALFRED uses a frozen
ResNet-18 CNN architecture to extract the image feature and a bidirectional
LSTM encoder to extract the text feature. In addition, action-based soft-attention
is performed on the language features. Mathematically, given the last hidden state
ht−1 and the language embedding x, the soft-attention score is computed with

αt = Softmax((Wxht−1)
Tx),

where a fully-connected layer is applied to the hidden state. The weighted atten-
tion distribution is applied to the language again, x̂t = αT

t x. At the end of each
time step, given the image and text features along with the previous action, AL-
FRED concatenates all the input [vt; x̂t; at−1]. An LSTM decoder further outputs
a new hidden state for the current step. Two separate networks are trained to pre-
dict the action and its corresponding binary mask for the object if an interaction
action is predicted.
Episodic Transformer (E.T.) is an end-to-end attention-based transformer model
that consists of three modality-specific encoders and one multi-modality fusion
encoder, thus having no hidden states (Pashevich, Schmid, and C. Sun 2021).

Figure 3.1 demonstrates the architecture of the E.T. model. E.T. introduces
four different encoders. During the training stage of the model, all tokenized
language instructions x1:L, ego-centric images v1:T , and all actions a1:T are first
encoded using separate modal encoders. Then, all embeddings are concatenated
and forwarded through a two layer multi-modal transformer encoder. The output
embedding is forwarded to a simple fc layer and predicts action. In addition, E.T.
design a sequence-to-sequence translation task to pre-train the language encoder.

13



3 Related Works

Figure 3.1: Architecture of the Episodic Transformer (Pashevich, Schmid, and C. Sun
2021)

In addition, E.T. also predicts an object list, which has the same length as the
action sequence. If the prediction of the current action is navigation, the object
prediction head is expected to predict ”NoObject.” Both action sequence and ob-
ject sequence are trained using cross-entropy loss.
During inference time, the E.T. agent first takes the entire language instruction,
one frame at the beginning as the input. All frames and actions are stored and
accumulated after each time step and fed to the model. The last element of the
predicted action sequence is used as the action for the next step. If the action be-
longs to one of the seven interaction actions, E.T. takes the predicted object class
at current time step and used a pre-trained Mask R-CNN to predict the object
mask.

3.2 Modular Methods
The Hierarchical Language-Conditioned Spatial Model (HLSM) presents a hier-
archical approach to address the challenges of the ALFRED benchmark (Blukis
et al. 2022). HLSM introduces an observation model to predict a semantic map
from the ego-centric RGB image. As shown in Figure 3.2, given an ego-centric
RGB view It at the time step t, the observation model first predicts the semantic
segmentation ISt using Mask R-CNN and depth IDt using U-Net-based neural net-
works, which are pre-trained using the data generated from Alfred environment.
A pinhole camera model projects both predictions to a semantic point cloud. In
the end, this semantic point cloud is binned into a voxel map. This cumulative
voxel map serves as the state representation and is updated over time as the agent

14



3.2 Modular Methods

explores the environment.
A high-level controller πH takes this state representation, along with the language

Figure 3.2: Predicting semantic map from ego-centric RGB. (Illustraion from FILM++
(Inoue and Ohashi 2022))

instructions and the subgoal history as the input, to predict the next subgoal (ac-
tion type, action argument, 3D mask). A low-level controller πL, predicts the
particular action sequence, encompassing navigation and exploration for the agent
to achieve the subgoal predicted by the high-level controller.
FILM (abbreviation for Following Instructions in Language with Modular Meth-

Figure 3.3: Pipeline of FILM approach. (Min et al. n.d.)

ods) proposes a pipeline of three learned modules (Min et al. n.d.). Figure 3.3
illustrates FILM’s approach for tackling the Alfred challenge. A language pro-
cessing module first converts the task description into an action transcript using
pre-defined templates, e.g., “Place a black plate with a spoon in it on top of
the kitchen table” is converted into [(‘Spoon’, ‘PickupObject’), (‘Plate’, ‘PutO-

15
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bject’),(‘Plate’, ‘PickupObject’), (‘DiningTable’, ‘PutObject’)]. A semantic map-
ping module processes ego-centric RGB images into a 2d semantic map, following
the HLSM approach described above. Furthermore, a semantic search policy pre-
dicts the possible distribution of objects’ locations. A deterministic policy is de-
signed to predict the action decision based on the predicted action transcript and
the predicted semantic map. While looping through the generated action tran-
script, if the object are found in the semantic map, then the agent will navigate
itself to that object via the Fast Marching Method. Otherwise, the agent will use
the semantic policy prediction and navigates to the location where the object is
most likely located. The pointer of tracking the process of the action transcript
will be updated if the interaction action is successfully performed.
FILM++ (Inoue and Ohashi 2022) followed FILM’s approach. FILM’s semantic
search policy is time-consuming in terms of required extra training, especially in
preparing the synthetic training data. FILM++ replaces it with prompting to
established language models, i.e., BERT. A prompt, “Something you find at [Y]
is [X].” is given, and the possibilities of the location are predicted. This modu-
lar block is fine-tuned using a less time-consuming method, and the whole model
doubles its performance compared to FILM.

16



4 Dataset

This chapter introduces the ALFRED dataset and our pre-processing stage of
generating semantic maps from it.

