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Abstract

Trajectory planning for multirotors is usually done in a two-step approach where a
low-dimensional path is refined to a dynamic trajectory. These trajectories are only
locally optimal. On the other hand, direct planning in higher dimensional graphs
that represent multirotor states and their transitions generates globaly optimal
solutions but takes too much time. To reduce planning times, the δ-Space restricts
the higher-dimensional planning space. In contrast to other existing approaches,
it does not only contain the area around a single shortest path but combines
multiple lower-dimensional paths. Thus, a higher dimensional planner is able to
plan around the paths that are most suitable for the dynamics of the multirotor.

We test our method both in 2D and 3D grid world. The method is compared
against using a tunnel around a lower dimensional path. Although our approach
is slower than the tunnel method, it generates better trajectories. Combined with
a high heuristic weight, it finds initial results nearly as fast as the tunnel, but
outperforms it in terms of pathcost. And if there is additional planning time
avaiable, it is even possible to iteratively increase the size of the δ-Space to further
improve the path.
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1. Introduction

Nowadays, multirotors are used for multiple purposes, such as delivering packages
to customers, as air taxis, for firefighting of scyscrapers, inspection of agricultural
fields, or scanning of dangerous terrain. Most of these tasks have something in
common: The multirotor should fly the fastest way from a startpoint to a given
goalpoint. Instead of letting people manually fly the drone, such multirotors are
usually operated autonomously, as a pilot would need to sit in the drone or the
drone needs a constant connection to an operater. These algorithms somehow need
to find a trajectory to the goal that can be flown, best would be the fastest or the
one with the lowest cost, depending on the task. But with current hardware and
methods, it is not possible to find the optimal trajectory in a short amount of time
when the trajectory is not precomputed before it is needed. Thus, many different
approaches with multiresolution, heuristics or even neural networks exist that try
to find a fast trajectory in a short planning time. Often, the planning space for
trajectory planning is restricted (e.g. a Tunnel around a 3D path) to decrease
planning times. But many of these algorithm tends to find suboptimal path due
to the differences between 3D-paths and trajectories. Often, the shortest path
is not the fastest, as it is not suited for the dynamic model of the multirotors.
An 2D-example is driving a car. Here, shortest paths often have many turns,
while longer paths on the motorways let you travel much faster. To overcome this
suboptimality, we want to introduce a new approach that should find better path.
Therefore, we define a new planning space that includes all positions on all paths
in the 3D space that are a maximum of δ longer than the shortest 3D-path. As
this planning space can be interpreted as a combination of multiple tunnels, we
expect planning times to be a bit longer. While some algorithms can be used for
online-planning, i.e. replanning of a path while a multirotor is flying, we want to
focus on offline-planning here, so an initial path is planned in a known map before
the multirotor takes off.

Given a dynamic model of a multirotor, a start point, goal point and a map, we
search a trajectory from the start to the goal. While planning, we try to minimize
both the planning time and the flytime, i.e. the time the multirotor needs to fly
to the goal positon. As optimal planning usually takes too much time, we try to
find a good tradeoff between planning resolution, planning time and flytime.
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1. Introduction

Chapter 2 starts with an overview of the mathematical fundamentals of graphs
and path planning. Then, Chapter 3 discusses related work about different ap-
proaches to solve the presented problem. Chapter 4 describes the δ-Space, a new
approach to reduce the planning-space for higher-dimensional planning as well as
different planning approaches to plan inside the δ-Space. In Chapter 5, the δ-Space
is evaluated in experiments. Finally, Chapter 6 gives a conclusion and an outlook
towards possible future research.
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2. Fundamentals
A graph G = (V,E) consist of nodes v ∈ V and edges e ∈ E ⊂ V × V . When all
nodes are aligned in a grid, the graph can be called grid-based graph. Grid-based
graphs have usually up to three dimensions. A grid-based graph can also be called
lattice, where the lattice describes the neighborhood of gridcells. In contrast to a
grid that has normally only up to three dimensions, a lattice can have arbitrary
many. If the edges between nodes in a lattice are motion primatives, i.e. can be
travelled with a multirotor, and the nodes represents states of the multirotor, the
lattice is called state lattice. The resolution of the state lattice in each dimension
is thereby the number of nodes per unit, e.g. #ofnodes

m
are the number of nodes per

meter in the spatial dimension.
Path planning is the task of finding a set of states that represent a collision-free

path within a given map. Additionally, the transition from each state si to the
next state si+1 must be feasible under a given dynamic model.

Path planning is the task of finding a set of states P = (s0, s1, ..., sk) that
represents a path with si ∈ Rn ∀ i = 0 to k that for a given map, dynamic model,
the startstate s0 and the goalstate sk is traversable (under the given dynamic
model) from each state si to the next state si+1 for all states. Of all possible paths
P the one that minimizes a cost function c : P → R is considered the shortest
path Pm.

In a graph-based search, we can use nodes as states, and construct possible
edges as transitions between them that are dynamically feasible. That way we can
used graph-based algorithms to find a path P = (v0, ..., vk). Each edge e = (vs, vg)

from node vs to node vg is assigned a cost ce(vs, vg). In a graph, the total cost
of a path P can be calculated by adding the cost of all edges on the path, i.e.
c(P ) =

∑k−1
i=0 ce(vi, vi+1).

If we can use the edges of the path P as an direct input to a multirotor, the
path is also called trajectory and the problem trajectory planning. In such a case,
if the cost ce represents the time it takes to fly between states, we will also refer
to it as duration.

To evaluate the performance, only considering the flytime of the shortest path is
not enough. There is no benefit if the planning takes too long. Because of that, in
addition to the flytime, the planning time is used as a second evaluation criteria.
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3. Related Work

In this chapter, we give an overview of different approaches to find a shortest
path. There are mainly two ways to solve this problem. One is using sampling-
based planners, the other is using graph-based planners. Nowadays, there are also
sampling-based planners that use graphs to optimize planning. Figure 3.1 shows
the history of planning algorithm.

Figure 3.1: History of planning algorithms from Jonathan D Gammell 2017

3.1. Sampling-based Planners
Sampling-based planners use samples to find a path from the start to the goal.
They do not need a discretized planning space, as they sample within that space.

Sampling-based planners such as Rapidly-exploring random trees (RRTs,
LaValle et al. 1998) and their variants (e.g. Informed RRT*, Jonathan D. Gam-
mell, Srinivasa, and Barfoot 2014) use random samples to built a tree , which is
searched for a path. The differences between the variants are mainly if rewiring of
connections is allowed and if the sampling space is bounded by a heuristic. Batch
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3. Related Work

Informed Trees (BIT*,Jonathan D. Gammell, Barfoot, and Srinivasa 2020) on
the other hand orders its search by possible solution quality so that connections
between the samples and the tree are formed in a way that minimizes the potential
solution cost. While BIT* uses the euclidean heuristic, Adaptively Informed
Trees (AIT*, Strub and Jonathan D. Gammell 2020) upgrades the heuristic to a
heuristic that uses a graph-based seach on a graph that connects nearby samples to
guide the planning. Thereby, it neglects obstacles until needed to further decrease
the planning time.

3.2. Graph-based Search

Graph-based planners on the other hand need a preconstructed graph for planning.
Dijkstra’s algorithm (Dijkstra 1959) is a graph-based algorithm for graphs with
non-negative edges to find a shortest path from a start node to a goal node.
Therefor it expands nodes in a certain order starting with the start node, so that for
every expanded node, the shortest path from the startnode to that node is known.
To be able to extract the shortest path, every node thereby stores its predecessor
and its cost, starting wit a cost of ∞ if no path is known yet. For expansion, nodes
are ordered by their distance from the start node along the currently found shortest
path, starting with the lowest. When expanding a node the algorithm looks at all
connected nodes and sets or updates their shortest path, if necessary. So as long
as a node is not expanded, the path from the start node to it could change several
times while the cost decreases each time. The A* algorithm from Hart, Nilsson,
and Raphael 1968 can be seen as an extension of the Dijkstra-algorithm. Using a
heuristic to reorder the expansion of nodes, it guides the algorithm in the direction
of the goal node, without expanding nodes that cannot provide a better solution
than the shortest path. Instead of just ordering the nodes by the distance from the
start node, an additional heuristic value for the cost-to-go is added to the already
knwon path cost. As long as the heuristic is admissable, the algorithm returns the
optimal solution, but it could require multiple expansions of some nodes. Here,
admissable means that the heuristics returns a cost between nodes that is equal
or lower than the shortest pathcost between these nodes. If a heuristic is also
consistent, each node is expanded only once. A heuristic is consistent, if for each
edge e = (v, w), the heuristic for v is at most the sum of the heuristic for w and
the cost of the edge e. To decrease planning times even further, it is possible to
multiply the heuristic with a weight w ≥ 1. As such a heuristic is not admissable
anymore, the found path may not be optimal, but the path cost increase at most
by a factor of w. If the planning time is limited, it could be good to start with a
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3.3. Trajectory Planning

higher weight and lower it through multiple searches to have a fast initial solution
and interatively improve it while there is time left. Here, the ARA* algorithm
described in (Likhachev, Gordon, and Thrun 2003) is able to decrease the weight
w while reusing the result of previous searches by propagating local inconsistency.

