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Abstract

Sum-Product Networks (SPNs) are a deep architecture recently proposed for im-

age classification and modeling. In contrast to loopy graphical models commonly

used in computer vision, exact inference and learning in SPNs is tractable. As

long as consistency and completeness are ensured, an SPN allows to efficiently

calculate the partition function and all marginals of graphical models. The pro-

posed algorithms for generative and discriminative learning show good results on

image classification benchmarks such as CIFAR-10. However, previous work did

not learn image features from scratch, instead it builds on dictionary learning,

leading to less comparable results. In this thesis we combined the two deep learn-

ing methods Convolutional Neural Networks and SPNs for image classification. To

this end, we proposed a SPN implementation, operating in logspace for efficient

computation on CPU and GPU, on top of convolutions. We found that some valid

architectures for SPNs, lose information about locality of features, which signifi-

cantly reduces learning capabilities. Due to time constraints, we were not able to

wind up architectures, preserving this information. However, we were able to show

that convolutions within the network learn reasonable structures, which show the

functionality of this approach. The implementation was evaluated using the image

classification benchmarks MNIST and CIFAR-10, achieving classification errors on

the test datasets of 1.66% and 46.71% respectively.
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1 Introduction

Graphical models are used in many applications, but inference for them in general

is intractable (Roth, 1996). Poon and Domingos (2011) recently changed this by

introducing Sum-Product Networks (SPNs), a new deep architecture, where infer-

ence is always tractable, given certain conditions. They showed that SPNs contain

other models as special cases, such as hierarchical Mixture Models, and thin junc-

tion Trees. Additionally, they presented an algorithm for generative training of

SPNs, which builds on gradient descent and Expectation Maximization (EM).

Gradient diffusion is a well known issue for deep architectures. When the gradi-

ent is propagated to lower levels of the network, it becomes less informative since

it depends on a lot of variables (Bengio, 2009). Poon and Domingos (2011) suc-

cessfully applied Expectation Maximization to SPNs, which provides a strong but

sparse learning signal. Using this, SPNs were successfully trained with very deep

architecture and showed state-of-the-art results on several image completion tasks.

Gens and Domingos (2012) enhanced the possibilities of training an SPN, by in-

troducing back-propagation and an algorithm for discriminative training of SPNs.

Another field which gained a lot of interest recently, is deep learning (Hadsell et al.,

2008; Hamel and Eck, 2010; Huang and LeCun, 2006; Krizhevsky, Sutskever, and

G. Hinton, 2012; LeCun and Bengio, 1995; Lee, Grosse, et al., 2011). Deep learning

uses very deep architectures of Neural Networks, which are able to represent many

problems in a significantly more compact way, than shallow networks. Modern

Graphics Processing Units (GPUs) provide the computing power, necessary for

those large neural networks.

Convolutional Neural Nets (CNNs) are a deep learning approach which is fre-

quent topic of current research and achieved several state-of-the-art results in

computer vision tasks like image classification and segmentation (Ciresan et al.,

2012a; Farabet et al., 2013; Krizhevsky, Sutskever, and G. E. Hinton, 2012; Wan

et al., 2013). Inspired by the mammal visual system (Hubel and Wiesel, 1968),

CNNs use simple filters, which are applied to multiple sub-regions of an image.

Therefore, filters within a CNN learn structures, contained at different positions

within the input image. The result of different simple filters is combined by the

network in order to learn filter combinations, representing more complex features.

Within this thesis we combined the two approaches of Sum-Product Networks

1



1 Introduction

and Convolutional Neural Networks. The architecture examined uses convolutions

to provide learned features, which are combined by a discriminative SPN, trained

on top.

Modern GPUs provide thousands of computing cores in one device, which allow

massive parallel computation. While Poon and Domingos (2011) relied on large

clusters of Central Processing Units (CPUs), to provide the computing power

necessary for SPNs, we implemented it efficiently on CPU and GPU. Computation

in logspace allows efficient parallel computation of gradients from product node.

This master thesis is organized as follows: We introduce SPNs, concepts and

techniques which are important for this thesis. Afterwards, we discuss related work

in Chapter 3. Chapter 2 introduce SPNs and concepts and methods, which are the

foundation of this work. In Chapter 4 we explain the convolutional interpretation

of SPNs and the implementation. Within Chapter 5 we discuss the convolutional

SPNs in detail for an exemplary dataset and present our experimental results.

Finally, Chapter 6 concludes this thesis and outlines possible future work.
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2 Basics

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (LeCun and Bengio, 1995) are one of the

first successful deep learning methods. They can be viewed as a special case

of Multi Layer Perceptrons (MLP). Motivated by the Neocognitron (Fukushima,

1980), they consist basically of several convolution layers, and a fully connected

layer of neurons as output. Each convolutional layer generates several feature

maps. A feature map is computed by convolving the input with linear filters. In

order to combine the different results of the linear filter, hidden layers are composed

of multiple feature maps. Since the linear filters can be represented by weights,

we can think of a CNN as a Multi Layer Percepton (MLP) with shared weights.

Often convolutional layers are followed by max-pooling layers. They down-sample

regions by maximizing the activation, over non-overlapping rectangular regions.

For odd filter size f , input maps A, output maps B, weights w ∈ f and input

I ∈ X×Y the result of one convolutional filter with position x ∈ X and y ∈ Y is

given by:

r(x, y) =

f/2∑
i=−f/2

f/2∑
j=−f/2

∑
a∈A

wa,i,j · Ia,x+i,y+j (2.1)

..

input

.

output

Figure 2.1: Illustration of a convolution with filters of size 3×3. The input is
of size 5×5 and has six feature maps. Therefore, the output has size 3×3 and
provides six feature maps too (Höft, 2014).
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2 Basics

2.2 Maximum A Posteriori (MAP) Estimation

If we have prior information I about the investigated process, we want the most

probable hypothesis h given I P (h|I). Thus, using the Bayes theorem, we get

hMAP = argmax
h∈H

P (I|h)P (h)

where H is the set of all hypotheses.

There are several ways to estimate the MAP, one iterative method is a modified

EM algorithm (Dempster et al., 1977).

2.3 Expectation-Maximization (EM)

The EM algorithm iteratively estimates the Maximum Likelihood Estimate (MLE),

by two alternating steps. To this end, it introduces hidden random variables z,

which represent unobserved data, starting with an initial set of hidden variables.

As a result, the complete data x consists of the observed data y and z. Afterwards

we consider the expectation of the log likelihood, which is a hidden variable again

since it depends on random variables only. The EM algorithm maximizes this

expectation, and therefore estimates the log likelihood for parameters Θ:

Θt+1 = argmax
Θ

E
[
logLC(Θ)|y,Θt

]
(2.2)

EM is working by iteratively applying the following two steps:

Expectation Step:

Within the expectation step the value of the log likelihood is calculated, given the

current set of estimated parameters Θt.

Q(Θ|Θt) = Ex,Θt

[
logLC(Θ)|y,Θt

]
(2.3)

Maximization Step:

The expectation step maximizes Q with respect to Θ:

Θt+1 = argmax
Θ

Q(Θ|Θt) (2.4)

A variation of the EM algorithm to compute the MAP is given in Dempster et al.

(1977). Bilmes (1997) is a good introduction for the EM algorithm.

4
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2.4 Gibbs Sampling

Sometimes it is very expensive to evaluate a density function f(x), which contains

difficult integrals. Instead of calculating the joint distribution f directly, a Gibbs

sampler (Casella and George, 1992) simulates the multivariate distribution in turn,

and thus obtains a sample. By increasing the size of the sample, a Gibbs sampler

can approximate f with arbitrary precision.

2.5 Sum-Product Networks

Sum-Product Networks are a new deep architecture, which are mainly build on

the idea of a network polynomial, proposed by Darwiche (2003). They are able

to compute exact inference efficiently, and contain other models like Hierarchical

Mixture Models, and Thin Junction Trees (Poon and Domingos, 2011).

Definition 1 (Poon and Domingos, 2011) A sum-product network (SPN) over

variables X1, . . . , XD is a rooted directed graph whose leaves are the indicators

x1, . . . , xd and x1, . . . , xd and whose internal nodes are sums and products. Each

edge (i, j) emanating from a sum node i has a non-negative weight wi,j. The value

of a product node is the product of the values of its children. The value of a sum

node is
∑

j∈Ch(i)wijvj, where Ch(i) are the children of i and vj is the value of node

j. The value of an SPN S[x1, x1, . . . , xd, xd] is the value of its root.

In Figure 2.2 a small example of an SPN, over boolean variables, is given. There

are two reasons to change the indicator variables, evidence, and marginalization.

When there is evidence for a variable, the variable Xi is set to one, and X i to zero.

For Marginalization of variable Xi, we set Xi = X i = 1. Thus, we can compute

the partition function Z, by setting all indicator variables to one. In case of multi-

valued discrete variables, the Boolean indicators are replaced. The replacement is

done by binary indicator nodes, if the set of random variables is finite. Otherwise

by distribution nodes (e.g. Gaussian), when they are infinite.

Darwiche (2003) showed that all marginal probabilities can be computed for an

SPN. Thus, a SPN performs exact inference. In order to do that efficiently, it has

to be polynomial in the number of variables.

