
University of Freiburg
Faculty of Applied Sciences
Department of Computer Science
Junior Research Group Humanoid Robots

Master’s Thesis

Recognition of Human Gestures
using Monocular Vision

Author: Tobias Axenbeck

Submitted on: 25.01.2008

First Referee: Dr Sven Behnke
Second Referee: Prof Dr Wolfram Burgard

Supervisor: Dr Maren Bennewitz

Abstract

Robots coexisting with humans in everyday environments should be able to interact
with them in an intuitive way. This requires that the robots are able to recognize typ-
ical gestures performed by humans such as head shaking/nodding, waving, or pointing
gestures. In this thesis, we present a system that is able to spot and recognize complex
gestures from monocular image sequences. To estimate their position and to represent
people, we detect and track their faces and hands using classifiers trained with Ada-
Boost. We use few expressive features extracted out of this compact representation as
input to hidden Markov models (HMMs). We segment example gestures into distinct
phases and train HMMs for each phase separately. To construct a HMM composed
of the individual-phase HMMs, we define regular grammars. Once a specific phase is
recognized, we estimate the parameter of gestures such as the pointing target.

As we demonstrate in our experiments, our method is able to robustly locate and
track hands, which is a difficult task since they can take a large number of substantially
different shapes. Furthermore, we show that our system is able to reliably spot and
recognize gestures in real time. Additional experiments illustrate that parameters of
gestures can be accurately estimated.

dull day . . .

Samuel Beckett, 1936 in Hamburg

ii

Zusammenfassung

Roboter, welche mit Menschen in Alltagsumgebungen koexistieren, sollten in der
Lage sein, mit ihnen auf intuitive Art und Weise zu interagieren. Dies setzt voraus, dass
der Roboter fähig ist, typische menschliche Gesten wie Kopfschütteln, -nicken, Winken
oder Zeigegesten zu erkennen. In dieser Arbeit stellen wir ein System vor, welches
imstande ist, komplexe Gesten in monoskopischen Bildsequenzen zu entdecken und zu
erkennen. Um die Position von Menschen im Bild zu schätzen, detektieren und verfol-
gen wir ihre Haende und Gesichter unter Verwendung von Klassifikatoren, welche mit
Adaboost trainiert wurden. Aus dieser kompakten Darstellung menschlicher (Arm)-
Bewegungen extrahieren wir eine kleine, ausdrucksstarke Merkmalsmenge, welche als
Eingabe für Hidden Markov Modelle (HMMs) dient. Komplexe Gesten unterteilen wir
in verschiedene Phasen und trainieren HMMs für jede einzelne Phase. Um das finale
Erkennungs-HMM zu kontruieren, definieren wir reguläre Grammatiken. Sobald eine
spezifische Phase erkannt ist, schätzen wir eventuelle Parameter der Geste, wie zum
Beispiel das Zeigeziel.

Wie wir in unseren Experimenten zeigen werden, ist unsere Methode in der Lage,
Hände robust zu lokalisieren und zu verfolgen, was schwierig ist, da Hände unzählige
verschiedene Formen annehmen können. Des weiteren zeigen wir, dass unser System in
der Lage ist Gesten verlässlich und in Echtzeit wahrzunehmen und zu erkennen. Zusät-
zliche Experimente veranschaulichen, dass Parameter von Gesten akkurat geschätzt
werden können.

dull day . . .

Samuel Beckett, 1936 in Hamburg

iv

Acknowledgments

I would like to thank all those who supported me. Especially, I wish to thank Dr Maren
Bennewitz who supervised this work. She introduced me to scientific working and was
always willing to answer my every question. Special thanks also to Dr Sven Behnke for
making this work possible and for all his advice and suggestions. I would further like
to thank Dr Cyrill Stachniss for his implementation of the Hungarian algorithm and
his help in creating the great filled-curve figures with gnuplot. My thanks to Theodora
Vatahska for her work on head pose estimation. Of course I must not forget my
patient "models" Eva Axenbeck, Benjamin Riedinger, Ann-Kristin Hintertupfingen,
Peer Fechner, and Maria Kopp. They all spared neither trouble nor expense to make
it to the recording sessions. Many thanks to them. For proofreading this work, I’m
grateful to Felix Faber, Hauke Strasdat and Maria Kopp.

v

vi

Contents

1 Introduction 1
1.1 On Gestures . 2
1.2 Goals and Contributions . 3
1.3 Thesis Outline . 5

2 Related Work 7

3 Detecting Faces and Hands 13
3.1 Image Preprocessing . 14

3.1.1 Color Spaces . 15
3.1.2 Skin Color Models . 17
3.1.3 Locating Skin Regions . 18

3.2 Rapid Object Detection . 20
3.2.1 Feature Computation . 21
3.2.2 Boosting Classifiers . 22
3.2.3 Cascading Classifier . 25

3.3 Constructing the Hand Detector . 26
3.3.1 Collecting Training Data . 27

3.4 Detecting Hands . 28

4 Tracking People 31
4.1 Hungarian Method . 32
4.2 Kalman Filter . 32
4.3 Tracking Faces and Hands . 34

4.3.1 Tracking Faces . 35
4.3.2 Tracking Hands . 36
4.3.3 Tracking Failures . 40

4.4 Establishing People . 43

5 Head Pose Estimation 47

vii

5.1 Locating Facial Features . 47
5.2 Estimating Pose . 48
5.3 Extensions . 49

6 Recognizing Gestures 53
6.1 Feature Extraction . 55

6.1.1 Monomanual Gestures . 58
6.1.2 Bimanual Gesture . 58
6.1.3 Head Gestures . 61

6.2 Hidden Markov Models . 61
6.2.1 Evaluating HMMs . 63
6.2.2 Decoding Hmms . 65
6.2.3 Learning HMMs . 67
6.2.4 Practical HMM Issues . 69

6.3 Modeling and Training Gestures . 70
6.3.1 Collecting Training Data . 71
6.3.2 Rejection Of Non-Gestures . 71
6.3.3 HMM Networks . 72

6.4 Recognition . 73
6.4.1 Parameter Dependent Gestures 74

7 Experiments 77
7.1 Hand Detection Experiments . 77

7.1.1 Generic Hand Classifier . 78
7.1.2 Right Hand Classifier . 80

7.2 Tracking Experiments . 81
7.3 Gesture Recognition Experiments . 84
7.4 Parameter Estimation Experiments . 90

8 Conclusion 93
8.1 Future Work . 93

viii

11
Introduction

Gestures play a vital role within interpersonal communication where we use them to
support or even replace speech. It is therefore of utmost interest to be able to perceive
and interpret gestures performed by the conversational partner. In the beginnings of
research in gesture recognition, only cumbersome special devices such as bodysuits,
markers, or data gloves could be used to obtain the needed data. Nowadays, the
development of visual gesture recognition systems is often part of the effort to achieve
more efficient, interactive and intelligent interfacing with computers.

This coincides with the ambitions within the Human Computer Interaction (HCI)
field. HCI investigates modes of interfacing beyond traditional devices such as key-
boards, mice, or displays, to further improve the usability and efficiency of modern
computers. The aim is to provide the same intuitiveness and naturalness as in interper-
sonal interactions. These are primarily governed by the auditory and visual modality.
Whilst the auditory modality is used to communicate information directly, additional
important information can be deduced by the visual perception of our conversational
partner. This most notably includes information conveyed by the use of gestures.

Humanoid robots constitute an excellent testbed for the investigation of such intu-
itive communication strategies as they inherently provide the possibility to embody
human interaction techniques. It is this very reason that motivated the construction of
our multi-modal communication robot Fritz, shown in Figure 1.1. For a thorough de-
scription of our robot refer to [Bennewitz et al. 2007]. In order to successfully perceive
and interact with the environment, the robot relies on the input from auditory and
visual sensors. Apart from speech synthesis and recognition, it uses natural modalities
such as eye gaze, facial expressions, and gestures to generate human-like behaviour and

1

Fig. 1.1: Our communication robot Fritz drawing the attention of a user to an exhibit by pointing at
it.

to interact with people in an intuitive way.
Through the animated mouth and eyebrows, Fritz can change its facial expression

to show emotions, such as anger or joy. With head and arms it performs gestures such
as waving, nodding, and draws the attention to objects of interest by pointing and
looking toward these.

Currently, there is an asymmetry between Fritz’ ability of generating gestures, and
to sense them visually, in that it cannot recognize and interpret them. Up to now,
its visual perception ability is limited to the detection of faces. In this thesis, we will
present a system which provides the ability to recognize common human gestures such
as waving, pointing, or nodding.

In the following, a brief excursion on the nature of human gestures is given as well
as a containment of gestures we want to be able to recognize within the gesture space.

1.1 On Gestures

Gestures can exist alone or involve external objects. Empty-handed, we wave, gestic-
ulate, show emblems such as ”thumbs up” or may even make use of more formal sign
languages. With objects, we have a broad range of gestures that are almost universal,
including pointing at objects, touching, or moving objects, deforming object shape, or
handing objects to others. This suggests that gestures can be classified according to
their functional roles. In [Crowley & Coutaz 1995] three such roles are distinguished:

Semiotic gestures are used to communicate meaningful information based on conven-
tion and resulting of common cultural knowledge.

2

Ergodic gestures correspond to the creation and manipulation of objects.

Epistemic gestures are used to learn from the environment through tactile or haptic
exploration.

In this thesis we are primarily interested in how gestures can be used to communicate
with a robot, so we will be mostly concerned with empty-handed semiotic gestures.
These can further be categorized according to their functionality. Rime & Schiaratura
[1991] propose the following gesture taxonomy:

Symbolic gestures are gestures that, within each culture, have come to have a single
meaning. An emblem such as the victory sign is one such example, however sign
language gestures also fall into this category.

Deictic gestures are the types of gestures most often seen in HCI and are the gestures
of pointing, or otherwise directing the listeners attention to specific events or
objects in the environment.

Iconic gestures are these gestures which are used to convey information about the
size, shape or orientation of the object in question.

Finally, we observe that gestures can be either static, when one assumes a certain
pose or configuration, or dynamic, defined by movements. Emblems and sign languages
are primarily of the former kind whereas the others involve motion, mainly of the
arms. According to [McNeill 1992], this motion can be separated into three phases:
preparation, stroke (or hold), and retraction. The preparation and retraction elements
consist of moving the arms to and from the rest position, to and from the start and end
of the stroke. Semantically relevant, however, is only the stroke phase. It is therefore
of special importance to catch this phase precisely, as possible parameters such as the
pointing target can only be estimated during this phase.

1.2 Goals and Contributions

The objective of this thesis is to provide the ability to recognize complex arm and
head gestures. A system is developed which tackles the problem in a sequence of
steps as illustrated in Figure 1.2. It first performs appearance-based face and hand
detection and associates them with previous detections, thus keeping track of people.
The obtained motion trajectories are then analyzed for the occurrence of meaningful
patterns.

The characteristics of both the robotic platform and the application scenario are
considered, which imposes the following requirements and constraints:

3

image acquisition

via webcam

face/hand detection

via trained classifiers

people tracking

via data association

motion analysis

via trained HMMs

Fig. 1.2: The sequence of steps performed by our gesture recognition system. After image acquisition
from standard webcams, we use previously trained face and hand classifiers to detect them in each
individual image. These observations are associated with previous ones and thus tracking is performed.
The continuous observation sequence is transformed into descriptive features and fed into previously
trained HMM to classify it accordingly either as a specific gesture or as non-gesture.

• Mono-vision: Only a single low-cost camera (standard webcam) is used. This
implies monocular images, limited resolution and frame rates.

• Real-time ability: Despite the limited processing power, the responsiveness of the
system is crucial, i.e., gestures should be recognized in an online fashion with low
latency. This restricts the use of time-consuming techniques.

• Non-static background: As the robot is able to move itself, the resulting camera
motion prohibits the use of simple segmentation or motion detection techniques
such as image differencing.

• Cluttered background: this complicates the segmentation step and leads to am-
biguities as well as noisy measurements that have to be dealt with accordingly.

The system presented in this thesis is able to deal with these problems. In particular,
we combine the object detection framework of Viola & Jones [2001] which works on
grayscale images with the skin color cue to support and speed up the hand detection
process. Hand classifiers which are able to distinguish both hands from non-hands, and
right hands from left hands, are constructed. We further propose to track hands indi-
rectly using Kalman filters and the Hungarian method for solving the data association
problem. Here, we take into account the uncertainty in the hand detection process.
To robustly establish a compact human body model with face and hands, we consider
spatial dependencies as well as the laterality of the detected hands. From the obtained
2D motion trajectories of face and hands, a set of expressive features is selected and
hidden Markov models (HMMs) are used to model gesture-segments according to each
phase. The trained individual-phase HMMs are aligned into a single compound HMM
according to a regular grammar, for both mono- and bi-manual gestures as well as for
head gestures. The feature stream is continuously interpreted for the occurrence of the

4

individual phases using Viterbi path alignment. In practical experiments, we demon-
strate that we can robustly spot and recognize gestures in real-time. Furthermore, we
show that we can estimate the parameters of deictic and iconic gestures accurately
during the hold phase of the respective gesture.

1.3 Thesis Outline

The remainder of this thesis is organized in accordance with the individual steps per-
formed by our recognition system, as illustrated in Figure 1.2.

The next chapter reviews previous publications related to our work. In Chapter
3, the detection of faces and in particular of hands is described, as well as training
the appropriate classifier. Chapter 4 deals with the tracking step, that is, how cor-
respondences between successive frames are determined and how human body models
are established. Chapter 5 introduces briefly the head pose estimation system which
resulted from a previous master’s thesis as well as extensions which were necessary for
our work. Feature extraction, the modeling of gestures with HMMs, their training and,
finally, their application to recognize of gestures is presented in Chapter 6. At last, we
present experimental results demonstrating the applicability of our system in various
real-world scenarios in Chapter 7 and conclude with a brief summary and discussion
of future work in Chapter 8.

5

6

22
Related Work

Many researchers have investigated the problem of gesture recognition. Each approach
tackles the problem domain differently and focuses on different aspects. In this chapter,
we give an overview over existing techniques and draw comparisons to our work.

One of the earliest work addressing gesture recognition is due to [Yamato, Ohya, &
Ishii 1992]. In this approach, discrete HMMs and a sequence of vector-quantized (VQ)
labels are used to recognize six classes of tennis strokes. The labels are obtained by
processing a monocular image sequence applying background subtraction to extract
the moving objects (which are assumed to be humans), and binarization of the moving
objects to generate blobs. These blobs correspond to the poses of the human. The
features are the number of object pixels which are then vector-quantized, such that
the image sequence becomes a sequence of VQ-labels. This sequence is subsequently
processed by the discrete HMMs.

Campbell et al. [1996] explicitly locate head and hands via a commercial stereo-vision
system which also performs tracking over time and provides the 3D trajectories. These
are used to recognize 18 different Tai Chi gestures by means of HMMs. Focus is placed
on the evaluation of different feature combinations fed to a fixed HMM, e.g., using
absolute position data, hand positions relative to the head, velocities, and angles.
They found that relative position data significantly outperformed absolute position
data and incorporating velocities yields the best results with a recognition rate of over
90%.

In [Rigoll, Kosmala, & Eickeler 1998] real-time gesture recognition of 24 isolated
gestures is presented using very low resolution gray-scale monocular images. For data
reduction differences of successive images are computed which extracts the moving

7

body parts. These regions are described using image moments and other statistics to
form a 7-dimensional feature vector that is fed into either a linear left-to-right or a
cyclic HMM, depending on the nature of the gesture in question. Recognition rates
over 90% are obtained at 15 fps.

An interesting extension to HMMs was introduced by Wilson & Bobick [1999]; Wil-
son [2000]. To extract the information carried by iconic and deictic gestures the corre-
sponding parameter is explicitly integrated into a Parametric HMM (PHMM) using a
modified version of the Baum-Welch Expectation-Maximization algorithm (see Chap-
ter 6). Using this PHMM, they are able to deduce the parameter with high accuracy
and achieve higher recognition rates than with standard HMMs. The 3D position data
of head and hands was assumed to be available (obtained using a stereo-vision tracking
system). As the parameter of gestures affects all states of the PHMM, it can only
be derived after processing the full observation sequence, thus no online recognition is
possible.

The work by Nickel, Seemann, & Stiefelhagen [2004] focuses on pointing gesture
recognition. They use a stereo camera and heuristics to locate human heads. From
these regions, histograms are computed to locate other skin-colored parts as candidates
for hands. Tracking hand candidates is performed using three probabilistic scores that
take into account 1) skin-ishness (observation score P (Ot), 2) the likelihood of the
currently assumed posture (posture score P (st)) and 3) the movement between two
successive frames (transition score P (st|st−1). The highest ranking hypotheses are
then assigned to the head as left and right hand. For recognition of a pointing gesture,
three individual HMMs are trained, one for the preparation, one for the hold (stroke),
and one for the retraction phase respectively. Rather than using the tracked head and
hand positions directly, hand coordinates are transformed into a cylindric coordinate
system with the head being the origin. The radius r, the angle Θ, and the velocity of the
y coordinate constitute the features continuously fed into the HMMs. As soon as the
hold phase is recognized, the pointing target is estimated using the 3D positions of head
and hands. Around 90% for both pointing gesture recognition and target identification
is obtained. In contrast to this system, ours is not restricted to one single gesture.
Instead, we are able to recognize a set of different arm gestures. Furthermore, they
apply a time-consuming analysis to estimate the end of a gesture phase.

Just, Bernier, & Marcel [2004] consider the problem of recognizing mono- and bi-
manual gestures given 3D trajectories of blobs using Input/Output HMMs (IOHMMs).
Their feature vector consists of 12 features and, accordingly, a high number of training
sequences is needed. IOHMMs provide no means of recognizing parametric gestures.

Brethes et al. [2004] present a face and hand tracking system for gesture recognition
in real-time combining shape and color cues. With a previously trained skin color

8

model corresponding region segmentation is done using the I1I2I3 color space with
high accuracy. Face detection is performed using the face detection method by Viola
& Jones. Additionally, face recognition is implemented using PCA and Harris interest
points with a reported recognition rate of 90%. Head and hands are tracked using
the Condensation algorithm. Reweighing the particles is based on matching the shape
with pre-defined templates such that the most likely hand configuration hypothesis is
known too. In this way four different hand poses can be distinguished which is used
to trigger certain commands. Clearly, the approach has its limitations as only very
few and distinct hand templates are considered and only the static part of a gesture is
analysed.

An approach to tackle visual recognition of typical office activities is presented in
[Montero & Sucar 2004], together with a thorough evaluation of different HMM config-
urations and feature combinations. Using a ceiling-mounted camera, only single-hand
detection and tracking is conducted based on back-projection applying a given color
histogram and simple heuristics to distinguish heads from hands. The obtained 2D
trajectory is transformed into different feature sets as in [Yoon et al. 1999] and vector-
quantized into a varying number of symbols. They found magnitude and orientation in
polar coordinates together with 64 discrete symbols and a 10-states HMM to perform
best with a recognition rate of 97%.

The problem of whole body gesture recognition is addressed in [Lee 2006]. Using
depth images against simple (white) background a 40 DOF human limb model is re-
constructed as a linear combination of stored prototypes. The obtained angles of 13
selected joints form the feature vectors which, after clustering with Gaussian mixture
models (GMMs), are the input to the HMMs. A similar approach is presented by Yang,
Park, & Lee [2006]. They use angular relations between a dozen body parts in 3D as
features which are clustered using GMMs.

Although HMMs are the most successful and therefore most often applied technique
to model the spatio-temporal pattern of gestures a few other means have been applied.
As a gesture can be modeled as a sequence of states in a spatio-temporal configuration
space, finite state machines (FSM) can be employed to recognize them. In [Hong,
Huang, & Turk 2000], each gesture is defined to be an ordered sequence of states, using
spatial clustering and temporal alignment. The spatial information is first learned from
a number of training images of the gestures. This information is used to build FSMs
corresponding to each gesture. Also minimum and maximum time-spans need to be
defined. No recognition rates are reported.

Also Neural Networks (NN) have been applied to gesture recognition, as in [Yang
& Ahuja 1999], to recognize American Sign Language (ASL) gestures. Multiscale mo-
tion segmentation is performed by means of region matching between two consecutive

9

frames. Subsequently, only those regions containing skin-color are considered. These
are then tried to fit into either an ellipse or rectangle to distinguish basic hand shapes
(open hand (ellipse) vs fist (rectangle)) and head (large ellipse) from hands. A Time
Delay NN with two hidden layers is employed to classify the motion of hand regions as
a particular gesture (sign) according to ASL. Using this approach, a recognition rate
of 93% can be achieved.

In [Richarz et al. 2006] NNs are used for pointing gesture recognition. Gabor-filtered
input images are fed into a cascade of NNs to estimate the corresponding pointing
direction. To achieve this, first face detection using the object detection framework by
Viola & Jones [2001] is employed. Centered around the face, a region of interest (ROI)
is constructed which is assumed to contain the upper body plus arms. The region is
scaled to a fixed size, Gabor-filtered and input into the first stage of the NN cascade
which outputs the pointing side (left/right). The ROI is adjusted accordingly and
serves as input to the second stage which performs radius and angle estimation of the
target. A 50% rate of correct radius and angle was achieved which still outperforms
humans. In a later work ([Martin, Steege, & Gross 2007], several improvements have
been conducted: background subtraction, Gabor jets of distinctive points in the ROI to
achieve real-time ability. Other neural function approximators were evaluated (Neural
Gas, Self-Organizing Map, Local Linear Map), yet the already used NN was found to
perform best.

In contrast to the approaches discussed above, using our techniques, we can reli-
ably recognize a set of typical complex, dynamic arm and head gestures and estimate
parameters of gestures from monocular images. We do not assume a known or static
background nor do we apply simple heuristics to detect head and hands. Instead, we
follow an appearance-based approach Viola & Jones [2001] and train classifiers that
can robustly distinguish the objects of interest from the background.

Employing such a pattern recognition techniques rather than relying on heuristics
for face or hand detection is a great step toward more reliable and robust detection of
humans. Often being costly, recent advancement allow for real-time processing of such
techniques and consequently are being applied, as in our work. The object detection
method by Viola & Jones [2001], originally applied in the face detection domain, has
been adopted to hand detection by only few research groups.

Kolsch & Turk [2004] concentrate on few distinctive hand shapes which are frequency-
analyzed for good class separation ability. This is motivated by the fact that training
such a classifier is very time-consuming (several days on a decent computer) and train-
ing a general hand classifier is impossible as there are infinitely many possible hand
configurations. For each of the most promising hand shapes an individual classifier was
trained, both with the standard feature set and with an additional, more expressive

10

rectangular feature (see Section 3.2), although it turned out that it did not improve
the detection rate. The best achieved detection rate was as high as 92% with a false
positive rate of 1.01 · 10−8.

Extending the feature set is also the focus of the work by Barczak [2005], where they
provide a method to rotate the rectangular features by an arbitrary angle, thus achiev-
ing rotational invariance. To yield significant better results, however, large minimum
search areas are needed, which limits the usability of this approach.