Another solution is usingMultiresolution for reducing the size of the planning
space. In Behnke 2003, the resolution gets coarser with increasing distance from
the startpoint, leading to faster planning times.

3.3. Trajectory Planning
Traditionally, trajectory planning for multirotors is done in two steps, a lower-
dimensional path planning and an optimization step to generate a high-dimensional
trajectory. The lower-dimensional planning plans in 3D, or with an additional ad-
ditional yaw consideration, resulting in a 4D planning. Nieuwenhuisen and Behnke
2019 use this approach in 4D, with the additional constraint that the flight direc-
tion has to be inside the sensor field-of-view. They accelerate planning by introduc-
ing a new heuristic that incorporates the maximum flying angle into the heuristic
cost function, so path outside the sensor fiel-of-view have a heuristic length of the
approximation of the shortest possible flying path inside the sensor field of view
instead of the euclidean length. An approach for a trajectory generation is us-
ing the lower-dimensional planner results as multiple line-segments, following by
replacing the intersections between line-segments with round transition segments
to smooth the path. Then, a simple trajectory can be generated along this path
using a simple dynamic model of a multirotor. After that, trajectory optimizer
such as CHOMP (Zucker et al. 2013), B-splines (Arney 2007) or neural networks
(Simon 1993) can be used to further optimize the trajectory.

But it is also possible to directly plan a high-dimensional trajectory by search-
ing a state lattice graph. This way it is possible to overcome the local minima
optimizations of suboptimal lower-dimensional could lead to. But then, it is of-
ten necessary to decrease the planning space to get trajecories fast enough. A
Tunnel around a lower-dimensional path is a possible approach to reduce the
higher-dimensional planning space. Stachniss and Burgard 2002 are using a 5D
trajectory planning for a ground robot in a channel around a 2-dimensional path.
Instead of using a real tunnel, (Liu et al. 2017) are proposing a heuristic function
that guides the higher-dimensional planning around a lower-dimensional path. In
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3. Related Work

both cases , the resulting high-dimensional trajectory is only locally optimal. A
faster trajectory might follow a different low-dimensional path which is longer but
can be followed with a higher velocity.

(Gochev et al. 2011) use an approach with adaptive dimensionality to overcome
the suboptimality on reduced planning spaces. They represent different parts
of the planning space at different dimensionalities, only using higher-dimension
when necessary and thus keeping planning times low. Initially, they use a lower-
dimensional representation for the full environment, except for an area around
start and goal state. In that area, they use a higher-dimensional representation
with a transition-layer to the lower-dimensional planning space at the exterior of
the area. After the first planning iteration, they use a tunnel around the found
path and search a trajectory inside it. If high-dimensional planning fails to track
the low-dimensional path inside the tunnel, an additional high-dimensional area is
added at the point of failure and the planning starts again. This is repeated until
no high-dimensional areas need to be added.

As the higher-dimensional graph consists of states, straight lines between the
nodes are not dynamically feasible, as instantaneous differences in different axis
are not reproducable by a robot and still need to be converted into a trajecory.
Instead, motion primitives that are dynamcally feasible should be used. Liu et al.
2017 use a pre-defined control set that applies a jerk input for graph edges in a
node space with position, velocity and acceleration. The graph is constructed by
unrolling motion primitives. Schleich and Behnke 2021 combine this idea with
multiresolution.

Another solution is using a trajecory generator such as TopiCo (Beul and
Behnke 2017). Given a 9-dimensional start state and end state, TopiCo gener-
ates a time-optimal trajectory, if such a trajectory exists. Additionally, it is given
the minimum and maximum velocity, acceleration and jerk of a multirotor. There-
fore, it uses jerk as the control inputs, either j = 0, j = jmin or j = jmax. With
these inputs, it calculates the minimal and maximum duration for each axis inde-
pendantly, before synchronizing the duration of all axis if possible.
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4. Approach

Algorithms like the tunnel method from Section 3.3 often reduce the higher-
dimensional planning space so much that only suboptimal higher-dimensional tra-
jectories are found. This is due to the fact that they plan along a shortest path
in a lower dimension. However, a completely different position-only path might
suit the dynamic model of the multirotor better and would lead to shorter flight
times. By combining multiple tunnels around different lower-dimensional path
that are slightly longer than the optimal one, it should be possible to find better
high-dimensional trajectories. In this thesis, we propose a similar approach, but
do not combine multiple tunnels. Instead, we define a planning space that contains
all lower-dimensional nodes that are part of all path from start to goal that are
at most δ longer than the shortest path. The resulting δ-Space also provides a
search heuristic using the solution of the low-dimensional planning problem that
is solved for generating the δ-Space.

4.1. The δ-Space

Definition 4.1.1. The δ-Space D of a graph G = (V,E) when searching a path
from startnode start to goalnode goal is defined as

D ={v ∈ V | c(start, v) + c(v, goal) ≤ c(start, goal) + δ} (4.1.1a)

Figure 4.1 shows the δ-Space in a 2D-map with a 49-connected neighborhood
and a δ of 4.
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4. Approach

Figure 4.1: δ-Space of a 2D-maze, from start on the left to the goal on the right. All
cells with a black dot inside belong to the δ-Space with a δ of 4, while the
blue line is the shortest 3D path from start to goal that marks the minimal
length.

Definition 4.1.2. The higher-dimensional graph Gδ ⊆ GH = (VH , EH) for plan-
ning inside a lower-dimensional δ-Space of a graph GL = (VL, EH) when searching
a path from startnode start ∈ VH to goalnode goal ∈ VL is defined as

Gδ =(Vδ, Eδ) with (4.1.2a)
Vδ ={vδ ∈ VH | ∃vL ∈ VL : (4.1.2b)

p(v) = vl∧ (4.1.2c)
cL(p(start), vL) + cL(vL, p(goal)) ≤ (4.1.2d)
cL(p(start), p(goal)) + δ} and (4.1.2e)

Eδ ={eδ := (vi, vj) ∈ EH | vi, vj ∈ Vδ} (4.1.2f)

10



4.1. The δ-Space

with

p : VH → VL (4.1.3)

a projection function that projects every node of the higher-dimensional space onto
a node on the lower-dimensional space and

cL : EL → R+ (4.1.4)

a cost function for the lower-dimensional edges.

The projection function 4.1.3 used in 4.1.2c makes sure that every node of the
higher-dimensional space can be projected onto one node in the lower-dimensional
space, so that it could be determined if the higher-dimensional node is inside the δ-
Space. In the experiments we search for the closest node in the lower-dimensional
space after discarding all state components from a higher-dimensional node that
the lower-dimensional space doesn’t have.

Algorithm 1: Pseudo-Code planning in δ-Spaces
Input: Startnode,Goalnode,δ
Output: Trajectory

1 Calculating δ-Space and heuristic
2 lower-dimensional-planning forwards and backwards
3 additional lower-dimensional planning until the next node in the

openlist is > pathcost+ δ

4 Higher-dimensional planning
5 Heuristic of a node:
6 if the lower-dimensional pathcosts from start to goal through the

node are > pathcost + δ then
7 The heuristic is ∞
8 else
9 using the lower-dimensional pathcost from goal to the node as

heuristic

Algorithm 1 is a pseudo-code of a possible algorithm how the δ-Space is con-
structed and how it is used for high-dimensional planning. In Line 1-3, the δ-Space
is generated. As planning algorithm for the low-dimensional planning in Line 2,
traditional A* search can be used. As we need both the cost from the startnode as
well as the cost from the goalnode, we need to use two searches, one forward and

11



4. Approach

(a) Forward search (b) Backward search

Figure 4.2: Lower-dimensional search forwards and backwards. The black dots mark all
nodes that will be in the δ-Space.

one backwards. As soon as the goalnode for each of the planner is expanded, we
know the pathcost in the lower dimension. As we need all nodes inside the δ-Space
to be expanded from both planners, we need to restart them. In Line 3, we restart
both searches and execute them until the cost of the first node in the openlist, the
list of nodes that wait for expansion, exceeds the optimal pathcost by more than
δ. Figure 4.2 shows such a state for both planners. Note here that all black dots
marks the nodes of the δ-space to show that all necessary nodes are expanded.
When using an admissable heuristic for the lower-dimensional planner, we can be
sure that every node inside the δ-Space has a pathcost from both searches. As
the heuristic is there to guide the searches to its goals, we can’t be sure if a node
has its optimal cost at the time it is expanded if the heuristic is not admissible
in the direction of that node. To overcome that, a version of the A* that allows
reexpansions is used. This way, we can be sure that every node has its optimal
pathcost, while the heuristic still helps us to ignore some of the nodes that are
outside the δ-Space.

In Line 4-9, the higher-dimensional planning is done. In Line 5-9, the heuris-
tic is explained. For a high-dimensional node, we find the corresponding lower-
dimensional node and get its pathcost to both startnode and goalnode (by adding
the cost of both lower-dimensional planners). Figure 4.3 shows both searches to-
gether, showing that the pathlength can be determined by adding the cost of both
planners together. Then we check, if the cost is higher than the lower-dimensional
pathcost plus δ (Line 6). If it is higher, then ∞ is returned as the heuristic, as
the lower-dimensional node is outside the δ-Space (Line 7). If it is inside, we can
use the cost to the goal obtained by the low-dimensional backward search of the
lower-dimensional planner as a heuristic, multiplied by a factor that overcomes

12



4.2. Lower-dimensional Lattice

Figure 4.3: Combined lower-dimensional planning forward and backward.

the differences between the lower and higher dimension cost function. In our ex-
periments, the cost is divided by the maximum velocity. If the node is inside
the δ-Space, it is also possible to use another heuristic for the higher-dimensional
planner instead, ignoring the one provided by the δ-Space.