An SPN can be constructed in such a way, that it represents a probability

distribution. In that case it is called valid.

Poon and Domingos (2011) have showed that two properties are sufficient for a

valid SPN, namely completeness and consistency.

5
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Figure 2.2: SPN over boolean variables X1, X2, implementing a naive Bayes
Mixture Model, with three components and two variables (Gens and Domingos,
2012)

Definition 3. A sum-product network is complete, iff all children of the same

sum node have the same scope (Poon and Domingos, 2011). Where the scope of

an SPN is defined as the set off all variables that appear in it.

Definition 4. A sum-product network is consistent, iff no variable appears

negated in one child of a product node, and non-negated in another (Poon and

Domingos, 2011).

2.5.1 Training of Sum-Product Networks

Poon and Domingos (2011) showed how to train SPNs in a generative manner, by

learning structure and parameters. Initially an SPN is initialized with a generic

valid architecture, or learned from data (Dennis and Ventura, 2012; Gens and

Domingos, 2013; Peharz et al., 2013). The weights are initialized with small pos-

itive values. Finally the learning procedure proceeds in a bottom up, top down

manner. At first the SPN is evaluated bottom-up given the input, then inference is

calculated in a top-down manner. Finally the weights are updated. The process is

repeated until convergence, as described in Algorithm 1. Weights can be updated

either by gradient descent, or EM. The final SPN then is obtained by pruning

weights.

Algorithm 1: Learn algorithm for SPNs Gens and Domingos, 2012

Input: Set D of instances over variables X, and label variables Y, a valid
SPN S with initialized parameters

Output: A SPN with learned weights
repeat

forall the d ∈ D do
UpdateWeights(S, inference (S, xd, yd))

until convergence, or early stopping condition;

6



2.5 Sum-Product Networks

Gens and Domingos (2012) introduced a method for discriminative learning of

an SPN, and back-propagation for SPNs. Using the back-propagation algorithm,

it is useful to weight the weights w with exp(w). This is useful because the weights

could attain negative values, due to weight updates with negative gradients, which

would contradict the definition of an SPN otherwise. The exponential weighting

adds an additional multiplication with exp(wki) to the derivative of the weights,

which is already included in Table 2.1.

In this thesis I am following the notation of Gens and Domingos (2012). Thus,

an SPN S[y, h|x] takes three disjoint sets of variables: hidden H, query Y and

given X. And the value of the SPN is the root, denoted by S. Setting all indicator

functions to one, is denoted by S[y, 1|x], where the 1 is a unit vector.

To overcome the gradient diffusion problem Poon and Domingos (2011) found

hard EM useful. In order to compute the Maximum a posteriori probability, which

is necessary for hard EM, we just have to replace all sum nodes by max nodes.

Gens and Domingos (2012) proposed an algorithm for hard gradient descent (see

Algorithm 2), such that both methods are applicable for hard and soft inference.

EM is typically not used for discriminative training, since it requires modification

to lower bound conditional likelihood, and it is not yet known if there is a closed

form for this problem (Gens and Domingos, 2012).

Since the thesis focuses on discriminative learning, only the back-propagation

method is used.

In Tables 2.1 and 2.2 the different formulas for inference procedures and weight

updates are given.

7
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Algorithm 2: Backpropagation algorithm for SPNs (Gens and Domingos,
2012)

Input: A valid SPN S, where Sn denotes the value of node n after
bottom-up evaluation.

Output: Partial derivatives of the SPN with respect to every node ∂S
∂Sn

and weight ∂S
∂wi,j

Initialize all ∂S
∂Sn

= 0 except for root ∂S
∂S

= 1

forall the n ∈ S in top-down order do
if n is a sum node then

forall the j ∈ Ch(n) do
∂S
∂Sj
← ∂S

∂Sj
+ wn,j

∂S
∂Sn

∂S
∂wn,j

← Sj
∂S
∂Sn

else
forall the j ∈ Ch(n) do

∂S
∂Sj
← ∂S

∂Sj
+ ∂S

∂Sn

∏
k∈Ch(n)\{j}

Sk

Node Soft inference Hard inference

Sum ∂S
∂Sn

=
∑

k∈Pa(n)

∂S

∂Sk

∏
l∈Ch(k)\{n}

Sl
∂M
∂Mn

=
∑

k∈Pa(n)

∂M

∂Mk

∏
l∈Ch(k)\{n}

Ml

Product ∂S
∂Sn

=
∑

k∈Pa(n)

wkn
∂S

∂Sk

∂M
∂Mn

=
∑

k∈Pa(n)

{
wkn

∂M
∂Mk

: wkn ∈ W

0 : else

Weight ∂S
∂wki

= ∂S
∂Sk

Si)
∂M
∂wki

= ∂M
∂Mk

Mi)

Table 2.1: Inference procedures for hard and soft inference(Gens and Domingos,
2012)

8



2.6 Gabor Filter

Update Soft inference Hard inference

Gen. Gd ∆w = η ∂S[x,y]
∂w

∆wi = η ci
wi

Gen. EM P (Hk = i|x, y) ∝ wki
∂S[x,y]
∂Sk

P (Hk = i|x, y) =

{
1 : wki ∈ W

0 : else

Disc. GD ∆w = η
(

1
S[y,1|x]+k

∂S[y,1|x]
∂w
− ∆wi = η∆ci

wi

1
S[1,1|x]+k

∂S[1,1|x]
∂w

)
Table 2.2: Weight updates with different inference procedures. ci is the number
of times wi appears in W. ∆ci = c′i − c′′i is defined as the difference between the
number of times wi is traversed by two MPE inference paths in M [y, 1|x] and
M [1, 1|x]. k is a small constant for numerical stability. (Gens and Domingos,
2012)

2.6 Gabor Filter

Gabor filters are bandpass filters, which are generated by multiplying a Gaussian

function with a complex oscillation. 2-Dimensional Gabor filters are often used as

edge detector for classification or segmentation tasks. An input image I(x, y) is

convolved with a two dimensional Gabor function:

g(x, y) = e
−x′2+γ2·y′2

2σ2 cos
(
2π x′

λ
+ϕ

)

within

x′ := (x cosΘ + y sinΘ)

y′ := (−y sinΘ + y cosΘ)

λ is the wavelength, σ the standard deviation of the Gaussian, the orientation

Θ ∈ [0, π) and phase offset ϕ. Usually a bank of Gabor filters with different

orientation is used to obtain edges with different orientation (Kruizinga et al.,

2002). An illustration is given in Figure 2.3.

Figure 2.3: Illustration of a Gabor filter bank, containing filter for four different
orientations.
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2.7 The CUDA GPU Programming Framework

CPU and GPU have different strengths and weaknesses. CPUs tend to have only

a few, fast computation units and therefore aim for sequential or slightly parallel

computing. Modern graphics cards are specialized in highly parallel, compute-

intensive computations. Therefore, they provide a lot more floating point opera-

tions and memory bandwidth per second than CPUs, as illustrated in Figure 2.4.

As a result, GPUs are devoting more transistors to ALUs instead of flow control

or caching, see Figure 2.5.

Figure 2.4: Left: Theoretical number of floating point operations per second
on GPU and CPU. Right: Theoretical Memory bandwidth of CPU and GPU
(NVIDIA, 2014a)
. The gap between performance of GPU and CPU is constantly increasing.

Figure 2.5: Schematic diagram of CPU (Left) and GPU (right). GPUs use larger
areas for ALUs instead of caches or flow control, which is beneficial for highly
parallel computations (NVIDIA, 2014a).

10



2.7 The CUDA GPU Programming Framework

The CUDA Programming Model

The CUDA programming model allows the programmer to use high-level program-

ming languages, such as C/C++ or Fortran to write GPU code. The notion of

device and host memory space is used to distinguish between different memory

spaces. Copying data from one to another memory space must be handled manu-

ally. In order to minimize the complexity for the programmer, the model provides

three key abstractions: A hierarchy of thread groups, a hierarchy of shared mem-

ories and barrier synchronization.

The GPU is build around an array of streaming processors (SM), each executing

blocks of threads independently. Each block consists of an array of threads and

is located within an array of blocks, which is called “grid”. All blocks can access

the Global Memory space. For convenience, both, grid and block, can be one-,

two-, or three-dimensional, as depicted in Section 2.7.1. The maximum number

of threads is limited due to the capabilities of the SMs. The compute capability

defines the features supported by NVIDIA graphics cards, which also define the

maximum number of threads in one block. For devices with compute capability of

1.x the limit is 512, for compute capability 2.x (fermi) and 3.x (kepler) it is 1024.

Within each SM, a block is divided into units, called warps. All threads in a warp

must execute the same instruction at any given time. Thus, diverging branches will

be handled in several consecutive execution steps, causing a severe performance

penalty. The warp size is 32 for both, fermi and kepler GPUs (NVIDIA, 2014c).

Due to this architecture exchanging intermediate results in between blocks is

expensive and must be minimalized. The programmer thus has to decompose

the problem into several sub problems, which can be solved by different blocks in

parallel. He has to write so called “kernel methods”, which are executed by every

thread within a grid. The dimensionality of the grid must be specified when the

kernel is called (NVIDIA, 2014a).

The programmer has not to care for the actual number of physical processors.