In [Chen, Georganas, & Petriu 2007] for four hand postures (fist, little finger, index
and middle finger, open hand) a separate hand classifier is trained on samples against
white background and a detection rate of over 90% is achieved. A context-free grammar
is then used to describe a sequence of hand postures as gesture and thus continuously
classify the posture stream as such. A more unconstrained approach is pursued by Ong
& Bowden [2004]. In their work the authors train a two-layer classifier tree for hand
shape detection where a database of hand images is clustered into sets of similar hands
according to a distance metric based on shape context. The first layer is trained with
all images for general hand detection whilst branches in the second layer are trained
on a single hand shape class. A very high detection rate is achieved, however, no false
detection rates are given. Also the hand images used for training and testing are both
against simple and similar background.

In contrast to these methods, our system is able to detect and track hands with
arbitrary shapes, even under difficult background and lighting conditions. Since the
classifiers work on grayscale images, we use a skin color cue to support and speed-up
the process of hand detection.

Finally, there are also a few surveys which review further work in this area. Somewhat
dated but very exhaustive is [Joseph J. LaViola 1999], a very recent survey can be
found in [Mitra & Acharya 2007].

11

12

33
Detecting Faces and Hands

Both face and hand detection belong to the general problem of (visual) pattern recog-
nition and have been subject to research within the computer vision community long
since. In particular, face detection assumes an outstanding position. It does not only
serve as a first-rate cue to human detection in general but also is a prerequisite for many
subsequent and closely related problems such as face recognition, face authentication
or facial expression recognition, to name a few. Hence, a vast body of literature on
this topic exists, a recent survey of which is given by Yang, Kriegman, & Ahuja [2002].
Challenges of face detections include the more intrinsic ones, e.g., the high variability
and non-rigidity of faces at large and the even higher variability of facial features such
as beards or glasses in particular. Extrinsic factors such as imaging conditions (light-
ing and camera characteristics) or image orientation further increase the complexity.
According to Yang, Kriegman, & Ahuja [2002], approaches to nevertheless address this
complexity can be categorized as follows:

Knowledge-based Establish rules of how a face is formed, mostly involving distinctive
features such as eyes and nose and their relation to each other.

Feature invariant Denotes methods which try to find facial features that behave ro-
bustly toward changes in lighting, pose etc., such as pupils or skin color.

Template matching Refers to methods which correlate an average face pattern with
the input image.

13

Appearance based Methods that learn a face pattern from appropriate training im-
ages, mainly using machine learning techniques such as Neural Networks, Naive
Bayes classifier, or Hidden Markov models.

To the latter category belongs the method by Viola & Jones [2001], which has re-
ceived much attention being one of the fastest approaches so far. Given the limited
hardware resources of a mobile robot and the wanted real-time ability, computational
complexity is one of our main issues pervading this work. Hence, we opted for the
object detection framework by Viola & Jones [2001], by that taking advantage of an
already trained face detector most conveniently accompanying the OpenCV library1.
Primarily applied to face detection, we will use this approach to train a hand detector.

To support the hand detection, an image preprocessing step is performed incorporat-
ing information drawn from the face detection result. Using the obtained face bounding
box we can estimate both how far a person is away from the camera and the dimensions
of the remaining body. More importantly, however, by simple color analysis of the im-
age detail containing the face, assumptions about the hands’ color can be made. This
information is used to identify candidate hand regions in the image. This is further of
interest as the object detection method we use is only working on graylevel images.

The preprocessing step is presented in the following section. In Section 3.2, the
object detection method by Viola & Jones [2001] is described in detail. Section 3.3
then covers constructing and training the hand detectors. Section 3.4 concludes by
briefly explaining the actual classification step.

3.1 Image Preprocessing

Starting point of the image preprocessing step is the face detection and the assumption
that both the color of the detected face, that is, its areas of skin, and the color of the
corresponding hands are similar.

The general idea is to analyze the image patch, given by the face bounding box,
to derive the color of the areas of skin, i.e. skin color, and classify the pixel colors
of the remaining image accordingly. Only within connected regions of an appropriate
minimum size identified as skin-colored we will perform the subsequent hand detection.

Skin color as a cue for human hands and, more importantly, face detection has been
utilized frequently. Advantages are that color in general is fast to process, skin color in
particular is robust toward diverse variations, for example of shape, which made it a
prominent feature for the feature-based face detection methods. An elaboration on the
usage of skin color is given by Vezhnevets, Sazonov, & Andreeva [2003]. In their paper,

1http://sf.net/projects/opencvlibrary

14

(a) (b) (c)

Fig. 3.1: Three color spaces evaluated in this work, each with the respective cluster of a skin color
sample. (a) depicts the RGB color space as a cube and the occupied skin color cluster. One observes
its large size and incompactness. In (b) the Hue-Saturation-Value (HSV) color space in cylindric view
is shown. It is easiliy seen that the cluster size is smaller and more compact. (c) The I1I2I3 color
space with a likewise compact and small cluster.

the authors identify two main problems that arise when using skin color as described:
1) What color space to operate in and 2) how to model the skin color distribution. The
following two subsections cover these questions.

3.1.1 Color Spaces

Image data often is represented in the RGB color space, a model composed of the three
additive primary colors red, green and blue which originates from computer display
applications. For color based image analysis, however, it is considered inappropriate,
mainly because of its mixing of luminance and chrominance information. Besides,
skin color cannot be represented accurately for it does not cluster nicely in this space,
as depicted in Figure 3.1(a). In general, skin color exhibits an immanent variability,
though more in intensity than in tone, and thus occupies a more or less large cluster
in the respective color spaces.

A variety of color spaces exist, most of which are better suited for representing skin
color as RGB and conversion between them is nearly always possible. One obvious
criterion for the color space of choice is that it separates luminance and chrominance
information to make a color more robust toward illumination variations. A straight-
forward way to achieve this is to normalize the RGB color space as follows:rg

b

 =

 R
R+G+B

G
R+G+B

B
R+G+B

 (3.1)

15

The resulting so-called pure colors show much less dependence on the brightness of the
original RGB colors, as desired. Further, as r+g+ b = 1, b can be omitted which saves
storage space. With its transformation simplicity this has led to a wide use of this
color space amongst researchers [Vezhnevets, Sazonov, & Andreeva 2003]. Note that,
unlike with most others color spaces, reverse conversion is not possible as the intensity
information drops away.

Another criterion for a color space of choice is the compactness of the skin color
cluster and how well it separates from other colors. An exhaustive study regarding
these questions can be found in [Martinkauppi, Soriano, & Laaksonen 2001]. In this
thesis, the commonly used HSV and the specially designed I1I2I3 color space have been
evaluated and are briefly described in the following.

HSV Color Space

The Hue-Saturation-Value (HSV) color space describes colors as points in a cylinder
whose central axis corresponds to value, i.e., brightness, which ranges from black at the
bottom to white at the top. Angles around the axis correspond to hue, which defines
the dominant color (such as red, green, purple and yellow). The distance from the axis
corresponds to saturation, i.e., measures the colorfulness. The HSV color space relates
more to the way humans perceive colors, that is, to the questions: What color? How
intense? How light or dark?

More formally, a conversion from RGB to HSV can be given as:

HS
V

 =

arccos
1
2
((R−G)+(R−B))√

((R−G)2+(R−B)(G−B))

1− 3min(R,G,B)
R+G+B

1
3
(R +G+B)

0◦ ≤ H ≤ 360◦

0 ≤ S ≤ 1

0 ≤ S ≤ 1

(3.2)

In terms of skin color one can observe that it stably consists of reddish color tones and
the most variant parts are contained within the V plane. This can straightforwardly
be used to roughly isolate possible skin colored regions, see Figure 3.2(b).

The I1I2I3 Color Space

The I1I2I3 color space has first been presented by Ohta, Kanade, & Sakai [1980] and
was specially designed to fulfill the following desired properties of a color space used for
color segmentation: Separation of luminance and chrominance information, simplicity
of transformation from and to other color spaces, no jump discontinuity as HSV (at

16

(a) (b) (c) (d)

Fig. 3.2: Various chrominance channels. (a) is the source image with drawn in face bounding box.
(b) shows the respective hue plane, with saturation and value set to unity. Note the redness of the
skin regions. In (c) we see the hue-saturation plane, with value set to unity. One observes that the
skin color appears rather independent from brightness (∼value). (d) shows the I2I3 plane with I1 set
to unity. Once again the skin color is easy to distinguish from other colors.

360◦) and other color spaces. Conversation from RGB is given as:I1I2
I3

 =

 1
3
(R +G+B)

1
2
(R−B)

1
4
(2G−R−B)

 (3.3)

As can be seen, I1 corresponds to the gray-value axis of the RGB color space and thus
contains the intensity information. I2 and I3 contain the chrominance information
and can therefore be used similarly to the HS planes to robustly locate a certain color.

We finally opted for the HSV color space for reasons that will become clear in the
following, where we describe how (skin) color distributions can be modeled.

3.1.2 Skin Color Models

Before we can classify the image pixels into foreground and background, we need a
model which describes the colors of interest. In the simplest case the model will be
a set of rules, i.e., it explicitly defines lower and upper bounds of skin color in the
respective color space. The advantage of such a method lies in its simplicity thus
allowing for fast classification of unknown pixels. Settling adequate bounds, however,
can be a tricky task.

More sophisticated models are distinguished into parametric and non-parametric re-
spectively. Parametric models often have the form of a single Gaussian distribution
or a mixture of them. Obviously, their goodness depends on the color distribution
they have to model which, in turn, much depends on the chosen color space. Main
advantages are their mathematical foundation, their ability to generalize to some ex-
tent, and their compact representation. Non-parametric models avoid the dependence

17

Hue

Intensity

(a)

0°/360°

90°

270°

180°

(b)
0°/360°

90°

270°

180°

I2

I3

(c)

Fig. 3.3: Histograms of the face bounding box patch seen in Figure 3.2(a). Depicted in (a) is the 1D
hue histogram with 36 bins. The length of the bars correspond to the number of entries. (b) shows
the 2D hue-saturation histogram with 50x50 bins in a polar . The position of the bins correspond to
the hue value (angle) and saturation value. The shades of red correspond to the respective hit count.
Marked black is the bin with the highest hit count. In (c) finally, the histogram of the I2I3 planes is
depicted. Shades of red and the black spot have the same meaning as in (b).

on the color distribution as no explict model is derived. Various realizations of such
models exist, for example training an artificial neural network to classify pixels [Brown,
Craw, & Lewthwaite 2001], called SOM (Self-Organizing Map).

A more prominent representative for these types of models is the histogram. A
histogram partitions the color space into equally spaced bins thus corresponding to a
certain range of color value components. Depending on how many color planes are
used, one speaks of either 1D, 2D, or 3D histograms. Each bin stores the frequency
of occurrence of pixel values falling into the respective range, as illustrated in Figure
3.3. Usually, one scales these bin values such that the maximum value equals 1, thus
transforming the histogram into a probability map, or Skin Probability Map as Brand
& Mason [2000] termed it. A lookup for an unknown color c:

Pskin(c) =
hist [c]

max hist [c]
(3.4)

will return the likelihood Pskin of being skin-ish according to this histogram.
In this work we use histograms to model skin color as they are fast to obtain, are

independent of the skin color distribution, and can be applied offhand to derive skin
probabilities. More important, however, is that in our setting a prior trained skin
model is neither necessary nor used as the current skin color is attained from the face.
This makes the ability to generalize and complex parameter estimations unnecessary.

3.1.3 Locating Skin Regions

Prior to calculating skin probabilities the histogram has to be prepared. As the face
bounding box often includes some background and parts of the face which are not skin

18

colored, it is important to ignore these regions to make sure that only areas of skin
contribute to the histogram.

Looking at Figure 3.2, one observes that skin-color has distinct values in the
chrominance planes, red-ish in the hue plane, blue-ish in the I2I3 planes. So for in-
stance, it should be safe to demand from the hue of a proper skin color c to satisfy
−45◦ < hue(c) < 90◦. This directly leads us to reject all pixels having a different hue
before calculating the histogram. Similarly, other bounds can be derived for the other
planes.

To further refine the histogram, we first smooth the distribution with a Gaussian
filter. This diminishes the negative side effects of the binning and reduces the risk
of holes in the outcome. The bin with the highest value is determined and a region
growing algorithm is applied which isolates the skin color “mountain” from possible
others around which may be caused by background pixels. In Figure 3.3 the hue-,
hue-saturation-, and I2I2-histogram respectively are shown.

Finally, the skin probability image can be obtained by an operation that has been
termed histogram backprojection by Swain & Ballard [1991]. It refers to the already
mentioned simple operation using the scaled histogram as lookup table. Each pixel of
the source image is then replaced by the value of the corresponding bin. In a further
step, the morphological operations close and open are applied on the skin probability
image to close holes within larger regions and to remove small regions. To homogenize
the remaining regions, we smooth the image with a Gaussian filter. As the final step
the image is binarized by thresholding it. For an illustration of these steps see Figure
3.4.

Thresholding is one of the earliest and simplest techniques used for image segmen-
tation, see [Sezgin & Sankur 2004]. However, it is not clear in advance what a good
threshold value is. Setting the threshold too high will introduce large holes in connected
regions or even remove them completely. Setting it too low will possibly introduce new
regions which are not skin colored but roughly similar, for example yellow, brown or
red objects. Hence, the choice of an adequate threshold parameter is crucial and many
methods exist. In this work a combination of two thresholds is applied. The skin prob-
ability image is binarized twice using both a high and a low threshold value. If a region
resulting from the low threshold binarization contains at least one region resulting from
the high threshold binarization both these regions are merged and kept, otherwise the
region is dismissed. By this way, holes in actually connected regions are diminished as
well as non-skin colored regions.

Figure 3.4(f) shows the final result. Via connected component labeling each individ-
ual blob is obtained which will then be the region of interest for the successive hand
detection.

19

(a) (b) (c) (d) (e) (f)

Fig. 3.4: Backprojections of Fig. 3.2(a) (inverted for better readability). In (a) a 1D hue histogram
was used, a 2D hue-saturation histogram in (b) and a 2D I2I3 histogram in (c). Observe that not
only skin colored parts are left back. This is mainly due to very dark or very bright pixels which often
have no defined color. (d) shows (a) after excluding such pixels. In (e) the morphological operations
close and open have been applied to remove small regions and close holes in larger regions. (f) The
final binarized image.

As a result, we found that with the I2I3 histogram in fact the best accuracy was
obtained, followed by the 2D HSV histogram. We found further, however, that re-
gardless of the chosen color space, the hands can be of different color than the face.
This is especially observable under bad lighting conditions. For this reason, we opted
for the 1D HSV histogram, which is less exact. To diminish this problem, we start
updating the histogram with color information from the hand regions once they have
been detected by the hand classifier. By this, we adapt the segmentation process to
the current color of the hands. To account for the fact that hands are rather elliptic
than rectangular, the region containing the hand is weighted with the Epanechnikov
kernel [Epanechnikov 1969], given as

kE(r) =

{
3
4
(1− r2) for r ≤ 1

0 otherwise,
(3.5)

where r denotes the the distance from the center of the region. Using the weighted
hand region to update the histogram ensures that pixels near the center which most
likely contain hand pixels count the most as opposed to pixels which are farther away.

This completes the section on preprocessing which serves the purpose to constrain
the image to regions where we expect hands to be found. The means to detect these will
be the object detection framework by Viola & Jones [2001], presented in the following.

3.2 Rapid Object Detection

The general modus operandi when detecting objects is to move a search window in
small steps and with increasing dimensions over the image and to process the detail

20

defined by the search window. The patch can be used directly as an input to, for
instance, a neural network or one could try to extract some meaningful features. Often
this is to prefer, as dimensions get reduced. Additionally, features usually compensate
small variations of the object better, as they in general depend on larger regions than
only one pixel.

In all cases, however, the described process can be quite time consuming as each
detection step will be called thousands of times and thus every effort has to be un-
dertaken to minimize the time needed for such a detection step. The object detection
framework for graylevel images proposed by Viola & Jones [2001] achieves this by
introducing three concepts:

1) The first concept relates to the utilization of simple rectangular features in con-
junction with so-called integral images which allow for extremely fast computa-
tion of the corresponding feature values.

2) The second concept is a way to select of possibly hundreds of thousands of features
only those which are the most discriminative. An adaptive version of the Boosting
algorithm is used here to build efficient and strong classifiers with only a small
number of features.

3) The third contribution is the arrangement of a set of such classifiers of increasing
complexity into a cascade. This allows for fast rejection of image regions that do
not contain the object.

These three concepts will be described in the following sections in more detail.

3.2.1 Feature Computation

As mentioned, simple rectangular features are used to describe the object in question.
Each feature is divided into two, three, or four regions, as shown in figure 3.5(a) -
3.5(o). Each such feature can be arbitrarily scaled and translated within the search
window and the feature value is then computed as the sum of pixel intensities covered
by the white area(s) subtracted by the sum of pixel values under the red area(s). Due
to their simplicity, only horizontal, vertical, and to some extent diagonal structures can
be captured well but their sheer number2 and the already mentioned possibility of fast
feature value computation well compensate for this somewhat restricted flexibility.

2In a 24x24 search window one can construct over 160000 such features, see [Lienhart & Maydt 2002]
how to compute the exact number.

21

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k) (l) (m) (n) (o)

Fig. 3.5: Rectangular features used in this work. Top row: The original features used by Viola &
Jones [2001]. (a) and (b) adapt to edges, (c) and (d) are line features, whereas (e) catches diagonal
structures. Bottom row: Extended feature set by Lienhart & Maydt [2002]. The main contribution
is the introduction of 45◦ rotated features (h) - (m) and (o) which increases the overall expressive
power. The feature value is computed as the sum of pixels covered by the red part subtracted by the
sum of pixels under the white parts.

The Integral Image

To compute the feature value the pixel intensities have to be summed up and subtracted
accordingly. For fast computation of these sums, Viola & Jones [2001] introduced the
integral image, which, once computed, allows for pixel summation of arbitrarily sized
rectangles in constant time. Having the same dimensions as the original image each
pixel entry ii(x, y) equals the sum of all pixel contained in the rectangle spanned by
the image origin (0, 0) and (x, y) (see Figure 3.6):

ii(x, y) =
∑
x′≤x

∑
y′≤y

i(x′, y′) (3.6)

With an appropriate recurrence or dynamic programming scheme the integral im-
age can be computed in one single pass. The pixel sum s of an arbitrary rectangle
(x, y, w, h), w and h being the width and the height respectively, can now be computed
by the four pixel sums a = ii(x−1, y−1), a = ii(x+w−1, y−1), a = ii(x−1, y+h−1),
a = ii(x+ w − 1, y + h− 1):

s = d− b− c+ a (3.7)

that is, in constant time, as desired (see Figure 3.6).

3.2.2 Boosting Classifiers

Boosting, first introduced in [Schapire 1990], belongs to the so-called ensemble methods
which follow the idea to combine several weak learners to a single strong learner.
Weak learners are simple classifiers which only have to correlate slightly with the true
classification though better than a random guess would do. The classification of the

22

A
(x, y)

(a)

A

(x, y)

(b)

a b

c ds

(c)

a

b
c

d
s

(d)

Fig. 3.6: (a) The value of the integral image at (x, y) equals the sum of the pixel values of the original
image covered by A. (b) For rotated features a slightly different representation is necessary. (c) and
(d) The pixel sum within rectangle s can be computed as follows: Subtracting from the large rectangle
d, rectangles b, and c, and adding rectangle a, as its area got subtracted twice, i.e., s = d− b− c + a

final strong classifier is a simple majority vote of its weak classifiers and it is proven that,
by taking an appropriately high number of weak classifiers the combined classification
then correlates arbitrarily well with the true classification.

The usefulness of such an algorithm in the case at hand is twofold: On the one hand,
it provides a method to combine weak classifiers based on simple rectangular features
to a single strong classifier. On the other hand, it allows to reduce the set of possible
features, which, as mentioned, is very large, by selecting only the most discriminative
features.

While the original version of the boosting algorithm conducts a fixed number of
rounds to create the final strong classifier, AdaBoost - presented in [Freund & Schapire
1995] - which is used here, adapts to the training error of the weak classifiers until a
desired small error rate is reached. It is presented in the following section.

AdaBoost

Algorithm 1 AdaBoost
Input: a training set (x1, y1), . . . , (xN , yN) where yi − 1 for negative and yi − 1 for

positive samples
Output: the final strong classifier H(x) = sgn

[∑T
t=1 αtht(x)

]
1: w1

i = 1
N

for i = 1 . . . N . initialize weights
2: for t← 1, T do
3: call WeakLearner which returns ht(x) which minimizes εt =

∑
i:ht(xi) 6=yi

wt
i

4: αt = 1
2
ln

(
1−εt

εt

)
. compute classifier weight

5: wt+1
i = wt

iexp(−yiαtht(xi)) . update weights
6: wt+1

i =
wt+1

i∑
i wt+1

i

. normalize weights

23

The AdaBoost algorithm (see Algorithm 1) receives as input a sequence of n labeled
training samples (x1, y1) , . . . , (xn, yn). xi denotes the image patch, yi the class label
with yi = 1 for positive samples and yi = −1 for negative samples.

AdaBoost proceeds in a series of rounds t = 1, . . . , T in the following fashion. At each
round t the WeakLearner generates a weak classifier h(x) ∈ {−1,+1} which best
separates the positive and the negative examples with respect to the current weights
wt. These weight are initially uniformly distributed. The choice of the best hypothesis
is governed by the error function

εt =
∑

i:ht(xi) 6=yi

wt
i (3.8)

which has to be minimized. A classifier weight αt is computed reciprocally proportional
to the error. Then reweighing is conducted according to the performance of the current
weak classifier ht. The goal of the update rule is to decrease the weight of correctly
classified examples and increase the weight of misclassified examples. In this way, in
the next round the algorithm is forced to concentrate on the hard examples which were
poorly predicted in former rounds.

The last step of the boosting algorithm is to calculate the final strong classifier as a
linear combination of all weak classifiers.

H(x) = sgn

[
T∑

t=1

αtht(x)

]
(3.9)

The parameters αt are used as weighting factors to measure the importance of each
weak hypothesis ht. The weight of a hypothesis ht gets larger as its error εt gets smaller.
In this way, AdaBoost adapts to the accuracies of the generated weak classifiers.

What is left to clarify is how the procedure WeakClassifier actually constructs
and learns a weak classifier out of the features. To keep it simple (and therefore fast),
a weak classifier hi(x) only consists of a single feature fi and a threshold θi such that
classification is carried out according to following equation:

hi(x) =

{
1 if pifi(x) < piθi

0 otherwise
(3.10)

The parity pi changes the sign of the inequality, meaning that if pi = 1 positive examples
are below the threshold and if pi = −1 above. In order to calculate the optimal
threshold θi and the parity pi for a given feature fi the corresponding values for N

24

Search
window

C 1 C2 Cn

reject reject reject

accept

Fig. 3.7: The classifier cascade consists of n individual, increasingly complex classifiers. Only if all of
them accept the input window the final classifier returns positive. The first few classifiers are trained
in such a way that they reliably reject most of the negative (= background) samples.

training samples are sorted ascendingly: fi(x1) < . . . < fi(xN). The threshold is
positioned between two successive values and the resulting classification error according
to the weights and the class of the sample (either positive or negative) is computed.
Starting from top of the list, i.e., position the threshold between fi(x1) and < fi(x2)
all possible classification errors can be computed in a single pass. This is done twice
setting p = 1 and p = −1 respectively. The combination of p and the threshold leading
to the minimum classification is then returned.