Although the δ-Space needs a state lattice-like structure to determine if a point
is inside the δ-Space or not, that only applies to the lower-dimensional planning.
The higher-dimensional planning does not need a state lattice and can also be used
with sampling-based planners such as RRT*, BIT* or AIT*.

4.2. Lower-dimensional Lattice
For constructring the δ-Space and the tunnel, a 3-dimensional lattice is used, where
each node corresponds to a point (px, py, pz)> in the 3D-space. Each node is con-
nected to all other nodes in its neighborhood via straight edges. The neighborhood
of a 3-dimensional node n contains all nodes that are within a rectangular cuboid
that is centered around n. For each dimension, the size of the cuboid is a multiple
of twice the corresponding lattice resolution. In this thesis, we choose the same
size for all dimensions. Thus, the neighborhood contains (1 + 2 · i)3 nodes, with

13



4. Approach

S

G

S

G

S

G

Neighborhood

Figure 4.4: Influence of the lattice-aligning onto the δ-Space (yellow) for a distance of
about 7·resolution between startnode and goalnode using δ = 0 and a 4-
connected neighborhood.

i ∈ N. For most experiments we choose i = 1 and 26 edges but in Section 5.2.1 we
evaluate different neighborhood sizes up to i = 3, ie. 342 nodes. Figure 4.4 and
4.5 show that the neighborhood size and lattice-alignment influences the δ-Space
size, even for δ = 0. While the euclidean distance between the nodes marked S

and G is approximately the same, the size and layout of the δ-Space differ.

Even though the 4-connected neighborhood is not used in the experiments and
δ is always choosen strictly greater than zero, a similar effect can be observerd for
larger neighborhoods, although the difference might be smaller. When start and
goal are aligned on one axis, the neighborhood choice does not affect the δ-Space,
which is minimal in this case with x + 1 nodes. Here x is the distance from start
to goal in nodes. We now consider the case where the difference between start
and goal coordinates is x for the first axis and x · (i + 1) for the second. Here
i is the multiplier for the neighborhood size as mentionend above. In this case
we have the highest possible number of nodes in the δ-Space, ie (x + 1)2, since
the shortest path always contains x nodes on the diagonal that is closest to the
second axis and x nodes on the second axis, independent of which comes first.
Be aware that for greater i, the distance between start and goal increases while
the number of nodes remains at (x + 1)2, so the size of the δ-Space with δ = 0

decreases for a fixed start and goal point the bigger the neighborhood is. The
middle part of Figure 4.5 shows the maximum size for i = 1, which corresponds to
the 8-connected neighborhood in the 2D space. As a cost for the edges, the length
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S

G

S

G

S

G

Neighborhood

Figure 4.5: Influence of the lattice-aligning onto the δ-Space (yellow) for a distance of
about 7·resolution between startnode and goalnode using a δ = 0 and a
8-connected neighborhood.

is used. Since the lower-dimensional space is not only used to built the δ space
and the tunnel, but also to generate a heuristic for the high-dimensional planner,
you could think about adding acceleration costs to the first edges to speed up the
higher-dimensional planning even more. But as that impacts the layout of the
δ-Space and since the acceleration of the multirotor used in the experiments is
high when jerk is neglected, we do not add additional cost.

4.3. Higher-dimensional State Lattices

There are several ways to define edges and their costs in higher-dimensional state
lattices. I will present the ones used in the experiments in Chapter 5. In the
following, we will present four different methods. They are evaluated against each
other in Section 5.1.1, while only the best one is used to evaluate the δ-Space
against the tunnel method.

9-dimensional jerk-based state lattice As jerk can be converted into input
to the controller of the multirotor, the optimal state lattice should consist of 9-
dimensional nodes, where each edge has a fixed jerk over the complete length of
the edge. Such an edge corresponds to a motion primitive that can be described
by the polynomial
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Figure 4.6: Example of 9-dimensional motion primitives with a jerk of
j = {−1m

s3
, 0m

s3
, 1m

s3
} as control-input for a duration of 1s. The numbers in

the nodes corresponds to the jerk input of the edges leading to them in the
X and Y Axis.



px = p0,x + vx · t+ 1
2
ax · t2 + 1

6
jx · t3

py = p0,y + vy · t+ 1
2
ay · t2 + 1

6
jy · t3

pz = p0,z + vz · t+ 1
2
az · t2 + 1

6
jz · t3

vx = v0,x + ax · t+ 1
2
jx · t2

vy = v0,y + ay · t+ 1
2
jy · t2

vz = v0,z + az · t+ 1
2
jz · t2

ax = a0,x + jx · t
ay = a0,y + jy · t
az = a0,z + jz · t


.

As the corresponding primitive duration t is used as the cost, it needs to be the
same duration for all axis X,Y, Z. Additionally, the jerk inputs jx, jy and jz are
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4.3. Higher-dimensional State Lattices

Figure 4.7: Example of a 9-dimensional edge with jerk as control-input.

independent. To be able to combine all different combinations of jerk inputs, a
solution is to use a fixed duration t. This way, it is possible to calculate the lattice
resolutions so that each edge ends in a node. If an edge already passes through a
node at a time te < t, that node can be used as a goal point of the edge instead,
with the lower duration te.

When calculating the lattice resolutions, we need to pay attention, as the reso-
lutions of the different dimensions are dependent on each other. Be ∆i =

1
resolutioni

the distance between two nodes in the i-dimension on the state lattice. When
constructing the acceleration dimensions, the distance must be ∆a = j · t where
t is the duration and j is the jerk input. Note here that we are only using a jerk
of 0 or the maximum allowed jerk, while it would be possible to allow different
jerks. For the velocity dimension, the distance is dependent of acceleration and
jerk, so both ∆v = dista · t and ∆v =

1
2
j · t2 must land on the lattice. For the last

missing dimension, the spatial dimension, the distance is dependent of velocity,
acceleration and jerk, so ∆p = ∆v · t,∆p =

1
2
∆a · t2 and ∆p =

1
6
j · t3.

Given a node i = (px0 , py0 , pz0 , vx0 , vy0 , vz0 , ax0 , ay0 , az0)
>, a duration t and a

possible jerk command j = (jx, jy, jz)
>, the goal node k of an edge e = (i, k) with

input j = (jx, jy, jz)
> can be calculated with the polynomial above. Unfortunately,

this calculation of the lattice resolution leads to a large resolution, and thus a long
planning time (see Section 5.1.2 for an example with data from a real multirotor).
Additionally, a goal region must be defined, as it could not be possible to reach

17



4. Approach

all nodes inside the δ-Space or tunnel with this definition for edges. The shortest
distance in the spatial dimension while acceleration and velocity are zero in both
start and goalstate in one axis would be an input of (j,−j,−j, j), already leading
to a difference of several nodes in the spatial dimension. In Figure 4.6 you can see
the fist two input, starting from a startstate with a velocity and acceleration of 0.
Here you can see the small grid that is needed and that there are many positions
that can’t be directly reached.

An option to keep the number of nodes low would be to use long durations, but
that is often not possible, as even the shortest jerk could get the acceleration to a
value higher than the maximum of the dynamic model, or the same can happen
to the velocity. Also, the goal region would have to be even larger. Figure 4.7
shows an example for one axis for such a edge for a start velocity of −1m

s
, a start

acceleration of 2m
s2
, a goal velocity of 0m

s
and a goal acceleration of 0m

s2
.

Another option would be to neglect the jerk and use acceleration directly as the
input.

9-dimensional acceleration-based state lattice When using acceleration as the
control input instead of jerk, it would be possible to reduce the state dimension
of the planner to 6 instead of 9. This way, the polynomial that describes an edge
can be reduced to



px = p0,x + vx · t+ 1
2
ax · t2

py = p0,y + vy · t+ 1
2
ay · t2

pz = p0,z + vz · t+ 1
2
az · t2

vx = v0,x + ax · t
vy = v0,y + ay · t
vz = v0,z + az · t


.

But the jerk should not be neglected completely, as the dynamic model of a mul-
tirotor contains it. Instead, the acceleration-dimensions are still used to per-
mit large changes in acceleration in nodes. Here, the state of the acceleration-
dimensions corresponds to the acceleration of all outgoing edges. The reached
nodes are then the same in all dimensions except the acceleration that changes
by up to k This way, the goal nodes j of edges e = (i, j) that start in i =

(px0 , py0 , pz0 , vx0 , vy0 , vz0 , ax0 , ay0 , az0)
> can be calculated with the formula
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4.3. Higher-dimensional State Lattices
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Figure 4.8: Example of 9-dimensional motion primitives with a acceleration of
a = {−2m

s2
,−1m

s2
, ..., 2m

s2
} as control-input for a duration of 1s. Like in the

experiments, a maximum acceleration change of 1 between nodes is allowed.
The numbers in the nodes corresponds to the acceleration input of the edges
leading to them in the X and Y Axis.

j = i+



vx0 · t+ 1
2
ax0 · t2

vy0 · t+ 1
2
ay0 · t2

vz0 · t+ 1
2
az0 · t2

ax0 · t
ay0 · t
az0 · t

ax0 + kx
ay0 + ky
az0 + kz


=



px0 + vx0 · t+ 1
2
ax0 · t2

py0 + vy0 · t+ 1
2
ay0 · t2

pZ0 + vz0 · t+ 1
2
az0 · t2

vx0 + ax0 · t
vY0 + ay0 · t
vZ0 + az0 · t

ax0 + ax0 + kx
ay0 + ay0 + ky
az0 + az0 + kz


.