Instead, he can use as many blocks as suited for the problem.

2.7.1 GPU Memory Hierarchy

On GPUs there are several memory types with access times in different magni-

tudes. Global, Constant and Texture memory are persistent during the whole

kernel execution. In Figure 2.6 the memory hierarchy of GPUs is illustrated.

11
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Figure 2.6: Left: Illustration of a grid with 2×3 blocks, consisting of 4×3 threads
each. Right: Schematic diagram of the CUDAmemory hierarchy. Shared memory
enables efficient cooperation of threads within a block. (NVIDIA, 2014a).

Register & Local Memory Space

Every thread has an own limited amount of registers, which are the fastest memory

type, but are non-persistent. On the fermi architecture a maximum of 63 registers

per thread can be used, while on Kepler the maximum number of registers per

thread has been increased to 255. Additionally, each thread can access Local

Memory. Local Memory is in fact stored in Global Memory Space and managed

by the compiler. However, since read and write operations within Local Memory

are cached, Local Memory access does not always cause performance penalties.

Shared Memory Space

Each block has a small amount of Shared Memory, which can be accessed by

threads within the same block. Shared Memory is slower than register, but still

12
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about one hundred times faster than Global Memory. It is divided into several

banks, which can be accessed simultaneously. However, multiple accesses to the

same bank are serialized, so it is important how to distribute access to Shared

Memory within banks. The number of banks is 16 for devices with compute

capability 1.x and 32 for compute capability 2 or 3. In total there are up to 32kb

for compute capability 1.x and up to 48kb Shared Memory for compute capability

2 or 3, located within the L1 cache for each block. Shared Memory can be used

to share results between different threads. It is persistent during execution of a

block.

Global Memory Space

Global Memory is the slowest type of GPU memory. Contrary to the previously

mentioned memory types, Global Memory is persistent and has to be managed

manually.

Constant Memory Space

There are 64kb of Constant Memory on compute capability 1.x - 3.x. Constant

Memory is of the same type of memory as Global Memory and may not change

during one kernel call. In contrast to Global Memory, Constant Memory is cached.

Thus, access to Constant Memory only costs one read from Global Memory on a

miss.

Texture Memory Space

Texture Memory is a read only Memory, which is cached similarly to the Constant

Memory. Further there are some dedicated operations to optimize operations on

textures, which can be used for optimization of general computing on GPU too.

2.7.2 Atomic operations

When several threads access the same element in Global Memory simultaneously

and at least one access is a write operation, the outcome is not defined. In order to

avoid these so called “race conditions” only one thread may write to one position

in Global Memory at any given time. Thus, in general one should avoid these

situations. However, sometimes this would be very restrictive with respect to

parallelization.

Atomic operations are provided for Global Memory. They basically lock access

to a position in Global Memory until the atomic operation is done. Other threads
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that access the same position in Global Memory are delayed until the atomic oper-

ation has finished. However, sometimes they are necessary to allow parallelization

through computation of partial results. Because of this atomic operations have

been improved in the Fermi and Kepler architecture. Kepler GPUs are able to

perform atomic operations 180 times faster than pre-fermi architectures. As a

result Kepler GPUs can perform one atomic operation per clock cycle (NVIDIA,

2014b,c). This enables the use of atomic operations without any significant per-

formance penalty in many situations.

Please note that some atomic operations are not available for compute capability

1.x and 2.x.

2.8 Efficient Access to Global Memory

Global Memory is only accessed via words of size 32, 64 or 128 which are aligned.

Thus, whenever a smaller area in Global Memory is accessed, memory bandwidth

is wasted.

In order to optimize the access of Global Memory, a SM has dedicated hardware

to minimize the memory calls of a warp. Therefore, it coalesces the memory

access of all threads within a warp to the minimal number of words. Thus, the

programmer has to write kernel methods in such a way, that threads within a warp

access a consecutive area within Global Memory.
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Classical learning algorithms, such as Multi Layer Perceptrons (MLP), Support

Vector Machines (SVM), Radial Basis Functions (RBF), and much more, usually

have a flat architecture with only few layers. While it has been proven that all of

them are able to approximate universal functions, often using more layers leads to

a more compact representation. Nonetheless deep networks often achieve better

generalization capabilities and more compact representation. An overview over

neural networks for image processing is given by Egmont-Petersen et al. (2002).

3.1 Deep learning methods

Convolutional neural networks (page 3) are a prominent deep learning architecture

(Huang and LeCun, 2006; Krizhevsky, 2010a; Krizhevsky, Sutskever, and G. Hin-

ton, 2012). One recent publication on CNNs in the field of image classification is

given by Krizhevsky, Sutskever, and G. Hinton (2012). They used a deep CNN to

classify the pictures of the ImageNet LSVRC-2010 contest. Usage of GPUs made

the training significantly faster. Further, they used a new regularization method,

called “Dropout”, to reduce overfitting. “Dropout” inhibits the output of each

hidden neuron, with a probability of 0.5, and thus samples different architectures.

They achieved stare-of-the-art results.

Deep Neural Networks (DNNs) are another successful branch of CNNs (Ciresan,

Giusti, et al., 2012; Cireşan et al., 2012; Ciresan et al., 2012b). Basically they are

CNNs, with alternating convolutional, and max-pooling layers. Recently they were

used by Ciresan et al. (2012b), who proposed a Multi-Column DNN (MCDNN).

It averages the output of multiple single DNNs, to achieve higher tolerance for

variations in contrast, and illumination of images. They basically trained multiple

DNNs on differently preprocessed data. To meet the high computational effort,

they used an efficient GPU implementation of DNNs; Image features where learned

in a supervised way. Cireşan et al. (2012) achieved outstanding results in several

image classification benchmarks. Further, they achieved a near-human classifi-

cation on a traffic sign recognition benchmark (Stallkamp et al., 2011), using a

MCDNN.
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Another prominent deep learning technique are Deep Belief Networks (DBNs)

(Hamel and Eck, 2010; G. E. Hinton, Osindero, et al., 2006; Larochelle et al., 2009;

Lee, Ekanadham, et al., 2007; Lee, Grosse, et al., 2011; Nair and G. E. Hinton,

2009; Raina et al., 2009), which are probabilistic generative models. They consist

of several stacked layers of Restricted Boltzmann Machines (RBMs). DBNs are

trained layer wise in a greedy bottom-up manner, where layer i+1 is always trained

using the output of already trained layer i. They are closely related to SPNs since

they are another deep learning technique for probabilistic models.

An interesting approach which combines CNNs and DBNs was given by Lee,

Grosse, et al. (2011). they presented a convolutional deep belief network (CDBN),

which is basically a deep belief network, which uses weight sharing similar to CNNs.

It can still perform bottom-up, and top-down inference. Thus, their approach

allows DBNs to be scaled to high-dimensional, large images. They achieved good

results in several visual recognition tasks.

3.1.1 Feature Extraction

One of the most critical steps for all learning algorithms in the image domain is

feature extraction. A common way is to learn features in an unsupervised way

from the data (Le et al., 2011; Ramirez et al., 2010; Vollmer et al., 2013; Yang

et al., 2007). Coates, A. Y. Ng, et al. (2011) focused on this step and used only a

simple MLP with one hidden layer as classifier. They were able to achieve state-

of-the-art results, which shows how crucial this step is. An important insight is

that different classifiers generally can only be compared in a fair way, if they use

exactly the same features.

3.1.2 Pre-Training

A common problem, deep networks have to deal with, are vanishing gradients.

Gradients become less informative, with increasing depth. One common way to

deal with this are unsupervised pre-training methods, which aim for a good initial

position on the error surface. Erhan et al. (2010) investigated how the two pre-

training methods of DBNs and stacked denoising auto-encoders, effect the result

in detail. The pre-training of a DBN is done by iteratively training the RBMs, in

a greedy manner. Denoising auto-encoders work by iterative pre-training of the

network. Each layer encodes the input x in the hidden layer h(x) and has to learn

the decoding function d(x) in the output layer. Thus, each layer initially learns the

function d(h(x)) ≈ x. They showed that pre-training leads to more robustness,

better generalization performance and avoidance of poor local minima.
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3.2 Development of Sum Product Networks

Sum-Product Networks (page 5) recently gained a lot of interest.

Poon and Domingos (2011) proposed the first generative learning algorithm for

SPNs. They demonstrated the algorithm on several image completion tasks, where

it outperformed several other learning methods.

Gens and Domingos (2012) proposed an algorithm for discriminative learning of

SPNs. Additionally, they enhanced the training possibilities by proposal of hard

gradient descent, and delivered an algorithm for back-propagation for this. They

achieved state-of-the-art results in two classification benchmarks for images.

So far SPNs had to be initialized with a generic structure. This forces a trade-

off between precision and computational effort. In order to change this, different

algorithms to learn the structure of SPNs from data were proposed.

Dennis and Ventura (2012) proposed an algorithm to learn the structure of SPNs

using clustering on variables. The approach is quite limited, since it is prone to

splitting highly dependent variables, and the worst-case cost of learning and size

of the SPN is exponential (Gens and Domingos, 2013).

Gens and Domingos (2013) proposed a scheme for learning the structure of SPNs.