3.2.3 Cascading Classifier

To further decrease computation time and even increase detection performance the
concept of a cascading classifier is introduced. A cascade is a hierarchical construct
similar to a linear decision tree, containing (strong) classifiers of increasing complexity
(see Figure 3.7). If the currently evaluated sub-window passes one stage it is forwarded
to the next stage, otherwise rejected immediately. Only if all stages are passed suc-
cessfully the input is classified as positive. While the first few stages are designed to
roughly distinguish between object and non-object the subsequent are trained to focus
on the differences between object and object-similar background. This allows for very
simple classifiers in the beginning, i.e., containing only a few weak classifiers whilst in
the final stages the complexity increases more and more, as more features are needed
to describe the subtle differences between object and object-similar background. In
the example classifier of Viola & Jones [2001] the first stage contains only two features,
the final one as many as 200.

Clearly, this achieves the desired reduction of computation time as for a proper
background region, which will be the vast majority, only the early stages will be needed
to reject it, thus requiring the computation of only a few dozens of feature values. In
contrast, a monolithic approach would need to evaluate all contained weak classifiers, of
which there can be thousands. To see that, in return, detection performance increases,
recall that all subsequent stages have to deal only with what passed the previous stage,
that is, they can use rather specialized features on this preselected input, which might

25

fail on completely unexpected, i.e., arbitrary input.
In order to obtain classifiers with the desired behaviour two conditions have to be

met: On the positive training data a minimum detection rate di is demanded as well
as a maximum false positive rate fi. For N such classifiers in a cascade the overall
detection rate D and overall false alarm rate F can be computed as

D =
N∏

i=1

di, F =
N∏

i=1

fi (3.11)

With the typical values di = 0.995 and fi = 0.5 and 20 stages a sufficiently high
D ≈ 0.9 and sufficiently low F ≈ 9.5 · 10−7 is achieved.

Training such a stage classifier ci requires slight modifications to the original Ada-
Boost algorithm as it tries to minimize the overall classification error instead of taking
into account certain (high) detection rates and appropriate (low) false alarm rates. A
simple trick is applied to make this possible: a threshold b, with b > 0, is added to
Equation 3.9. By increasing b, more samples, both negative and positive, pass the
classifier, thus the detection rate is regulated. By performing this step the false alarm
rate also increases. If it exceeds the required maximal false alarm rate fi new weak
classifiers have to be added until both conditions are met.

3.3 Constructing the Hand Detector

It is obvious that hand detection is immanently harder than for example face detection.
Whereas faces are usually upright, hands can appear arbitrarily rotated, in-plane as
well as out-of-plane. In addition, they can assume the most various shapes as they
are highly articulated with more than 20 degrees of freedom. In fact, without context
information there certainly are hand configurations which would hardly be recognized
even by humans. Context information such as an arm which further is connected to
the body of a person allows to nevertheless classify this uncommon hand configuration
correctly.

We construct two classifiers: a generic hand classifier which detects hands and rejects
non-hands, and a specific hand classifier which is able to discriminate right from left
hands. For the latter, we trained a classifier with positive samples containing hands of
a particular (in our case right) laterality only. As hands are symmetric, it can be used
to detect left hands as well. We connect both classifiers in a row such that the specific
classifier is only applied in case the generic classifier detected a hand at all.

In the following section we present several strategies which have been employed to
obtain a suitable collection of training samples.

26

(a)

(b)

(c)

Fig. 3.8: Image patches containing hands. In (a) we see hands that have been cropped using the given
size of the face bounding box such that we observe smaller and bigger hands. (b) No fixed size is
chosen but according to the actual dimension of the hand. In (c) right hands are seen half of which
are flipped left hands from the set of samples shown in (b).

3.3.1 Collecting Training Data

The main idea is to constrain both positive and background samples in such a way
that they correlate to the detection scenario. The same way the detection process
is restricted to skin-colored regions, only these regions are considered at all during
training data acquisition. At the first sight this seems to make little sense as the most
proper skin color in a grayscale image differs not much from, for instance, a proper
green. However, the intuition is that skin-colored objects might share other properties,
for example similar structure, which in case of faces certainly is true.

Another cue that is being incorporated affects the size of positive samples. We
observe that there is a correlation between the dimensions of hand and corresponding
face. Rarely larger than the face, the hand will mostly fit easily into the face bounding
box. By cutting out an image patch containing the hand with the same size of the
face bounding box context information is included which might be useful. See Figure
3.8(a) for a collection of positive samples.

To the specific classifiers’ training data, image patches containing the opposing hand
are added as negative samples. As we cannot know which negative samples are in fact
considered during the AdaBoost rounds as this depends on the error weights, another
version of the specific classifier is trained. For this tuned version, we limited the training
data to consist only of hand image patches, that is, right hand image patches as positive
samples and left hand image patches as negatives. This should also relate more to the
detection scenario where the specific classifier is only applied to regions that are likely
to contain hands.

To summarize, we collect the training data as follows:

27

• apply the face detector to the input image

• extract skin-colored regions as described in Section 3.1

• if skin-colored, mark hands as either left or right

• crop and scale the positive samples to equal sizes, here 24x24 pixels

• for the specific classifier, flip image to add the opposing hands to the respective
negative and positive sample pool

• crop all other skin-colored regions as negative samples

In a first attempt we selected only a few hundred positive samples from a single
person, yet additionally investigated an idea to improve the positional accuracy of
the classifier. More exactly, by providing many samples where the hand is precisely
centered and less where it is shifted a few pixels, we want to force the classifier to
prefer the former. For that purpose, each positive sample was duplicated according to
following Gaussian distribution matrix 1 2 1

2 4 2
1 2 1

where the rectangle defining the image patch to be cropped was shifted accordingly.
As a side effect, this enlarges the set of positive samples by the factor 16.

In a second step we repeated the above to obtain more samples, both negative and
positive (around 5000), with other people, different background and lighting conditions
and applied the already trained classifiers to include false positives into the collection
of negative samples in order to further improve the detection accuracy.

For reasons of comparison, we also trained classifiers without the imposed restrictions
on the training data set. More exactly, the size of the positive sample patch is not de-
pendent on the face bounding box size but corresponds to the actual hand dimensions.
For a selection of such positive samples see Figure 3.8(b) and 3.8(c). As background
samples we chose images containing skin regions, but not containing hands. To our
surprise, we experimentally found the generic classifier trained this way to outperform
the restricted ones. For the comparison and a discussion see Chapter 7.

3.4 Detecting Hands

We detect hands according to Figure 3.9. Starting from the face detection result, image
preprocessing is performed as described in Section 3.1. Additionally, the size of the

28

face detection

action area

hand detection

image preprocessing

Fig. 3.9: The detection process. First faces are detected. From the face bounding box derive action
area and perform image preprocessing. Then apply hand detectors at each skin region within action
area. As a result we get hands which are either classified as right (in the image green) or left (red) or
unknown.

face bounding box is used for an estimation of an action area of the hands. The action
area is simply the union of the two circles centered at the estimated shoulder joints
with the outstretched arms as radius. The arm length is also determined from the face
bounding box size.

For each of the skin-colored regions within this action area the hand detectors are
applied with a search window size set to the corresponding face bounding box size.
First, the generic hand detector is applied. In case there is a hand, the search window
is usually accepted at multiple locations and multiple scalings which are close to each
other. This is understood, since the features used, especially the larger, are invariant
to slight shifts and variations in size. The number of all accepted search windows can
therefore serve as a certainty measure. In case it exceeds a threshold ε, the search
windows are clustered based on a distance metric. In each of the resulting mean
rectangles the right hand classifier is applied twice, once in the original image and once
in the flipped. Four cases are possible:

1) No success in both images ⇒ return generic hand.

2) Success in original image ⇒ return right hand.

3) Success in flipped image ⇒ return left hand.

4) Success in both images⇒ compare the numbers of accepted search windows and
return the hand corresponding to the higher number.

29

This concludes the detection process. Of course, false detections of both the generic and
the specific classifier are possible as well as missing detections. We therefore maintain
a probabilistic belief over a hand existence and laterality. This, amongst others, is the
subject of the next chapter.

30

44
Tracking People

Having located faces and hands in the current image, the next step is to determine
correspondence with previously detected faces and hands. In doing so, we track faces
and hands over time and thus obtain the trajectory in space. Additionally, we have to
ascertain the belonging of hands to a particular face, thus constituting our compact
human model.

Correspondence can be settled by different means and different similarity measure-
ments. In the domain of face recognition one often applies principal component analysis
(PCA) to re-identify known faces. However, such approaches are too time-consuming
for our purposes so that we rely on a distance-based measure. This allows for fast
frame rates which in turn makes it robust as the average displacement in each frame
is sufficiently small. To find the globally best assignment given some associated costs,
we make use of the Hungarian method which is described in Section 4.1.

To account for the possibility that a face or, in particular, hand does not get detected
in every frame, other means to keep track of it have to be applied. In this work, we
employ a Kalman filter to predict the next positions and to filter noisy measurements,
combined with a fast color-based tracking algorithm.

Finally, yet another assignment problem has to be solved. This time, we have to
decide for each hand if it could possibly belong to a certain face thus constituting a
person. Up to two hands can be assigned to each person and again this is a global
problem as each hand can only get assigned once. Again, we use the Hungarian method
to find the best assignment.

31

4.1 Hungarian Method

The Hungarian method has first been devised by Kuhn [1955] as a means to solve the
so-called assignment problem. The assignment problem is a combinatorial optimiza-
tion problem which consists of finding matching pairs for the elements of two sets by
considering associated costs that have to be minimized (alternatively, benefits that
have to be maximized). It corresponds to the graph theoretic problem of finding a
maximum-weight matching in a weighted bipartite graph. A common exemplification
is to consider a number of agents and jobs. Each agent can perform exactly one job
each causing different costs and the goal is to dispatch the jobs to the agents such that
minimal costs arise.

In a brute-force approach this problem can be solved considering n! combinations, n
being the number of agents or jobs; with the Hungarian method the time complexity is
reduced to O(n3). To achieve this, the costs for every possible assignment are arranged
into a cost matrix C,

C =

c0,0 . . . c0,n
...
cn,0 . . . cn,n

 (4.1)

where cij denotes the costs caused by the assignment of the jth job to the ith agent. If
C is not a square matrix (more jobs than agents or vice-versa), C is augmented with
dummy jobs or agents respectively usually with zero costs or some threshold costs. The
actual algorithm is listed in Algorithm 2. Obviously, the key challenge is to define an
appropriate cost function, which largely depends on the case at hand and thus will be
described in the corresponding sections.

4.2 Kalman Filter

The Kalman filter was developed by Kalman [1960] and is used to estimate the state
of a linear dynamic system based on possibly incomplete and noisy measurements.
Meanwhile, there exist variants for non-linear systems such as the Extended Kalman
filter (EKF) or Unscented Kalman filter (UKF). Welch & Bishop [1995] provide a good
introduction into Kalman filters and all its variants. In this work, we only used the
basic Kalman filter.

The Kalman filter algorithm can be described as a two-step process. Firstly, there
is a prediction step that makes use of the learned system dynamics to anticipate the
next state of the system. Secondly, an update step occurs that takes a new observed
measurement and uses it to correct the system dynamics and system state. In the

32

Algorithm 2 HungarianMethod
Input: a cost matrix C where cij denotes costs of assigning job i to worker j
Output: modified cost matrix C, with zeros representing optimal assignment
1: for r ← 0, Rows do . for each row
2: cr,j ← cr,j −min(cr,0:n) . subtract row minimum from each row entry
3: for c← 0, Cols do . for each column
4: ci,c ← ci,c −min(c0:n,c) . subtract col minimum from each col entry
5:
6: cover all zeros with the minimum number of lines
7: if num_lines == n then
8: find assignment combination with zero costs
9: else

10: min = min_unc(c0:n,0:n) . find minimum uncovered entry
11: ci,j ← ci,j− min . subtract from all uncovered entries
12: dci,j ← dci,j+ min . add to all doubly covered entries
13: goto line 5

domain of object tracking the state of a system usually comprises position, velocity
and possibly acceleration of the object, whereas only object locations are measured.

Algorithm 3 lists the steps performed by the Kalman filter. During the prediction
step the prior state xt is estimated according to Line 2. Here, A denotes the state
transition matrix and relates to a motion model in the object tracking domain. B
relates the option control input (e.g., motor control of an mobile robot) with the
estimated state.

The estimated state deviates from the actual state by a certain estimation error
which is given by the error covariance matrix Σt−1. It is estimated in Line 3 according
to the transition matrix plus additional Gaussian process noise Qt.

In the correction step the estimation xt is improved by means of the measurement
zt. This measurement is assumed to relate to the state according to following equation

zt = Hxt + vt . (4.2)

Here, H is a matrix that captures the relation between state and measurement. In the
simplest case, that is, all of the system state can be measured, it will be the identity
matrix. vt denotes the measurement noise and is assumed to be zero mean Gaussian
noise with covariance Rt: vt ∼ N(0, Rt).

The algorithm then proceeds by computing the Kalman Gain Kt according to Line
6. Kt is finally used to calculate the posterior state xt and the error covariance Σt.

33

Algorithm 3 KalmanFilter
Input: state xt−1 and associated error covariance matrix Σt−1, ut current control, zt

new measurement
Output: new state xt and associated error covariance matrix Σt

1: Prediction:
2: xt = Atxt−1 +Btut

3: Σt = AtΣt−1A
T
t +Qt

4:
5: Correction:
6: Kt = ΣtH

T
t (HtΣtH

T
t +Rt)

−1

7: xt = xt +Kt(zt −Htxt)
8: Σt = (I −KtHt)Σt

In the object tracking domain, the choice of the system state and the corresponding
transition matrix is of practical interest. In the simplest case we assume the object
to move at constant velocity. Then, the system state x = [x, y, vx, vy], with the state
transition matrix

A =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 . (4.3)

We further considered a constant acceleration motion model, thus having a system
state x = [x, y, vx, vy, ax, ay] and accordingly

A =

1 0 ∆t 0 1

2
∆t2 0

0 1 0 ∆t 0 1
2
∆t2

0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1

 . (4.4)

Besides, the correct initialization of error and noise matrices is essential as these will
not get updated by the Kalman filter process.

4.3 Tracking Faces and Hands

Tracking hands is a more challenging problem as we will point out. Thus, additional
cues are required for reliable tracking results. Hence, in the following first the method

34

to keep track of faces is described. Extensions which are necessary to apply this method
to hand tracking are developed thereafter.

4.3.1 Tracking Faces

In our approach to keep track of a particular face we follow [Bennewitz et al. 2005].
In the absence of a means to re-identify previously seen faces a distance-based cost
function is used to solve the data association problem. We apply Kalman filtering
to smooth the obtained trajectory and to support the data association. The general
process is shown in Algorithm 4. The entries cij of the cost matrix C reflect the distance
of the new observations to the expected positions of the already tracked faces (tracker)
which must not exceed a maximum distance. If it does, no assignment is considered
by setting cij to maximum. The maximum distance depends on the time elapsed since
the last update and the maximum Kalman filter error.

Then, the correspondences are obtained using the Hungarian method as described
above, also depicted in Figure 4.1. For each observation that cannot be assigned, the
appearance of a new face is assumed, hence a new tracker is set up. An associated
Kalman filter is initialized with a constant velocity motion model which for appro-
priately high frame rates is a tolerable approximation of the true motion. Successful
assignments are used to update the associated Kalman filter and a (thusly smoothed)
trajectory is obtained as the sequence of centers of the observation rectangles.

To provide a means to deal with both false and missing detections, we additionally
maintain a probabilistic belief which reflects the detection frequency. Each time step
the belief is updated in virtue of following equation:

bel(f |z1:t) =

[
1 +

1− Pr(f |zt)

Pr(f |zt)
· Pr(f)

1− Pr(f)
· 1− bel(f |z1:t−1)

bel(f |z1:t−1)

]−1

. (4.5)

Here, f denotes the existence of a face, zt is the observation (face detected/not de-
tected) at time t, and z1:t refers to the observation sequence up to time t. The prior
probability Pr(f) is commonly set to 0.5. Therefore, the second term in the product
in Eq. (4.5) becomes 1 and can be neglected. Further values that have to be speci-
fied are the probability Pr(f |z = det) that a face exists if it is detected in the image
and the probability Pr(f |z = ¬det) that a face exists if it is not detected (anymore).
We experimentally found out that adequate values for those parameters are 0.9 and
0.2, respectively. Using the update rule in Eq. (4.5), the belief increases if positive
observations occur and decreases otherwise.

If the belief drops below a certain threshold, the face is considered not to exist
anymore. Either it moved out of the field-of-view or it was a false positive in the first
place. In these cases, the corresponding tracker is deleted.

35

Algorithm 4 HungarianAssign
Input: the set O of new observations
Output: updated/new trackers
1: set up cost matrix C
2: for all o ∈ O do
3: for all trackers t do
4: p← pred_pos(t) . get predicted position from Kalman filter
5: compute dist(o, p) . compute Euclidian distance to detection
6: if dist < MAX_DIST then
7: set cij proportional to dist
8: else
9: cij ← MAX_COST

10: HungarianMethod(C) . call Hungarian method with cost matrix C
11: for all o ∈ O do
12: if assigned(o) then
13: update corresponding tracker
14: else
15: create new tracker

4.3.2 Tracking Hands

To track hands, we apply the same method as with faces. However, hands and their
movements reveal some peculiarities which considerably increase the complexity and
are as follows:

1) Hands can be of either left or right laterality.

2) Hands may move much faster and with much more varying speed than faces do.

3) The detection rate for hands will be lower than for faces.

The first point means we detect hands of either laterality with varying certainty (see
Section 3.4), and one and the same hand may occasionally get classified differently.
However, we expect a strong tendency toward a particular (= the true) laterality over
time. We therefore require that assigning observations of one type to trackers of the
opposed type is less likely than to the same type, depending on the respective certainty.
The second point is obvious and leads to much larger displacements between frames
(which makes low frame processing times so vital). The last point depends partly on
the second: especially during fast movements we have an increased incidence of motion
blur in such a way that only contourless colors remain, thus making hand detection

36

(a) (b)

Fig. 4.1: The assignment problem with two existing faces and two new observations. In (a) the
new observations in black are assigned to each of the existing faces (in gray) with the arrow length
indicating the costs. In (b) the global minimum is found as desired.

impossible. Another reason for lower detection rates is that there will be innumerable
hand shapes which have not been seen by the detector and hence will get rejected.

In the following we will devise strategies to tackle these problems adequately.

Laterality of the hands In order to solve the first problem, we fall back on the
recursive Bayesian update scheme as of Eq. 4.5 and additionally maintain a belief
about the hands’ laterality. Thus, we incorporate the certainty given by the specific
hand detector, which distinguishes between right and left hands:

bel(hr|z1:t) =

[
1 +

1− Pr(hr|zt)

Pr(hr|zt)
· 1− bel(hr|z1:t−1)

bel(hr|z1:t−1)

]−1

(4.6)

Here, bel(hr|z1:t) denotes the belief that the hand is of right laterality given the obser-
vation sequence up to time t. Obviously, it holds that bel(hl|z1:t) = 1− bel(hr|z1:t).

We performed experiments to determine the probability Pr(hr|z = hr) that a hand
is a right hand given it was detected as such and the probability Pr(hr|z = hl), re-
spectively. In doing so, we only considered detections with a certainty of 100%. This
means, we adjust

Pr(hr|z = hr) =
1

2
+

(
Pr
max

(hr|z = hr)−
1

2

)
· certaintyz (4.7)

with 0.5 < certaintyz ≤ 1. Thus, the belief remains nearly unaffected by uncertain
measurements but is largely governed by certain observations. Note that in case the
hand is found only by the generic hand detector Pr(hr|z = hr) = 0.5, i.e., the believe
does not change.

To reflect the fact that we only want to assign hand observations of a particular type
to hand trackers of the same type, we define the following assignment probability

37

Passign = Pr(hr|z = hr) · bel(hr|z1:t) + Pr(hl|z = hr) · bel(hl|z1:t) (4.8)

We then adapt the cost function to incorporate both the distance measure and Passign

in accordance with following formula

cij =
α

Passign

+
1− α

e−
d2

σ2

(4.9)

Here, d is the distance between predicted and detected and is the argument for the nor-
mal distribution N ∼ (0, σ2). σ2 is chosen in such a way that if d exceeds MAX_DIST
the probability gets close to zero. To determine the weighting factor α, we define
Pworst

assign , that is, the lowest probability for which assignment will be possible, and set it
equal with the corresponding distance probability:

α

Pworst
assign

=
1− α

e−
d2
worst
σ2

⇒ α =
Pworst

assign

Pworst+e
−

d2
worst
σ2

assign

(4.10)

Fast hand movements For the second problem we reduced the needed time for pro-
cessing a single frame. Currently, we achieve a frame rate of 20fps. This keeps the
displacements within a tolerable limit. In addition, instead of using a constant velocity
model, we switched to a constant acceleration model for the Kalman filter which proved
to adapt faster to changing velocities, thus providing better predictions.

Missing hand detections As the phases of non-detection can be longer than could
be bridged by solely using the Kalman filter predictions, further tracking techniques
are applied to follow the hand in motion during such phases. The CAMShift algorithm
by Bradski [1998] is a simple yet efficient color-based tracking algorithm and will be
used in this work. It is described in the following.

CAMShift

CAMShift, short for continuously adaptive mean-shift, by Bradski [1998], is a color-
based tracking algorithm. It is grounded on the general mean-shift algorithm to find
the mode (peak) of an arbitrary probability distribution. Mean-shift proceeds in a
series of iterations or until a certain convergence criterion is met, for instance, the
mode changes less than a given threshold ε. It starts with an arbitrarily positioned
search window covering a part of the distribution, as in Figure 4.3(a). The mean of
this part is computed and the search window centered thereat (Figure 4.3(b)). This is

38

(a) (b) (c)

Fig. 4.2: Tracking with Kalman filter. (a) Shows a downward moving hand during two frames which
is detected in both frames. The dashed rectangle denotes the Kalman filter prediction for the second
frame which is remarkably close to the true position. In (b) we see an upward moving hand which
was not re-detected. Again, the dashed rectangle denotes the Kalman filter prediction. The blue
ellipse is obtained by the CAMShift algorithm, and corresponds to the centroid of the respective
back-projection which can be seen in (c).

repeated either a fixed number of iterations or until a certain convergence criterion is
met, e.g., the search window does not shift more than ε, which is commonly set to 1
pixel. This iterative process is also depicted in Figure 4.3.