The acceleration of an edge could also be changed for all outgoing edges instead
of all incoming edges, but with our way the state of each node corresponds to the
trajectory for the outgoing edge that the multirotor should approximate. For the
new acceleration of all reached nodes, a maximum change of 1 in all acceleration-
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Figure 4.9: Example of a 9-dimensional edge with acceleration as control-input.

Figure 4.10: Example of a 6-dimensional edge with average velocity.

dimensions is used. That leads to only small changes in acceleration when reaching
a node, so the path is closer to a real one with jerk in comparison with an path
that allows going to every acceleration when reaching a node. Figure 4.8 shows
the first two inputs, starting from a startstate with a velocity and acceleration
of 0. Note here that in this figure the numbers in the nodes corresponds to the
accelerations of incoming edges due to readability, and not outgoing. Figure 4.9
shows an example for one axis of such an edge for a start velocity of 2m

s
, a start

acceleration of −1m
s2

and a goal velocity of 0m
s
while travelling 2m.

6-dimensional average velocity For an easy model of edges for a 6-dimensional
state lattice with position and velocity, the average velocity between start- and
goalnode is used to determine the direction of the edge. As the nodes need to be
on the lattice and the edge represents a straight line, the direction of the average
velocity is propagated until it reaches a lattice node. The minimal length of an
edge is thereby dependent on the time that is needed to accelerate between these
velocities. The time it takes to fly between start and goal point with the average
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4.3. Higher-dimensional State Lattices

∆minx

∆maxx

∆miny

∆maxy

Start

(a) Example of all tests for a combination of
start and goal velocity. The yellow area
marks the calculated testdomain for the
goalposition, while the arrows show all tests

∆minx

∆maxx

∆miny

∆maxy

Start

(b) Example of all test with iterative axis. The
red area is the optimized testdomain.

Figure 4.11: Example of a 2D testdomain for TopiCo for a combination of start velocity
and goal velocity

velocity is used as the cost of that edge. Figure 4.10 shows an example for one axis
for such a edge for a start velocity of 2m

s
and a goal velocity of 0m

s
while travelling

2m. On the downside, as these edges neglect jerk completely and only use a fairly
easy model to approximates acceleration, they are far from flyable.

TopiCo To have dynamically feasible edges even in 6 dimensions, it is required
to reduce acceleration and jerk in each node to 0 and let each edge be a trajectory
with different acceleration- and jerk-parts on the edge.

Such edges could be precomputed using a trajectory generator such as TopiCo
(Beul and Behnke 2017). TopiCo is given start velocity and goal velocity as well as
the minimum and maximum velocity the multicopter is allowed to fly. As TopiCo
also needs start and goal point, different possible goal points from a fixed start
point are tried for each edge to find the best goal point for a given start and goal
velocity. To get smooth trajectories, the maximum velocity TopiCo is allowed to
use on an edge is slightly higher than the maximum velocity of the start and goal
point, seperately for X,Y and Z. The same is done with the minimum velocity, but
in the other direction. When using only the minimum and maximum, TopiCo has
problems finding edges due to its internal structure.

To minimize the number of goalpositions that need to be tested, the testdomain
of possible goalpositions is restricted with a minimum and maximum duration,
leading to a cuboid of possible goalpositions when combined with maximum and

21



4. Approach

Start

1m
0m

s
3m

s

Figure 4.12: Example of 6-dimensional motion primitives precomputed with TopiCo.
The maximum change in velocity between nodes is ±1m

s per axis and all
nodes that can be reached in 2s are shown.

minimum velocity. Figure 4.11a shows such a testdomain for two axis. The min-
imum and maximum change in the position ∆min and ∆max are calculated when
multiplying the minimum and maximum duration with the minimum and maxi-
mum velocity. There is also the possibility to do this iteratively. When selecting a
testvalue for the first axis, the minimum and maximum time getting to that value
with the bounded velocity can be calculated. Combining both minimum and both
maximum leads to a smaller testdomain for the second axis. Figure 4.11b shows
how it could look like. To further increase the search speed, only startvelocities
≥ 0 are tested, as the result can be mirrored on each axis as long as the multirotor
model is symmetric.

If TopiCo isn’t able to syncronize the times for X,Y and Z, there is no solution
for that edge and the tried point is not a possible goal point. In the end, there
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4.4. A* with Iterative δ-Space

Figure 4.13: Example of a 6-dimensional edge calculated with TopiCo.

are still many possible goal points for each combination of start velocity and goal
velocity, leading to too many edges if all are used for planning. One option to
reduce the number of edges is only using the best edge for every combination of
start and goal point. To reduce unnecessary movement, the edge that minimizes
a combination of the flytime t and t · a2 is chosen, while the cost function for the
planner is only the flytime. Figure 4.12 shows an example of motion primitives
from a standing start point. Note here that in contrast to the 9D edges from
above, all nodes that can be reached in a flytime of 2s are shown. Figure 4.13
shows an example for one axis for such a edge for a start velocity of 2m

s
and a goal

velocity of 0m
s
while travelling 2.1m.

4.4. A* with Iterative δ-Space
The δ-Space can also be increased iteratively. This way, a first result can be
found faster while the path can still be optimized afterwards. Otherwise, when
doing a single search with a high δ the maximal available planning time might be
exceeded and no trajectory is found at all. Furthermore, a single search with a
low value for δ might result in a trajectory with higher cost. With every iteration,
the δ is increased, leading to a larger δ-Space and thus to potentionally better
high-dimensional trajectories. Figure 4.14 shows an example how the δ-space can
increase when increasing δ.
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Start Goal

(a) δ = 2

Start Goal

(b) δ = 4

Figure 4.14: Increasing δ. The light orange area marks thereby the added space when
increasing δ.

Algorithm 2 is an extension to Algorithm 1 (Line 1) to increase the δ after the
initial planning. This can be done multiple times (Line 2) until either the δ-Space
is equal to the full high-dimensional space VH or until constraints (e.g. time or
memory consumption) are violated.

Algorithm 2: Pseudo-Code planning in iterative δ-Spaces
Input: Startnode,Goalnode,δ
Output: Trajectory

1 Algorithm 1
2 while There is time to improve the path do
3 Incease δ

4 Restart lower-dimensional planning until the next node in the openlist
is > pathcost+ δ

5 Update Heuristic of all higher-dimensional Nodes where the heuristic is
∞

6 Sort openlist of higher-dimensional planner
7 Restart higher-dimensional planning until a better solution is found or

there is no better solution

In Line 3, the algorithm increases δ 1 Afterwards, the low-dimensional planner
is restarted (Line 4) and executed until the next node to expand has a potential
path length that exceeds the optimal one by more than δ. This is the same as

1How different sizes of increase can impact the planning time can be seen in Section 5.2.5.
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4.5. Worst-case Runtime

Line 3 of Algorithm 1, but now with a increased δ. Subsequently, for all high-
dimensional nodes that were previously outside of the δ-Space, we check if they
are part of the new δ-Space. After that all higher-dimensional nodes that were
outside the δ-Space before must be rechecked, if they are inside the δ-Space now.
Since we defined the heuristic of nodes outside of the δ-Space to be ∞, we can just
go through the openlist and check all of them (Line 5). To regain the integrity of
our openlist, we now have to sort it (Line 6), but that could also be done directly
for each node when its heuristic is decreased (like A* does when the cost of a node
decreases). Now we can restart the higher-dimensional A* search until we find a
better path or we find that there is no better path. Since a better path could use
already expanded nodes and traditional A* does not allow reexpansion of nodes,
we need to modify it. Instead of allowing one expansion for each node during the
A* search, we allow one expansion for the initial search and one for each iteration.

4.5. Worst-case Runtime
The worst-case runtime of A* corresponds to the worst-case of Dijkstra’s Algo-
rithm, which can be considered as a special case of A* without a heuristic. Ac-
cording to Korte and Vygen 2008, Dijkstra itself is O(|E| + |V | · log(|V |)). Since
|Vδ| ≤ |VH | and |VL| ≤ |VH |, the first iteration (until line 10 of Algorithm 1) can
be done in O(|EL| + |EH | + |VH | · log(|VH |)). For each iteration while increas-
ing the δ (see Section 4.4), we need to distinguish between the higher- and the
lower-dimensional planning. While the lower-dimensional planning just restarts
the algorithm without allowing re-expansion of nodes, it is already included in the
worst case runtime of expanding everything.