The algorithm tries to divide the current variables, into approximately independent

subsets, at every step. It returns the product of all recursive calls to the dataset, if

successful and their sum otherwise. They evaluated the algorithm on several real-

world datasets, and compared it to popular graphical model structure learning

algorithms. The results were comparable in likelihood to graphical models, but

inference in them was faster, and more accurate.

Peharz et al. (2013) proposed an algorithm that is learning the structure of SPNs,

in a greedy bottom-up manner, and is independent of the image domain. It works

by merging probabilistic models with small scope to larger, more complex, models.

They achieved comparable results on an image completion tasks to (Dennis and

Ventura, 2012) and (Poon and Domingos, 2011).

3.3 Inference Methods

Finding efficient representations, models and methods for fast, exact inference

in Probabilistic Graphical Models (PGMs), was a topic of interest in the past

decades. The development in this field is represented in several reviews (Frey and

Jojic, 2005; Guo and Hsu, 2002; Jordan, 2004). Frey and Jojic (2005) compared

several methods for inference, and learning in PGMs, using a vision model of mul-

tiple occluding objects and contrasts. They compared Bayesian Networks (Pearl,

2011), Directed Acyclic Graphs (DAGs) which represent a conditional probabil-
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ity function for each variable in it, Markov Random Fields (MRFs) undirected

graphical models where each node represents a set of random variables and a

potential function for each maximal clique. Lastly Factor Graphs (FGs), which

subsume both MRFs and BNs, were considered. They compared several methods

for learning and inference, such as Maximum A Posteriori (MAP) estimation (page

4), Iterated Conditional Modes (ICM), the Expectation-Maximization Algorithm

(EM) (page 4), Gibbs sampling (page 5), and the Sum-product algorithm.
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4 Convolutional Formulation of

SPNs

4.1 Motivation

Recently a lot of research focused on Deep Convolutional Neural Networks. They

achieved good results in many image understanding task, such as image classifi-

cation and segmentation (Ciresan et al., 2012a; Farabet et al., 2013; Krizhevsky,

Sutskever, and G. E. Hinton, 2012; Wan et al., 2013).

Sum-Product Networks are a new architecture, based on exact inference, which

shows good results in image classification tasks too. Gens and Domingos (2012)

achieved state-of-the-art results for the CIFAR-10 image classification benchmark

by discriminative training of a SPN. To accomplish this, they trained a SPN on

top of learned features. Instead of learning features from images in a separate

learning step, it would be desirable to learn them during training of the SPN.

By combination of the two approaches of Convolutional Neural Networks and

SPNs, this could be achieved. Therefore, we investigated a SPN on top of a

convolutional layer, which provides online learning of filter.

4.2 Implementation

In order to have a SPN architecture, which allows different image sizes and chan-

nels, we used the architecture for discriminative SPNs from Gens and Domingos

(2012) and combined it with the scheme from Poon and Domingos (2011).

Given a classification task with C classes, the root node weights the result of C

sum product networks, each representing one class. Every single SPN Ci is build

in the following way:

At the top, there is a multiplication of P parts and the label yi of class Ci. Each

part is one complete decomposition of the image, but optionally two different parts

may share some nodes. It consists of alternating sum/max and product layers, and

a convolutional layer at the bottom.

At the bottom the convolutional layer learns a set of different distributions of the
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image features. Probabilistically we consider the convolutional layer as a special

type of sum layer. Therefore, it has to fulfill the property of completeness for

valid SPNs. The number of filters F within this layer is defined by the number of

different representations the network expects. F depends on P and the amount of

different inputs for each sum node. There are two parameters for the convolutional

layer: Stride Sc and filter size fx. The convolution is performed in an rectangular

region of size x×x. The gradient for weight wi within the convolutional layer is

given by ∂S[y,1|x]
∂wi

− ∂S[1,1|x]
∂wi

, similar to the gradient for weights in the sum/max

layer.

While proceeding from top to bottom within the network, the different features

of an input image are weighted and decomposed in every layer. Each sum/max

layer is computing the weighted sum or weighted maximum, of an input area and

reduces the number of disjoint representations of the image. This layer has two

parameters: Stride Sl, which determines the distance of two consecutive nodes

within the input of the layer and N , the number of input elements for each node.

Each Product layer reduces width and height of an input image, by multiplica-

tion within a m×m region. Additionally, the product layer has stride Sp, which

determines the distance of the center of two consecutive filters within the input

of this layer. The multiplication is implemented efficiently by sum pooling in log

space, with possibly overlapping regions. It can be implemented on GPUs effi-

ciently, since the gradient of each child can be computed completely in parallel. A

detailed sketch of the sum/max and product layers is given in Figure 4.1.

Starting with a sum/max layer, the image is aggregated in this way until it is

represented by one value for every part. Thus, the size of the network is determined

by the strides Sp, Sl and Sc within the layers.

Moving from top to bottom, each layer has exactly Sl times the number of nodes

of its predecessor. The number of layers L depends upon the amount an image is

decreased within each pooling layer Sp. In order to have P independent parts, we

set the size of each bottom layer to P · SL
l .

Finally the classification for a given image is determined by maxi∈C (wi · ci).
Where ci is the result of class i and wi refers to the weight from the root node to

ci. A detailed sketch is given in Figure 4.2.

Please note that most of the forward pass must be calculated only once, since

only the two layers on top depend on the label yi.

Finally it is easy to see that all sum nodes of the SPN are complete, since each

sum/max layer represents a distribution over the same set of indicator variables.

Consistency of the SPN is violated, as it is similar to the proposed architecture

of Gens and Domingos (2012). Therefore, it can not be trained in a generative

manner. Because consistency may be violated for evidence variables, it still can
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Figure 4.1: Detailed structure of the sum and product layer implementation.
Top: The sum layer computes the weighted sum of several input maps and there-
fore reduces the number of different maps. The result of every position within the
output map is interpreted as one sum node. Each weight is shared for the complete
map and therefore for all sum nodes connected to it. In case of a Max layer, only
the weighted max has to be calculated. Avoiding both exponential function and
logarithm increases numerical stability. Bottom: The product layer is illustrated.
It is implemented by average pooling in log space. Average-pooling normalizes the
output of each product node.

be trained discriminatively (Gens and Domingos, 2012).

The library cuvnet (Schultz, 2013), a framework for gradient descent based al-

gorithms on GPU was used for implementation. It basically works by exploitation

of the chain-rule, which allows to calculate and derive each operation within a

network independently. The cuvnet library builds upon the cuv library (Hannes

Schulz, 2013), which provides matrix based operations on GPU. We enhanced both

libraries for the SPN implementation.

4.3 Sum/Max layer

The sum layer performs most of the operations in an SPN, thus its performance

is crucial. Let e(l) be the number of sum nodes in layer l, further let i be the

size of the input image in pixels and b be the batch size. A sum layer l then gets
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Figure 4.2: Detailed sketch from the structure of the SPN implementation. At
the bottom a convolutional layer learns a feature distribution for each class. After-
wards the outcome of the convolutions is weighted and combined until each part
within a class is represented by only one value. Finally the result for each class
is given by the product over all parts and hte label yi. The label is given by the
maximum weighted result of all classes.

as input the three dimensional matrix, which is of shape: e(l − 1)×i×b. Each

sum node weights N child nodes and each weight is shared for a set of nodes,

weighting an entire input image. The inference type defines the operation, which

is performed for each node. In case of soft inference, the sum layer has to calculate

a weighted sum, otherwise it calculates a weighted maximum. The sum/max layer

is implemented using two different kernel implementations. One for the calculation

of the function itself (fprop), and one for calculation of the gradient (bprop).

4.3.1 Forward Propagation Kernel (fprop)

In case of soft inference, the sum layer is calculating a weighted sum over the input

nodes. Since the network is implemented in logspace, the weighted sum becomes

a logaddexp function, which is calculated pairwise for all children of a node. For

sum node s with two child nodes i and j it is defined by:

s = log
∑

(exp(i) + exp(j))

In case of hard inference, it hast to calculate a weighted maximum. Since the

logarithm is a continuous and monotonous function, we can perform this operation

in logspace. The operations for the second and third dimension are the same.

Therefore, we can denote the input matrix X as two dimensional Xi,k, where K
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4.3 Sum/Max layer

refers to all elements in i×b. Finally let wi,N be the set of weights of the i-th map

of layer l. The borders are treated as input with a value of zero, which causes that

the last few nodes weight less elements. However, the network can easily learn a

different magnitude for these weights. Thus, the output Ai,k is given by:

Ai,k =

{
log(

∑N
n=0 exp(wi,n +Xi+n,k)) if soft inference

maxNn=0wi,n +Xi+n,k if hard inference
(4.1)

Algorithm 3: Pseudocode: Forward propagation of a sum / max layer on
GPU
Input: Input X ∈ I×K, weights W ∈ I×N , inference type T , Stride Sl

Output: Result matrix O ∈ (I/Sl)×K
for (i = 0, i ∈ I, i += Sl) do

load Wi,N into shared memory array wN

for (k ∈ K) do
r = w[0] + k[0]
for (n = 1, n ∈ N, n += 1) do

switch T do
case soft inference

r = logAddExp (r, w[n] +X[i+ n][k])

case hard inference
r = max (r, w[n] +X[i+ n][k])

O[i/Sl][k] = r

The fprop kernel starts a grid with e(l) blocks and min
(
512,

⌈
j
32

⌉)
threads.