4.1 Introduction
All experiments are conducted using ALFRED (Action Learning From Realistic
Environments and Directives), a simulator, i.e., AI2-THOR (Kolve et al. 2017) gen-
erated, the recent benchmark for learning a mapping task, from vision (ego-centric
RGB image) and natural language input to an action transcript for domestic ser-
vice robot (Shridhar et al. 2020). The dataset consists of 7 different household
tasks, directly related to real-world scenarios, i.e., Pick & Place, Stack & Place,
Pick two & Place, Clean & Place, Heat & Place, Cool & Place, and Examine in
light.
84 object classes parameterize all tasks in 120 scenes; all object classes have num-
bers of individual instances with different colors, textures, etc. The agent needs
to execute one action from 12 different actions, which includes five navigation ac-
tions (MoveAhead, RotateRight, RotateLeft, LookUp, and LookDown) and seven
manipulation actions (Pickup, Put, Open, Close, ToggleOn, ToggleOff, and Slice).
This covers the most fundamental actions, and a considerable number of household
tasks can be accomplished by combining these 12 actions. All navigation actions
are bounded with a discretized value respectively, i.e., 90 degrees for rotating and
25cm for moving ahead.
ALFRED’s challenge provides the following annotations: an initial state of the
simulated room, language instructions, and an expert demonstration trajectory.
The simulated room’s initial state consists of the scene’s index, along with the
environment layouts, i.e., poses and states (e.g., sliced or not) of all moveable
objects in this scene. This data is used to set up the environment in the simulator
and is not intended to be used as training data. The agent only has access to the
RGB observations and does not have information on the environment state during
training or the inference. Otherwise, the agent knows the relative position of the
objects instead of detecting them using vision models.
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Language instructions contain one sentence of global goal instruction, e.g., ”Pick
up the alarm clock and turn on the lamp. «goal»”. Moreover, a list of sentences
for subgoal instructions: ”Turn left and face the dresser.” -> ”Pick up the alarm
clock from the dresser.” -> ”Turn left, look and then face the lamp.” -> ”Turn the
lamp on.” -> ”«stop».” The expert demonstration trajectory is the annotated data,
which is meant to be fed to the model. The annotation consists of a sequence of dis-
crete actions, the object’s mask, whenever the interaction with objects is involved.
Figure 4.1 illustrates the frame data and the expert demonstration trajectory of
abovementioned task.

Figure 4.1: Example task: ”Pick up the alarm clock and turn on the lamp.”. ALFRED
includes frame and action class at each time step. The object’s mask is also
given for interaction actions, i.e., PickupObject and ToggleObjectOn.

4.2 Data Distribution
In this section, we reported the data distribution, including the data split, the
number of different task types, and the number of low-level actions among all the
annotations.
The data splits of ALFRED in the following way: 21,023 annotations for training,
820 annotations for ”valid-seen”, 821 annotations for ”valid-unseen”. ALFRED
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dataset is annotated using the Amazon Mechanical Turk (MTurk) service (Shrid-
har et al. 2020).

Figure 4.2 shows the distribution of different task types. ALFRED maintains

Figure 4.2: Data distribution of the task type in the ALFRED challenge. First histogram
shows the distribution of the training data, second shows the distribution of
the validation data.

relatively evenly distributed task types among the dataset.
Figure 4.3 displays the action class distribution within the training and valida-

tion data. The class index is defined as follows: ”0: LookDown, 1: LookUp, 2:
RotateLeft, 3: RotateRight, 4: MoveAhead, 5: PickupObject, 6: PutObject, 7:
SliceObject, 8: OpenObject, 9: CloseObject, 10: ToggleObjectOn, 11: ToggleOb-
jectOff.” The histograms clearly show that the actions MoveAhead and LookDown
are overrepresented, occupying the majority of the dataset. In contrast, interac-
tion actions are significantly underrepresented, as they typically occur only once
or twice within each trial. This underrepresentation poses a significant challenge
to achieving effective sequence matching.

4.3 Semantic Map Generation
We followed HLSM and FILM (Blukis et al. 2022; Min et al. n.d.)’s approach
for generating semantic maps based on the ground truth data. Given the ego-
centric RGB image, we use pre-trained U-Net to predict depth and pre-trained
Mask-RCNN to perform instance segmentation for each time step. Both pieces
of information are integrated into a 3D point cloud. Our semantic map has the
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Figure 4.3: Data distribution of action classes in the annotation. First histogram shows
the distribution of the training data, second shows the distribution of the
validation data.

shape (C + 3) × M × M. Following previous work (Min et al. n.d.), we set M
with the value 240, equivalent to a 12m × 12m room in the real world. C repre-
sents the semantic channels that occur in the current trial. The additional three
channels involved the obstacle map, explored map, and pose of the agent. Unlike
previous works that utilize the map information inside their modular approaches,
our approach considers the map as a modality, the same as the visual and text
input. Under these circumstances, the current location and orientation give extra
information to this map. We represent the pose with a circle with a diameter of 5
pixels. The orientation is represented with a line starting from the circle’s center
with 4 pixels. This pose representation is coarse but sufficient as the orientation
is constrained to only four directions in the simulator. We show a trial with the
ego-centric RGB sequence and the corresponding semantic map sequence in Figure
4.4. This allocentric map is initialized with zero (white space) and accumulated
after each time step. The dark gray color represents the obstacle, and the light
gray color represents the explored places (All seen places, which are non-object nor
obstacle, is considered as explored). We use random different colors to represent
different object classes.
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Figure 4.4: An example of generating semantic map from ego-centric RGB input.
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5 Main Approach
This chapter discusses the details of our main approach. We follow and modifiy the
model architecture of the Episodic Transformer and the primary approach from
FILM/FILM++ to construct a semantic map for each trial.

Figure 5.1: Model architecture of LIAM. The blue blocks are all layers that were frozen
during the end-to-end model training; the orange blocks are the parts that
were trained. After adding the positional encoding and a learnable modal-
type encoding, a multi-modal fusion layer fuses representations from different
latent spaces. A fully-connected layer is employed to predict the matching
action sequence based on the input.