The higher-dimensional planner has to re-expand nodes if an already expanded
node finds a better path. As this could be nearly all nodes in the worst case,
every iteration could take up to O(|EH | + |VH | · log(|VH |)). Let i be the number
of iterations. This leads to a total worst-case time of O(|EL|+ (i+1) · |EH |+ (i+

1) · |VH | · log(|VH |)). This is even worse than the worst-case runtime of a high-
dimensional Dikstra search with O(|EH |+ |VH | · log(|VH |)). However, the average
runtime is much faster than the worst-case runtime of Dijkstra’s Algorithm. First,
|VH | is much bigger than |VL|, as can be seen in the 3-dimensional experiments in
Chapter 5 where each node in the lower-dimensional planning space corresponds
to at least 363 nodes in the higher-dimensional space, leading to a significantly
smaller planning time in the lower-dimensional space. Secondly, the size of the
higher-dimensional planning space |Vδ| is only a fraction of |VH |, depending on
several conditions as described in Section 4.2.

25





5. Evaluation

In this chapter, all experiments are described and analyzed. If not otherwise
stated, the following parameters were used:

• Map
All 2D experiments were done in the 2D maze shown in Figure 5.1, with
a size of 58m × 60m × 0m. Even though the Z-Axis was not used in the
map itself, the experiments where still run in 3D, but the third axis was not
allowed to change, degenerating the state space.

For the 3D experiments the two maps shown in Figure 5.5 where used. They
both have a size of 80m× 62m× 35m.

• minimum distance to obstacles
The minimum distance from an obstacle to a cell is dependent on the map.
For the 2-D map, a distance of 0.3m was used, while the 3-D maps used a
minimum distance of 0.9m.

• heuristic weight
For the higher dimensional A* search, the heuristic values are inflated by
a factor of 1.833. To convert the pathlength from the 3D-planner to the
flytime, the length was divided by the maximum velocity.

• δ & tunnel increase
For all experiments that used iterative spaces, the increase is the size that δ
or the tunnelradius was increased. Here, 0.5m was used.

• δ & tunnel radius
The δ and the tunnelradius the planning was done with. If not otherwise
stated, a δ of 1m was used and a tunnelradius if 2m.

• Resolution
The distance between two nodes in the state lattice for each dimension. For
all 3D experiments (Section 5.2), the following resolutions are used:
Position X,Y,Z: 1

2
m

Velocity X,Y,Z: 1m
s
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• Maximum velocity
The maximum velocity the planner is allowed to plan with:
X and Y-axis: ±5m

s

Z-axis: ±2m
s

As all planning times are highly dependent on the hardware, it could be difficult
to replicate the exact times. The following hardware was used for all experiments:

• CPU: Ryzen 9 3900X @ 3800Mhz

• Memory: 64GB @ 3600MHz

• Chipset: X570

As this CPU also has a boost functions that boost its frequency up to 4600MHz, the
times are also dependent on the temperature of the CPU. For cooling, a watercooler
was used to keep the temperature low enough so that the CPU is able to constantly
boost the frequency to around 4500MHz, leading to fewer errors due to these
functions.

The presented planning times do not include the time used for loading the maps,
preparing the planner and visualization and finally cleaning up the memory. It is
assumed that for a real planning, all the outputs are disabled and the programm
is started together with the multirotor so that it can load the map and other data
in advance and wait for a goal state to start the planning.

5.1. 2D Experiments
The first experiments were done in the 2D-map shown in Figure 5.1. While all
paths start at the same position (blue dot), the goal positions were chosen as the
corners of a uniform grid with resultion of 1m. This results in a total of over 2,000
planning tasks. Instead of using a special 2D planner, we use the 3D version but
set the size of the z-axis to one and forbid any vertical accelerations.

As this experiment was done to determine if the δ-Space works, a simplified
dynamic model and larger lattice resolutions were used to keep the planning times
low. As edges, the acceleration-based method described in Section 4.3 was used.
The lattice resolution and the fixed duration between nodes were set in such a way
that the resolution of the different lattice dimensions were small. Here, a duration
of 1s was used, a maximum velocity of ±4m

s
and a maximum acceleration of

±1m
s3
. Together with a resolution of 1m

s
for the velocity and a resolution of 1m

s2

for the acceleration, a resolution of 1
2
m is necessary for the position. As only

the acceleration needs a resolution of 0.5m, while the velocity alone requires an
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Figure 5.1: The map for all 2D experiments. The blue circle in the middle marks the
startpoint for all searches

resolution of 1m, it is possible to use resolutions of 1m if the state lattice is shifted
by 0.5m for every odd velocity. In the experiment such a shifted lattice is used.
For the low-dimensional planning, a neighborhood of 48 was used. Figure 5.2
shows the average planning time and average pathcost for different tunnel- and
δ-sizes. Here, the δ-Space behaves like a tunnel for a small values of δ. However,
increasing δ results in a larger reduction of path cost than increasing the tunnel
size for similar planning times. Figure 5.3 shows example trajectories for tunnel
and δ-Space. Note that with small walls and large tunnel- and δ-sizes, part of a
tunnel can be inside a dead end. However the δ space only covers the entrance of
the dead end. It can also be observed how the δ-Space leads to a smaller overall
cost, while the planning time is only slightly longer.

5.1.1. Evaluation of Edge Types
The next experiment was done to determine the most suitable state lattice defi-
nition. Here, the four different edge types described in Section 4.3 are evaluated
against each other. For the 6D state lattices, a spatial resolution of 0.5m is used,
while the 9-dimensional state lattices have a much smaller resolution. A fixed
jerk or acceleration over a complete edge leads to smaller resolutions if the flytime
for an edge is short. On the other hand, if the flytime is long, it would lead to
higher changes of velocities in one step. The 9D edges represent motion primitives
where a fixed jerk or acceleration command is applied over a small time interval.
Choosing a short primitive duration results in small position changes and, thus,
in a lower spatial resolution. However, when choosing the duration too long, the
resulting velocity resolution might be too coarse. While a smaller spatial resolu-
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Figure 5.2: Relation of planning time and path length for the experiments on initial 2D
experiment using different δ- and tunnel-sizes, without iteratively increasing
the size.

tion only leads to longer planning times, a coarser velocity resolution significantly
affects the path quality since low velocities have to be choosen to avoid missing
turns. Thus, for both 9D state lattices, an edge duration of 0.4s is used. As the
minimum change in the spatial dimension for the jerk based planner is a chain of
jerk-input j = {+j,−j,−j,+j}, which corresponds to a change of several lattice
nodes in the spatial dimension, it is necessary to define a goal region instead of
a goal node. Otherwise, in combination with the limited planning space from the
δ-Space, the planner is not able to find a valid path to every goalnode. Here, a
radius of 30cm around the goalnode is used as the goalregion. For these planners,
it is also necessary to find right resolutions for the dependent axis. An analysis
why this could be complicated is shown in Section 5.1.2. Here, it leads to spatial
resolutions of 0.16m for the acceleration-based planner and 4

75
m = 0.053m for the

jerk-based one. All resolutions are shown in table 5.1.

Figure 5.4 shows the lower-dimensional and higher-dimensional planning time.
As the same resolution is used in the lower dimension as in the higher dimen-
sion, the 9-dimensional planner are slower in the lower dimension. They could be
equalized to reduce the time, but that would lead to a slightly worse heuristics
for the 9-dimensional planner. With times around 4ms for the lower-dimensional
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(a) δ-Space
Path cost: 16s

Planning time: 96.1 ms

(b) Tunnel
Path cost: 17s

Planning time: 90.2 ms

Figure 5.3: Example of a planning task in the 2D-map. The black dots represent all
nodes inside the δ-Space or tunnel, while the blue line is the shortest low-
dimensional path and the green line is planned high-dimensional trajectory.

Position X,Y Velocity X,Y Acceleration X,Y
9D planning
with jerk 0.053m 0.4m

s
2m
s2

9D planning
with acceleration 0.16m 0.8m

s
2m
s2

6D planning
with average 0.5m 1m

s
−

6D planning
with TopiCo 0.5m 1m

s
−

Table 5.1: Resolutions for the different state lattices

planning step of the 6-dimensional planning and up to 141ms for the one of the
9-dimensional planning, both are still fast enough.

For the higher-dimensional planning time, the difference is even greater. While
the 6-dimensional planning is still fast with less than 20ms, the 9-dimensional plan-
ner with acceleration takes mor than 50 times as much time, and the 9-dimensional
planner with jerk even more that 600 times the time. With a planning time of
13.7s, the planning is even slower than the average cost of 7.9s. If we add a third
axis, the planning time will even get worse, so that planning is not usable for plan-
ning in a 3D-map. As the acceleration-based planning is also already taking more
than a second, it can be assumed that it is to slow too. For the 6-dimensional
plannings, we have a much higher cost of around 13s. There are two different
causes: One is the resolution of 0.5m, that gives back suboptimal accelerations as
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Figure 5.4: Planning time for different state lattices on the 2D-maze.

the maximum acceleration can not be used in the used resolution of the velocity.
The other one is the jerk and acceleration on the TopiCo-based planner, as the
acceleration is at 0 in each node, and in combination with the jerk overestimates
planning cost. It is possible to reduce that cost when optimizing the trajectory,
using all nodes as waypoints. Using Topico on the path again with only the posi-
tions of all pathnodes should lead to a path that is faster but close to the original
one in the position-dimensions. It is also possible to try gradient-based approaches
such as CHOMP. These optimizations could be part of a new project and are not
a part of this thesis.