Thus, the kernel is using I/Sl blocks. The K elements are handled by separate

threads, see Algorithm 3. The maximum number of threads is given by the device

capability and due to the hardware architecture it is known that GPUs work good

with multiples of 32. Due to the arrangement of blocks, each block now can load

the weights once into its shared memory, thus the weights must be read from global

memory exactly once for each block. When restricting batch sizes to multiple of

32, a warp always operates within the same batch. Therefor it although operates

within the same matrix line and access to Global Memory is performed efficiently.

4.3.2 Back Propagation Kernel (bprop)

In the bprop kernel, we have to calculate the two gradients
∂Ai,k

∂wi,n
and

∂Ai,k

∂Xi,k
. Let δi,k

be the derivative of the parent layer p. Using the chain rule, we get the following
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formula in case of soft inference:

∂p

∂S
· ∂Ai,k

∂Xi,k

= δi,k ·
exp(wi,n +Xi+n,k)∑N
n=0 exp(wi,n +Xi+n,k)

= δi,k ·
exp(wi,n +Xi+n,k)

exp(Ai,k)
(4.2)

∂p

∂S
· ∂Ai,k

∂wi,n

= δi,k ·
∑
k

exp(wi,n +Xi+n,k)

exp(Ai,k)
(4.3)

Hard inference:

∂p

∂M
· ∂Ai,k

∂Xi,k

=

{
δi,k · Ai,k if Ai,k = maxNn=0wi,n +Xi+n,k

0 else
(4.4)

Let

ci =

{
1 if maxNn=0wi,n +Xi+n,k

0 else
(4.5)

then
∂Ai,k

∂wi,n

=
∑
k

ci (4.6)

The bprop kernel is configured similar to the fprop kernel. Again it has e(l)

blocks, but the threads are organized as 2-dimensional matrix of fixed size 16×16.
We chose this architecture since experiments showed that the resulting 2-dimensional

memory access results in a slightly better performance. In order to reduce the num-

ber of calls to global memory, again each block loads the corresponding weights

into shared memory once. The 2-dimensional thread matrix calculates 16 items

of 16 batches at once and is moved over the output matrix, defined by e(l), in

an iterative manner. Thus, each thread calculates the derivative of one node at

a time. In order to reduce the computational effort, we use the stored result of

either the fprop step, or the argmax, depending on the inference type.

Since the weights of a node are shared, we would have to store the weight deriva-

tives for each thread in shared memory, causing additional 256 ·N · size of(float)

shared memory usage. Because of the limited amount of shared memory, we sum

the result after calculation of each partial weight derivative. Thus, we just have

to store one temporary value per thread and additional one temporary sum for

each weight resulting in (256 + n) · size of(float) shared memory usage. The

summation after each step is done by parallel reduction.

Another possible conflict arises out of the possibly overlapping input areas of

24



4.3 Sum/Max layer

Algorithm 4: Pseudocode: Back propagation of a sum / max layer on GPU

Input: Input X ∈ I×K, weights W ∈ I×N , inference type T , Stride Sl,
Argmax A ∈ (I/Sl)×K, result matrix O ∈ (I/Sl)×K,
derivative of parent layer δI/Sl, K , small numeric constant ϵ

Output: ∆X ∈ I×k and ∆W ∈ (I/Sl)×N ,

, ( Derivatives
∂Ai,k

∂Xi,k
,

∂Ai,k

∂wi,n
for all nodes within the layer )

for (i = 0, i ∈ I, i += Sl) do
load Wi,N into shared memory array wN

shared memory array d[N ]
for (k ∈ K) do

switch T do
case soft inference

d = δ[i][k]
exp(O[i][k])+ϵ

case hard inference
d = δ[i][k]

for (n = 0, n ∈ N, n += 1) do
switch T do

case soft inference
tmp = exp(w[n] +X[i+ n][k])
∆X[i+ n][k]+ = tmp // atomic add

d[n] += tmp

case hard inference
if n = A[i][k] then

∆X[i+ n][k]+ = p // atomic add

d[n] += 1

for (n ∈ N) do
∆W [i][n] = d[n]
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the nodes. A large overlap between nodes would significantly reduce the learning

capabilities of the SPN. Therefore, we can safely assume that two blocks operate

mostly with disjoint variables. As a result we can use atomic addition to store the

derivatives of
∂Ai,k

∂Xi,k
. Only in very few cases two threads will try to access the same

position in Global Memory at the same time and thus have to wait. Therefore,

using atomic operations to store the derivatives practically does not slow down

the computation significantly on modern GPUs (Section 2.7).

4.3.3 Performance Evaluation

Finally we compared the time consumption of GPU and CPU implementation,

using a single CPU core. The experiments were performed on a System with an

Intel Core i7 X980 CPU and a Tesla K20c GPU (Kepler). In Figure 4.3 we can

see that the fprop kernel achieved a large speedup, even for a small number of

nodes. Since the result of the forward propagation is used in the back propagation

step, less computation is necessary. Additionally, more write operations to global

memory must be performed, since several derivatives are calculated. As a result,

the back propagation kernel is significantly slower than the forward propagation.

Anyway, it achieves a large speedup when compared to CPU performance.

4.3.4 Weight Updates

Since our SPN implementation calculates the result in logspace, we have to recal-

culate the gradient of the conditional log likelihood. It takes the form:

∂

∂w
logP (y|x) = ∂

∂w
log

∑
h

Φ(Y = y,H = h|x)− ∂

∂w
log

∑
y′,h

Φ(Y = y′, H = h|x)

=
∂ logS[y, 1|x]

∂w
− ∂ logS[1, 1|x]

∂w
(4.7)

The two summations are separate bottom-up evaluations of the SPN with indi-

cators set as S[y, 1|x] and S[1, 1|x].
In case of soft inference weight updates in logspace are given by:

∆w = η ·
(

1

S[y, 1|x]
· ∂S[y, 1|x]

∂w
· 1

S[1, 1|x]
∂S[1, 1|x]

∂w

)
=

∂ logS[y, 1|x]
∂w

− ∂ logS[1, 1|x]
∂w

(4.8)
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Figure 4.3: Comparison: Performance of CPU vs GPU implementation. The
implementation scales well for increasing image size and number of sum nodes.
Both kernel are significantly faster than the corresponding CPU implementation.
Top: Performance comparison for increasing number of sum nodes (input maps).
Within the measurement, we used a batch and image size of 32, yielding a matrix
of size N×1024. Bottom: Performance comparison for increasing size of the input
image. Within the measurement we used a batch size of 32 and 128 sum nodes.
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4 Convolutional Formulation of SPNs

Since the weights within the SPN are in logspace, we get the weight update rule

for weight w and soft inference:

logwt+1 = log

(
exp(logwt) + η ·

(
∂ logS[y, 1|x]

∂wt

− ∂ logS[1, 1|x]
∂wt

))
(4.9)

In case of hard inference, weight updates in logspace become ∆wi = η · ∆ci,

where ci is the difference between the number of times wi is traversed by two

inference paths in M [y, 1|x] and M [1, 1|x] (Gens and Domingos, 2012).

The weight sharing in our implementation led to significant differences in the

magnitudes of gradients between layers in case of hard inference. Since each weight

is shared for the whole input image, the magnitude of ∆ci depends upon the

number of nodes wi is used in, instead of the actual magnitude of the gradient.

Because the size of the image is strictly decreasing from bottom to top of the

network, the magnitude is increasing with depth of the network. In order to cope

with this property, we introduced a factor ηl =
1

imgSize
, in order to normalize the

magnitude of gradients for weights.

However, this property does not hold for the convolutional layer, which still

depends on the magnitude of the gradient. Because of this, we used a separate

factor ηc, which allows the usage of a different learn rate for the convolutional

layer.

In case of soft inference this effect did not occur, since the magnitude of the

gradient decreases significantly with increasing depth.

Additionally, we rescaled the weights after every weight update, in order to

prevent large weights, which might cause diverging values within the network.

Gens and Domingos (2012) projected the weights on the surface of the unit sphere

for this purpose. We found empirically, that projecting the weights into the unit

sphere, after each weight update, led to better results. Thus, all weights are

projected into the unit sphere after every weight update.

4.4 Discussion

We were able to implement efficient kernels for computation of the sum/max layers

on GPU. When considering the amount of physical cores of the CPU, the fprop

implementation on GPU was approximately 12.5 up to 75 times faster than on

CPU. The back prop implementation on GPU was approximately 2 up to 25 times

faster than on CPU. Since the second dimension of the input matrix is defined by

i×b we can safely assume that very small matrices won’t usually be used.

In our first approach, we implemented a version of the network where all classes
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4.4 Discussion

shared one convolutional layer. This would have the advantage that features, which

occur in multiple classes must only be learned once. Additionally, more complex

features could use more filters than simple ones. However, we found that the

magnitude of gradients differs by more than 10−5. Because of this property, some

classes dominate the filter, which harms the learning capability of the network

significantly.