Figure 5.1 illustrates the model architecture. We have adopted E.T.’s idea of en-
coding different modalities separately, replacing the image and text encoders with
CLIP encoders. To manage the high computational cost, we freeze the weights and
biases of the CLIP backbone during model end-to-end training, ensuring efficient
resource utilization. A pre-training stage is introduced to pre-align the embedding
space of different modalities. We also design a simple projection head to project

23



5 Main Approach

the embedding. This learnable autoencoder-wise head is learned to make further
adjustments to the embedding. We use a single embedding layer to map the action
sequence to the hidden dimension. The last modality is the semantic map. We
follow FILM’s approach (Min et al. n.d.) and build a semantic map with chosen
information: the obstacle map, explored area, semantic map for objects, and the
pose (agent’s position and orientation). A map encoder is introduced to encode
the semantic maps from each time step. After all modalities are embedded in
their own latent space using the independent encoder, we first apply positional en-
coding and modal-type encoding to each representation, then concatenate all the
representations, and feed them further to a multi-modality fusing layer to learn a
general representation. A causal attention mask is also applied in this stage. This
layer plays a crucial role in learning a general representation by fusing the repre-
sentations from different latent spaces. Ultimately, we employ a fully connected
layer to predict an output sequence based on all the tokens of visual representa-
tions, which have the same number of mappings of actions, so that we can train
the model with the ground truth action sequence. Details of model design and
training are explained below.

5.1 Pre-training Stage

5.1.1 Contrastive Alignment
CLIP was initially trained using data gathered from the Internet, resulting in bias
and significant performance differences across different datasets in zero-shot in-
ference. For instance, while CLIP excels on datasets related to cars and food, it
struggles on simpler datasets like MNIST compared to the supervision approach
(Deng 2012; Radford et al. 2021). This discrepancy can be attributed to the rar-
ity of handwritten digits on the Internet. Given that the ALFRED dataset is
simulator-generated, it deviates slightly from reality. Hence, a pre-training stage
to align the latent space of image and action becomes imperative.

We first pre-align the CLIP image encoder and action embedding via contrastive
learning. The learning objective of the model is to match the correct pair of
action embedding and image embedding. Unlike CLIP, where one image has one
corresponding label, in our case, two consecutive images have one corresponding
label, which denotes an action. Figure 5.2 shows an example of the ground truth
of one mini-batch. Unlike the original CLIP, which forms an N × N affinity matrix
(N denotes the batch size), our ground truth matrix cannot maintain symmetry
based on its data nature, i.e., the action column has a small fixed size. It requires
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Figure 5.2: An example of the ground
truth from one mini-batch
for alignment of visual and
action embedding space.
One action corresponds to
two consecutive frames.

Figure 5.3: Ground truth for alignment of
visual and language embedding
space. One frame sequence cor-
responds to one language in-
struction.

an extra data processing stage to choose exactly 12 different actions for each mini-
batch to form the ground truth similar to CLIP. Our approach counts the number
of unique actions that appear in each mini-batch instead and forms all occuring
actions as the column of the matrix. Notice that the number of columns differs
from each mini-batch, and is no longer necessarily the same as the number of the
action classes. Each row denotes the representation of two consecutive frames. The
matrix entry (i,j) has the value one if the i-th frames representation corresponds
to the action class j.
A common approach for computing the representation of a video sequence can
be as straightforward as using only a parameter-free approach, namely computing
the mean value of the representations of all frames. Another possibility is using a
learnable network to learn the fusion of multiple representations. In our approach,
we use f(·, ·), a 1D convolution layer along with global average pooling to compute
a fused representation of two consecutive images. The action embedding follows
E.T.’s look-up table approach, using an embedding layer that embeds all 14 classes
(12 classes + 2 special tokens) into 768-dimensional dense vectors. With the help of
this embedding layer, all discrete action classes are encoded into continuous vector
space representations. After having the normalized representations of both frames
Ie and action classes Ae, we compute a cosine similarity score of both vectors and
fine-tuned the CLIP backbone following CLIP’s approach. With ai ∈ Ae, It ∈ Ie:
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PI2A(I) =
exp(f(It, It+1), ai)/τ)

N−1∑
j=1

exp(f(It, It+1), aj)/τ)

PA2I(A) =
exp(a, f(Iti , Iti+1))/τ)

N−1∑
j=1

exp(aj, f(Iti , Iti+1))/τ)

We notate text, action, and image with alphabet T, A, and I. I2A denotes
”image-to-action,” and all later mentioned abbreviations (X2X) follow this pattern.
Function f(·, ·) denotes the fusion function of two consecutive images at time step
t and t + 1 as described above. τ is the temperature, a learnable parameter scales
the similarity score. Following CLIP, we initialize the temperature with a value
of 0.07 and use 100 as an upper threshold to clip the temperature value during
the training stage, preventing the scaling factor from becoming too large (Wang,
Xing, and Yong Liu 2021) and 0.01 as a lower threshold bound to prevent dividing
by zero error.

Following ActionCLIP (Wang, Xing, and Yong Liu 2021), we use the KL di-
vergence loss to fine-tune the CLIP backbone. The total loss of the contrastive
alignment pre-training is the average of both image-to-action and action-to-image
loss.

LImage-Action-Total =
1

2
E(x,y)∽D [KL(PI2A(I), QI2A(I)) +KL(PA2I(A), QA2I(A))]

, Q(·) denotes the ground truth similarity matrix.