As the average-based planner doesn’t lead to a better pathcost than TopiCo-
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5.1. 2D Experiments

based and the path with TopiCo-edges can be directly executed by the multirotor,
the 6-dimensional 6D state lattice with TopiCo is used for the following experi-
ments.

5.1.2. On the Feasibility of 9D Planning
Above, we presented two different definitions of 9D state lattices. One that uses
jerk as an input for edges, and one that uses the acceleration-dimensions as input
for all outgoing edges.

When using jerk as a input, it is not trivial to find matching lattice resolutions
for acceleration, velocity and position, if the motion model doesn’t match to lat-
tice sizes. Especially as all axis need to have the same duration between nodes
(independent of jerk input), as only same duration can be combined into edges.
If they don’t have the same duration, it is not possible to fly that way and the
edge could not be used, leading to fewer edges and a worse motion model. If a
constructed edge goes directly through a lattice node, that can be used as a end-
point instead. This way some edges can be shortened. As an example, when jerk
and acceleration are 0, it is possible to shorten the edge by the greatest common
divisor of the number of lattice cells traversed in all axis.

It is possible to calculate the lattice resolution so that the same edge duration
can be used for all edges, but it could lead to a high resolution. Here a lattice should
be constructed from real-world parameters of a multirotor to show the resulting
resolution of the lattice. The parameters are taken from Beul, Bultmann, et al.
2020, used at the Mohamed Bin Zayed International Robotics Challenge 2020. In
this model, the X and Y -axis have different parameters than the Z-axis. With a
maximum jerk of 5m

s3
and a maximum acceleration of 4m

s2
for the X and Y -axis,

possible durations are a fraction of 4
5
s, as 4

5
s is the time needed to get from a = 0

to a = amax and each duration that isn’t a fraction would not be able to reach
the maximum acceleration. For the Z-axis with a maximum jerk of 50m

s3
and a

maximum acceleration of 10m
s2
, it is a fraction of 1

5
s. So combined, the longest

possible duration would be 1
5
s. Using this duration, the distance between nodes in

the acceleration dimension would be ∆a = j ·∆t = 4m
s3
·0.2s = 0.8m

s2
for the X and

Y-axis, leading to a total of 11 lattice along the acceleration-dimension for X and
Y , and a distance of 10m

s2
with 3 cells in the Z-acceleration-dimension. For the

distance of the velocity lattice, we now have to look at both the change through
acceleration and jerk, and find a size that matches both. For the X and Y -axis,
the cellsize from the acceleration is ∆v = a · ∆t = 4

5
m
s2

· 1
5
s = 4

25
m
s
and from the

jerk ∆a = 1
2
j · ∆t2 = 1

2
· 4m

s3
· (1

5
s)2 = 2

25
m
s
. That can be combined to distance

in the velocity dimension of 2
25

m
s
. Although the maximum velocity is 5m

s
, only
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4.96m
s
is used, as it is not possible to achieve the real maximum velocity with the

given duration. This already results in a total of 125 cells in the X and Y velocity
lattice. For the distance between nodes in the Z-velocity dimension, the distance
is 2m

s
from the acceleration and 1m

s
from the jerk. The maximum velocity allowed

in the Z-axis is only 1m
s
but a positive followed by a negative negative jerk input

for our duration already brings us to 2m
s
. To overcome this problem, there are

the options to lower the maximum jerk or acceleration, shorten the duration even
more or allow a maximum velocity of 2m

s
. Here, the latter is used, leading to a

lattice with 5 cells for the Z-velocity-dimension.
Combined, for each spatial position we already get a total of 112 · 3 · 1252 · 5 ≈

28 · 106 cells in the velocity- and acceleration-dimensions. Even with state-of-the-
art hardware for multirotors, this amount of possible nodes can only be handled
for a small number of positions. And if we look at the resulting distance of of 1

750
m

between nodes in the spatial dimension in X and Y (as we need to be able to fly
distances of 1

150
m, 2

125
m and 1

125
m), a square meter already has more than half a

million spatial cells, or more than 15 trillion possible cells. Only when there exist
a heuristic that makes the 9-dimensional planning space really small, a multirotor
is able to plan a path inside this space. Unfortunately, the δ-Space does not reduce
the state space size that much (see Section 5.2.2).

5.2. 3D Experiments

(a) Map 1 (b) Map 2

Figure 5.5: Maps for planning in 3D. The red dot marks the start position, while the
blue dots mark all goal positions. The brightness of the dot corresponds
thereby to its height.

As mentioned in the experiments above, 6D state lattices with edges from Topico
are used for the 3D experiments. In the following experiments, two different maps
are used (see Figure 5.5).
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5.2. 3D Experiments

They both should represent cities with high buildings, such as scyscrapers. In
each experiment, a total of 1000 trajectories were computed, all from the same
start state (red dot in Figure 5.5) in the map to the same random goalpositions
(blue dots in Figure 5.5), that are between 1m and 5m away from a building.
To have the same goalpositions in every experiment, a fixed seed for the random
number generator was used.

5.2.1. Lower-dimensional Neighborhood Sizes

lower-dimensional
planning time in ms

higher-dimensional
planning time in ms

0

1,000

2,000

3,000

4,000

159

3,800

538

3,600

1,700

3,800

neighborhood of 26 neighborhood of 124 neighborhood of 342

Figure 5.6: lower- and higher-dimensional planning time for different lower-dimensional
neighborhood.

As we know from Section 4.2, Figure 4.4 and Figure 4.5, the size of the δ-Space is
influenced by the neighborhood of the underlying graph. To analyze the influence,
three cuboid neighborhoods are tested, with sizes of 33 − 1 = 26, 53 − 1 = 124

and 73 − 1 = 342 edges. Figure 5.6 shows the corresponding planning. Since
more edges have to be considered during the low-dimensional search, the planning
times increase with increasing neighorhood size, from 159ms for the smallest tested
neighborhood to 1.7s for the largest neighborhood.

For the higher-dimensional search, the difference between the planning times of
the different neighborhoods is much smaller with about 0.2s. However, here, the
neighborhood of size 124 results in the lowest planning time, while using the larger
or smaller neighborhood is slower. A main reason for the different planning times
is the size of the δ-Space, which is smallest for the 124-neighborhood (see Figure
5.7) This neighborhood also has the lowest higher-dimensional pathcost (together
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Figure 5.7: Number of nodes in the δ-Space and cost of the higher-dimensional trajectory
for different lower-dimensional neighborhood on Map 1.

with the bigger neighborhood), while the pathcost of the smaller neighborhood is
slightly higher. If there is a way to decrease the lower-dimensional planning time
for the 124-neighborhood, this would result in the best overall performance. But
it is also possible that this difference in pathcost comes from overestimating the
heuristic in comparison with the smaller neighborhoods, as the higher-dimensional
planner can fly diagonals that are only available in the largest neighborhood.
Together with the triangle inequality we know that the lower-dimensional cost
of the shortest path is the lowest for a neighborhood that includes the complete
lattice.

5.2.2. Different Values of δ-Sizes

The next experiment was done to have a look at different choices for both δ and
the size of the tunnel radius, and how they affect the planning. Figure 5.8 shows
the number of nodes the δ-Space consists of. Here each increase of 0.5m for δ

leads to roughly 3000 more nodes. This is remarkable, since in general the size
of 3-dimensional spaces grows cubic. The linear instead of cubic growth results
in a moderate increase of planning times. Especially when increasing the delta
iteratively, linear growth in the size of the δ-Space could lead to nearly constant
increases in planning time for each increase of δ (see Section 5.2.3). The lower
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Figure 5.8: Number of nodes in the δ-Space for different δ on Map 1 and Map 2.

dimensional planning times on Map 1 (Figure 5.9) show such an increase, with the
minimum increase of 7ms between 2.5m and 3m and a maximum increase of 19ms

between 2m and 2.5m. On average, the additional lower dimensional planning
time is 28.75ms for each meter of increase. When combining the number of nodes
with the higher-dimensional planning time, we get an average planning time per
node in the δ-Space between 0.44ms and 0.49ms for Map 1 and between 0.45ms

and 0.52ms on Map 2 with a deviation of less than 0.3ms on both maps. When
assuming a planning time of 1ms per lower-dimensional node more than 90% of
all higher-dimensional searches could be finished before time runs out. Figure 5.10
shows a boxplot of the times per node for Map 1. Note that the higher-dimensional
planner has a different number of nodes, but this time can be used as an estimate
for planning time after the δ-space was constructed.
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Figure 5.9: Lower- and higher-dimensional planning time for different values of δ on Map
1.
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Figure 5.10: Higher-dimensional planning time per lower-dimensional node for different
δ on Map 1.

38



5.2. 3D Experiments

14

14.5

15

15.5

16

16.5

0 2 4 6 8 10 12 14

Av
er
ag

e
Pa

th
le
ng

th
in

s

Average Planning Time in s

Tunnel Map 1

(1.00m)

(1.50m)
(2.00m)

(2.50m) (3.00m)
(5.00m)

δ-Space Map 1

(1.00m)

(1.50m)
(2.00m)

(2.50m)
(3.00m)

(5.00m)

Tunnel Map 2
(1.00m)

(1.50m)

(2.00m)

(2.50m)
(3.00m)

(5.00m)

δ-Space Map 2

(1.00m)

(1.50m)

(2.00m)

(2.50m) (3.00m)
(5.00m)

Figure 5.11: Pathcost and initial planning time for different δ and tunnel-sizes on Map
1 and Map 2.