The contribution of Bradski [1998] is to adopt this general algorithm for the pur-
pose of object tracking. Therefore it is necessary to transform the input image into
a probability distribution image where the pixel intensities reflect the likelihood that
they belong to the tracked object. Although many ways are conceivable to obtain such
a transformation, CamShift utilizes the color information of the object in question
for this purpose, by means of histogram back-projection (described in Section 3.1.3).
The back-projection is re-computed every frame as is the current search window size,
the objects size and, optionally, the objects orientation using image moments analysis.
Thus the algorithm adapts to the various changes the tracked object can undergo due
to, e.g., illumination changes, object articulations, and the like. Hence its name.

As can be seen in Algorithm 4.3.2 the mean can be computed efficiently using sta-
tistical image moments of 0th and 1st order. In general, the moment of order i, j is
given by

mij =
∑

x

∑
y

I(x, y) · xi · yj (4.11)

Accordingly, the 0th order moment is computed as: m00 =
∑

x

∑
y I(x, y) and cor-

responds to the area of the distribution. Together with the 1th order moments
m10 =

∑
x

∑
y xI(x, y), and m01 =

∑
x

∑
y yI(x, y) the centroid of the distribution

39

KAPITEL 4. DAS MEAN-SHIFT TRACKING-VERFAHREN 19

)b()a(

)d()c(

(e)

Abbildung 4.1: Mean-Shift-Algorithmus. (a) Die Kreise stehen f ür verschie-
dene Wahrscheinlichkeitswerte P . Die Werte nehmen von schwarz nach weiß
hin ab. Das blaue Quadrat stellt das Suchfenster dar und der rote Ring die
aktuelle Position c des Fensters. (b) Der Pfeil visualisiert den Mean-Shift
und der grüne Kreis die neu berechnete Position c des Maximums innerhalb
des Suchfensters. (c) Das Suchfenster wurde an die neue Position c aus (b)
verschoben und die Berechnung des Maximums wird erneut ausgef ührt. (d)
Wieder wird das Suchfenster nach c verschoben und das Maximum im Such-
fenster ermittelt. (e) Das Suchfenster wird an c positioniert. Bei erneuter
Berechnung des Maximums ist die Ergebnisposition gleich der Ausgangspo-
sition. Dadurch konvergiert der Mean-Shift-Algorithmus.

(a)

KAPITEL 4. DAS MEAN-SHIFT TRACKING-VERFAHREN 19

)b()a(

)d()c(

(e)

Abbildung 4.1: Mean-Shift-Algorithmus. (a) Die Kreise stehen f ür verschie-
dene Wahrscheinlichkeitswerte P . Die Werte nehmen von schwarz nach weiß
hin ab. Das blaue Quadrat stellt das Suchfenster dar und der rote Ring die
aktuelle Position c des Fensters. (b) Der Pfeil visualisiert den Mean-Shift
und der grüne Kreis die neu berechnete Position c des Maximums innerhalb
des Suchfensters. (c) Das Suchfenster wurde an die neue Position c aus (b)
verschoben und die Berechnung des Maximums wird erneut ausgef ührt. (d)
Wieder wird das Suchfenster nach c verschoben und das Maximum im Such-
fenster ermittelt. (e) Das Suchfenster wird an c positioniert. Bei erneuter
Berechnung des Maximums ist die Ergebnisposition gleich der Ausgangspo-
sition. Dadurch konvergiert der Mean-Shift-Algorithmus.

(b)

KAPITEL 4. DAS MEAN-SHIFT TRACKING-VERFAHREN 19

)b()a(

)d()c(

(e)

Abbildung 4.1: Mean-Shift-Algorithmus. (a) Die Kreise stehen f ür verschie-
dene Wahrscheinlichkeitswerte P . Die Werte nehmen von schwarz nach weiß
hin ab. Das blaue Quadrat stellt das Suchfenster dar und der rote Ring die
aktuelle Position c des Fensters. (b) Der Pfeil visualisiert den Mean-Shift
und der grüne Kreis die neu berechnete Position c des Maximums innerhalb
des Suchfensters. (c) Das Suchfenster wurde an die neue Position c aus (b)
verschoben und die Berechnung des Maximums wird erneut ausgef ührt. (d)
Wieder wird das Suchfenster nach c verschoben und das Maximum im Such-
fenster ermittelt. (e) Das Suchfenster wird an c positioniert. Bei erneuter
Berechnung des Maximums ist die Ergebnisposition gleich der Ausgangspo-
sition. Dadurch konvergiert der Mean-Shift-Algorithmus.

(c)

KAPITEL 4. DAS MEAN-SHIFT TRACKING-VERFAHREN 19

)b()a(

)d()c(

(e)

Abbildung 4.1: Mean-Shift-Algorithmus. (a) Die Kreise stehen f ür verschie-
dene Wahrscheinlichkeitswerte P . Die Werte nehmen von schwarz nach weiß
hin ab. Das blaue Quadrat stellt das Suchfenster dar und der rote Ring die
aktuelle Position c des Fensters. (b) Der Pfeil visualisiert den Mean-Shift
und der grüne Kreis die neu berechnete Position c des Maximums innerhalb
des Suchfensters. (c) Das Suchfenster wurde an die neue Position c aus (b)
verschoben und die Berechnung des Maximums wird erneut ausgef ührt. (d)
Wieder wird das Suchfenster nach c verschoben und das Maximum im Such-
fenster ermittelt. (e) Das Suchfenster wird an c positioniert. Bei erneuter
Berechnung des Maximums ist die Ergebnisposition gleich der Ausgangspo-
sition. Dadurch konvergiert der Mean-Shift-Algorithmus.

(d)

KAPITEL 4. DAS MEAN-SHIFT TRACKING-VERFAHREN 19

)b()a(

)d()c(

(e)

Abbildung 4.1: Mean-Shift-Algorithmus. (a) Die Kreise stehen f ür verschie-
dene Wahrscheinlichkeitswerte P . Die Werte nehmen von schwarz nach weiß
hin ab. Das blaue Quadrat stellt das Suchfenster dar und der rote Ring die
aktuelle Position c des Fensters. (b) Der Pfeil visualisiert den Mean-Shift
und der grüne Kreis die neu berechnete Position c des Maximums innerhalb
des Suchfensters. (c) Das Suchfenster wurde an die neue Position c aus (b)
verschoben und die Berechnung des Maximums wird erneut ausgef ührt. (d)
Wieder wird das Suchfenster nach c verschoben und das Maximum im Such-
fenster ermittelt. (e) Das Suchfenster wird an c positioniert. Bei erneuter
Berechnung des Maximums ist die Ergebnisposition gleich der Ausgangspo-
sition. Dadurch konvergiert der Mean-Shift-Algorithmus.

(e)

Fig. 4.3: The mean-shift algorithm. Dots signify probability values. The black rectangle depicts
the search window, the red circle its current position (center), the green circle the new center. (a)
The new mean within the search window is computed and found to be at the green circle. (b) The
search window is shifted according to the arrow. (c) Centered at the previously computed mean (a)
is repeated. (d) The search window is shifted again. (e) The new mean is computed but does not
change anymore. The algorithm converged.

is calculated as in line 6 of the algorithm. After convergence is reached, the objects
dimension and orientation is computed again using image moments. From the inter-
mediate variables a, b, and cm

a =
m20

m00

− x2
t , b = 2

(
m11

m00

− xtyt

)
, c =

m02

m00

− y2
t , (4.12)

we find the orientation Θ and the dimensions wt and ht of the tracked object as given
by lines 10-12.

Our tracking algorithm (Alg. 4) is now easily extended by considering all track-
ers which have not been assigned a new observation. The center of the skin blob in
the vicinity of the expected position for the corresponding hand is found by means
of CAMShift and is used to update the trajectory as supplied before. However, we
adjust the probability Pr(h|z = det) such that the corresponding belief bel(h|z1:t) will
get decreased slightly over time. This prevents tracking with CAMShift alone for too
long a time period since then not a hand may be tracked but a similar colored false
positive. Figure 4.2 illustrates the complete tracking process.

Of course, it is possible that tracking with CAMShift also fails. Strategies do deal
with the most common reasons are therefore presented in the following section.

4.3.3 Tracking Failures

Basically, there are three cases that can lead to tracking failure: the object moved out-
side of the cameras’ field-of-view, it got occluded, or it moved or changed its direction

40

Algorithm 5 CAMShift
Input: Ω the probability distribution image
1: sw search window (xs, ys, ws, hs)

Output: target window tw with (xt, yt, wt, ht) and Θ the orientation
2: c1 ← (xs, ys)
3: while ¬converged do
4: c2 ← c1
5: calc new position using image moments
6: c1 ← (m10

m00
, m01

m00
)

7: converged ← |c2 − c1| < ε

8: xt = cx1 , yt = cy1
9: Θ = 1

2
tan−1

(
b

a−c

)
10: wt =

√
(a+c)+

√
b2+(a−c)2

2

11: ht =

√
(a+c)−

√
b2+(a−c)2

2

of motion too rapidly.

Outside field-of-view This case is detectable straightforward as the last known po-
sition should be close to the image borders and together with the prediction of the
Kalman filter, which should indicate an even closer or already outside field-of-view
position, one can safely assume that the tracked object indeed moved outside of the
field-of-view. As a simple strategy, we reset the Kalman filter as we have no knowledge
about the objects’ further motion. Again, the probability Pr(x|z = det) used to update
the belief bel(x|z1:t) (x signifying either hand or face) is modified such that the tracked
object is considered to be lost after a reasonable time (≈ 1s), i.e., the probability
dropped below the threshold, and the associated tracker is deleted.

Occlusion Without an indication for an out-of-view state the object might have be-
come occluded. Currently, we use the Kalman filter predictions to be able to re-detect
the object when it reappears. Of course the objects motions might change during oc-
clusion. In this case the object is declared as lost and the corresponding tracker is
deleted.

In the domain of hand tracking, however, we consider one important special case
which is observable frequently: one hand covers the other, partially or completely.
To detect and resume tracking at the end of such an occlusion is crucial for assigning
subsequent hand detections to their respective tracker. Inspired by the work of Shamaie

41

Fig. 1. The path of the hands in the 8 types of the bimanual movements. The thick ellipses rep-
resent the occlusion areas (a, c, d, e, f, and h), and the small lines represent collision (b and g)

5.1 Occlusion Detection

In order to detect occlusion, for every hand in an image a rectangle is constructed
around it. The sides of each rectangle represent the left most, right most, top and bot-
tom of the hand. By tracking the rectangles if there is any intersection between them it
can be recognised as an alarm for occlusion. However, it is possible that without any
prior intersection occlusion happens, Fig 2, and the Grassfire algorithm detects only
one area, which is the same as the case that one hand hides behind a part of body. We
use a model to predict future movement of each hand and catch occlusion.

5.2 A Dynamic Model

We propose a Kalman filtering-based algorithm to track the movement and predict the
future position of the rectangles a few steps in advance. Every side of a rectangle is
modelled by a dynamic model. This gives us model independence from the hand
shapes. The position, velocity and acceleration of each side are considered in this
model. These parameters are related together [18] based on the Equation 1 for i=1, 2
for the two hands and j=1, 2 for the left and right or top and bottom sides.

Fig. 2. A rectangle is formed around the hands or the big blob in occlusion

H1 H2

H2 H1

H1 H1
H2 H2

H1

H1

H2

H2

H1
H1

H2
H2

H1

H1

H2

H2

H1

H1

H2

H2

 e

H1

H1

H2

H2

H1
H2

H1
H2

t t+1

(a)

Fig. 1. The path of the hands in the 8 types of the bimanual movements. The thick ellipses rep-
resent the occlusion areas (a, c, d, e, f, and h), and the small lines represent collision (b and g)

5.1 Occlusion Detection

In order to detect occlusion, for every hand in an image a rectangle is constructed
around it. The sides of each rectangle represent the left most, right most, top and bot-
tom of the hand. By tracking the rectangles if there is any intersection between them it
can be recognised as an alarm for occlusion. However, it is possible that without any
prior intersection occlusion happens, Fig 2, and the Grassfire algorithm detects only
one area, which is the same as the case that one hand hides behind a part of body. We
use a model to predict future movement of each hand and catch occlusion.

5.2 A Dynamic Model

We propose a Kalman filtering-based algorithm to track the movement and predict the
future position of the rectangles a few steps in advance. Every side of a rectangle is
modelled by a dynamic model. This gives us model independence from the hand
shapes. The position, velocity and acceleration of each side are considered in this
model. These parameters are related together [18] based on the Equation 1 for i=1, 2
for the two hands and j=1, 2 for the left and right or top and bottom sides.

Fig. 2. A rectangle is formed around the hands or the big blob in occlusion

H1 H2

H2 H1
a

H1 H1
H2 H2

d

H1

H1

H2

H2

c

H1
H1

H2
H2

 g

H1

H1

H2

H2

b
H1

H1

H2

H2
 e

H1

H1

H2

H2
 fH1

H2

H1
H2

h

t t+1

(b)

Fig. 1. The path of the hands in the 8 types of the bimanual movements. The thick ellipses rep-
resent the occlusion areas (a, c, d, e, f, and h), and the small lines represent collision (b and g)

5.1 Occlusion Detection

In order to detect occlusion, for every hand in an image a rectangle is constructed
around it. The sides of each rectangle represent the left most, right most, top and bot-
tom of the hand. By tracking the rectangles if there is any intersection between them it
can be recognised as an alarm for occlusion. However, it is possible that without any
prior intersection occlusion happens, Fig 2, and the Grassfire algorithm detects only
one area, which is the same as the case that one hand hides behind a part of body. We
use a model to predict future movement of each hand and catch occlusion.

5.2 A Dynamic Model

We propose a Kalman filtering-based algorithm to track the movement and predict the
future position of the rectangles a few steps in advance. Every side of a rectangle is
modelled by a dynamic model. This gives us model independence from the hand
shapes. The position, velocity and acceleration of each side are considered in this
model. These parameters are related together [18] based on the Equation 1 for i=1, 2
for the two hands and j=1, 2 for the left and right or top and bottom sides.

Fig. 2. A rectangle is formed around the hands or the big blob in occlusion

H1 H2

H2 H1
a

H1 H1
H2 H2

d

H1

H1

H2

H2

c

H1
H1

H2
H2

 g

H1

H1

H2

H2

b
H1

H1

H2

H2
 e

H1

H1

H2

H2
 fH1

H2

H1
H2

h

t t+1

(c)

Fig. 1. The path of the hands in the 8 types of the bimanual movements. The thick ellipses rep-
resent the occlusion areas (a, c, d, e, f, and h), and the small lines represent collision (b and g)

5.1 Occlusion Detection

In order to detect occlusion, for every hand in an image a rectangle is constructed
around it. The sides of each rectangle represent the left most, right most, top and bot-
tom of the hand. By tracking the rectangles if there is any intersection between them it
can be recognised as an alarm for occlusion. However, it is possible that without any
prior intersection occlusion happens, Fig 2, and the Grassfire algorithm detects only
one area, which is the same as the case that one hand hides behind a part of body. We
use a model to predict future movement of each hand and catch occlusion.

5.2 A Dynamic Model

We propose a Kalman filtering-based algorithm to track the movement and predict the
future position of the rectangles a few steps in advance. Every side of a rectangle is
modelled by a dynamic model. This gives us model independence from the hand
shapes. The position, velocity and acceleration of each side are considered in this
model. These parameters are related together [18] based on the Equation 1 for i=1, 2
for the two hands and j=1, 2 for the left and right or top and bottom sides.

Fig. 2. A rectangle is formed around the hands or the big blob in occlusion

H1 H2

H2 H1
a

H1 H1
H2 H2

d

H1

H1

H2

H2

c

H1
H1

H2
H2

 g

H1

H1

H2

H2

b
H1

H1

H2

H2
 e

H1

H1

H2

H2
 fH1

H2

H1
H2

h

t t+1

(d)

Fig. 1. The path of the hands in the 8 types of the bimanual movements. The thick ellipses rep-
resent the occlusion areas (a, c, d, e, f, and h), and the small lines represent collision (b and g)

5.1 Occlusion Detection

In order to detect occlusion, for every hand in an image a rectangle is constructed
around it. The sides of each rectangle represent the left most, right most, top and bot-
tom of the hand. By tracking the rectangles if there is any intersection between them it
can be recognised as an alarm for occlusion. However, it is possible that without any
prior intersection occlusion happens, Fig 2, and the Grassfire algorithm detects only
one area, which is the same as the case that one hand hides behind a part of body. We
use a model to predict future movement of each hand and catch occlusion.

5.2 A Dynamic Model

We propose a Kalman filtering-based algorithm to track the movement and predict the
future position of the rectangles a few steps in advance. Every side of a rectangle is
modelled by a dynamic model. This gives us model independence from the hand
shapes. The position, velocity and acceleration of each side are considered in this
model. These parameters are related together [18] based on the Equation 1 for i=1, 2
for the two hands and j=1, 2 for the left and right or top and bottom sides.

Fig. 2. A rectangle is formed around the hands or the big blob in occlusion

H1 H2

H2 H1

H1 H1
H2 H2

H1

H1

H2

H2

H1
H1

H2
H2

H1

H1

H2

H2

H1

H1

H2

H2

 e

H1

H1

H2

H2

H1
H2

H1
H2

t t+1

(e)

Fig. 1. The path of the hands in the 8 types of the bimanual movements. The thick ellipses rep-
resent the occlusion areas (a, c, d, e, f, and h), and the small lines represent collision (b and g)

5.1 Occlusion Detection

In order to detect occlusion, for every hand in an image a rectangle is constructed
around it. The sides of each rectangle represent the left most, right most, top and bot-
tom of the hand. By tracking the rectangles if there is any intersection between them it
can be recognised as an alarm for occlusion. However, it is possible that without any
prior intersection occlusion happens, Fig 2, and the Grassfire algorithm detects only
one area, which is the same as the case that one hand hides behind a part of body. We
use a model to predict future movement of each hand and catch occlusion.

5.2 A Dynamic Model

We propose a Kalman filtering-based algorithm to track the movement and predict the
future position of the rectangles a few steps in advance. Every side of a rectangle is
modelled by a dynamic model. This gives us model independence from the hand
shapes. The position, velocity and acceleration of each side are considered in this
model. These parameters are related together [18] based on the Equation 1 for i=1, 2
for the two hands and j=1, 2 for the left and right or top and bottom sides.

Fig. 2. A rectangle is formed around the hands or the big blob in occlusion

H1 H2

H2 H1
a

H1 H1
H2 H2

H1

H1

H2

H2

c

H1
H1

H2
H2

H1

H1

H2

H2

b
H1

H1

H2

H2
 e

H1

H1

H2

H2
 fH1

H2

H1
H2

t t+1

(f) Fig. 1. The path of the hands in the 8 types of the bimanual movements. The thick ellipses rep-
resent the occlusion areas (a, c, d, e, f, and h), and the small lines represent collision (b and g)

5.1 Occlusion Detection

In order to detect occlusion, for every hand in an image a rectangle is constructed
around it. The sides of each rectangle represent the left most, right most, top and bot-
tom of the hand. By tracking the rectangles if there is any intersection between them it
can be recognised as an alarm for occlusion. However, it is possible that without any
prior intersection occlusion happens, Fig 2, and the Grassfire algorithm detects only
one area, which is the same as the case that one hand hides behind a part of body. We
use a model to predict future movement of each hand and catch occlusion.

5.2 A Dynamic Model

We propose a Kalman filtering-based algorithm to track the movement and predict the
future position of the rectangles a few steps in advance. Every side of a rectangle is
modelled by a dynamic model. This gives us model independence from the hand
shapes. The position, velocity and acceleration of each side are considered in this
model. These parameters are related together [18] based on the Equation 1 for i=1, 2
for the two hands and j=1, 2 for the left and right or top and bottom sides.

Fig. 2. A rectangle is formed around the hands or the big blob in occlusion

H1 H2

H2 H1
a

H1 H1
H2 H2

H1

H1

H2

H2

c

H1
H1

H2
H2

H1

H1

H2

H2

b
H1

H1

H2

H2
 e

H1

H1

H2

H2
 fH1

H2

H1
H2

t t+1

(g)Fig. 1. The path of the hands in the 8 types of the bimanual movements. The thick ellipses rep-
resent the occlusion areas (a, c, d, e, f, and h), and the small lines represent collision (b and g)

5.1 Occlusion Detection

In order to detect occlusion, for every hand in an image a rectangle is constructed
around it. The sides of each rectangle represent the left most, right most, top and bot-
tom of the hand. By tracking the rectangles if there is any intersection between them it
can be recognised as an alarm for occlusion. However, it is possible that without any
prior intersection occlusion happens, Fig 2, and the Grassfire algorithm detects only
one area, which is the same as the case that one hand hides behind a part of body. We
use a model to predict future movement of each hand and catch occlusion.

5.2 A Dynamic Model

We propose a Kalman filtering-based algorithm to track the movement and predict the
future position of the rectangles a few steps in advance. Every side of a rectangle is
modelled by a dynamic model. This gives us model independence from the hand
shapes. The position, velocity and acceleration of each side are considered in this
model. These parameters are related together [18] based on the Equation 1 for i=1, 2
for the two hands and j=1, 2 for the left and right or top and bottom sides.

Fig. 2. A rectangle is formed around the hands or the big blob in occlusion

H1 H2

H2 H1
a

H1 H1
H2 H2

H1

H1

H2

H2

c

H1
H1

H2
H2

H1

H1

H2

H2

b
H1

H1

H2

H2

 e

H1

H1

H2

H2
 fH1

H2

H1
H2

t t+1

(h)

Fig. 4.4: The path of the hands in the 8 types of the bimanual movements. The thick ellipses represent
the occlusion areas (a, c, d, e, f, and h), and the small lines represent collision (b and g).

& Sutherland [2003], we present a solution which is able to to accurately handle the
described situation.

The general idea is to determine whether the two hands pass each other as shown in
Figure 4.4 (a), (e), (f) and (h) or collide and return in opposite direction, (b) and (g)
in the same figure. In some cases they may not collide but return in opposite direction
as in (c) and (d). Such a collision of hands obviously involves a (short) pause of hand
movements, or, in other words, the velocity of hands approaches zero. By detecting
this short pause and comparing the hands position at the end of occlusion with their
position prior to occlusion one can resolve the correct position of each hand.