5.1.2 Triple Contrastive Pre-training
Our contrastive learning pre-aligns the latent space of the vision and action em-
bedding. However, the alignment of the language embedding space with other
latent spaces is thus neglected. To address this, we introduce a triple contrastive
pre-training stage. This method not only aligns the vision and action embedding
spaces but also aligns the language embedding space with them. This mutual
training ensures that the loss can be back-propagated to all encoders. In addi-
tion to Figure 5.2, Figure 5.3 shows the example of the ground truth of aligning
the CLIP text encoder and image encoder. The training objective is straightfor-
ward: the representation of the language instruction and its corresponding frame
sequence should be similar to each other. Figure 5.4 illustrates the basic idea of
the triple contrastive alignment. We first compute the representation of every
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single frame (N frames) using the CLIP image encoder and further process this
sequence of representations in two ways.
Considering the computing resource for the image sequence representation, we
choose the parameter-free approach to compute the mean value of all CLIP em-
beddings of all frames to get the sequence representation. For every two consecu-
tive frames in this list, we use the 1D convolution layer to get the representation
of both frames as the same methodology described above 5.1.1. Thus the visual
embedding space is aligned simultaneously with both text and action embedding
space. As shown below, we define cross-entropy loss LText-Image for learning the
pairing of visual and text sequences following original CLIP. For aligning action
and image, we continue using KL divergence loss LImage-Action.

Figure 5.4: An illustration of the triple contrastive alignment. The representation of the
whole frame sequence should be pulled together with the representation of its
corresponding global language instruction. At the same time, the represen-
tation of every two consecutive frames should be pulled as close as possible to
the representation of its corresponding action. The representation of frames
is outputted by the same visual encoder, which serves as a ”bridge” in be-
tween.

LText-Image = − 1

2N

(
N∑
i=1

log

(
exp(Sii/τ)∑N
j=1 exp(Sij/τ)

)
+

N∑
j=1

log

(
exp(Sjj/τ)∑N
j=1 exp(Sij/τ)

))

LImage-Action =
1

2
E(I,A)∽D [KL(PI2A(I), QI2A(I)) +KL(PA2I(A), QA2I(A))]
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The total loss of triple contrastive alignment is defined as:

Ltotal = (1− α)× LText-Image + α× LImage-Action

We introduce α as a hyperparameter for weighing both losses. This hyperparam-
eter gives us more flexibility. Furthermore, each sample in a batch is a whole
sequence. Three or four sequences-constructed mini-batch consists of averages of
over 200 actions. With the computational resource constraints, we can only set a
tiny batch size for triple contrastive alignment. However, the objective of pairing
the correct image and text sequence is now more leisurely among each mini-batch.
Therefore we assign a small weighted LText-Image in the total loss (α = 0.8).

5.2 Projection Layer
We introduce an autoencoder-like design for our projection layer. CLIP-encoded
features have a hidden dimension of 512, as shown in figure 5.5 (left). We then
downsample the input feature to a smaller hidden dimension (384 in our case)
and apply the Gaussian Error Linear Units (GELU) as the nonlinear function
(Hendrycks and Gimpel 2016). GELU has recently become a more favorable choice
for nonlinear functions, especially in transformer-based models. The hidden repre-
sentation is then passed to another fully connected layer, which maps the feature
dimension to 768. To ensure stability, we employ layer normalization and include
a residual connection in our design.
We have two separate projection heads with the same architecture for text and

image encoders. The map encoder (see Figure 5.5 Right) has different structures.
In consideration of a good tradeoff of the computation resource, we use the famil-
iar process of global adaptive average pooling to downsample the map tensor. A
fully connected layer with the non-linear function GELU project downsamples the
map to the same feature dimension as other modalities’ embeddings (768).

5.3 Multi-modal Transformer
The multi-modal transformer is a comprehensive model that aims to integrate
all different modalities into one global representation, namely language, visual
frames, action sequence, and semantic map in our case. It utilizes a two-layer
transformer encoder with 12 attention heads. We use causal attention following
E.T. (Pashevich, Schmid, and C. Sun 2021). The attention mask follows these
rules: Language tokens should attend to the language itself. Visual frames are
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Figure 5.5: Left: Projection head appends after both CLIP encoders. Right: Map en-
coder encodes the current map and outputs a representation.

allowed to attend to all language tokens, but they can only attend to all the
frames, actions, and semantic maps before current time step t. The same rules
are applied to action tokens and semantic maps. Sinusoidal positional encoding is
also applied.
In addition, we add a learnable modal-type encoding, first introduced by VILT
(W. Kim, Son, and I. Kim 2021). This encoding brings extra information and
clarifies different modality types to the Transformer model; it also avoids the need
for explicit separation tokens like “[SEP].” The modal-type encoding is trainable
and expect to give the fusion model the ability to distinguish different modalities.

5.4 Zero-shot Semantic Segmentation
The ALFRED challenge also requires us to predict the object’s mask during in-
ference. Following FILM/FILM++ (Inoue and Ohashi 2022; Min et al. n.d.), we
use a zero-shot approach instead of training an extra model for prediction. For a
given task, we first predict all the objects occurring in this trial, including 1. The
target object: objects with which the agent will interact. 2. The receptacle object,
e.g., table, fridge, etc. 3. The parent objects are all moveable receptacle objects,
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e.g., Plates. The parent object class does not have interaction with the receptacle
object class. 4. ToggleObject, e.g., Light switch. 5. Knife, which depends on
whether the slice action is predicted in the sequence. All object categories are
predicted by their own pre-trained BERT model (Kenton and Toutanova 2019).
All 5 BERT models have the same architecture with a different classification head.
An additional BERT is used to predict the task type out of all seven tasks in AL-
FRED. Given all the prediction objects, an action transcript is generated based on
the task type. For example, a high-level action transcript for the task ”Examine a
remote control by the light of a floor lamp.” is (’RemoteControl’, ’PickupObject’),
(’FloorLamp’, ’ToggleObjectOn’). We start from the beginning and use a pointer
to track progress.
We utilize CLIPSeg (Lüddecke and Ecker 2022) for zero-shot inference to predict
the object mask. In the example mentioned above, the open vocabulary input for
the first step into the CLIPSeg model is the ”RemoteControl” solely. We update
the transcript tracker whenever the simulator tells us this action has been pre-
dicted and performed successfully. This part is also the only deterministic policy
we used during the inference time. A potential challenge is that the CLIPSeg
model accepts input size with shape (352, 352), and the ego-centric RGB image
in the AI2Thor has shape (300, 300). We use bilinear interpolation to convert the
image size.