The proposed architecture can easily be adapted for computation on multiple

GPUs, since synchronization between multiple GPUs would have to take place

at the root node only. This would yield even better performance than a single

GPU. Additionally, larger networks could be realized, since more GPU memory is

available.
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5 Experiments

For the experiments we initialized the weights w of all sum/max nodes with

log(5/N) + r, where r denotes a random value in range −0.05 ≤ w ≤ 0.05.

Weights of the convolutional layer were initialized with values in range of −0.5 ≤
w ≤ 0.5.

In order to cope with boundaries of the image, the pooling layer must have

overlapping pooling areas for two adjacent nodes. For stride and filter size within

pooling, we found that a filter size of 2×2 and stride Sp = 2 usually achieves best

results, since less information concerning the position of a feature is lost per step.

During training we had to choose multiple parameters. Unfortunately, training

the network on a small dataset like MNIST was already time consuming. There-

fore, we were not able to optimize all parameters automatically using grid search,

or more sophisticated methods. As a result, we optimized the sizes of the filter

masks, strides S and the number of parts of the network by hand. After this, we

optimized the learn rate η and the learn rate factor ηc by grid-search on a small

subset of 256 training patterns.

Given the initial learn rate, the network was trained for i epochs, until the

SPN error, given by |S[y, 1|x] − S[1, 1|x]|, did not improve by at most ϵ percent.

Afterwards the learn rate was decreased by a factor f . This procedure was repeated

t times. The detailed algorithm is described in Algorithm 5.

Algorithm 5: The training algorithm for the SPN

Input: Learn rate η, number of repetitions t, factor f , number of
iterations it

for (i = 0; i < t; i += 1) do
repeat

Train network for it epochs
Obtain SPN error e

until (e · f) < e;
η = η · f
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5 Experiments

5.1 Small Toy Dataset

In order to check whether the convolutional layer is working as expected, we gener-

ated a small dataset. It consists of 28×28 gray-scale images, each representing one

of the four classes: Circle, rectangle, horizontal line and vertical line. Structures

within discriminatively trained filters may be hard to recognize. The simplicity of

this dataset helps to get a deeper understanding of the network and discrimina-

tively trained filters should be recognizable.

Normally distributed noise with mean zero and a standard deviation of ν = 0.5

was added to each image before an epoch, such that the network can not learn the

images by rote memorization, as it did not get exactly the same images twice.

Before training, the images were normalized to range [0 : 1].

5.1.1 Experiment 1: Small Filter

As first experiment we trained a SPN with only sum layer on the images. As

parameters we chose the number of parts P = 1, a batch size of 32, a pool filter

of 2×2, a stride within pooling of Sp = 2 and constant for numerical stability

ϵ = 10−6. Within the sum layer, we did set Sl = 2 and the number of children

for each sum node to N = 4. Further, we used filters of size 7×7 and a stride

of Sc = 3 within the convolutional layer. Thus, the resulting SPN had 6 layers,

including the convolutional layer and root, which provided 16 filters for each class.

It was trained for 200 epochs with learn rate η = 0.002 within the SPN and a learn

rate factor of ηc = 50, resulting in an initial learn rate of 0.1 for the convolutional

layer.

Weight decay forces the network to use less of the filter and therefore helps to

learn clearer structures, which are easier to understand for humans. Therefore, we

introduced a weight decay factor of wd = 0.1 for experiments with this dataset

only.

Results

In Figure 5.1 we see that the SPN was able to correctly classify the four classes

after approximately 40 epochs. Afterwards the SPN error is still decreasing, and

converges slowly to a value of approximately 0.2.

Discussion

In Figure 5.4 we illustrated some of the 64 learned filters for each class. The

structure from the learned filters of the classes “vertical” and “horizontal line”
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5.1 Small Toy Dataset
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Figure 5.1: Development of classification error and SPN error during training
with 7×7 filter in Experiment 1.

seem reasonable. We can easily recognize an learned edge filter, and its inverted

version, which will get a maximal response above and below the vertical line. The

maximal number of filters, with recognizable structure, in one class was three.

This shows that the network has a lot of capacity left.

While the filter from the class “cross” might still show some reasonable structure,

the filter from the circle class seemed odd. Within the learned filter of this class we

could not find any recognizable structure. Additionally, we noticed that the learned

filter within this class are very similar, while we can find significant difference

within the learned filter of the other classes.

5.1.2 Experiment 2: Large Filter

In order to get a better understanding of the network, we did a second experiment

with the same dataset. We used the same parameters as in experiment one, but

used large filters of size 21×21 within the convolutional layer. For this experiment

we padded the images with one row and column of zeros, in order to get the same

size of the network. Afterwards we trained the network for 200 epochs with learn

rate η = 0.004 and ηc = 10, which was found empirically.

Results

In Figure 5.2 we can observe that the SPN error is increasing slightly in the begin-

ning, before the error starts to decrease and slowly converges to approximately 0.2.

After two hundred epochs it is not yet converged completely. However, the classi-

fication is learned much faster than in experiment one and after only ten epochs
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Figure 5.2: Development of classification error and SPN error during training
with 21×21 filter in Experiment 2.

all images are classified correctly.

Discussion

We can explain the slower convergence of this network by the significantly larger

amount of weights in the convolutional layer, which simply need more epochs to

be learned correctly. When we look at the learned filters in Figure 5.4, we can

recognize the structure from each class clearly. Additionally we can find structures

with negative weights within the filters, representing structure from a different

class. For example in the class “cross” the lines of the cross are followed by a

negative line, which helps do differentiate between cross and horizontal or vertical

line.

Additionally, we noticed that within both of the simple classes of horizontal and

vertical line only five filters learned weights of significant magnitude. For the class

“cross” there are six and finally nine significant filters for the class “circle”. Thus,

the network automatically uses more filters for more complex structures.

5.1.3 Experiment 3: Max Pooling

Because of the results of the first two experiments on the toy dataset, we did one

last experiment with it. In order to avoid excessive weight sharing, we replaced

the average pooling with a max pooling layer. The result of this alteration is that

filters are no longer combined within the pooling layer. Instead, the largest results

are weighted within the next sum layer. In the end a part may consist of features

with completely different positions within the image.
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5.1 Small Toy Dataset
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Figure 5.3: Development of classification error and SPN error during training
with 7×7 filter and max-pooling in of Experiment 3

The only product node remaining in the network, is the one combining the

parts within each class. This alteration of the network significantly decreases

the amount of weight sharing and therefore small filters should be able to learn

structures within an input image.

We repeated experiment one with the mentioned alteration to the network.

Thus, all parameters were the same, except for the number of parts. We used P = 4

parts within this experiment since the expressiveness of one part was significantly

reduced by the alteration.

Results

In Figure 5.3 we can observe that the dataset is classified correctly within the first

ten epochs. The SPN error is increasing in the beginning and afterwards it starts

converging slowly.

The learned features clearly represent the structures of the different classes. In

their illustration in Figure 5.4, we can find partial arcs and parts of the cross. The

features learned for the classes of horizontal and vertical lines are similar to the

learned filters from experiment one.

5.1.4 Discussion

The three experiments with the small dataset delivered interesting results. In

all experiments the SPN learned to distinguish the four classes easily. When

using small filters sizes in the convolutional layer, we could not find the expected

structures of the corresponding images within the filters of all classes. Increasing
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5 Experiments

the filter size did yield better results with respect to the learned filters. The number

of filter which showed a recognizable structure were different for different classes.

More complex structures within the images of a class led to more filters with

recognizable structures. This can be explained by the learning algorithm of the

SPN. As soon as a class within the SPN yields the same result in the marginalized

evaluation and the evaluation with labels, it does not need to learn more filters.

Additional filters are not used in this case and simply get a small weight.

Note, that the SPN error does not reach zero in any of the experiments. This is

caused by the root sum node of the network. The SPN error will only reach zero,

if the only class which generates results larger than zero is the correct one. Since

some features may overlap, the two terms of the gradient compete against each

other. This allows further learning after all images are classified correctly.

When choosing a max node as root, the behavior is clearly different. Since only

the class with maximum value is considered by the SPN, the SPN error directly

reaches zero value when all examples are classified correctly. However, the SPN

has finished learning as soon as all training images are classified correctly.

Within experiment three, we found that very large filters are necessary in order

to learn the structures within the images. One would expect much smaller filter

sizes, similar to the size of filters in experiment one.

Convolutional Neural Networks use alternating layers of convolutions and pool-

ing operations too. When comparing CNNs to the convolutional architecture for

SPNs in this thesis, we find two major differences:

The first difference is that a convolutional network still has at least a small

set of weights within each pooling layer. The convolutional use of this weight

mask allows learning of patterns, which represent higher order features. This is

desirable since we assume some repetitive structure within the images of one class.

Additionally, it provides the CNN with some information about the positions of

features within the image.

The second difference is that a CNN usually reduces the input image to a n×n
output by succeeding layers of convolution and pooling. It is followed by a fully

connected neural layer, which again preserves some information about the position

of features.