To achieve this we first have to detect the occlusion case at the first place. For this,
we rely on the Kalman filter predictions: once they indicate that the hand rectangles
might intersect the next time step, an occlusion alarm is raised and a large rectangle
is formed as the union of the two hand rectangles. Within this region the skin color
blobs are monitored as to catch exactly the moment when they merge. Starting from
this moment the velocities of the horizontal and vertical sides of the bounding box are
analyzed according to following measurements

vv =
√
v2

h1 + v2
h2, vh =

√
v2

v1 + v2
v2 (4.13)

with h1 and h2 denoting the horizontal sides and v1 and v2 the vertical sides of the
rectangle respectively. Once we observe that one of these measures drops below a
certain threshold ε we conclude that the hands collided and therefore will move back
again to were they came from. However, in some movements as in Figure 4.4 (e) and
(f), a horizontal or vertical pause may be detected, although no collision occurs. To

42

Algorithm 6 ResolveOcclusion
Input: measurements vv, vh, sv, and sh

Output: position of hands after at occlusion end
1: if sv < ε1 then
2: if vh < ε2 then
3: hands horizontally back
4: else
5: hands horizontally pass each other
6: else if sh < ε1 then
7: if vv < ε2 then
8: hands vertically back
9: else

10: hands vertically pass each other
11: else if vh < ε2 then
12: hands horizontally back
13: else if vv < ε2 then
14: hands vertically back
15: else
16: hands pass each other

detect such cases, the measurement sv and sh are defined

vv = dev(|vh1| − |vh2|), vh = dev(|vv1| − |vv2|) (4.14)

as the standard deviation of the velocity differences of the respective rectangle sides.
Occlusions can finally be resolved according to a simple algorithm listed in Algorithm
6.

4.4 Establishing People

In this section, we describe how we assign hands to corresponding faces thus forming
our compact person model. In the simplest case, there is only one person observed and
up to two hands. In case these are within the action range of the person assignment is
possible ad hoc, utilizing the knowledge of each hands’ laterality. In more challenging
settings ambiguities are possible and in order to resolve them, we propose a probabilistic
method to determine the assignment costs. The corresponding assignment is found
using yet again the Hungarian method.

43

(a) (b) (c)

Fig. 4.5: The assignment problem with four hands and two faces. Indicated are moving hands colored
according to their laterality (red = left, green = right) with the intensity signifying the confidence.
In (b) all possible assignments are plotted, considering the action area as defined in Chapter 3. In (c)
the resulting assignments are depicted which are as desired.

We proceed by sorting all currently tracked hands into two lists, one for the left
hands, i.e., bel(hl|z1:t, h) > 0.5, and one for the right hands (bel(hr|z1:t, h) > 0.5)
respectively. In doing so, we divide the problem into two parts, each of which is solved
in the same way. We therefore consider the assignment of hands in one list only, e.g.
assign left hands to the persons’ ”left-hand-slots”.

Let n be the number of persons currently observed. For each hand in our list we
maintain a 1D histogram with n + 1 bins, with bi storing how often the hand was
assigned to person pi, or has been left unassigned (b0). Using this histogram, we
maintain an assignment of a particular hand to a person over time. We then define the
assignment costs cij as

cij =
1

hist(hi, pj)
+ cdist(hi, pj). (4.15)

Here, hist(hi, pj) denotes the normalized bin value for person pj of hand hi, such that
assignment costs increases as the histogram value decreases. The second term, distance
costs cdist(hi, pj), evaluates the geometric relationship between hand hi and person pj

and is given as

cdist(hi, pj) =

max if dist_x (hi, pj) > action radius
max if |size(hi)− size(pj)| /size(pj) > c1

c2 · dist_x(hi, pj) otherwise
(4.16)

Here, the action radius refers to maximum arm length as introduced in Chapter 3, and
dist_x (hi, pj) denotes the distance between hand hi and person pj in x direction. With
the second condition we incorporate our knowledge that the ratio of the observation size

44

of the hand and the face of a person must be within c1. c1 corresponds to the number
of scalings we allow the hand observation size to differ from the face observation size
(see Chapter 3.

Maximal costs are given for assigning a hand to an unknown person, i.e., let it left
unassigned. If the hand is out of reach, assignment costs are also maximum.

The maximum costs max are chosen in dependence of n and a small proportion of
the distance to the face of person pj,

max =
1

c · 1
n+1

(4.17)

This ensures that in the beginning the hands are assigned to the closest person and do
not change assignment immediately, once a new person is recognized.

The optimal assignment is found via the Hungarian method and the histogram bin
values are increased accordingly.

45

46

55
Head Pose Estimation

To estimate the head orientation we use a system developed as part of an earlier
masters’ thesis which has been adapted to suit the needs of our work. This chapter
describes the system according to [Vatahska, Bennewitz, & Behnke 2007] and the
extensions conducted.

For us, knowing the head’s pose is of twofold interest. By continuously observing the
current head orientation we can derive important head gestures, most notably, head
shake and head nod. Additionally, we will assume that a person who is pointing at
something will also be looking at the target. The knowledge of the respective angles
can compensate for our lack of 3D information, as will be seen later.

Head pose can be described by the heads three degrees of freedom, that is, by
rotational angles about three axis orthogonal to one another, commonly known as
roll Θx, pitch Θy and yaw Θz. The general idea is to locate the facial features and,
by means of the relative positions, to infer the 3D head orientation. The mapping
between facial feature positions and corresponding head orientation is then learned
from suitably labeled data using a function approximator; in our case neural networks
are applied.

5.1 Locating Facial Features

Prior to locating facial features, a face detection process is conducted. Again, the
object detection scheme by Viola & Jones [2001] is employed. This time, two classifiers
are being used, one for frontal faces and one for left profiles (right profile when flipping

47

(a) (b) (c) (d)

Fig. 5.1: Facial features in frontal faces and profiles. (a) and (b) show the distribution of facial feature
points in a normalized face bounding box. (c) and (d) show the input features used for the neural
network. Pictures taken from [Vatahska, Bennewitz, & Behnke 2007]

the image). Both classifiers cover roll rotations within the interval Θx ∈ [−25◦,+25◦]
and pitch rotations Θy ∈ [−40◦,+40◦]. The yaw angle of frontal faces can be within
Θz ∈ [−40◦,+40◦], whereas with profiles Θz ∈ [30◦, 90◦]. Note, that the two classifiers
already achieve a rough classification in terms of the yaw angle. Moreover, they allow
to use two different sets of facial feature points to describe the pose. In a frontal face,
we expect five features to be detectable, namely two eyes, one nose and two corners of
the mouth. In profile faces, four features are used, which are again the nose as well as
the eye, the mouth corner, and the ear of the respective side, see also Figure 5.1.

Locating these features is achieved by nine individual classifiers that have been
trained with the Viola & Jones [2001] algorithm. To speed up the detection pro-
cess the classifiers are applied only within their corresponding search areas which have
been empirically determined by plotting the feature positions of the (manually labeled)
training data, normalized w.r.t. the face bounding box (Figure 5.1 (a) and (b) illustrate
the obtained distribution).

To deal with multiple detections and to effectively diminish the influence of outliers
a mean-shift algorithm is applied to cluster the set of detections into a single mean
position. The mean position of all detections is refined by determining those detections
which are too far away from the mean position and then recomputing the mean on the
remaining set of detections. This is repeated until the change of the mean position is
less than some threshold ε.

5.2 Estimating Pose

We observe that under pose change the distances between the facial features change
accordingly due to the 2D image projection of the face. Further, the feature positions

48

within the face bounding box are affected. For instance, when lowering the head, the
distance between an eye and the nose increases whereas the distance between a corner
of the mouth and the nose decreases. The positions within the face bounding box al-
together move downward. These correlations between head rotation and facial feature
positions are thus learned automatically from appropriately labeled data. This corre-
sponds to finding a function that maps the positions to the respective 3D orientation
angles. Such a function can be approximated using machine learning techniques such
as neural networks, which is what is used here.

Two neural networks are being trained according to the two different facial feature
sets. The feature positions are normalized w.r.t. the face bounding box center, such
that xfp , yfp ∈ [−0.5,+0.5]. In addition to the positions, the distances between features
are also taken as input values for the neural network, as depicted in Figure 5.1 (c) and
(d). The neural network is structured as follows: the output layer consists of three
units describing the three rotation angles Θx, Θy and Θz respectively. A single hidden
layer with six units connects the output layer with the input layer containing 30 units
(frontal face) or 20 units (profile).

For training the networks appropriate training data is needed, i.e., images with
arbitrary rotated heads, labeled feature positions and the corresponding angles. The
exact measurement of the rotation angles, however, is a challenging task. Moreover,
to sufficiently cover the search space several thousand images should be collected. To
overcome this problem, synthetic face images are generated by rendering a 3D head
model which is rotated around the three axis at will. Resilient back-propagation is
used to train the network with the data.

This completes the pose estimation system. When applying it, the facial features are
detected, the input values for the neural net computed and the test performed which
yields the estimated angles.

5.3 Extensions

To apply the pose estimation system within the scope of our gesture recognition ap-
plication several improvements have been conducted. We found that for our purposes
the estimation was not precise enough and that the estimated values were subject to
large variations. Furthermore, the detection rate of facial features drops significantly
in real images which may be due to the low quality, as this behaviour can especially
be observed when the person is far away from the camera.

Our first contribution was the introduction of Kalman filters for both the facial
feature positions and the estimated angles. For this reason, we are able to compensate
for detection failures of the facial features by taking the corresponding Kalman filter

49

(a) (b) (c)

Fig. 5.2: Feature detection results. In (a) the normal case where all detection cluster into one point.
(b) Two clusters are found, one at the nose and one at the left mouth corner. (c) In rare cases
(depending on the head pose) the detection results are littered all over.

prediction as input for the neural network. Of course there might be grave reasons why
a facial feature does not get detected for a while, e.g., it is occluded. To appreciate
this fact, the Kalman filters are continuously reset after only a small number (3-4) of
frames. By filtering the estimated angles, we counteract the variations such that we
obtain a smooth angle trajectory.

When scrutinizing the detection failures, it became evident that clustering the set
of detections of some features (mainly the mouth corners) into a single point failed
above average. When plotting the set of features (Figure 5.2), one can observe that in
case of 5.2(b) actually two clusters are formed: one at the expected mouth corner and
the other at the nostrils. As this happens rather frequently, there are rare cases when
even more clusters are formed, affecting other features, too. We therefore developed
the following strategy do deal with this problem: in case clustering into a single cluster
fails, we repeatedly employ a k-means algorithm with increasing k to find the clusters.
We thereby took advantage of the recent work of Arthur & Vassilvitskii [2007], where
a k-means algorithm is presented with a simple, randomized seeding technique that
improves both the speed and the accuracy of k-means dramatically.

To find the optimal number of clusters which best explains the distribution of obser-
vation points, we use the Bayesian information criterion (BIC) which can be computed
as

BIC = n ln

(
RSS

n

)
+ k ln(n), (5.1)

where n denotes the number of observations, k the number of clusters, and RSS the
residual sum of squares. k is chosen such that the values of BIC are lowest. The
cluster which is closest to our Kalman filter prediction in terms of an Euclidean distance
measure is chosen as our final feature position.

50

Furthermore, we introduce a detection quality score qi for each facial feature i as

qi =
1

nc

+
obsc

obs total

, (5.2)

with nc denoting the number of clusters found, obsc its support in relation to the total
observation data. qt is used to alter the measurement noise covariance matrix of the
Kalman filter for feature i, such that for low values higher noise is assumed and vice
versa.

Similarly, an overall estimation quality score q is defined as the sum of all detection
quality scores

q =
K∑
qi. (5.3)

This is used to adapt the measurement noise covariance for the Kalman filters for the
angle estimation in the same manner as before.

One problem, which can not be diminished easily, is that the estimated angles for the
profile case are much worse as compared to the frontal ones. This is mainly inherent as
Θz and especially Θx rotations do not result in much change of the projected positions
onto the image plane anymore. However, we observed that the position of the face
bounding rectangle from the profile face detection process was prone to arbitrary shifts
although the face or its position did not change accordingly. As the facial feature
positions within the face bounding box rectangle get more and more weight the more
the face is rotated in Θz direction, this results in variations of the estimated angles.
To stabilize the face bounding box we make use of the back-projection of Chapter 3
by calculating the centroid of the skin color distribution within the face bounding box.
Applying Equation 4.11, the center is given by

c = (
m10

m00

,
m01

m00

). (5.4)

Centering the face bounding box at c makes us independent from the position provided
by the face detection thus diminishing another source of impreciseness.

Finally, we also performed extensive experiments with different configurations for
the neural network used. In particular, we evaluated different activation functions for
perceptrons of the hidden layer. Here we found the sigmoid or logistic function

y =
1

1 + e−x
(5.5)

to perform best.

51

52

66
Recognizing Gestures

In this chapter, we address the last and actual step in recognizing gestures. Knowing
the trajectories of faces and hands, the challenge is to discover meaningful structures
and reject non-meaningful motions. What is meaningful and what is not is up to the
designer and has to be decided beforehand. In our work, we focus on a small set of
gestures which are of importance to our interaction scenario:

waving Common gesture used at the beginning or end of an interaction, but also to
get the attention of someone. See Figure 6.1 (a).

pointing This parametric mono-manual gesture is carried out to draw the attention
of someone to something. This means, in addition to recognizing the pointing
gesture, the target has to be estimated by, amongst others, using the head pose
estimation. For an illustration see Figure 6.1 (b).

thisbig Inspired by [Wilson & Bobick 1999], we include an iconic gesture which is used
to convey information about the size of an object, i.e., a parametric bimanual
gesture which depends on the distance between the two hands. See Figure 6.1
(c) for an example.

dunno This bimanual gesture is used to express ignorance, as shown in Figure 6.1(d).
(dunno: informal short for don’t know).

head nod/shake Using the head pose estimation data alone, we also recognize the
commonly used head gestures nod and shake, see Figure 6.1(e) and 6.1(f).

53

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6.1: The gestures that are recognized in this work: (a) waving, (b) pointing, (c) thisbig, (d)
dunno, (e) nod and (f) shake

54

Each such gesture has a specific spatio-temporal pattern that might vary from execu-
tion to execution and also from person to person, or is dependent on a parameter. Yet
there is an essence that remains unique. Provided with a sufficient number of exam-
ples, this essence can be learned. For this purpose, statistical modeling techniques are
usually applied and we chose hidden Markov models (HMMs), introduced in Section
6.2, to accomplish this task.

At first, however, we address the problem of how to represent the motion data.
Besides coordinate transformations to obtain translational and scaling invariance, other
transforms can be applied to emphasize the characteristics of the gesture and/or to
diminish non-meaningful variability which could hamper the recognition process. This
feature extraction process is described in Section 6.1. A few words on modeling and
training the individual gestures (and non-gestures) are provided in Section 6.3. We
discuss the application of our models to finally recognize gestures and to extract the
optional parameters in the final section.

6.1 Feature Extraction

So far, the tracking module continuously provides the positional data xr = (x, y) of
faces and hands in the image sequence relative to the robot/camera. We are, however,
interested in hand movements in reference to the person they belongs to. As a first
step, we therefore transform the hand coordinates into a egocentric reference system
which is straightforwardly done by subtracting the face coordinates:

x = xhand
r − xface

r

With this we acquire translational invariance as it does not matter anymore where in
the image the person is located or whether she moves in-plane while performing the
gesture or not.

As a second step, the coordinates are normalized with respect to the face bounding
box size, thus making them independent from the distance between person and robot.
Note that, however, the face bounding box size is subject to jitter which introduces
unwanted jumps to the scaled hand trajectory. We therefore use a Kalman filter to
track the size of the bounding box, and in doing so smooth the changes in size. The
preliminary gesture trajectory is then described as a sequence of the respective position
data:

gmono = (x1,x2, . . . ,xn),

for monomanual gestures and

gbimanual = ((xl
1,x

r
1), (x

l
2,x

r
2), . . . , (x

l
n,x

r
n)),

55

-4

-3

-2

-1

 0

 1

 0.5 1 1.5 2 2.5 3 3.5

y
di

st

x dist

wave position data

(a)

-4

-3

-2

-1

 0

 1

 0.5 1 1.5 2 2.5 3 3.5

y
di

st

x dist

point position data

(b)

-4

-3

-2

-1

 0

 1

 0.5 1 1.5 2 2.5 3 3.5

y
di

st

x dist

point position data

(c)

-4
-3.5

-3
-2.5

-2
-1.5

-1
-0.5

 0
 0.5

-4 -3 -2 -1 0 1 2 3 4

y
di

st

x dist

thisbig position data

(d)

-4
-3.5

-3
-2.5

-2
-1.5

-1
-0.5

 0
 0.5

-4 -3 -2 -1 0 1 2 3 4

y
di

st

x dist

thisbig position data

(e)

-4
-3.5

-3
-2.5

-2
-1.5

-1
-0.5

 0
 0.5

-4 -3 -2 -1 0 1 2 3 4

y
di

st

x dist

dunno position data

(f)

Fig. 6.2: Example trajectories of the hand gestures transformed into egocentric coordinates and
normalized. (a) The waving gesture. (b) The pointing gesture. (c) Another pointing gesture, with
a different trajectory, due to the parameter (target location). (d) The thisbig gesture. (e) Another
thisbig gesture, with different trajectory, due to the parameter (distance between hands). (e) The
dunno gesture.

for bimanual gestures, respectively, with l denoting the left hand, r the right hand, and
n the sequence length.

Similarly, we can define a head gesture trajectory, by using the continuous head pose
estimation Θ = (Θx,Θy,Θz) as of Chapter 5:

ghead = (Θ1,Θ2, . . . ,Θn)

Obviously, the angles can be used directly without any transformation as the available
observation data is inherently egocentric and invariant toward scaling.

Figure 6.2 illustrates the transformed gesture sequences, and Figure 6.3 the untrans-
formed angular sequences considered in this work.

Although these transformations can be sufficient for recognition purposes, one usually
tries to find a better suited description of the motion data. Features are selected which
represent best the characteristics of the respective gesture and, at the same time, show
more robustness toward variations. As the amount of training data is usually limited,

56

-30

-20

-10

 0

 10

 20

 30

 0 2 4 6 8 10 12 14 16

ro
ll

an
gl

e

frame number

nod roll angle data

(a)

-30

-20

-10

 0

 10

 20

 30

 0 2 4 6 8 10 12 14 16

pi
tc

h
an

gl
e

frame number

nod pitch angle data

(b)

-30

-20

-10

 0

 10

 20

 30

 0 2 4 6 8 10 12 14 16

ya
w

 a
ng

le

frame number

nod yaw angle data

(c)

-30

-20

-10

 0

 10

 20

 30

 0 2 4 6 8 10 12 14 16 18 20

ro
ll

an
gl

e

frame number

shake roll angle data

(d)

-30

-20

-10

 0

 10

 20

 30

 0 2 4 6 8 10 12 14 16 18 20

pi
tc

h
an

gl
e

frame number

shake pitch angle data

(e)

-30

-20

-10

 0

 10

 20

 30

 0 2 4 6 8 10 12 14 16 18 20

ya
w

 a
ng

le

frame number

shake yaw angle data

(f)

Fig. 6.3: Example angle trajectories of the head gestures. All three angles roll, pitch and yaw are
shown, in this order. (a) and (d): The roll angle stays around zero, as expected. (b) and (e): The
pitch angle’s idle position is at −10◦, yet the head nod is clearly noticeable. (c) and (f) We see that
the head shake was actually performed twice, whereas during the head nod yaw does not change
significantly.

we cannot cover all possible variations of a particular gesture. That is why features
are beneficial.

If we for example consider the waving gesture in Figure 6.2(a), we observe that in
this case the hand, while moving up, describes a wide arc. However, others might just
lift the hand up straight. This leads to the realization that this arc may not be of
substantial meaning in terms of the gesture. Instead, the fact that the hand moves
up is sufficient. As a naïve solution one could drop the x-coordinate. However, we
should not extract too specific features as other gestures may reveal characteristics
that depend precisely on the x-coordinate. Thus, determining the best features is a
non-trivial task and depends largely on the gestures to be described. We therefore
consider in the following each of the three gesture groups - monomanual, bimanual,
and head gestures - separately.

57

6.1.1 Monomanual Gestures

Monomanual gestures are by far the most common and have therefore received wide
attention within the gesture recognition research community. Consequently, others
have investigated the question of how to represent them in feature space, for example
in [Yoon et al. 1999] and, more recently, in [Montero & Sucar 2004] with similar results.
On the basis of raw position data, features are derived such as Cartesian velocity, polar
velocity, or angular velocity. In addition, chain codes to describe changes in direction,
mesh codes which work similar to histograms, or trajectory momenta are used. Yoon
et al. [1999] show that all of these features are grounded on three basic information
(r, φ, v), i.e., the relative distance of the hand to the coordinate origin, r, the angle
obtained between each gesture point and the origin, φ, and the Cartesian velocity, v.

Based on this, but opposed to the work of Yoon et al. [1999], where the origin is
defined to be the center of the gesture trajectory (which is unknown until the end of
the gesture which in turn prohibits online recognition) we conveniently choose the face
as the center. With it, r is computed as

r = ‖x‖ =
√
x2 + y2, (6.1)

and the angle φ as
φ = atan2(y, x). (6.2)

Note that these transformations correspond to the general transformation of Cartesian
coordinates into polar coordinates. Finally, v is computed as the distance between two
successive trajectory points:

v = ‖xt − xt−1‖ (6.3)

Together, these three measures define our final feature vector

fmono = [r, φ, v] . (6.4)

Figure 6.4 shows the feature trajectories obtained by transforming the gesture trajec-
tories depicted in Figure 6.2(a), 6.2(b), and 6.2(c), respectively.

6.1.2 Bimanual Gesture

A bimanual gesture could straightforwardly be represented as the combination of fea-
tures for both the left and the right hand. As we will do this for comparison reasons
(see Chapter 7), we can exploit the relationship between the two hands to perform
better. Another problem is that the gesture thisbig is governed by a systematic vari-
ability, i.e., the distance between the hands during the hold phase. Depending on this

58

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35 40 45

di
st

an
ce

frame number

wave distance data

(a)

-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4

 0 5 10 15 20 25 30 35 40 45

an
gl

e

frame number

wave angle data

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30 35 40 45

ve
lo

ci
ty

frame number

wave velocity data

(c)

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35 40

di
st

an
ce

frame number

point 1 distance data

(d)

-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4

 0 5 10 15 20 25 30 35 40

an
gl

e

frame number

point 1 angle data

(e)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30 35 40

ve
lo

ci
ty

frame number

point 1 velocity data

(f)

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

frame number

point 2 distance data

(g)

-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4

 0 5 10 15 20 25 30 35 40 45 50

an
gl

e

frame number

point 2 angle data

(h)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30 35 40 45 50

ve
lo

ci
ty

frame number

point 2 velocity data

(i)

Fig. 6.4: Feature trajectories for the gestures wave and pointing from Fig. 6.2(a), 6.2(b) and 6.2(c),
respectively. The angular feature is quite smooth as opposed to the velocity. Note that both pointing
gestures look under the feature transformation much more similar than before, as desired.