5.5 LIAM Pipeline Walkthrough

In this section, we define our input and output mathematically to explain our
approach more deeply. Given input:

Tokenized language instruction : [L1,…Lm]

EGO-centric RGB input : [I1, ..., In]
Action sequence : [A1,…, An]

Semantic map sequence : [M1,…,Mn]

Notice that language tokens have length m, and all other modalities have length n.
For image sequence I1, . . . , In, only n - 1 actions are involved. We append ”«stop»”
as the last action. Four different encoders encode all input to their latent space
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and output Fl, Fv, Fa &Fm as the feature representation.

Fmod = Fmod +modType +modPos, for mod in L, I, A, M.
F 0
total = [FL;FI ;FA;FM ]

F
l

total = LN(MA(F
l−1

total)) + F
l−1

total, l = 1, ...,L

F
l

I = F
d

total[m+ 1 : m+ 1 + n]

O = F
d

ID

After applying the modal-type and positional encoding to each feature represen-
tation of different modalities, we concatenate all the representations to F 0

total. The
multi-modal Transformer encoder consists of L layers, and each layer of encoder
blocks consists of Multi-headed Attention (MA), Layer Normalization (LN), and
residual connection with the output of the previous layer. Finally, we slice the
total representation and take the representation of the visual part, namely from
index m + 1 to m + 1 + n, for the final action sequence prediction. The predicted
action sequence is computed by multiplying the sliced matrix with a trained linear
layer D.
The end-to-end model is trained using cross-entropy loss between the generated
action sequence and the ground truth action sequence. For predicted action se-
quence P = [â1 . . . ân] and ground truth Q = [a1 . . . an], the cross-entropy loss is
defined as:

Laction = −
n∑

i=1

13∑
c=1

ai,clog(âi,c),

where c represents the action class out of 14 classes (12 classes + «stop» + «pad»).
However, the «pad» token is masked out during the computation of the loss value.
Following E.T. (Pashevich, Schmid, and C. Sun 2021), we also use auxiliary losses
in the training. First, we predict the object class for each frame (”NoObject” is
also a class). The predicted object class is a list with the same length of the action.
Similary to the action, for predicted object sequence Po = [ô1 . . . ôn] and ground
truth Q = [o1 . . . on], the cross-entropy loss is defined as:

Lobject = −
n∑

i=1

85∑
c=1

oi,clog(ôi,c),

where c represents the object class out of 85 classes (84 object classes + NoObject).
We also predict the goal progress with the initial thoughts for giving the model
a better understanding of the current progress of the current trial. The ground
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truth Qgp of the goal progress is computed by .

Qgp =

{
i+ 1

n
| i ∈ {0, 1, 2, . . . , n− 1}

}
,

where n is the length of the ground truth action for current trial. For predicted
goal progress P gp, we use Mean Square Error (MSE) loss, defined as:

Lgp =
1

n

n∑
i=1

(Qgp
i − P gp

i )2

The total loss is then defined as:

Ltotal = Laction + αLobject + βLgp.

where α, β are hyperparameters for weighing the auxiliary loss. We set all weights
to 0.1 in our experiments.

5.6 Implementation Details
The models are implemented using the Pytorch package (Paszke et al. 2019) and
trained on NVIDIA RTX A6000 (50.3 GB memory). Table 5.1 shows the detailed
hyperparameters we used for the training. These hyperparameters are optimized
for our training using the optuna package (Akiba et al. 2019). We use a two-
layer transformer encoder with eight heads for the model architecture. We use
a trivial 768 as our hidden dimension. For training our end-to-end model, we
use batch sizes 32 and 2 as the accumulation step. The accumulation step is the
gradient accumulation technique, namely we backpropagate the gradient for 64
samples (2 mini-batches). We use the learning rate 1e-4 and AdamW (Loshchilov
and Hutter n.d.) as our optimizer. We adapt this learning rate using a cosine
annealing schedule (Loshchilov and Hutter 2022). We train each model with a
maximum of 20 epochs. Some models start to overfit after 16 epochs, so we apply
the early stop technique and pick the best result for each model.
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Hyperparameters Value
Multi-modal Transformer Encoder
Num_heads 8
Num_layers 2
Hidden_dim 768
Dropout ratio 0.1
Pre-Training
Batch size (I2A) 64
Batch size (I2A + T2A) 3
Length Sequence (I2A + T2A) 21
Learning rate 5e-5
Scheduler CosineAnnealingLR
Optimizer AdamW
Epochs 11
End-to-End Training
Batch size 32
Accumulation step 2
Learning rate 1e-4
Optimizer AdamW
Scheduler CosineAnnealingLR
Epochs 20

Table 5.1: Implementation details
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In this section, we introduce the metrics that we used to evaluate our model and
analyse the results. All experiments are conducted using ALFRED.