When comparing planning times to trajectory costs for the δ-Space with the
tunnel (Figure 5.11), we see that the the size of the tunnel radius should be
choosen as at least 1.5m, since 1m results in significantly higher trajectory costs
on both maps. On the other end, even a tunnel with a radius of 5m still has
higher trajectory cost than the smallest evaluated δ-Space with a δ of 1m. As
even the smallest δ on both maps results in planning times of nearly 4s, using
the δ-Space method is not suitable for time-critical scenarios. However, if there
is enough planning time available, it is the better option in all cases. If there is
only a short timeframe for planning before the multirotor should start, the size of
δ shouldn’t be too large, as the increase in time is greater than the decrease in the
trajectory execution times. To overcome that problem, the δ should be increased
iteratively.

5.2.3. Iterative δ-Space

As it is possible to increase the δ as shown in Section 4.4, the question occurs what
the best initial value of δ is. Figure 5.12 shows the trajectory and planning times
on Map 1 for initial sizes of the tunnel and δ-Space of 1m−2m, with three increases
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Figure 5.12: Result of the iterative model on Map 1

of 0.5m each. While it makes a difference in planning time and pathlength for the
tunnel, the δ-Space converges to a small channel independent of the initial choice
for δ. If you look closely at δ = 2m in figure 5.12, you can recognize that the initial
planning for δ = 2m results in higher costs than iteratively increasing δ to 2m.
Here it seems that the additional time needed for the increase step in comparison
to an initial planning in the increased δ-space is made up by the lower cost. Note
that we use an inflated heuristic. Iteratively increasing δ can help to correct paths
that are suboptimal due to the inadmissible heuristic. This is a possible reason
why iterative searches result in lower trajectory costs. Here is an example to make
clear how iterative searches can correct suboptimal choices of the inadmissible
heuristic:

Assume there exist three nodes a, b and c with edges (a, c) and (b, c). The short-
est path thereby goes through b and c. While node a and c are inside the smaller
δ-Space, node b is only part of the larger one. In the planner that starts directly
with the larger δ-Space, a is expanded first. After that, due to the weighted
heuristic, c is expanded before b is, leading the A* search to ignore the edge (b, c)

because c was already expanded when b was expanded. The planner that starts
with the smaller δ space also expands a and c first. However, as node b is not part
of the small δ-Space, it is not expanded. After increasing δ, b is inside the larger
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Figure 5.13: Result of the iterative model on Map 2

δ-Space and is thus expanded at some point during the replanning. Thus, the edge
(b, c) is not ignored, as c was not yet expanded after the increase-step. Later, c is
expanded again, together with at least all other nodes on the old shortest path.
So the increase-step corrected one of the suboptimal nodes.

On Map 2 (Figure 5.13), we can also see that the increase step brings better
pathcost, but here it does not cancel out the longer planning times. It still seems
to converge, but that is because the decreases in pathcost for δ ≥ 2.5m on are
really small (between 0.03m and 0.05m when increasing δ from 2.5m tuo 3m).
while the increase in planning time is much higher. So for this map, a δ of 2.5m
seems to be the point after that increasing does make much less sense. On this
map you can clearly see that you can achieve a δ of 2.5m in a bit more than 8s,
while it takes nearly 12s when starting with a δ of 1m. On the other hand, the δ

of 1m gets the first path already after less than half the planning time.

5.2.4. Inflated Heuristics

In this experiment, we want to see the impact of different weighted heuristics on
trajectory costs and planning time. Figure 5.14 shows the results for both the
tunnel and the δ-Space. The colors of the graphs represents the used weight and
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Figure 5.14: The impact of weighted heuristics

a line represents an iterative search as described in Section 5.2.3. Here, it can be
clearly seen that tunnel and δ-Space behave differently. The weight does impact
the tunnel slightly, increasing the tunnel radius once has nearly the same effect.
However, further increases do not improve the performance significantly. On the
other hand, the heuristic weight strongly influences the performance of the δ-
Spaces. A larger weight significantly decreases the planning times. However, there
is also a limit how much the trajectory cost can be decreased for each weight when
increasing the δ-Space. This way, the δ-Space was even faster when combining the
initial planning time with the execution time for w = 2.2.

In the end, the optimal choice of the heuristic weight depends on the maximum
available planning time. High weights result in low initial planning times, but to
higher trajectory costs than for lower weights as the iterative search converges. On
the other hand, when using low heuristic weights, the search might be terminated
after fewer iterations due to longer planning times. Thus, the resulting trajectory
costs might even be higher. For the choice of δ, there is no optimal initial value
for all maps, but for this map (Figure 5.14) a starting size of δ = 1.5 is a good
choice for all weights.
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Figure 5.15: Result of the iterative model on Map 1 for different steps of δ.

5.2.5. Step Sizes for Iterative δ-Spaces
Finally, we evaluate the step size for iteratively increasing δ. Figure 5.15 compares
iterative searches with different step sizes, each starting with the same initial choice
of δ. The choice of the step size does not have a big influence on the performance
for the δ-Space, while it has a stronger influence on the tunnel. Here, it leads
to longer planning times for several small increase steps compared to a single
large one. Thus, the tunnel should be increased in larger steps. For the δ-Space,
planning times are only slightly increased when using small step sizes. In the end,
there is no clear advantage for bigger increases of δ. On the contrary, small step
sizes are better since larger ones lead to longer planning times between subsequent
searches. With a suboptimal time constraint a planner with smaller increases could
have a planning with a δ finished while one with a bigger increases only finished
planning with a smaller δ, as the one with a larger one increased skipped the δ the
other planned and the next planning with a larger δ was not yet finished.

As an example, consider a time constraint of 10s for the δ-Space as shown in
Figure 5.15. Here, the planner with an stepsize of 0.25m was able to finish a δ of
2.25m, while the planner with an stepsize of 0.5m only finished a δ of 2.0m and
the planner with the biggest stepsize of 0.75m only finished a δ of 1.75m.
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6. Conclusion and Future Work

This thesis introduced a new planning space, the δ-Space, for higher-dimensional
trajectory planning. We evaluated different parameters of the δ-Space and tested
its performance against the tunnel as another planning space. Our experiments
show that using the δ-Space results in faster trajectories. However, it also needs
more planning time, especially without inflated heuristics. With inflated heuristic,
the δ-Space was able to significantly decrease the planning time while the pathcost
increased only slightly. As the tunnel was nearly unaffected by inflated heuristics,
the δ-Space was able to outperfom the tunnel for heigh weights in the initial
planning when adding planning time and execution time together.

To overcome the worse initial planning time and to be able to find better path,
the δ-Space performs good when increasing the size of the δ-Space. Especially as
each increase of the δ-Space is able to correct some paths that were suboptimal
due to inflated heuristic. But as there is also a limit how much the trajectory cost
can be decreased for each weight when increasing the δ, it should be considered
to combine the δ-Space with an algorithm such as ARA* (Likhachev, Gordon,
and Thrun 2003). Thus, it could be possible to combine decreasing weights with
increasing δ-Spaces to get the best from both algorithms. As the experiments also
showed that it is faster to start with a larger δ instead of starting with a smaller
one, the initial value of δ needs to be guessed. Here, we showed that there is a
correlation between the number of nodes in the lower-dimensional δ-Space and
the higher-dimensional planning time. For a given map, heuristic weight and the
number of nodes in the lower-dimensional δ-Space a probability distribution for
the higher-dimensional planning time can be calculated. Our algorithm can be
adapt to be able to calculate the highest δ that is lower or equal to a desired
number of nodes.

While the experiments show that a neighborhood of 124 was the best for the
higher dimensional planner both in planning time and pathcost, the lower dimen-
sional planner took too much time. To overcome that an adapted Theta* or Lazy
Theta* as described in (Kosenko and Schräder 2018) instead of A* could be used.
Here, when only one shortcut in Theta* is allowed, the neighborhood of 124 could
be simulated while each node still has only 26 neighbors. As the additional time
for the Theta* should be less than the time that is saved for higher-dimensional
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planning when using the neighborhood of 124, it should reduce the planning time
as well as the pathcosts. Another experiment that could be done in upcoming
works is using the δ-Space together with sampling-based planners such as RRT
or AIT* (Strub and Jonathan D. Gammell 2020) for both the higher and lower
dimension, or only for the lower one. Especially AIT* should work good, as the in-
ternal heuristic of the δ-Space can be seen as the graph-based heuristic of AIT* in
the lower dimensional space. As a last point, the δ-Space could be combined with
a multiresolution state lattice like the one described in Behnke 2003 for lower- and
higher-dimensional planning. Especially in combination with TopiCo, it is possible
to use multiresolution in the higher-dimensional planning space, as additional sets
of edges for transition areas can be precomputed with TopiCo.

All in all, we have dveleoped an approach to reduce higher-dimensional planning
spaces while reducing suboptimalities of searched trajectories in these spaces.
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In this appendix, you find the raw data for all the experiments.