59

-10

-8

-6

-4

-2

 0 5 10 15 20 25 30

y
le

ft+
rig

ht

frame number

thisbig 1 y left+right data

(a)

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30

y
di

ff
frame number

thisbig 1 y diff data

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30

ch
an

ge
 in

 x
 d

iff

frame number

thisbig 1 change in x diff data

(c)

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30

x
di

ff

frame number

thisbig 1 x diff data

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

ve
lo

ci
ty

frame number

thisbig 1 velocity data

(e)

-10

-8

-6

-4

-2

 0 10 20 30 40 50 60

y
le

ft+
rig

ht

frame number

thisbig 2 y left+right data

(f)

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50 60

y
di

ff

frame number

thisbig 2 y diff data

(g)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60

ch
an

ge
 in

 x
 d

iff

frame number

thisbig 2 change in x diff data

(h)

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50 60

x
di

ff

frame number

thisbig 2 x diff data

(i)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

ve
lo

ci
ty

frame number

thisbig 2 velocity data

(j)

-10

-8

-6

-4

-2

 0 5 10 15 20 25 30 35 40

y
le

ft+
rig

ht

frame number

dunno y left+right data

(k)

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 40

y
di

ff

frame number

dunno y diff data

(l)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35 40

ch
an

ge
 in

 x
 d

iff

frame number

dunno change in x diff data

(m)

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 40

x
di

ff

frame number

dunno x diff data

(n)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

ve
lo

ci
ty

frame number

dunno velocity data

(o)

Fig. 6.5: Feature trajectories for the gestures thisbig and dunno from Fig. 6.2(d), 6.2(e) and 6.2(f),
respectively.

parameter, see Figure 6.2(d) and 6.2(e), the observed trajectories are far from being
similar. Through appropriate feature selection it is possible to diminish the influence
of this parameter on our feature stream. This should yield robust feature trajectories
which are likelier to be recognized as being an instance of thisbig.

Our feature transformation is inspired by the observation that bimanual gestures are
inherently synchronized, which leads to a symmetric execution. Thus, we expect the
differences of the hand position to vary around 0 for most of the execution time. This
leads to the features

dx =
∣∣xl

t

∣∣− |xr
t | , and dy =

∣∣yl
t

∣∣− |yr
t | . (6.5)

Clearly, both these features would perfectly describe the state of idleness, too. What
is missing are the dynamics of the motion. We observe that both gestures involve a lift-
up of both hands followed by, after a short pause during the hold phase, a downward
motion. This is included by

ylr = yl
t + yr

t . (6.6)

In x-direction we have the source of the variability, the x distance between hands can be
either small, medium or large. Thus, it is not appropriate to include this information

60

directly. However, we want to hint that the hands are moving x wise whilst dx is not
changing much. Therefore we incorporate

∆dx =
(∣∣xl

t

∣∣ + |xr
t |
)
−

(∣∣xl
t−1

∣∣ +
∣∣xr

t−1

∣∣) . (6.7)

Finally, the motion information per se, the velocity of the hands, is considered as

vlr = vl
t + vr

t , (6.8)

with vt according to Equation 6.3. We can then again specify the final feature vector
as

fbimanual =
[
dx, dy, y

lr ,∆dx, v
lr
]
. (6.9)

Figure 6.5 shows the feature trajectories obtained by transforming the gesture tra-
jectories depicted in Figure 6.2(d) and 6.2(e), and 6.2(f), respectively.

6.1.3 Head Gestures

In case of head gestures, we do not expect excessive or systematic variability. A nod
for example should always start with a small pitch angle which increases and decreases
again, possibly repeated a few times. Similar holds for the shake gesture, only with the
yaw angle affected this way. As we cannot make sure that the user is always looking
straight into the camera, the initial condition might not hold all the time. We therefore
consider additionally angular velocities, which are independent of the actual angles. As
such our final feature vector becomes to

fhead = [Θx,Θy,Θz,∆Θx,∆Θy,∆Θz] . (6.10)

For the angle velocity trajectories of head gestures in Figure 6.3, see Figure 6.6.

This completes our meditation on feature extraction and we will derive the basics of
hidden Markov models, which are used to learn the gestures, in the following.

6.2 Hidden Markov Models

Hidden Markov models (HMMs) are an important tool for discovering structure in
time-varying data. Many real-world data may be considered generated by a physical
process which can switch between a number of different states. Which state si the

61

-15

-10

-5

 0

 5

 10

 0 2 4 6 8 10 12 14 16

ro
ll

an
gl

e
ve

l

frame number

nod roll angle vel data

(a)

-15

-10

-5

 0

 5

 10

 0 2 4 6 8 10 12 14 16

pi
tc

h
an

gl
e

ve
l

frame number

nod pitch angle vel data

(b)

-15

-10

-5

 0

 5

 10

 0 2 4 6 8 10 12 14 16

ya
w

 a
ng

le
 v

el

frame number

nod yaw angle vel data

(c)

-15

-10

-5

 0

 5

 10

 0 2 4 6 8 10 12 14 16 18 20

ro
ll

an
gl

e
ve

l

frame number

shake roll angle vel data

(d)

-15

-10

-5

 0

 5

 10

 0 2 4 6 8 10 12 14 16 18 20

pi
tc

h
an

gl
e

ve
l

frame number

shake pitch angle vel data

(e)

-15

-10

-5

 0

 5

 10

 0 2 4 6 8 10 12 14 16 18 20

ya
w

 a
ng

le
 v

el

frame number

shake yaw angle vel data

(f)

Fig. 6.6: Example angle trajectories of the head gestures as is. All three angles roll, pitch and yaw
are shown, in this order. (a - c) The nod gesture. (d - f) The shake gesture.

process is in, at any given time t+ 1, depends only on the state at some previous time
t. This is termed a (first order) Markov process, i.e., the Markov assumption holds:

Pr(xt+1 = si|x1, . . . , xt) = Pr(xt+1 = si|xt) (6.11)

The signals observed result from this process, but the process itself and its state
changes are not observable. As the (hidden) physical process makes a path from one
state to another, observations with different characteristics are emitted. The charac-
teristics are often probabilistic relationships between the underlying state and the data
generation process. Consequently, two identical state paths may produce two different
output sequences. For example, an identical word uttered by two different people will
not sound the same due to differences in accent, sex, age, background noise etc., but
the underlying phonetic ordering (i.e. state path) is identical. To extract and classify
corresponding information from such signals, one must recover the underlying state
dynamics which give rise to the observed data. HMMs are used to model the genera-
tion process in order to try and recover the hidden states underpinning the observed
sequence.

Hidden Markov Models have a long, successful history, especially in speech recogni-
tion. Since the early 1980s they have been intensively studied. A sound mathematical

62

grounding together with the existence of efficient algorithms for training and analysis
are strong criteria for their application. In [Rabiner 1990] a tutorial on HMMs is given
which forms the basis of the following introduction.

Formally, a Hidden Markov Model is a finite state machine having a set of hidden
states, S = {si} , i = 1, . . . , N , an output alphabet (observations), O = {ok} , k =
1, . . . ,M , transition probabilities, A, output (emission) probabilities, B, and initial
state probabilities π = {πi}. The state at time step t is denoted as xt. As the states
and observations are usually understood, an HMM is therefore defined as a triple:
λ = (A,B, π) with

• A = {aij} and aij = Pr(xt+1 = sj|xt = si) denoting the probability to transition
from state si to sj,

• B = {bi(ok)}, denotes the probability to output the symbol ok in state si, and

• πi = Pr(x1 = si) signifies the probability to choose si as initial state.

Three canonical problems arise in the context of Hidden markov models:

Evaluation problem Given a HMM λ and an observation sequence O determine
Pr(O|λ), i.e., the probability that λ produced O. An efficient solution to this
problem is known as forward-backward algorithm.

Decoding problem Given a HMM λ what is the ’best’ hidden state sequence (in a
maximum likelihood sense) that could have generated a given observation se-
quence O. This problem is solved by the Viterbi algorithm.

Learning problem Deals with the question how to estimate the model parameters
(state transition and output probabilities) given an observation sequence O or
a set of such sequences. The Baum-Welch reestimation algorithm provides the
solution.

In the following the solutions to the three outlined problems are presented.

6.2.1 Evaluating HMMs

To compute the likelihood that a given HMM λ produces an observation sequence O,
and given that the underlying state sequence X is unknown, one has to sum over all
possible state sequences that could lead to the given observation sequence. This can
be expressed as follows

Pr(O|λ) =
∑
X

Pr(O,X|λ) =
∑
X

Pr(O|X,λ) Pr(X|λ). (6.12)

63

x1 x2 x3 x4 xTx5 xt

Fig. 6.7: Illustration of the lattice that is spanned to compute the forward variable αt(5).

One brute force solution for this equation would be to exhaustively enumerate all
possibilities:

Pr(O|λ) =
∑
X

bx1(o1)bx2(o2) . . . bxT
(oT)πx1ax1x2ax2x3 . . . axT−1xT

(6.13)

However, this leads to combinatorial explosion with a complexity of O(2T ·NT), as there
are NT possible state sequences each requiring 2T computations. This is where the
forward-backward algorithm comes into play, reducing the complexity to a reasonable
O(N2 · T).

The key idea of the algorithm is to span a lattice of N states and T time steps
(that is, the length of the observation sequence) as in Figure 6.7. Then, the sum of
probabilities over all paths coming to each state si at time t is stored. For this purpose,
a variable αt(j), the forward variable, is defined as

αt(i) = Pr(o1, o2, . . . , ot, xt = si|λ), (6.14)

and denotes the probability of the partial observation sequence o1, o2, . . . , ot at time
step t in state si given the model λ. The advantage is that subsequent values can be
computed recursively. Starting with the induction initialization

α1(i) = πibi(o1), (6.15)

it holds for the subsequent induction steps that

αt+1(i) =

{
N∑

i=1

αt(i)aij

}
bj(ot+1), 1 ≤ t ≤ T − 1 . (6.16)

That means, we compute the probability that the system is in state sj at time t + 1.
State sj is reachable from all preceding states si with aij > 0. Therefore,

∑N
i=1 αt(i)aij

64

x1 x2 x3 x4 xTx5 xt

Fig. 6.8: Illustration of the lattice that is spanned to compute the backward variable βt(i).

denotes the summed probability for reaching state sj from all preceding states. This
term is multiplied with the probability of producing the next observation of our se-
quence in state sj. This is repeated for all states of the system 1 ≤ j ≤ N . If time step
T is reached, the sum over all αT (i) yields the probability of the observation sequence
O at time T :

Pr(O|λ) =
N∑

i=1

αT (i) (6.17)

In analogy, it is also possible to define a variable βt(i), or backward variable, which in
the end sums up to the equal probability of an observation sequenceO, but computation
starts from time step t = T . Initialization is given by

βT (i) = 1, (6.18)

whereas the actual recursion is computed as

βt(i) =
N∑

j=1

aijbj(ot+1)βt+1(j). (6.19)

Figure 6.8 illustrates the the computation of the backward variable.

In practice, only the forward algorithm is used to solve the evaluation problem, as it
also allows to compute probabilities for partial observation sequences, i.e., can be used
for online recognition. The backward algorithm, however, is useful for the learning
problem as described in Section 6.2.3.

6.2.2 Decoding Hmms

The second problem deals with the analysis of the internal structure of the HMM and
provides insight about internal segmentation of the pattern that is represented by the
HMM. This can be useful for continuous recognition as we will see later.

65

There are several possible criteria for finding the most likely sequence of hidden
states. One is to choose states that are individually most likely at the time when a
symbol is emitted. This approach is called posterior decoding. Posterior decoding
works fine in the case when the HMM is ergodic, i.e. there is transition from any state
to any other state. If applied to an HMM of another architecture, this approach could
give a sequence that may not be a legitimate path because some transitions are not
permitted.

The Viterbi algorithm operates globally by choosing the best state sequence, called
Viterbi path, that maximizes the likelihood of the state sequence for the given obser-
vation sequence. We define

δt(i) = max
x1,x2,...,xt−1

Pr(x1, x2, . . . , xt = si, o1, o2, . . . ot|λ) (6.20)

to be the maximal probability of state sequences of the length t that end in state
si and emit the t first observations for the given model. This probability can be
calculated using a similar dynamic programming scheme as in the last section except
that it uses maximization in place of summation at the recursion and termination
steps. Additionally, it keeps track of the arguments that maximize δt(i) for each t and
si, storing them in the N × T matrix ψ. This matrix is used to retrieve the optimal
state sequence at the backtracking step.

The basis step is accordingly given by

δ1(i) = πibi(o1), ψ1(i) = 0 (6.21)

In the recursion step the probability and the previous state of the most probable path
coming to each state si at time t is computed and stored:

δt(j) = max
1≤i≤N

[δt−1(i)aij] bj(ot), 2 ≤ t ≤ T − 1, (6.22)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij] , 2 ≤ t ≤ T − 1 . (6.23)

The algorithm terminates with the computation of the most likely path x∗T and its
probability P ∗:

P ∗ = max
1≤i≤N

δT (i) (6.24)

x∗T = arg max
1≤i≤N

δT (i) (6.25)

To reveal the actual state sequence, path backtracking is performed by means of the
matrix ψ:

x∗t = ψt+1(x
∗
t+1), t = T − 1, . . . , 1 (6.26)

66

1

2

3

Fig. 6.9: Illustration of the lattice that is spanned to compute the Viterbi path and how backtracking
is performed.

In Figure 6.9 we show the Viterbi path computation for a three state HMM where
for each state at each time step t the optimal predecessor is stored. This can be used
to trace back the optimal state sequence.

6.2.3 Learning HMMs

Our last problem is related to the learning of the model parameters λ∗ = (A,B, π)
for a given observation sequence O = o1, o1, . . . , oT such that Pr(O|λ∗) > Pr(O|λ)
for ∀λ, i.e., to adapt model parameters maximally to training samples. As there is
no analytic solution known to determine optimal model parameters, the Baum-Welch
reestimation algorithm is usually applied. This algorithm is an iterative maximum
likelihood estimator that locally maximizes Pr(O|λ) and is proven to converge, however,
not necessarily to the global optimum.

Starting from an arbitrary model λ, Pr(O|λ) is computed using the forward-backward
algorithm. Meanwhile, the frequencies of state transitions and emitted symbols are
counted. In the next step, the model parameters are adapted in such a way that more
frequent state transitions and emitted symbols become more likely than less frequent
ones. Clearly, the adapted model will now yield a higher probability for the given
observation sequence. Note that these two steps correspond to the expectation and
maximization steps of the EM algorithm; in fact, the Baum-Welch algorithm can be
considered as a ’realization’ of the EM algorithm.

To attain our goal, we define the variable

ξ(i, j) = Pr(xt = si, xt+1|O, λ), (6.27)

which denotes the probability that at time step t the transition from state si to state
sj is used under emission of the observation symbol ot. Utilizing the α and β variables,

67

this can be computed as

ξ(i, j) =
αt(i)aijbi(ot+1)βt+1(j)∑

i

∑
j αi(i)aijbj(ot+1)βt+1(j)

. (6.28)

Further, we define γt(i) =
∑N

j=1 ξt(i, j) as the probability to be in state si at time step
t

In the expectation step, the expected values for the number of transitions is computed
by summing over the time index t, i.e.,

•
T−1∑
t=1

γt(i) the expected number of transitions from state si, and

•
T−1∑
t=1

ξt(i, j) the expected number of transitions from state si to state sj.

Using these estimates, the maximization step, that is, a method to reestimate the
model parameters, can be given as:

• πi = γi(1)
The new initial probabilities correspond to the expected frequency of stops in
state si at time t = 1.

• aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

The state transition probabilities equal the expected number of transitions from
state si to state sj, divided by the expected number of transitions from state si.

• bj(ok) =

∑T−1
t=1o=ok

γt(i)∑T−1
t=1 γt(i)

The emission probability is then the expected number of times in state sj under
emission of symbol ok, divided by the overall expected number of times in state
sj.

With this, the reestimation step is complete and we obtain a new model λ = (A,B, π
with the property Pr(O|λ) ≥ Pr(O|λ). This process is repeated until convergence is
reached. We can use either of the algorithms presented above to test unseen observation
sequences against this new model.

68

(a) (b)

Fig. 6.10: Two typical HMM architectures. (a) A classical left-right HMM which is often used to
model time sequential data such as speech and gestures. In this configuration with skip states, it is
also called 0-1-2 model, in reference to the possible transitions in each state. (b) Ergodic HMM, where
each state is reachable from every other state with one single step.

6.2.4 Practical HMM Issues

When dealing with HMMs, there are few aspects that have to be considered. The first
is that of the general topology of the HMM. The structure of the HMM is governed
by the transition probabilities aij. When setting some of them to zero, a particular
ordering can be enforced. Note that, according to the formulas from the last section,
zero probabilities will not get updated. Thus the initial structure of the HMM does
not change during training.

In this work, we only consider left-right (see Figure 6.10(a)) and ergodic (Figure
6.10(b)) models. The main property of the latter is that every state is reachable from
any other with one step, i.e., all aij > 0. This type of model is usually applied if there
is no knowledge about possible structure of the process to model. Left-right models
have the property that the state index necessarily increases over time or stays the same.
Due to this, they advance the hidden states from left to right. More formally, this is
expressed as aij = 0, i < j. Additionally, a skip limitation can be introduced, with
aij = 0, j > i+∆, where ∆ denotes the maximal number of states that can be skipped.
Its sequential character has led to the assumption that this kind of model is especially
suited to capture time sequential signals such as speech, or gestures.

Another design aspect relates to the observation symbols. Up to now, only discrete,
i.e., finitely many, output symbols have been considered. In many real world problems
the data is of continuous nature and discretizing it usually leads to information loss.
There are nevertheless reasons to use discrete HMMs as they are faster to process and
require less training data.

Using a continuous HMM effectively means that instead of probability distributions
we have continuous density multivariate output distributions which are usually mod-

69

eled by a number of mixtures of Gaussians. Be aware that good initial estimates are
essential for continuous HMMs. To obtain such estimates, we use the segmental k-
means procedure, also known as Viterbi training, since it aligns partial observation
sequences to states based on Equations 6.23. Note that it could be sufficient to apply
Viterbi training alone. However, in rare cases it can lead to suboptimal models. This
is why Baum-Welch reestimation is usually applied subsequently.

To summarize, when it comes to modeling statistical processes with HMMs, the
topology has to be determined, how many states to use, the observation representation
(discrete or continuous), and in the latter case the number of mixtures of Gaussian. The
answers to these questions depend on the case at hand and are often experimentally
determined, as in our case.

6.3 Modeling and Training Gestures

As mentioned, the left-right structured HMMs are the means of choice for time-
sequential processes such as gestures. We therefore based our further evaluations on
this fundamental type of HMM. From our experiments (see Chapter 7), we found that
models with a state number depending on the average observation length (three to six),
no skip states, and one or two mixtures of Gaussians, perform best. The low number of
states may be surprising. But to break down the complexity of such lengthy gestures
as waving or pointing, we decided to subdivide a gesture into three parts.

This decision was partly inspired by [Nickel, Seemann, & Stiefelhagen 2004] where a
pointing gesture is modeled using three HMMs according to the begin phase, hold phase
and end phase. In our terminology, this corresponds to the preparation, hold/stroke,
and retraction phase. This subdivision is furthermore reasonable as it allows to model
the hold phase explicitly. We observe that it is the most volatile, for example dur-
ing waving, one may move one’s hand forth and back one time, two times or several
times. This could be covered by allowing the corresponding HMM to jump back to the
start state again in case the observations should support such a transition. Moreover,
knowing to be in the hold phase of a gesture can be used to estimate an associated
parameter, if applicable.

Note that for the less complex and shorter gestures, this subdivision is neither nec-
essary nor reasonable. Therefore dunno, nod and shake have been left monolithic.
We end up in modeling a total of 12 gestures: prep_wave, hold_wave, retr_wave,
prep_point, hold_point, retr_point, prep_thisbig, hold_thisbig, retr_thisbig, dunno,
nod, shake.

70

6.3.1 Collecting Training Data

For there does not exist useful standard data, we had to collect the training data
ourselves. For this, we asked five different people to perform the gestures in front
of a standard webcam. We chose two different locations, different lighting conditions
- sunlight, daylight, artificial light - and different backgrounds, most of which were
cluttered. Figure 6.1 from the beginning of this chapter was taken from videos recorded
under these conditions.

From each person, around 15 repetitions of the same gesture were recorded at a rate of
20fps, such that we end up in a database of 75 samples per gesture. From these, around
50 were taken for training the HM models. For this, the videos were manually labeled.
That is, we marked the start and endpoint of each gesture as well as the intermediate
points denoting the end of the preparation phase and hold phase, respectively. The
videos were processed to obtain the 2D trajectory data plus head rotation angles.
This data was split into pieces corresponding to the label file information and feature
transformed and thus constitutes our trainings and test set. In case of the bimanual
gestures and the shake gesture, we could double the acquired data by swapping left
and right hands, and flipping the sign of the yaw angle.

6.3.2 Rejection Of Non-Gestures

Given N trained reference models {λ} for gestures to recognize and an observation
sequence O there will always be a winning class λi according to

λi = arg max
i=1,...,N

[Pr(O|λi)] (6.29)

The task of rejection is to validate if O is indeed generated from λi. One straightforward
approach would be to define a threshold likelihood which has to be exceeded by λi.
However, this has several drawbacks. First, deriving such a threshold from the training
data is not very reliable. Consider the case that one performs a gesture rather slowly.
In this case more state transitions (probably self transitions) are required to find a
path that fits the observations. And although this could be a perfect recognition result
with all the other likelihoods being far below this one, it could fall below such a global
threshold and get rejected thusly. The other drawback is that such a decision can be
undertaken only after the end of the gesture has been detected, which prohibits its use
in an online approach. More promising is to compare the likelihoods of the λj, j 6= i and
demand that Pr(O|λj)

Pr(O|λi)
< θ ∀j 6= i, which does not suffer from first described problem,

but again requires a fixed threshold. An approach where this problem is circumvented
is described in [Xiao-Hui & Chin-Seng 2006].

71

In this work, we consider an additional alternative model λ̃ against which λi is
tested and accepted if it scores higher. Defining such a model, however, is difficult
as it has to cover the entire space of possible alternatives for good performance. An
obvious approach is to build a model using a large number of non-meaningful patterns.
Such models are called filler models or garbage models [Xiao-Hui & Chin-Seng 2006].
Clearly, it is difficult to obtain a representable amount of data which covers arbitrary
motions.

Nevertheless, we pursued this approach by extracting all motion data not being
marked as gestures as training patterns for our garbage model λ̃. Additionally, the
gesture segments not belonging to the same gesture category were re-used, such that
we were able to collect around 2000 samples for training λ̃.

As in general nothing can be said about the order of arbitrary motions, the left-right
HMMs are not the adequate choice for λ̃. Instead an ergodic design is chosen with five
states, and again one or two mixtures of Gaussians.

Another approach was presented in [Lee & Kim 1999] and again, slightly adapted,
in [Yang, Park, & Lee 2006], where a threshold model is defined which is based on
the meaningful models. The general idea is to copy all states from all trained models
and arrange them in a fully connected, i.e. ergodic, HMM with smoothed output
probabilities. More exactly, let SG be the set of states j of all gesture models. A
dummy start state s is connected to all these states with transition probabilities asj =

1
|SG| ∀j ∈ SG, which in turn are connected to a dummy end state e with transition
probabilities aje = 1−ajj ∀j ∈ SG, with ajj being the self transition of state j. The two
dummy states observe no symbol and are passed without time delay. Therefore every
state can be reached from every other in a single transition. The output probabilities
bj(k), k being the emitted symbol, are flattened via floor smoothing. For this reason,
the meaningful models are expected to have a higher likelihood for their target pattern,
whereas for non-gesture patterns the threshold model should perform better than any
trained model due to the broader variances.