6.1 Evaluation Metrics
For the pre-training stage, we measure the percentage of correct matching of the
action and the visual representations (I2A) and the percentage of correct matching
of the text and visual sequence representations.
For the ALFRED challenge, we first evaluate the generated action sequence. We re-
port the accuracy score, the element-wise correct prediction percentage of the gen-
erated action sequence, and the ground truth sequence. The precision score com-
putes the percentage of the correctly predicted class (True Positives TP) among
all predicted classes as positives (True Positives TP + False Positives FP),

Precision =
TP

TP + FP
.

The recall score computes the percentage of the correctly predicted TP among
the sum of true positives and false negatives, namely the sum of this class in the
ground truth,

Recall = TP

TP + FN
.

The F1 score is the harmonic mean of the precision and the recall score, defined
as

F1 =
2× Precision × Recall

Precision + Recall .

We compute the average precision score among all different classes.
We also report all the metrics that ALFRED has used for the leaderboard:

1. Success Rate (SR) measures the number of successfully performed tasks
among the seen and unseen data.
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2. The post-conditioned success rate (GC) measures the proportion of success-
fully performed subtasks for each episode.

3. Because of the vast difference in the length of each task among the dataset
(e.g., Heat & Place is a more challenging task compared to Pick & Place,
which requires longer steps to complete), there is a path-length weighted
version for SR and GC, respectively (PLWSR, PLWGC). We first evaluate
the model performance on the validation data.

We use “valid_seen” as our validation dataset, which contains tasks that the model
has seen during training, and “valid_unseen” as our test dataset, which contains
tasks that the model has never encountered during training. The environment in
unseen data has never appeared in the training set.

6.2 Pre-training Stage
We pick three different CLIP backbones: MobileCLIP-S0 (54.7 million parame-
ters), OpenCLIP with Resnet-50 backbone (114.1 million parameters), and Open-
CLIP with the vision transformer backbone (152.7 million parameters).

Models Validation Test
ACC (I2A) ACC (T2I) ACC (I2A) ACC (T2I)

Contrastive alignment of image and action
MobileCLIP S0 (Zero-shot) 7.51 - 7.32 -
MobileCLIP S0 38.34 - 43.21 -
OpenCLIP-RN50 (Zero-shot) 5.63 - 5.51 -
OpenCLIP-RN50 61.41 - 58.78 -
OpenCLIP-ViT-B-32 (Zero-shot) 5.84 - 8.26 -
OpenCLIP-ViT-B-32 65.45 - 61.58 -
Triple contrastive alignment
MobileCLIP S0 (Zero-shot) 3.21 35.04 3.34 33.03
MobileCLIP S0 80.28 60.22 68.97 35.95
OpenCLIP-RN50 (Zero-shot) 3.76 31.51 4.78 34.61
OpenCLIP-RN50 70.56 32.67 65.54 51.82
OpenCLIP-ViT-B-32 (Zero-shot) 3.89 45.62 5.67 37.65
OpenCLIP-ViT-B-32 88.22 75.43 65.98 40.69

Table 6.1: The matching accuracy of correct image to text (I2A) pair and correct
text to image (T2I) pair.

Table 6.1 presents the accuracy score of correct matching pairs among the mini-
batches. Firstly, we can clearly see that no CLIP model has the ability to correctly
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match two consecutive visual images with their corresponding actions in a zero-
shot manner. As discussed before, CLIP is a model that is sensitive to the dataset.
However, both image-action contrastive and triple contrastive alignment can be
adequately trained and show significant accuracy gains in matching corresponding
pairs of two consecutive images and action or pairs of the image sequence and text
sequence. We use batch size 64 for image-action contrastive alignment training,
batch size three, and additionally, constraint each sequence to length 21 (during
validation) for triple-contrastive alignment to keep a fair comparison between both
accuracy scores. We observed that using zero-shot inference, the accuracy for text
sequence and image sequence matching is around 33%, and the accuracy for two
image frames and action matching lies between 3% and 8%. Both scores denote
the random guessing from the model. After fine-tuning, the accuracy of predicting
the correct image and text sequence pair is increased using MobileCLIP backbone
and CLIP VIT-B-32 backbone to 60.22% and 45.62%, however still not entirely
correct out of the mini-batch.
Furthermore, we observe that the accuracy score for unseen data is still low com-
pared to the random guess, indicating an overfitting problem in the sequence
matching task. This result suggests that the model is not generalizing well to
unseen data. The potential reason for this could be the suboptimal mean opera-
tion for computing the sequence representation. Surprisingly, CLIP with ResNet-
50 backbone has a relatively higher score in the sequence matching task but a
lower score in the action and visual matching. However, we observe that triple-
contrastive alignment indeed benefits accuracy in matching the correct action label
of the consecutive images using all three backbones. Overall, based on its per-
formance in the action-image matching task, we decide to use pre-aligned CLIP
VIT-B-32 as the backbone to extract the features of our input.

6.3 ALFRED Challenge: Quantitative Results

Before running the inference code on the ALFRED challenge, we evaluate the gen-
erated action sequence using the abovementioned metrics compared to the ground
truth action sequence and find the optimal model architecture and design choice
with the best performance. Table 6.2 demonstrates the result using three different
CLIP backbones, i.e., the pre-trained model from the official repository, which
does zero-shot on our dataset, contrastive pre-aligned in the image and action
space, and triple contrastive pre-aligned backbone. For each frozen backbone, we
evaluate the prediction using 1. the E.T.-like baseline model 2. Adding auxiliary
loss as discussed in ref and 3. Adding semantic maps as an additional modality.