In contrast to this, our SPN applies alternating layers of sum or max nodes

and pooling until the whole image is represented by only one value for every

part. The sum layer within our SPN implementation can be interpreted as 1×1
convolution on every input map. By alternating application of these degenerated

convolutions and average-pooling, the network therefore combines the results of all

filters before. All information about the position of features is lost. Therefore, it is

no longer able to detect a pattern of higher order features with respect to different
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5.1 Small Toy Dataset

positions within the image. Rather, it learns a set of filters which generate a large

response at most positions, a convolutional filter from the bottom layer is applied

to. Therefore, patterns which occur frequently can still be learned, while less

frequent patterns, such as the arc of a circle, can hardly be learned anymore. As

a result the SPN can not weight a learned filter depending on its position within

the image at all.

The learned filters of both experiments can be explained by this insight. In

case of the experiment with filter size 7×7 we can recognize the structure of the

lines within the learned filters. They can be learned since the filter has the same

response at several positions. Within the class “circle” we would expect the filters

to represent a curve. Since every part of the filters would fit exactly one position,

only the intersect of all circle parts is learned. Within learned filters of experiment

two, we can find that the same feature is learned at several positions within one

filter, see Figure 5.4. This allows the network to recognize the same feature at

different positions within the image. However, it is clear that this will usually

result in bad generalization capabilities of the network.

By replacing average-pooling with max-pooling in experiment three, the network

preserves information about the position of features. One part within the SPN now

represents a set of learned filters from the convolutional layer. This set may consist

of different filters which are located at arbitrary position within the image. A part

however no longer represents one decomposition of the whole image. This is not

harmful, since we still use multiple parts and a filter of one class can learn the

representation within the whole image.

The Probabilistically max-pooling is interpreted as max node with fixed weights

of one. Therefore, the SPN does not fulfill the property of completeness anymore.

Incomplete sum nodes undercount the true marginals (Gens and Domingos, 2012),

which will lead to worse results. However, results of experiments presented in the

following chapter suggest that he location of features is even more important than

the violation of completeness.

The network is now able to learn less frequent patterns with max-pooling, as

demonstrated in experiment three. Unfortunately the changes prevent the network

from representing arbitrary SPNs, since just one product node is left within the

network.
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Figure 5.4: Toy dataset: Illustration of images and learned filters. Top: Sample
images of the toy dataset (without noise). Upper center: Learned filters of
size 7×7 from experiment one, structures within the “line” classes are observable.
Lower center: Learned filters of size 21×21 from experiment two. Structures
from the images are clearly recognizable, but often learned at multiple positions
by the same filter. Bottom: Learned filters from experiment three with 7×7 filters
and max-pooling. Parts of the structure, showed by the images, like the partial arc
of a circle is recognizable. Filters within a column are from the filter bank, which
represents the class, illustrated by the image on top. The filter banks were rescaled
in range of [0 : 255] for better visualization. Therefore, bright pixel represent large
weights and dark pixel represent small weights.
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5.2 MNIST

5.2 MNIST

5.2.1 The Dataset

MNIST (LeCun and Cortes, 2010) is a handwritten digit recognition benchmark.

It consists out of a total of 70000 images of handwritten digits in gray scale, 10000

are reserved as test set. The images are size-normalized, while preserving their

aspect ratio and centered within a 28×28 image. Therefore, the images contain

gray-level, while the original images from NIST are bipolar. Since there are a

lot of results reported with different learning methods, MNIST is well suited for

comparison of results.

Figure 5.5: Example images: The first 8 images of the MNIST training set.

5.2.2 Experiments

While experimenting with different configuration of the network we examined dif-

ferent parameters, including different combinations of sum and max layers. The

root node has the most influence on the result. When a sum node is chosen as

root for the network, all classes get a gradient proportional to their result of the

forward step within the partial gradient ∂ logS[1,1|x]
∂w

. Since just one class gets a gra-

dient from the evaluation with labels ∂ logS[y,1|x]
∂w

, most of the classes get a negative

gradient proportional to their result. Therefore, using a sum node as root enforces

discriminative training in a broad manner.

When a max node is chosen as root, only classes which are responsible for a

misclassification will get a negative gradient within the gradient of the marginal-

ization step. Therefore, only classes, which are relatively similar to each other are

forced to use different features.

We accomplished best results with a max node as root of the SPN, and several

sum layer below. Parameters were optimized by hand to parts P = 100, a batch

size of b = 256 and ϵ = 10−8. Further, we chose N = 4 children for every sum /

max node, and a stride Sl = 2 for sum layer. Max-pooling was performed with

a filter size of 2×2 and stride Sp = 2. Finally, within the convolutional layer we

chose stride Sc = 4 and a filter size of 9×9. Each image was padded with three

additional pixels of value zero in order to avoid effects at the border of the images

within the pooling operation.
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5 Experiments

Given these parameters, we found the initial learn rates by gridsearch, resulting

in initial learn rate η = 0.00351 and learn rate factor for the convolutional layer

of ηf = 51.

The parameters above yield a SPN with five layers and eight hundred filters

within the convolutional layer of each class.

The network was trained with these parameters using Algorithm 5. When the

learn rate did not improve at least f = 2% within it = 25 epochs, the learn rate

was multiplied by f = 0.5. This procedure was repeated six times.

Before training the images were rescaled to a range of [0 : 1.0]. In order to

enforce more generalization within the filter of the convolutional layer we added

normally distributed noise, with standard deviation of ν = 0.5, to each image

before every epoch.

Results

The SPN achieved a classification error 1.66% on the test set and 1.26% on the

dataset for training. Learn rates were reduced before epoch 30, 180, 480 and 600.

We can observe the impact of the learn rate changes in Sections 5.2.2 and 5.2.2.

For each class, we illustrated some learned filters in Figure 5.7. We can clearly

recognize parts of the digits, which were learned by filters of the corresponding

class.

5.2.3 Discussion

When looking at the illustration of the classification error during training in Sec-

tion 5.2.2, we observe that the SPN did not achieve a classification error of zero

on the training set. This is an effect of the noisy images. Without noise, we found

that the classification error on the training set reached zero, but we achieved sig-

nificantly worse results on the test set in this case.

Additionally, one might notice the large amount of filters, that is learned within

the network. Due to max-pooling within the network, we have to learn significantly

more filters, than actually used within the network. When looking at the learned

filters, we noticed that not all of them show structure. This can be explained with

the networks properties induced by max-pooling. When a set of filters which is

used by only one sum node is learned, the remaining filters of the corresponding

part may never yield the maximal value and thus some filters, may not be learned

at all.

Our best results on MNIST achieved a classification error of 1.66%. In Figure 5.7

we illustrated some hand picked filters the SPN learned on the MNIST dataset.
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Figure 5.6: Development of SPN error (top) and classification error on train and
test set (bottom) during training of MNIST. A step of SPN error and classification
error on the train set can be observed after changes of the learn rate.
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Figure 5.7: Illustration of filters, learned for the MNIST dataset. Filters within a
row are from the same class, representing the digit of the respective class number.
We can recognize different versions of parts from all digits in the corresponding
class. Each filter was rescaled into the range of [0 : 255] for better visualiza-
tion. Therefore, bright pixel represent large weights and dark pixel represent
small weights.
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5.3 CIFAR-10

Learning method Test Error Rate (%)

Convolutional net LeNet-1 (LeCun, Jackel, et al., 1995) 1.7
Convolutional net LeNet-4 (LeCun, Jackel, et al., 1995) 1.1
Convolutional net LeNet-5 (LeCun, Jackel, et al., 1995) 0.95
Large conv. net, unsup pretraining (Jarrett et al., 2009) 0.53
Large conv. net, unsup features (Poultney et al., 2006) 0.60

Convolutional SPN 1.66

State-of-the-art:
Wan et al. (2013) 0.21

Table 5.1: Reported error rates for convolutional neural networks (Top) and
state-of-the-art error rate (Bottom) on the MNIST dataset

The learned filters show clear structures of the respective class and clearly represent

actual parts of the corresponding digit. For example we can recognize different

version of the arc, defining the upper half of a six in class six. Another nice

example is shown by the filters of class three. There we can clearly recognize

different versions of the two meeting arcs of a three.

State-of-the-art, reported for this dataset, is an error rate of 0.21%, achieved by

Wan et al. (2013). Classification errors on the test set, published for convolutional

neural networks directly on top of rgb data, are in range of 1.7% and 0.53% (LeCun

and Cortes, 2010).

Therefore, when compared our results are more at the bottom line of results for

convolutional nets. Probably this is due to incomplete nodes within the network,

which causes nodes to undercount marginals. Additionally the degenerated 1×1
convolutions within the network lead to worse results since they are not capable

to learn patterns of higher order.

However, the results clearly show that the convolutional Sum-Product Networks

are working.

5.3 CIFAR-10

The CIFAR-10 dataset (Krizhevsky, 2009), is an established image classification

benchmark, which consists of 60000 color images in 10 classes. All images are

down-sampled to rgb images of size 32×32 and labeled by hand. Thy are divided

in a training set of size 50000 and a test set of 10000 images. Each image contains

one object of the 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse,

ship or truck.
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5 Experiments

Figure 5.8: Example images from CIFAR-10

5.3.1 CIFAR-10 Experiment

In order to optimize the classification error for this dataset, we experimented with

different parameters. However, we found that parameters similar to the parameter

set from the experiment on MNIST achieved best results.