We adapted this approach for our work and found it to outperform the garbage
model, see Chapter 7.

6.3.3 HMM Networks

As explained, some gestures were subdivided according to the three phases preparation,
hold and retraction. They can, however, not be treated independently. Rather, the
phases appear in a specific order which has to be considered during recognition. We
therefore define regular grammars for the complex arm gestures. The grammar for

72

prep_wave

prep_point

hold_wave

hold_point

retr_wave

retr_point

no_gesture

(a)

prep_thisbig hold_thisbig retr_thisbig

dunno

no_gesture

(b)

nod

shake

no_gesture

(c)

Fig. 6.11: The HMM network structures. The first two for mono- and bi-manual gestures, and the
right for head gestures. The start and end states of the HMMs are drawn bold and are non-emitting.
As a branching point, a ”dummy state” which is also non-emitting is introduced for each HMM.

waving, for instance, can be given as follows

wave = prep_wave → hold_wave+ → retr_wave,

where + refers to the operator ”at least once”. This specifies the order of the phases and
indicates that the hold phase, e.g., moving the hand left and right, can occur several
times.

Generally, a certain grammar is desirable which governs the allowable recognition
sequences. As we consider monomanual, bimanual, and head gestures independently,
we define three such grammars. These are shown in Figure 6.11(a), 6.11(b), and 6.11(c)
respectively.

In practice, such a grammar is realized by building a single large HMM with constant
transitions between the models, optionally with a transition back to the start of the
model as in case of the hold_* models. Further, a dummy state is introduced which
serves as branching point and merging point respectively and is non-emitting.

Finally, it can be seen, why Viterbi decoding is applied in such a case. Mainting the
summed probabilities in a large HMM is far more time consuming than computing the
most likely path. This is especially true if we represent probabilities logarithmically
which is usually the case as to prevent underflow. We note that the Viterbi path is only
an approximation of the forward probability. In practice, however, both probabilities
are very close ([Rabiner 1990].

6.4 Recognition

Once a person is modeled in the belief, the gesture recognition system is activated for
that person. Up to four HMM networks are constructed, one for the head gestures,
one for the right hand, if observable, one for the left hand, if observable, and one
for the bimanual gestures if both hands are observable. The observations are fed
into the network and the best path is computed using the Viterbi algorithm. Every

73

path through the network passing through t emitting states, where t is the number of
observations so far, is a potential recognition hypothesis. However, most of the paths
will have very low probabilities and thus, only the n best will be kept at each time
step; all other are discarded, for efficiency reasons. The path with the highest likelihood
will effectively form our single hypothesis. Clearly, in the beginning of a gesture, the
highest scoring path can change more or less frequently, but the deeper we advance
into the network the more reliable this hypothesis will become.

For reliable online recognition of the crucial hold phase of a gesture, we therefore
demand a minimum number of times the path is indeed in the respective model. Only
then, we start estimating possible parameters. In cases where no distinct path is found,
we make use of the Viterbi backtracking to determine the actual path taken.

One problem with those individual HMM networks with different-dimensional inputs
is, that they cannot be compared directly and thus cannot be used to discern mono-
manual from bimanual gestures. Currently, this concerns mainly the thisbig gesture,
where each of the hand motions can resemble a pointing gesture, depending on the dis-
tance between hands. Since the bimanual network aims at the symmetry of gestures,
we can however safely assume that indeed a bimanual gesture was performed and reject
possible monomanual hypotheses. This can additionally be backed up by comparing
both monomanual recognition networks which should report the same hypothesis with
similar likelihoods.

As this settles the recognition of gestures as such, we consider in the following the
parameter-dependent pointing and thisbig gestures. During the hold phase of these
gesture we additionally estimate the parameter they depend on.

6.4.1 Parameter Dependent Gestures

The task is to recover the parameter of gestures dependent thereof. Estimating these
parameters is only possible, if we have a mapping from the 3D world to the 2D projec-
tion we observe.

For this reason, we calibrated the camera by measuring the fixed size of some objects
in pixels given a distance of 200cm. Surprising enough, the relation turned out to be
free of distortions, that is, 1pixel ≈ 0.375 throughout the image. In order to obtain
an estimation of the distance of the person to the robot, (r), the width of the face
bounding box of different people standing at different positions in front of the camera
was recorded. Having expected a linear relation, we found that in the close-up-range
this is not the case. However, we treat it piece-wise linear, as plotted in Figure 6.12(a).
Of course this leads only to a rough estimation of r, but it is sufficient for our purposes.

Now, estimating the distance between the hands during the hold phase of thisbig is

74

 20

 40

 60

 80

 100

 120

 140

 160

 180

 50 75 100 125 150 175 200 225 250 275 300

fb
b

si
ze

 in
 p

ix
el

s

distance in cm

 fbb size vs distance

(a)

item

(-2|1|1)

robo (0|0|0)

image
center

optical
 axis

measured
 distance

yaw

pitch

(b)

Fig. 6.12: Diagram of the dependence of the face bounding box size from the distance to the
robot/camera.

simple. With the horizontal halfway distance in pixels dx = (xl + xr)/2, we compute
the angle ϕ as

ϕ = atan2(dx, 200).

Then, the distance rf is estimated via linear interpolation and the distance in centime-
ters dcm is calculated as

dcm = 2 · rf sinϕ. (6.30)

This distance is repeatedly computed during the hold phase. Moreover, once
retr_thisbig follows up, the mean computed during the entire hold phase is signaled
for a final estimation.

For the pointing gesture, matters are slightly more involved and are therefore de-
scribed in an own section in the following.

Pointing Target Estimation

In the following we assume that we know the positions of objects that can be the target
of pointing gestures. We further assume that the person who is pointing is also looking
at the pointing target. Finally, we assume this gaze direction coincides with our head
pose estimation.

The first step is to derive the 3D position of the person who is currently pointing.
Using again the distance estimation, r is obtained as before and the offsets dx and
dy between the detected face cf and the image center ci, which coincides with the
intersection of the optical axis with the image plane, are determined. The angles Θ

75

between rf and the optical axis along the y axis as well as ϕ along the x axis are
computed as:

Θ = atan2(dy, 200)

ϕ = atan2(dx, 200)

Θ, ϕ, and r define a straight line through the focal point and c, in a spherical
coordinate system. Using the transformation equations,

x = r sin Θ cosϕ

y = r sin Θ sinϕ

z = r cos Θ,

the Cartesian coordinates of c are attained.
Using the head pose estimation, the line of sight l is computed with c as initial point

and a unit vector u pointing toward the camera. u is rotated accordingly to the pitch
angle Θy and yaw angle Θz. The roll angle Θx does not convey information for pointing
target estimation. Finally, for each entry in the list of 3D positions of known items i
the distance between the item in question and l is calculated analytically as

d = ‖i− (c− (u · c− u · i/u · u)u)‖ . (6.31)

The object with the minimal distance is identified as the pointing target. Figure 6.12(b)
summarizes the steps performed to estimate the pointing target.

This concludes the description of our efforts undertaken so far to recognize gestures.
We performed a variety of experiments to investigate the usability of our approach and
present them in the following chapter.

76

77
Experiments

Our approach to gesture recognition has been implemented and tested comprehensively
to evaluate its applicability. In this chapter, we present various experiments which
cover the individual parts of our system, namely hand detection, tracking and gesture
recognition.

7.1 Hand Detection Experiments

As described in Chapter 3, we trained several classifiers with either different positive or
negative sample sets. As training takes arbitrarily long (at least 4-7 days on a decent
computer), we had to be somewhat restrictive. Therefore, we first build intermediate
classifiers with only a few hundred positive samples of a single person. In doing so,
we could experiment with the parameters to choose for training. These include the
number of stages to train, the set of features to use (basic rectangular or rotated or
both), minimum detection rate and maximum false alarm rate per stage etc.

The final classifiers were trained using the full feature set, 20 stages and a minimum
detection rate of 99.5% and a false alarm rate of 50% per stage. We selected around
5000 positive samples. In detail, we trained five generic hand classifiers and six specific
(=right) hand classifiers, as follows:

Γ1 denotes the one described in Section 3.3 with the positive samples duplicated by
the factor 16. From the resulting 5000 positive sample sets, around 470 were randomly
selected to constitute the training set of ∼7500 positive samples. For the second clas-
sifier Γ2, we did not duplicate the positive samples but took the complete set. Γ3 and

77

 0

 10

 20

 30

 40

 50

 60

g1 g2 g3 g4 g5
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24detection rate
false alarm rate

(a)

 0

 10

 20

 30

 40

 50

 60

g1 g2 g3 g4 g5
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24detection rate
false alarm rate

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

h1 h2 h3 h4 h5

pi
xe

l

average position error

(c)

Fig. 7.1: Test results for the generic hand classifiers. (a) The overall detection rate plus false alarm
rate. (b) The true rates, when subtracting missing skin detections. (c) The average distance in pixels
from the true hand position.

Γ4 relate to Γ1 and Γ2, but use positive samples containing 10% less than the respec-
tive face bounding boxes. Finally, we trained the comparison classifier Γ5, without the
restrictions imposed on the other four, see Section 3.3.

Similarly, we trained right hand classifiers Σ1, Σ2, and Σ4 corresponding to the
respective generic classifiers. Additionally, we trained a tuned classifier Σ3, where only
left hands were used as negative samples. To be able to directly compare the outcome
of this tuning, a tuned version of Σ4, Σ5, was trained too. A sixth classifier Σ6 relates
to Γ5, yet again using only left hands as background.

For our test, we selected 500 images that have not been used for training. In doing
so, we minded not to include too similar images (in terms of hand shape, hand position
and background) to capture a reasonable broad range. The hands in the images were
manually labeled for their position and their laterality. See Figure 7.2 for a selection
of these images.

7.1.1 Generic Hand Classifier

From experience, we knew that we have to expect a high false alarm rate. Thus we
set the minimum number of detections that account for a single hit as high as 15.
We then processed all test images, counting the number of detected hands which were
indeed hands (= detection rate) and the number of hand detections that in fact were
not hands (=false alarm rate).

The results are given in Figure 7.1. In (a) we see the overall detection rates in blue
and the overall false alarm rate in black. For the detection rates we see that the smaller
versions perform worse and conclude that we might have trimmed too much context
information. That Γ1 outperforms Γ2 may be explained that less different hand shapes
were considered during training, thus the selected features are more general and accept

78

Fig. 7.2: Test images used for the hand classifier experiments. We chose images containing different
people, different backgrounds, and different lighting conditions . Example detection results of the
generic classifier Γ5 and the specific classifier Γ3 are drawn in. Orange denotes right hand detections,
right with respect to the image. Blue denotes left hand detections whereas grey denotes unknown
laterality.

more unseen samples.
The obtained detection rates so far are not what we expect, but can easily be reg-

ulated, i.e. increased, by lowering the minimum number of single detections. Yet this
comes to the price of an increasing false alarm rate. When looking at these, there
only remains one acceptable classifier, Γ5, which is a somewhat unexpected. Our ex-
planation is that it might not be of advantage to include images containing hands to
the negative sample set, as we did. Another reason might be that with the fixed size
we chose to crop the positive samples, a lot of additional variation was introduced,
as one and the same hand can look completely different, at least seen from a features
perspective.

Another source for the low detection rates is that in some cases hand detection did
not occurred in the first place as no skin blob could be found. This accounts for a
decrease of ∼ 5%. The reassessed rates are therefore given in Figure 7.1(b). We argue,
that in real world scenarios, where we track the hands and additionally update the
histogram, the problem should not happen too often. This is also backed up by our
experiments in Section 7.2.

In Figure 7.1(c) we plotted the average distance of the correct detections to the
labeled positions. We see that there are no significant differences between the classifiers.
An average error of less than 3 pixels is certainly within the acceptable range.

In the following, we only consider Γ5 as it by far outperforms the other in terms
of the false alarm rate. Surely, this is to prefer over a high detection rate as we can
bridge a missing detection easily, but considering too many hand candidates is decreases
robustness. Moreover, by adjusting the minimum number of detections we can increase
the detection rate. Figure 7.3 shows some results referring to this. We see that the
false alarm rate increases only moderately and thus acceptable detection rates of up to
∼ 75% can be achieved. Also the distance errors increase only slightly.

As we prefer low false alarm yet wish an acceptable detection rate, we finally settled
for the minimum number of six detections, with a false alarm rate of only ∼ 0.63% and
a detection rate of ∼ 71%. This also forms the basis of the subsequent experiments.

79

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14 16
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2
detection rate

false alarm rate

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14 16
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2
detection rate

false alarm rate

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14 16

pi
xe

l

average position error

(c)

Fig. 7.3: Test results for our winning hand classifier Γ5 with different minimum number of detections.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

s1 s2 s3 s4 s5 s6
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20
detection rate

false alarm rate

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

s1 s2 s3 s4 s5 s6
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24detection rate
false alarm rate

(b)

Fig. 7.4: Test results for the specific hand classifiers. In (a) the performance of the of the classifier on
left hands is shown. Likewise, (b) shows the performance on right hands.

7.1.2 Right Hand Classifier

We used the same test set as before and applied the specific classifiers for each correct
hand detection of the generic hand classifier. This time, we counted the number of
detections of a right hand given it was indeed a right hand (= detection rate) and
when it was a left hand (= false alarm). The same was repeated for the left case.

The results are given in Figure 7.4. (a) depicts the performance of the specific
classifiers for left hands. This time, the size of the positive samples the classifiers were
trained on have no influence on the performance. This comes expected as the features
used to discriminate right from left hands will likelier focus on the structure of the
hand itself than on the context, for example on the existence and position of a thumb.
This also explains why Σ6 performs far worse as it was trained on positive samples
which did on average contain more context. Thus the fine structures needed to discern
right from left hands may not be available.

When looking at Figure 7.4(b), we are surprised to find one and the same classifiers

80

Table 7.1: Performance of our hand detectors.

Detection rate False alarm rate Avg. dist.

Generic detector 81.25 0.10 2.89

Specific detector 89.50 5.56 -

to perform considerably worse than for left hands. This can only be explained under
consideration of the test set of images. This set consists of images extracted from
gesture training data videos where primarily single handed gestures are performed.
These were mostly carried out with the left hand. We postulate therefore that a
loosely dangling right hand is much harder to classify as it looks very similar to a
loosely dangling left hand. This is especially the case if the thumb is not clearly
visible, which is also likely to happen in this position.

For an overall performance of the classifiers we therefore have to average both results.
Nevertheless, the resulting detection rates remain remarkably high with at the same
time sufficiently low false alarm rates. Also the ability to distinguish between left and
right hands with a detection rate of almost 90% and a false alarm rate of 5% is highly
satisfactory.

We note that the results depend on the distance of the people to the camera. When
the people leave the normal interaction radius of approximately 2m, the performance
of the hand detection system gets worse, at least when using a standard webcam with
a resolution of 640×480 pixel.

7.2 Tracking Experiments

In the following experiment we investigated our assumption that the hand detection
rate should increase while tracking since we expect to find all skin regions. Additionally,
we wanted to know how accurate tracking is performed when no hand is detected. In
the absence of ground truth data (e.g., from data gloves), we yet again manually labeled
a test image sequence, this time of 500 successive frames for their hand positions (and
their laterality). A part of this sequence is shown in Figure 7.5(a).

The results for the best classifiers Γ5 and Σ4 are summarized in Table 7.1. We
see that the average error distance has even improved as compared to the detectors
performance alone. This hints that our skin regions extraction works satisfying. As
expected, the detection rate increased to over 80%, which is more than sufficient to

81

(a)

(b)

Fig. 7.5: Test image sequence for the tracking experiment. The colors of the drawn in detections
have the same meaning as in Figure 7.2. Additionally, in case of non-detections the previous position
is drawn in white together with the Kalman filter prediction in yellow. Magenta finally, denotes the
CamShift convergence. This can be observed in the second frame of (a). (b) shows the our compact
person model maintained by means of the detection and tracking steps. Additionally, the head pose
estimation is indicated.

robustly track the hands using Kalman filters and our probabilistic belief. Also the
ability to distinguish between left and right hands with a detection rate of almost 90%
and a false alarm rate of 5% is highly satisfactory. In Figure 7.5(b) we show, that our
compact person model is reliably maintained throughout the sequence with the correct
hand assignment.

In a second test we examined how quickly a person model together with two hands
was established in average, by processing 50 previously unseen video snippets until
the model was fully established. In Figure 7.6 the magenta curve denotes the results.
As we accept faces and hands only when bel(f |z1:t) > 0.95 and bel(h|z1:t) > 0.95,
respectively, this signifies that at best after 7 frames the model can be complete. This
is because we start hand detection only after the face got accepted which happens at
best at frame number 3. While the face and both hands have been detected not later
than after 16 frames, establishing the model can take considerably more time. These
cases, where the hand does not get re-detected often enough, coincide with the person
standing farther away from the camera than 2-3m.

With a processing speed of 20fps, a person model is complete after 1.5s in 90% of all
cases which is sufficiently fast. Note that recognition of head and monomanual gestures
can start even earlier.

We also tested our approach how well it handles multiple person tracking. For this,
we recorded videos with different numbers of people. Figure 7.7 shows an example

82

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

pe
rce

nt

frame number

face detected
face accepted

hands detected
hands accepted

Fig. 7.6: Test results for model establishing. The red curve denotes the percentage of faces detected
dependent on the frame number. The green curve denotes the percentage of faces accepted by means
of the belief. As can be seen, once found, a face is re-detected constantly. The blue curve denotes
the percentage of hands detected. We see that once we start detecting nearly 70% of the hands are
detected immediately, which reflects the detection performance of our classifier. The harder cases in
farther distance are not re-detected constantly and therefore take some time until they are accepted
as indicated by the magenta curve.

(a)

(b)

Fig. 7.7: Sample sequence for multiple person tracking. In (a) depicted are the detection/tracking
results and in (b) the respective person models.

83

Table 7.2: Final HMM configuration.

States Skips Mixtures

Monomanual 3-6 0 1

Bimanual 4-8 0 2

Head gestures 6-7 0 1

sequence with two people. In 7.7(b) the corresponding person models are depicted. As
can be seen, the assignment of hands is correct and does not get confused when hands
come close together as at the end of the sequence. We found that we can reliably track
up to three person. As the performance of our system depends on the number of faces
and hands to be tracked, further optimizations would be necessary to track even more
people.

7.3 Gesture Recognition Experiments

Our first experiments with regard to gesture recognition were conducted to find out
the the best configuration parameters for the HMMs. We varied the number of states,
the number of skip states, and the number of mixtures of Gaussians. The initial
configuration were three states, zero skip states, and one mixture of Gaussians. Setting
skip states higher than zero did in no case improve recognition results. On the contrary,
some transition probabilities could not get learned properly due to data insufficiency.
Similarly, using more than two mixtures of Gaussians resulted in data insufficiency.
Increasing the state number gave no consistent picture: some models performed slightly
better, some slightly worse. When inspecting the learned transition probabilities of the
models performing worse, we could see that some forward transitions were set to one,
i.e., that this state was unnecessary.

We then compared the average observation length of all gestures, and discovered
that it was those models for gesture phases or gestures that took longer than the others
that most profited from the higher state number. This intuitively makes sense and we
therefore decided for a variable state number depending on the average observation
sequence length of each gesture (phase).

For the bimanual gestures, for which we had doubled the available training data, we
noticed a slight improvement when using two mixtures of Gaussians over using a single
Gaussian. Table 7.2 summarizes the final HMM configuration for each of the three

84

Table 7.3: Recognition of monomanual gesture phases.

p_wave h_wave r_wave p_point h_point r_point rec. rate
p_wave 25 0 0 0 0 0 100%
h_wave 0 25 0 0 0 0 100%
r_wave 0 0 25 0 0 0 100%
p_point 0 0 0 25 0 0 100%
h_point 0 0 0 0 25 0 100%
r_point 0 0 1 0 0 24 96%

recognition networks.
After training all individual HMMs, we tested their ability in distinguishing the

corresponding gesture or gesture phases (preparation (p), hold (h), and retraction (r)
phase). For this isolated gesture recognition task, we used the Viterbi path and counted
the number of correctly recognized gesture phases from the number of all test sequences.

Table 7.3 shows the percentage of correctly recognized segments for monomanual
gestures. As can be seen, using the extracted features, the individual phases of mono-
manual gestures can correctly be recognized. Only one error occurs for a segment
containing a retraction point phase which is classified as retraction wave. This can
be explained by the fact that both retraction phases contain similar movements in the
end. When considering a whole observation sequence consisting of all three phases, this
error does not occur since the preparation and hold phase are correctly recognized.

Table 7.4: Recognition of bimanual gesture (phases).

dunno p_thisbig h_thisbig r_thisbig rec. rate
dunno 50 0 0 0 100%
p_thisbig 1 49 0 0 98%
h_thisbig 1 0 49 0 98%
r_thisbig 1 0 0 49 98%

For the recognition of bimanual gestures shown in Table 7.4, it can be seen that in
a single test sequence, the phases of thisbig are classified as dunno. Finally, the results
for the head gestures are given in Table 7.5.

When sequences in which persons are not performing any gesture are included into
the test set, we achieve a overall recognition rate of 90% for monomanual as well as
for bimanual gestures. The largest part of this error results from the fact that it

85

Table 7.5: Recognition of head gestures.

nod shake rec. rate
nod 24 1 96%
shake 0 25 100%

sometimes happens that no gesture phases are classified as the preparation phase of
a gesture. This is not critical since no gesture gets the highest likelihood as soon as
the composed HMM expects the hold phase to start. For the head gestures we achieve
only 80% as especially the nod gesture often involves only small variations in the angle
trajectory and is therefore often classified as non-gesture.

We also performed the same experiments with the raw position data, that is, with-
out feature extraction but relative to the face coordinates and normalized. We were
surprised to find that recognition results only got slightly worse, around 3-5%. We
suggest, however, that training and test data may not contain the whole variation that
is to expect from real life data. Moreover, as we only consider a small set of gestures,
these can be distinguished with relative ease. We suspect therefore that our feature
transformation will have more effect on a full application scenario.

The next experiment is designed to evaluate the performance of the HMMs on se-
quences containing whole gestures. We used the composed HMMs, which also contains
the no gesture model, to infer the gesture and counted how often the most likely hy-
pothesis corresponded to the true gesture. We evaluated the Viterbi path on each
frame. Figure 7.8 shows the results for all six gestures. As can be seen, the gestures
can be reliably recognized after processing only few frames. Nodding seems to be most
difficult to recognize because sometimes the people barely move their head. And, again,
we made the observation that thisbig sometimes tends to be classified as dunno.

For our last experiment, we wanted to compare the actual likelihoods each of the
models produces given an unknown observation sequence. For this, we selected five
test samples. They are all shown in Figure 7.10. The pointing gesture in shown in
the two top rows, the waving gesture in the second two rows. In the middle rows we
see the thisbig gesture. This is followed by an sample of non-gesture. The two bottom
rows show the dunno gesture. Further, we draw in the detection and tracking results.
The head gestures are not included in this experiment, as we wanted to compare the
likelihoods.