37



6 Evaluation

4. Adding both 2 and 3.

Models Valid Seen Valid Unseen
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

Zero-shot CLIP encoder 73.00 68.69 56.29 58.64 71.87 58.13 48.82 49.31
weighted loss 64.51 - - - 55.78
+ Aux. Loss 76.92 80.77 66.66 70.51 75.67 70.49 59.92 62.20
+ Semantic Map 78.08 78.35 68.81 71.69 76.49 65.17 58.35 59.54
+ Semantic Map & Aux. Loss 78.43 82.05 68.07 72.46 76.59 71.65 60.16 62.74
Contrastive-aligned CLIP 76.97 71.30 63.60 64.17 79.56 49.95 42.94 44.02
+ Aux. Loss 76.80 51.41 43.89 44.62 79.71 51.41 43.89 44.62
+ Semantic Map 79.30 61.73 55.81 56.94 81.51 43.49 39.32 39.52
+ Semantic Map & Aux. Loss 78.03 61.72 53.78 56.10 80.10 43.60 37.40 38.66
Triple-contrastive-aligned CLIP 77.52 84.33 66.73 72.15 76.89 73.12 62.06 64.57
+ Aux. Loss 76.68 82.03 65.23 69.96 75.64 66.06 55.63 57.54
+ Semantic Map 77.98 77.04 70.90 72.63 75.79 69.35 67.54 67.02
+ Semantic Map & Aux. Loss 77.97 82.43 66.35 71.39 76.97 68.69 57.87 60.02

Table 6.2: We report the accuracy, precision, recall, and F1 score for our end-to-
end model predicted sequence and the ground truth.

From all the experiments, first, we observe that the fine-tuning of the CLIP
backbone brought benefits in increasing the accuracy, precision, recall, and F1
score. (baseline model without using auxiliary loss and map as modality). Al-
though the improvement in the accuracy is not significant, e.g., 73.00 %, 76.97%,
77.52% in the seen data, 71.87%, 79.56%, 76.89% in the unseen data, respectively.
The improvement in F1 score is relatively huge, 8% in the seen data, and around
15% improvement in unseen data, when the triple contrastive pre-alignment is per-
formed. Second, we observe that the auxiliary loss only brings an advantage when
we use the non-fine-tuned CLIP backbone. The auxiliary damages the model’s
training and worsens performance for both pre-aligned CLIP backbones. Third,
the semantic map improved the model’s performance for the zero-shot backbone
and triple-aligned backbone, showing the potential of using the map as an extra
modality to enhance the model’s spatial understanding rather than solely given
the ego-centric RGB images. The backbone fine-tuned with image-to-action align-
ment has an acceptable accuracy score but a relatively low F1 score; this indicates
that the model still suffers from the imbalanced data problem. As the dataset
is skewed towards the action classes, we also explore the effect of using weighted
cross-entropy loss. We assign a weight to each class based on its share of the
total data. However, this method intensifies the overfitting problem, resulting in
a model that is highly challenging to train (strongly fluctuated loss curve). Based
on these results, we select Triple-contrastive-aligned backbone + Semantic
Map modality as our model for further experiments on the ALFRED challenge.
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6.3 ALFRED Challenge: Quantitative Results

Action Class Valid Seen Valid Unseen
Precision Recall F1-score Precision Recall F1-score

Accurate predictions
MoveAhead 75.60 98.85 85.66 75.90 98.68 85.79
CloseObject 99.06 93.21 95.85 97.93 97.95 97.86
ToggleObjectOn 99.11 85.39 91.02 96.81 92.35 94.15
ToggleObjectOff 100.00 97.19 98.41 81.25 80.62 80.92
«stop» 100.00 92.13 95.77 99.63 94.51 96.85
Moderate Predictions
LookDown 90.22 52.43 65.99 91.16 59.99 71.87
OpenObject 80.19 72.93 75.79 60.59 74.38 65.51
LookUp 89.55 66.88 76.20 85.38 54.39 65.53
PickupObject 91.76 69.24 78.50 91.33 65.99 76.18
PutObject 89.30 70.98 78.65 84.13 69.02 75.09
Poor predictions
RotateLeft 63.46 15.29 24.44 41.81 12.39 18.93
RotateRight 55.54 17.51 26.46 48.48 14.40 21.70
SliceObject 51.98 40.00 41.85 30.73 27.08 27.96

Table 6.3: We evaluate the class-wise score from the best model above, clustered
in 3 performance classes. Accurate predictions: These classes have a
relatively high F1 Score (over 85%). Moderate Predictions: Classes
with high precision and moderate recall scores, indicates a significant
number of false negative predictions. Poor predictions: Classes with
moderate precision and very low recall scores indicate that the model
struggles to predict these classes.

We investigate each action class’s precision, recall, and F1 score individually
(Table 6.3). We cluster all class predictions in 3 performance classes. ”MoveA-
head”, ”ToggleObjectOff”, ”ToggleObjectOn”, ” «stop»”, and ”CloseObject” are
five classes that the model is good at predicting. Surprisingly, as the navigation
actions dominate the action classes, especially MoveAhead, the model still has the
ability to correctly predict some action classes and not simply predict those dom-
inant classes to gain a high accuracy score. The classes in which the model has
moderate performance have typically a high precision but moderate recall score.
This result suggests the model predicts few false positives; however, a significant
number of false negatives. In other words, when the model predicts these classes,
they are usually reliable, but they are still missing many predictions among whole
dataset. ”RotateLeft”, ”RotateRight” and ”SliceObject” are three classes with
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moderate precision score and meager recall score. The reason for the lousy predic-
tion on ”SliceObject” comes down to the lack of examples. However, the rotation
action is worse predicted and needs further investigation. Our possible explana-
tion would be that ALFRED data hard parametrized the rotation action with 90
degrees, which means that in many cases (when the furniture is not big enough to
spot after turning 90 degrees). We only have two non-correlated frames next to
each other, which might seem completely random to the model. In addition, the
evaluation of both seen and unseen data is similar, denoting the generalizability
of our model.