Therefore, the network has again one max node as root, which is followed by

sum layer only. Parameter within the experiment were parts P = 100, a batch size

of b = 256 and ϵ = 10−8. Further, we chose N = 2 children for every sum / max

node, and a stride Sl = 2 for sum layer. Max-pooling was performed with a filter

size of 2×2 and stride Sp = 2. Finally, within the convolutional layer we chose

stride Sc = 4 and a filter size of 9×9. Each image was padded with one additional

pixel of value zero in order to avoid effects at the border of the images within the

pooling operation.

Given these parameters, we found the initial learn rates by gridsearch. Resulting

in initial learn rate η = 0.00001334 and learn rate factor for the convolutional layer

of ηf = 101.

The parameter above yield an SPN with five layer and eight hundred filters

within the convolutional layer of each class.

The network was trained with these parameters using Algorithm 5. When the

learn rate did not improve at least f = 2% within it = 25 epochs, the learn rate

was multiplied by f = 0.5. This procedure was repeated nine times.

Before training the images were rescaled to range [0 : 1.0].

Results

Within the experiments on CIFAR-10 the SPN achieved a classification error of

approximately 7.08% on the training dataset and 46.71% on the test dataset. In

Figure 5.9 we can observe the impact of learn rate changes on both, classification

error and SPN error. The change of the learn rate results in a step on these learning

curves. While the classification error on the train dataset is almost converged at

approximately epoch 750, the error on the training dataset is still decreasing.
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Figure 5.9: Development of SPN error (top) and classification error on train and
test set (bottom) of CIFAR-10. The classification error on the test set did not
improve anymore after approximately 750 epochs.

In Figure 5.10 we illustrated some learned filters. For the visualization, each

filter was normalized separately to values in between 0 and 255. Structure is

clearly observable in some of of the filters.. For example class six, representing the

class “frog”, contains filters which look quite similar to Gabor filter.
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Figure 5.10: Illustration of filters, learned for the CIFAR dataset. The object
contained within the class is given on the left of the corresponding row. Some
structures like the edge filter from class six show recognizable structures.
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5.3 CIFAR-10

5.3.2 Discussion

Within the experiments, a classification error rate of 46.71% was achieved on the

test dataset. Gens and Domingos (2012) achieved a significant lower classification

error of 16.04%. However, Coates and A. Ng (2011) showed, how crucial the

choice of features is. They used only a simple MLP, with only one hidden layer

and achieved state-of-the-art error rates of 18.5% on the test dataset of CIFAR-10,

by careful choice of learned features. Gens and Domingos (2012) build their SPN

on top of the same learned features and achieved a classification error, which is only

1.46% lower. Therefore, the question arises how other, more complex classifiers

would perform on the same feature basis.

Section 5.3.2 provides an overview of current results on CIFAR-10. We found

that the SPN implementation within this thesis clearly achieved worse results,

even when compared to results, reported on rgb data only, as G. E. Hinton, Srivas-

tava, et al. (2012). Therefore, the reasons for the results are probably the already

mentioned flaws within the architecture, causing undercounting of marginals and

prohibiting the network from learning features of higher order. When comparing

the result to Gens and Domingos (2012), the choice of features certainly is another

reason.

Krizhevsky and G. Hinton (2009) reported one of the first results with convolu-

tional networks on the CIFAR-10 dataset. The result we achieved is slightly better

than his reported error rate. Therefore, the result for this dataset again is in range

of results, reported for CNNs.

We already pointed out the flaw within the architecture, used for the SPN. Ad-

ditionally, the results presented within this thesis are within the range of results,

reported for CNNS. Therefore, it is likely that convolutional SPNs can compete

with Convolutional Neural Networks, when non-degenerated convolutions are pro-

vided within the SPN.
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5 Experiments

Learning method Test Error Rate (%)
Krizhevsky and G. Hinton (2009) 58.87

Gens and Domingos (2012) 16.04
Convolutional SPN 46.71
Krizhevsky (2010b) 21.1

Coates and A. Ng (2011) 18.5
G. E. Hinton, Srivastava, et al. (2012) 16.6

State-of-the-art:
Lin et al. (2013) 8.8

Table 5.2: CIFAR-10 error rates on raw data (top) and state-of-the-art error rates
(bottom)

5.4 Approach: Fully Connected SPNs

Within the experiments we found that the architecture used has a capacity which is

too small and therefore loses information about locations of features. This problem

could be solved by using fully connected layers within the network, which would

yield a valid SPN.

With a fully connected SPN on top, using just one layer of convolutions would

cause a large number of weights for every sum node succeeding the convolutional

layer. Therefore, using several layers of convolutions, before training the SPN on

top, would allow to learn features of higher order. This would significantly reduce

the number of weights for a sum node and therefore could provide better results.

Additionally it is promising to experiment with non-linear units in between the

convolutional layers.

In this case an efficient implementation of a fully connected sum layer would be

possible through altered matrix multiplications.

The convolutional layer produces four dimensional outputs, which consists out

of the number of maps N , horizontal and vertical dimensions of a map X and Y

and finally the batch size B. By concatenation of the first three dimensions, we

would get a two dimensional input to the SPN layer. Let D ∈ (N×X×Y ) be this

concatenation. Then, we have input I ∈ D×B.

The forward propagation for a layer with M fully connected sum nodes can

simply be calculated through the matrix multiplication of weights W ∈ M×D
and I, resulting in output A ∈M×B:

Let a ∈ A be the result of the forward propagation, s ∈ S the original input,

weights w ∈ W , δ ∈ ∆ be the derivative for the network so far. Additionally, let

d ∈ D be an element of the first dimension of input I, and b ∈ B be a batch within
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5.4 Approach: Fully Connected SPNs

input I. Then, derivatives for an element of the input of a fully connected layer is

given by:
∂A

∂i
=

∑
m∈M

δm,b · exp(sd,b + wm,d − am,b) (5.1)

the derivative for a weight is described by

∂A

∂w
=

∑
b∈B

δm,b · exp(sd,b + wm,d − am,b) (5.2)

The sum layer can easily be calculated through exploitation of two matrix mul-

tiplications, which are already implemented efficiently on GPU. The derivative for

input i can be calculated by exploitation of the matrix product from the transposed

weight matrix W T and ∆:

W T ·∆ =
∑
m∈M

wi,m · δm,b (5.3)

by insertion of the formula for ∂A
∂i
, we get:

∂A

∂i
=

∑
m∈M

δm,b · exp(wd,m + sd,b − am,b) (5.4)

Further derivatives of weights can be calculated by exploitation of the matrix

product from A and the transposed input matrix I:

A · IT =
∑
b∈B

am,b · sb,d (5.5)

by insertion of the formula for ∂A
∂w

, we get:

∂A

∂w
=

∑
b∈∈B

δm,b · exp(wd,m + sb,d − am,b) (5.6)

The implementation of max-layers can be achieved easily by exploitation of the

same matrix multiplication and replacement of the function. We implemented the

functions described above, but unfortunately were not able to experiment with

this fully connected architecture due to time constraints.
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6 Conclusion

In this master’s thesis we combined the two successful deep learning approaches of

discriminative Sum-Product Networks and Convolutional Neural Networks. The

result is a SPN, which is trained on top of convolutional layers, providing learning

of image features online. Large datasets or images of high resolution demand a lot

of computing power. Therefore, we provided an efficient implementation on GPU

and CPU, which is working through computations in logspace.

Within the thesis we showed experimentally that filters within the convolutions

are learned correctly and provide reasonable structures. This implies that the

combination of the two approaches is working properly.

However, we discovered that the chosen architecture within the SPN, contrary

to CNNs, does not preserve any information about the positions of filters, learned

by the convolutions. By replacing the products within the SPN, which are im-

plemented by pooling in logspace, with max-pooling operations, we preserved the

information of locality. Unfortunately, the altered SPN does no longer ensure

completeness for all nodes, which causes undercounted marginals.

We evaluated the convolutional SPN on the two established image classifica-

tion benchmarks MNIST and CIFAR-10. Experimental results showed that the

preserved local information is even more important completeness of the SPN. We

achieve a classification error on the test dataset, of 1.66% on MNIST and 46.71%

on CIFAR-10. Results reported for Convolutional Neural Networks, are within

range of these results.

The architecture of the SPN can be altered in order to preserve local information

and ensure completeness at the same time. One approach achieving this is an

architecture with fully connected layers. Details for an efficient implementation of

this architecture on GPU by exploitation of matrix multiplications, was described

in Section 5.4. Unfortunately we were not able to experiment with this architecture

due to time constraints. Convolutional SPNs with this alteration most likely will

obtain much better results.
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6.1 Future Work

As Future Work it would be promising to investigate Convolutional SPNs with a

different architecture, which ensures completeness for all nodes and preserves local

information of features.

Further, usage of a single GPU prohibits training on large images, because of the

limited amount of Global Memory. Using multiple GPUs instead would avoid this

problem. Discriminative SPNs are especially suited for computation on multiple

GPUs, since each class can be computed separately. Only the root node has to

synchronize results of the network.

Finally, finding an appropriate learn rate is crucial within learning of SPNs.

For Neural Networks there are several more advanced gradient descent methods

like Adagrad (Duchi et al., 2011), which adjust the learn rate for each unit within

a network automatically. Transferring these methods to Sum-Product Networks

might improve their results.
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