We then split the compound HMMs into three pieces, one for each gesture. This
means, that one model consists of the three phase models in case of thisbig, pointing
and waving, and of the one gesture model otherwise. As we wanted to compare the

86

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

co
rre

ct
hy

po
the

sis
 [%

]

frame no.

waving
pointing

thisbig
dunno

head nodding
head shaking

Fig. 7.8: Number of frames after which the most likely hypothesis is the correct gesture.

likelihoods for each of these gesture model, we split the data for bimanual gestures into
two data sets, one for the left hand and one for the right hand. We then computed both
the likelihood the monomanual gesture models produced given these datasets. The
likelihoods for all monomanual gesture models given a specific observation sequence
(e.g. thisbig) where then summed together with bimanual gesture model probabilities.
This sum was then normalized to one. For the result see Figure 7.9.

Note that we used the forward algorithm to compute the likelihoods. We observe
that the likelihoods develop similar to the maximum likely path probability used for the
experiment before. As we use Viterbi path decoding in practice for efficiency reasons,
the procedure described above to determine the most likely gesture for both monoman-
ual and bimanual gestures cannot be applied. We therefore rely on the heuristics to
prefer the bimanual gestures over possible monomanual gestures, which is also backed
up by these results.

Finally, we repeated the above experiment to investigate whether our system is able
to recognize gestures when only part of it could be observed. Clearly, this is only of
interest, if the part which is observable includes the hold phase. This is, however, an
important case since a gesture can start without an explicit preparation phase. To
simulate such a situation, we computed the probabilities for each model as above with
the observation sequence beginning with the hold phase. Figure 7.11 shows the results.
In fact, all of the correct gestures could finally be recognized which is a strong hint
toward the robustness of our approach.

87

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ob

ab
ili

ty

frame no.

no gesture
dunno
thisbig

left wave, right point
left point, right wave

left wave, right no gesture
left no gesture, right wave
left point, right no gesture
left no gesture, right point

(a) thisbig

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ob

ab
ili

ty
frame no.

no gesture
dunno
thisbig

left wave, right point
left point, right wave

left wave, right no gesture
left no gesture, right wave
left point, right no gesture
left no gesture, right point

(b) dunno

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ob

ab
ili

ty

frame no.

no gesture
dunno
thisbig

left wave, right point
left point, right wave

left wave, right no gesture
left no gesture, right wave
left point, right no gesture
left no gesture, right point

(c) wave

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ob

ab
ili

ty

frame no.

no gesture
dunno
thisbig

left wave, right point
left point, right wave

left wave, right no gesture
left no gesture, right wave
left point, right no gesture
left no gesture, right point

(d) point

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ob

ab
ili

ty

frame no.

no gesture
dunno
thisbig

left wave, right point
left point, right wave

left wave, right no gesture
left no gesture, right wave
left point, right no gesture
left no gesture, right point

(e) no-gesture

Fig. 7.9: Likelihood development for each model given an unknown observation sequence. Each of
these sequences starts with non-gesture motion of around six frames followed by the actual gesture.

88

Fig. 7.10: Gestures used for our final experiment with drawn in detection results. The first two rows
show the pointing gesture. The second two rows the waving gesture. The middle two rows depict the
thisbig gesture. The second last two rows show arbitrary movements with the arm, i.e., a non-gesture.
The last two rows illustrate the dunno gesture.

89

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty

frame no.

no gesture
dunno
thisbig

left wave, right point
left point, right wave

left wave, right no gesture
left no gesture, right wave
left point, right no gesture
left no gesture, right point

(a) partial thisbig

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty

frame no.

no gesture
dunno
thisbig

left wave, right point
left point, right wave

left wave, right no gesture
left no gesture, right wave
left point, right no gesture
left no gesture, right point

(b) partial wave

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty

frame no.

no gesture
dunno
thisbig

left wave, right point
left point, right wave

left wave, right no gesture
left no gesture, right wave
left point, right no gesture
left no gesture, right point

(c) partial point

Fig. 7.11: Likelihood development for each model given an unknown partial observation sequence.
Each of these sequences starts with the hold phase.

7.4 Parameter Estimation Experiments

Currently, we consider two gestures conveying information which are thisbig and point-
ing. For the thisbig gesture, we asked people to indicate the size of objects. In the
absence of any real object, we told them to indicate the sizes 25cm, 50cm, 100cm, and
150cm. We recorded these gestures in distances ranging from 1.5m to 2.5m, as denoted
by the green circles in Figure 7.12. This way, we collected a total of 32 gestures.

We processed all these videos and estimated the parameter once the hold phase of
thisbig was recognized. All of the hold phases could reliably be recognized. The estima-
tion of the indicated size corresponded to the intended one in 94% of the experiments.
No significant difference could be observed regarding the distance to the camera and
the estimation accuracy. However, we could see once more that the nearer a person is,
the better the hand detection results.

For the pointing estimation experiment, we asked the same people to point at targets
arranged around the camera as in Figure 7.12. The targets are of different height such
that also the pitch angle is important in order to estimate the pointing target. The
people were asked to point to the targets in the order defined by Figure 7.12. Again
we processed all videos obtained this way and estimated the pointing target during the
hold phase. The hold phase could reliably recognized in all the videos. However, the

90

(0|100|0)

robo

(195|10|20)

(80|35|70)

(150|85|113)

(90|25|153)

(-150|55|55)

(-140|50|130)

(-190|100|105)

(-220|85|40)

(0|0|250)

(0|0|200)

(0|0|50)

1 2

3

4
5

6

7 8

Fig. 7.12: Setup for the parameter estimation experiments. The green circles indicate the positions
the people were located when performing the gestures. The red objects indicate the pointing targets.
The numbers next to the targets denote the pointing order.

head pose estimation failed in case the distances were 2m or 2.5m most of the time.
This is partly due to the low quality images the camera provides. With the resolution
of 640

This suggests the use of a second camera with a telephoto lens which could focus on
the details of the face whilst the wide angle camera captures the whole scene.

Given that the head pose estimation succeeded, we could estimate the correct target
in 80% of the cases. As the pointing targets are relatively close to one another, this is
a satisfying result.

91

92

88
Conclusion

The ability of a robot to detect and interpret gestures of humans is an important
capability for natural interaction. In this work, we presented an approach that is
able to robustly recognize gestures from monocular image sequences in real-time. We
consider typical gestures performed during an interaction such as nodding, pointing, or
waving. To represent people, we locate and track their faces and hands. We use trained
classifiers in combination with a skin color cue to reliably detect hands given the color
of already detected faces. As the experimental results demonstrate, our system is not
only able to locate hands, which is an inherently difficult task, but also to determine
their laterality.

The novelty of our approach is that we can recognize a variety of complex gestures
using few expressive features extracted out of monocular images. We segment gestures
into three phases and train HMMs for each phase separately. We construct HMMs
composed of the individual-phase HMMs using regular grammars. Using the distinction
between different phases, we are able to estimate parameters of gestures as soon as a
certain phase is recognized. As we demonstrate in the experiments, using the trained
HMMs, our system is able to reliably spot and recognize the gestures. We furthermore
illustrated that parameters of gestures can be accurately estimated.

8.1 Future Work

On each of the individual steps performed along the way to recognize gestures, im-
provements are possible, a few of which are noted below:

93

Input Data The quality of the input data is certainly an important issue. With
a single focus camera used in this work only a limited range is possible. For the task
of head pose estimation, this range is actually limited further. Also, the maximum
frame rate of such cameras is mostly limited to 30 fps which may be too little for fast
movements. A combined approach, as suggested in Chapter 7, i.e., additionally using
a telephoto lens might add a great deal to the robustness of the approach presented in
this thesis.

Hand Detection We saw that there actually is an infinite number of possible
hand configuration. Therefore, training a general hand classifier is an almost impossible
task. Without the constraints imposed by the skin-coloured region detection step, the
false alarm rate of our classifiers would be unreasonably high. Partly, this might be
due to the likewise limited background samples such that there is a lot of unseen
background left. One way to improve the detection rate is to train other classifiers on
certain classes of hands (which might be clustered automatically based on a certain
similarity measure) and apply them on the result of the general classifier. Also, it
would be useful to segment the upper body from the background and ascertain that
the detected hand is actually connected to the upper body by means of an arm.

Tracking Further improvements regarding tracking are possible. First and fore-
most, an decrease in processing time per frame should be focus of the very next work.
Higher frame rates make the assignment problem much easier (or less likely to fail)
and the motion models used for the Kalman filter more appropriate. The knowledge
of the upper body could be neatly integrated into the tracking problem as well. Main-
taining multiple hypothesis for different assignment probabilities certainly would add
robustness. Additionally, tracking a non detected hand has currently its limitations
in that once a face is crossed, the hand would be lost as the face is usually larger
than a hand. This would lead the mean-shift algorithm to compute the mean in the
face center. Other tracking techniques, that rely also on the actual shape, such as the
Condensation algorithm [Blake & Isard 1996], could add robustness to the tracking
step.

Recognition So far we have only considered a limited amount of gestures and it is
clear that ease of separability would decrease with a larger vocabulary. Therefore more
training data would be essential which is a cumbersome task as there are no standard
databases for this kind of gestures so far. Another way would be to investigate more
advanced training techniques which try to maximize the discriminative power of the
models by training them together. With the Maximum Mutual Information (MMI)
method, an information-theoretic measure is defined which is then maximized during

94

training:

I∗ = max
λ

=

{
V∑

v=1

[
log Pr(Xv|λv)− log

V∑
w=1

Pr(Xw|λw)

]}
(8.1)

Using such a method, that is, obtaining reliable HMMs with only little training data
would also be a good basis to allow for online learning of new gestures. As we have
seen, modeling and training a gesture is an elaborate task. By providing the facility of
a learning mode, only few examples would be required for the robot to learn this new
gesture. An approach in this direction has recently be presented by Rajko et al. [2007]
for whole body gestures.

Extending the set of known gestures leads to the question of appropriate feature
selection. So far, they have been manually designed to suit the need of the gestures at
hand. However, it is not clear whether this would be an appropriate description of other
gestures. The idea would be to learn the most discriminative features as well. Principal
Component Analysis (PCA) is a commonly used technique to discover the essential
information. In [Lu et al. 2007] PCA has been applied to feature analysis, consequently
termed Principal Feature Analysis (PFA), in the pattern recognition domain. An
adaption to our case would be interesting.

95

96

Bibliography

Arthur, David, & Sergei Vassilvitskii [2007]. “k-means++: The Advantages of Careful
Seeding”. In: SODA ’07: Proceedings of the 18th annual ACM-SIAM Symposium on
Discrete Algorithms. New Orleans, Louisiana: Society for Industrial, Applied Math-
ematics. isbn 978-0-898716-24-5. 1027–1035.

Barczak, A.L.C. [2005]. “Toward an Efficient Implementation of a Rotation Invariant
Detector using Haar-Like Features”. In: International Conference on Image and Vi-
sion Computing New Zealand. Dunedin, NZ. 31–36.

Bennewitz, Maren, et al. [2007]. “Humanoid Robots, Human-like Machines”. In: ed.
by Matthias Hackel. Vienna, Austria: I-Tech Education, Publishing. isbn 978-3-
902613-07-3. Chap. Intuitive Multimodal Interaction with Communication Robot
Fritz, 613–624.

– [2005]. “Multimodal Conversation between a Humanoid Robot and Multiple Per-
sons”. In: Proceedings of the Workshop on Modular Construction of Humanlike In-
telligence at the Twentieth National Conferences on Artificial Intelligence (AAAI),
Pittsburgh / USA.

Blake, Andrew, & Michael Isard [1996]. “The CONDENSATION Algorithm - Condi-
tional Density Propagation and Applications to Visual Tracking”. In: NIPS. 361–367.

Bradski, Gary R. [1998]. “Computer Vision Face Tracking For Use in a
Perceptual User Interface”. In: Intel Technology Journal Q2. 15. url:
citeseer.ist.psu.edu/bradski98computer.html.

Brand, J.D., & J.S. Mason [2000]. “A Comparative Assessment of Three Approaches to
Pixel-level Human Skin-detection”. In: International Conference on Pattern Recog-
nition. 1056–1059.

Brethes, L., et al. [2004]. “Face tracking and hand gesture recognition for human-robot
interaction”. In: vol. 2. doi: 10.1109/ROBOT.2004.1308101. 1901–1906.

Brown, D.A., I. Craw, & J. Lewthwaite [2001]. “A SOM Based Approach to Skin Detec-
tion with Application in Real Time Systems”. In: British Machine Vision Conference.

Campbell, L.W., et al. [1996]. “Invariant features for 3-D gesture recognition”. In:
FGR ’96: 2nd International Conference on Automatic Face and Gesture Recogni-

97

tion. Vol. 00. Los Alamitos, CA, USA: IEEE Computer Society. isbn 0-8186-7713-9.
doi: http://doi.ieeecomputersociety.org/10.1109/AFGR.1996.557258. 157.

Chen, Qing, Nicolas D. Georganas, & Emil M. Petriu [2007]. “Real-time Vision-
based Hand Gesture Recognition Using Haar-like Features”. In: IEEE Confer-
ence on Instrumentation and Measurement Technology. Warsaw, Poland, doi:
10.1109/IMTC.2007.379068. 1–6.

Crowley, James L., & Joëlle Coutaz [1995]. “Vision for Man Machine Interaction”. In:
Engineering for Human-Computer Interaction. Chapman & Hall. 28–45.

Epanechnikov, V. [1969]. “Nonparametric estimation of a multidimensional probability
density”. In: Teoriya Veroyatnostej i Ee Primeneniya. 156–162.

Freund, Yoav, & Robert E. Schapire [1995]. “A decision-theoretic gener-
alization of on-line learning and an application to boosting”. In: Eu-
ropean Conference on Computational Learning Theory. 23–37. url:
http://citeseer.ist.psu.edu/freund95decisiontheoretic.html.

Hong, Pengyu, Thomas S. Huang, & Matthew Turk [2000]. “Gesture Modeling and
Recognition Using Finite State Machines”. In: Proceedings of the Fourth IEEE Inter-
national Conference on Automatic Face and Gesture Recognition. Washington, DC,
USA: IEEE Computer Society. isbn 0-7695-0580-5. 410.

Joseph J. LaViola, Jr. [1999]. A Survey of Hand Posture and Gesture Recognition
Techniques and Technology. Tech. rep. Providence, RI, USA.

Just, A., O. Bernier, & S. Marcel [2004]. “HMM and IOHMM for the Recognition of
Mono- and Bi-Manual 3D Hand Gestures”. In: British Machine Vision Conference.

Kalman, R. E. [1960]. “A New Approach to Linear Filtering and Prediction Problems”.
In: Transaction of the ASME-Journal of Basic Engineering. 35–45.

Kolsch, M., & M. Turk [2004]. “Robust hand detection”. In: Sixth IEEE
International Conference on Automatic Face and Gesture Recognition. doi:
10.1109/AFGR.2004.1301601. 614–619.

Kuhn, Harold [1955]. “The Hungarian Method for the assignment problem”. In: Naval
Research Logistic Quarterly 2. 83–97.

Lee, Hyeon-Kyu, & Jin H. Kim [1999]. “An HMM-Based Threshold Model
Approach for Gesture Recognition”. In: IEEE Transaction on Pattern
Analysis and Machine Intelligence 21.10. 961–973. issn 0162-8828. doi:
http://dx.doi.org/10.1109/34.799904.

Lee, Seong-Whan [2006]. “Automatic Gesture Recognition for Intelligent Human-Robot
Interaction”. In: FGR ’06: 7th International Conference on Automatic Face and Ges-
ture Recognition. Washington, DC, USA: IEEE Computer Society. isbn 0-7695-2503-
2. doi: http://dx.doi.org/10.1109/FGR.2006.25. 645–650.

98

Lienhart, R., & J. Maydt [2002]. “An extended set of Haar-like features for rapid object
detection”. In: vol. 1. I–900–I–903 vol.1.

Lu, Yijuan, et al. [2007]. “Feature selection using principal feature analy-
sis”. In: MULTIMEDIA ’07: Proceedings of the 15th international confer-
ence on Multimedia. Augsburg, Germany: ACM. isbn 978-1-59593-702-5. doi:
http://doi.acm.org/10.1145/1291233.1291297. 301–304.

Martin, Chr., F.-F. Steege, & H.-M. Gross [2007]. “Estimation of Pointing Poses for
Visual Instructing Mobile Robots under Real-World Conditions”. In: 3rd European
Conference on Mobile Robots. Freiburg, Germany. 223–228.

Martinkauppi, J., M. Soriano, & M. Laaksonen [2001]. Behavior of skin color under
varying illumination seen by different cameras at different color spaces. 2001. url:
citeseer.ist.psu.edu/martinkauppi01behavior.html.

McNeill, David [1992]. Hand and Mind. What Gestures Reveal about Thought. Chicago
University Press.

Mitra, S., & T. Acharya [2007]. “Gesture Recognition: A Survey”. In: Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 37.3 [May
2007]. 311–324. issn 1094-6977. doi: 10.1109/TSMCC.2007.893280.

Montero, Jose Antonio, & Luis Enrique Sucar [2004]. “Feature selection for visual
gesture recognition using hidden Markov models”. In: Fifth Mexican International
Conference in Computer Science. Washington, DC, USA: IEEE Computer Society.
doi: 10.1109/ENC.2004.1342606. 196–203.

Nickel, Kai, Edgar Seemann, & Rainer Stiefelhagen [2004]. “3D-Tracking of Head and
Hands for Pointing Gesture Recognition in a Human-Robot Interaction Scenario”.
In: IEEE International Conference on Automatic Face and Gesture Recognition.
565–570.

Ohta, Y., T. Kanade, & T. Sakai [1980]. “Color Information for Region Segmentation”.
In: Computer Graphics and Image Processing 13.3 [July 1980]. 222–241.

Ong, Eng-Jon, & R. Bowden [2004]. “A boosted classifier tree for hand shape detec-
tion”. In: Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE
International Conference on. 889–894.

Rabiner, Lawrence R. [1990]. “A tutorial on hidden Markov models and selected appli-
cations in speech recognition”. In: 267–296.

Rajko, Stjepan, et al. [2007]. “Real-time Gesture Recognition with Minimal Train-
ing Requirements and On-line Learning”. In: Computer Vision and Pattern Recog-
nition, 2007. CVPR ’07. IEEE Conference on. Minneapolis, MN, USA,. doi:
10.1109/CVPR.2007.383330. 1–8.

99

Richarz, J., et al. [2006]. “There You Go! - Estimation Pointing Gestures in Monocu-
lar Images for Mobile Robot Instruction”. In: IEEE Int. Symposium on Robot and
Human Interactive Communication. Hatfield, UK. 546–551.

Rigoll, Gerhard, Andreas Kosmala, & Stefan Eickeler [1998]. “High Performance Real-
Time Gesture Recognition Using Hidden Markov Models”. In: International Gesture
Workshop on Gesture and Sign Language in Human-Computer Interaction. London,
UK: Springer-Verlag. isbn 3-540-64424-5. 69–80.

Rime, B., & L. Schiaratura [1991]. “Gestures and speech”. In: Fundamentals of Non-
verbal Behaviour. 239–281.

Schapire, Robert E. [1990]. “The Strength of Weak Learnability”. In: Machine Learning
5.2. 197–227. issn 0885-6125.

Sezgin, M., & B. Sankur [2004]. Survey over image thresholding techniques and quan-
titative performance evaluation. 2004.

Shamaie, A., & A. Sutherland [2003]. “A Dynamic Model for Real-Time Tracking of
Hands in Bimanual Movements”. In: International Gesture Workshop. 172–179.

Swain, Michael J., & Dana H. Ballard [1991]. “Color indexing”. In: Int. J. Comput.
Vision 7.1. 11–32. issn 0920-5691. doi: http://dx.doi.org/10.1007/BF00130487.

Vatahska, T., M. Bennewitz, & S. Behnke [2007]. “Feature-based Head Pose Estimation
from Images”. In: Proc. of the IEEE/RSJ International Conference on Humanoid
Robots (Humanoids). to appear.

Vezhnevets, V., V. Sazonov, & A. Andreeva [2003]. “A Survey on Pixel-Based Skin
Color Detection Techniques”. In: Proceedings of the Graphicon 2003. 85–92.

Viola, Paul, & Michael Jones [2001]. “Rapid Object Detection using a Boosted Cascade
of Simple Features”. In: CVPR (1). IEEE Computer Society. isbn 0-7695-1272-0.
511–518.

Welch, G., & G. Bishop [1995]. An Introduction to the Kalman Filter. Tech. rep.
University of North Carolina at Chapel Hill.

Wilson, Andrew D., & Aaron F. Bobick [1999]. “Parametric Hidden Markov
Models for Gesture Recognition”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 21.9. 884–900. issn 0162-8828. doi:
http://doi.ieeecomputersociety.org/10.1109/34.790429.

Wilson, Andrew David [2000]. “Adaptive models for the recognition of human gesture”.
Supervisor-Aaron F. Bobick and Supervisor-Bruce M. Blumberg. PhD thesis.

Xiao-Hui, Liu, & Chua Chin-Seng [2006]. “Rejection of Non-meaningful Activities”.
In: Proceedings of the 7th International Conference on Automatic Face and Gesture
Recognition. Washington, DC, USA: IEEE Computer Society. isbn 0-7695-2503-2.
doi: http://dx.doi.org/10.1109/FGR.2006.91. 189–196.

100

Yamato, J., J. Ohya, & K. Ishii [1992]. “Recognizing human action in time-sequential
images using hidden Markov model”. In: CVPR ’92: Conference on Computer Vision
and Pattern Recognition. Champaign, IL, USA. doi: 10.1109/CVPR.1992.223161.
379–385.

Yang, Hee-Deok, A-Yeon Park, & Seong-Whan Lee [2006]. “Human-Robot In-
teraction by Whole Body Gesture Spotting and Recognition”. In: ICPR
’06: Proceedings of the 18th International Conference on Pattern Recognition.
Washington, DC, USA: IEEE Computer Society. isbn 0-7695-2521-0. doi:
http://dx.doi.org/10.1109/ICPR.2006.642. 774–777.

Yang, M.H., D.J. Kriegman, & N. Ahuja [2002]. “Detecting Faces in Images: A Survey”.
In: Pattern Analysis and Machine Intelligence 24.1 [Jan. 2002]. 34–58.

Yang, Ming-Hsuan, & N. Ahuja [1999]. “Recognizing hand gesture using motion tra-
jectories”. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. Vol. 1. Fort Collins, CO, USA.

Yoon, Ho-Sub, et al. [1999]. “Recognition of Alphabetical Hand Gestures Using
Hidden Markov Model”. In: IEICE transactions on fundamentals of electronics,
communications and computer sciences 82.7. 1358–1366. issn 09168508. url:
http://ci.nii.ac.jp/naid/110003208304/en/.

101