Table 6.4 reports the result of the ALFRED challenge, comparing our approach
to the related works. Our approach can solve specific tasks as the GC scores re-
ported; however, it did not have a successful case for the whole task. From our
observation of runs in the simulator, our model wanders around in the environ-
ment most of the time but does not make rational decisions for the whole task.
It can understand the preceding part of the language instructions by doing the
first couple instructions but still lack of ability to comprehend the whole instruc-
tions. Our assumption for this behavior is that we are still not incorporating the
map information correctly into the LIAM model, or the multi-modal Transformer
encoder did not learn an excellent way to fuse all modality information.

Approaches SR PLWSR GC PLWGC
Seen Unseen Seen Unseen Seen Unseen Seen Unseen

Ours 0.00 0.00 0.00 0.00 0.060 0.067 0.069 0.064
E.T. (Pashevich, Schmid, and C. Sun 2021) 28.77 5.04 - - 36.47 15.01 - -
HLSM (Blukis et al. 2022) 25.11 16.29 6.69 4.34 35.79 27.24 11.53 8.45
FILM (Min et al. n.d.) 25.77 24.46 10.39 9.67 36.15 34.75 14.17 13.13

Table 6.4: Evaluation on ALFRED Challenge

6.4 Qualitative Results
In this section, we demonstrate some qualitative examples of the agent’s inference
inside the simulator.
Figure 6.2 shows the decision of our agent for the task ”Pick up the basketball and
turn on the desk lamp in the bedroom.” The agent can comprehend most of the
sub-goal instructions and correctly find and pick up the basketball at the foot of
the bed. Furthermore, the agent rotates left twice and goes to the desk. However,
this task eventually failed because of the model’s wrong prediction of the lamp’s
location (which should be on the other side of the desk).

We show examples of using the CLIPSeg (Lüddecke and Ecker 2022) model in
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Figure 6.1: Qualitative result of masks, predicted using zero-shot CLIPSeg model. The
first row shows the success cases and the second row are the wrong predicted
masks.

zero-shot fashion in the simulator in Figure 6.1. The first row shows three correctly
masked objects: basketball, baseball bat, and sink. From our observation, the
correctly segmented instances are usually large, and their colors greatly contrast
the surroundings. The second row shows the failure case. For example, the tiles are
wrongly recognized as soap bars because of its square shape. Tomatoes and spoons
are also wrongly segmented from windows or floors. In the third image, CLIPSeg
predicted a spoon-like shape from the background, showing its limitations in the
simulator.
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Figure 6.2: Example task: ”Look at the basketball in the light from the lamp”. The
given step-by-step instructions are as follows: ’Walk to the foot of the bed.’
-> ’Pick up the basketball from the floor.’ -> ’Go to the desk to your left.’
-> ’Turn on the lamp.’
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7 Conclusion
In this thesis, we introduce LIAM, a multi-modal model incorporating natural
language input, ego-centric RGB image input, action history, and an accumulated
semantic map. The semantic map is generated using the ego-centric RGB image
based on semantic segmentation prediction and depth estimation. Because all
the encoder encodes corresponding input in its own latent space, we design two
pre-training tasks to pre-align the embedding space. The baseline contrastive pre-
alignment of the image and the action space is inspired by the idea of ActionCLIP
(Wang, Xing, and Yong Liu 2021). This pre-training objective aims to maximize
the agreement of the action representation and the global representation of two
consecutive images. We use a light-head 1D convolution to compute this global
representation. However, the pre-training task does not consider the alignment
of the text encoding backbone. We introduce a triple contrastive alignment to
tackle this weakness. Given several trials, we first compute the representation of
each individual frame from the annotation data using CLIP backbone. We use
a parameter-free operation, i.e., mean pooling, to compute the global visual se-
quence representation. We follow our contrastive alignment approach for each of
the two consecutive images to compute their global representation. The agreement
between the image sequence representation and the text sequence representation,
the two-frames representation and the action representation are expected to be
maximized. Both optimizations are carried out at the same time so that the
image encoder serves as a bridge and aligns the three latent embedding spaces
simultaneously. After concatenating all embeddings, we fuse them using a 2-layer
Transformer encoder. A learnable modal-type encoding is applied at this stage so
that the model can separate different encoding types.
Our model outperforms our baseline, using the OpenAI-released CLIP model and
no map as an additional modality. We show the importance of pre-aligning the
embedding spaces from different modalities. In addition, using semantic maps as
a modality to the end-to-end model brought benefits as well.
Despite the acceptable prediction of the action sequence, the gap between our ap-
proach and the state-of-the-art approaches in the ALFRED challenge is enormous.
Our model has trouble during inference time on the challenge. Our assumption is
that CLIP models are limited to extracting the proper representation of simulator-
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based models. Besides, training an end-to-end model that can make complicated
decision sequence from different modalities input, like human brains, is still chal-
lenging, especially when combining the instruction understanding with holistic
spatial information understanding.
Future work holds immense potential for further enhancing our model. One av-
enue could be integrating the segmentation model inside our training stage and
the semantic map generation stage. Furthermore, the methodology for encoding
the map spatial information is another area that needs to be further investigated.
We are particularly intrigued by the potential of considering maps as a knowledge
base modality to the Visual-Language models.
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