A.1. Evaluation of Edge Types
lower-

dimensional
planning
time

higher-
dimensional
planning
time

# of nodes
in the
δ-Space

higher-
dimensional
pathcost

9D state lattice
with jerk 141ms 13.7s 25.7 · 103 7.85s

9D state lattice
with acceleration 18.9ms 1.2s 2.9 · 103 7.98s

6D state lattice
with average 4.25ms 0.018s 0.3 · 103 13.04s

6D state lattice
with TopiCo 4.32ms 0.015s 0.3 · 103 13.00s

Table A.1: Data of Experiment 5.4

A.2. Lower-dimensional Neighborhood Sizes
lower-

dimensional
planning
time

higher-
dimensional
planning
time

# of nodes
in the
δ-Space

higher-
dimensional
pathcost

Neighborhood
of 26 159ms 3.8s 7.1 · 103 14.9s

Neighborhood
of 124 538ms 3.6s 5.9 · 103 14.7s

Neighborhood
of 342 1.7s 3.8s 6.0 · 103 14.7s
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Table A.2: Results of Experiment 5.2.1

A.3. Different Values of δ-Sizes

lower-
dimensional
planning
time

higher-
dimensional
planning
time

# of nodes
in the
δ-Space

higher-
dimensional
pathcost

δ-Space 1.0m
Map 1 147ms 3.5s 7.1 · 103 14.55s

δ-Space 1.5m
Map 1 159ms 4.6s 10.3 · 103 14.25s

δ-Space 2.0m
Map 1 246ms 6.9s 13.3 · 103 14.17s

δ-Space 2.5m
Map 1 194ms 7.8s 16.2 · 103 14.09s

δ-Space 3.0m
Map 1 201ms 8.9s 19.0 · 103 14.04s

δ-Space 5.0m
Map 1 262ms 13.3s 29.9 · 103 13.97s

δ-Space 1.0m
Map 2 154ms 3.5s 7.1 · 103 14.82s

δ-Space 1.5m
Map 2 166ms 5.1s 10.1 · 103 14.52s

δ-Space 2.0m
Map 2 181ms 7.0s 13.5 · 103 14.29s

δ-Space 2.5m
Map 2 195ms 8.1s 16.8 · 103 14.05s

δ-Space 3.0m
Map 2 211ms 9.7s 19.8 · 103 14.01s

δ-Space 5.0m
Map 2 267ms 14.4s 31.7 · 103 13.95s

Table A.3: Results for the δ-Space of Experiment 5.2.2
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A.3. Different Values of δ-Sizes

lower-
dimensional
planning time

higher-
dimensional
planning time

higher-
dimensional
pathcost

Tunnel 1.0m
Map 1 116ms 0.79s 16.01s

Tunnel 1.5m
Map 1 106ms 1.48s 15.25s

Tunnel 2.0m
Map 1 96ms 1.99s 15.06s

Tunnel 2.5m
Map 1 99ms 3.10s 14.94s

Tunnel 3.0m
Map 1 96ms 3.93s 14.86s

Tunnel 5.0m
Map 1 98ms 8.47s 14.79s

Tunnel 1.0m
Map 2 99ms 0.65s 16.14s

Tunnel 1.5m
Map 2 100ms 1.40s 15.36s

Tunnel 2.0m
Map 2 100ms 2.12s 15.16s

Tunnel 2.5m
Map 2 99ms 3.24s 15.04s

Tunnel 3.0m
Map 2 100ms 4.33s 14.96s

Tunnel 5.0m
Map 2 99ms 9.48s 14.89s

Table A.4: Results for the Tunnel of Experiment 5.2.2
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A.4. Iterative δ-Space

lower-
dimensional
planning
time

higher-
dimensional
planning
time

# of nodes
in the
δ-Space

higher-
dimensional
pathcost

δ-Space
iterative
Map 1

δ = 1.0m 147ms 3.5s 7.1 · 103 14.55s

δ = 1.5m +17.9ms +2.4s 10.3 · 103 14.22s

δ = 2.0m +18.0ms +2.2s 13.3 · 103 14.12s

δ = 2.5m +18.2ms +1.9s 16.2 · 103 14.05s

δ-Space
iterative
Map 1

δ = 1.5m 159ms 4.6s 10.3 · 103 14.25s

δ = 2.0m +18.2ms +2.2s 13.3 · 103 14.14s

δ = 2.5m +18.4ms +2.0s 16.2 · 103 14.06s

δ = 3.0m +18.5ms +1.6s 19.0 · 103 14.00s

δ-Space
iterative
Map 1

δ = 2.0m 246ms 6.9s 13.3 · 103 14.17s

δ = 2.5m +21.5ms +2.3s 16.2 · 103 14.07s

δ = 3.0m +21.9ms +1.9s 19.0 · 103 14.01s

δ = 3.5m +22.4ms +1.6s 21.7 · 103 13.99s

δ-Space
iterative
Map 2

δ = 1.0m 154ms 3.5s 7.1 · 103 14.82s

δ = 1.5m +18.4ms +2.5s 10.1 · 103 14.49s

δ = 2.0m +18.6ms +3.0s 13.5 · 103 14.25s

δ = 2.5m +18.7ms +2.6s 16.8 · 103 14.01s

δ-Space
iterative
Map 2

δ = 1.5m 166ms 5.1s 10.1 · 103 14.52s

δ = 2.0m +18.6ms +3.0s 13.5 · 103 14.26s

δ = 2.5m +18.6ms +2.6s 16.8 · 103 14.01s

δ = 3.0m +18.8ms +2.1s 19.8 · 103 13.97s

δ-Space
iterative
Map 2

δ = 2.0m 181ms 7.0s 13.5 · 103 14.29s

δ = 2.5m +18.5ms +2.7s 16.8 · 103 14.03s

δ = 3.0m +18.7ms +2.1s 19.8 · 103 13.98s

δ = 3.5m +18.8ms +1.8s 22.8 · 103 13.95s

δ-Space
iterative
Map 2

δ = 2.5m 195ms 8.1s 16.8 · 103 14.05s

δ = 3.0m +18.9ms +2.2s 19.8 · 103 13.99s

δ = 3.5m +19.0ms +1.8s 22.8 · 103 13.96s

δ = 4.0m +19.3ms +1.6s 25.8 · 103 13.93s

δ-Space
iterative
Map 2

δ = 3.0m 211ms 9.7s 19.8 · 103 14.01s

δ = 3.5m +19.0ms +1.9s 22.8 · 103 13.96s

δ = 4.0m +19.3ms +1.7s 25.8 · 103 13.93s

δ = 4.5m +19.4ms +1.4s 28.7 · 103 13.92s
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Table A.5: Results for the δ-Space of Experiment 5.2.3

lower-
dimensional
planning time

higher-
dimensional
planning time

higher-
dimensional
pathcost

Tunnel
iterative
Map 1

radius= 1.0m 116ms 0.79s 16.01s

radius= 1.5m +1.33s 15.27s

radius= 2.0m +1.68s 15.03s

radius= 2.5m +2.38s 14.90s

Tunnel
iterative
Map 1

radius= 1.5m 106ms 1.48s 15.25s

radius= 2.0m +1.54s 15.03s

radius= 2.5m +2.21s 14.89s

radius= 3.0m +2.43s 14.81s

Tunnel
iterative
Map 1

radius= 2.0m 96ms 1.99s 15.06s

radius= 2.5m +2.08s 14.90s

radius= 3.0m +2.29s 14.82s

radius= 3.5m +2.34s 14.77s

Tunnel
iterative
Map 2

radius= 1.0m 99ms 0.65s 16.14s

radius= 1.5m +1.17s 15.37s

radius= 2.0m +1.56s 15.13s

radius= 2.5m +2.26s 14.99s

Tunnel
iterative
Map 2

radius= 1.5m 100ms 1.40s 15.36s

radius= 2.0m +1.53s 15.13s

radius= 2.5m +2.25s 14.99s

radius= 3.0m +2.52s 14.91s

Tunnel
iterative
Map 2

radius= 2.0m 100ms 2.12s 15.16s

radius= 2.5m +2.27s 15.00s

radius= 3.0m +2.55s 14.91s

radius= 3.5m +2.61s 14.86s

Tunnel
iterative
Map 2

radius= 2.5m 99ms 3.24s 15.04s

radius= 3.0m +2.52s 14.92s

radius= 3.5m +2.58s 14.86s

radius= 4.0m +2.80s 14.83s

Tunnel
iterative
Map 2

radius= 3.0m 100ms 4.33s 14.96s

radius= 3.5m +2.61s 14.88s

radius= 4.0m +2.82s 14.84s

radius= 4.5m +2.93s 14.82s

Table A.6: Results for the Tunnel of Experiment 5.2.3
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A.5. Inflated Heuristics

lower-
dimensional
planning
time

higher-
dimensional
planning
time

# of nodes
in the
δ-Space

higher-
dimensional
pathcost

δ-Space
iterative
w = 1.0

δ = 1.0m 150ms 6.9s 7.1 · 103 14.45s

δ = 1.5m +18.2ms +6.3s 10.3 · 103 14.14s

δ = 2.0m +18.6ms +6.7s 13.3 · 103 14.05s

δ = 2.5m +18.8ms +6.1s 16.2 · 103 13.98s

δ-Space
iterative
w = 1.4

δ = 1.0m 159ms 5.6s 7.1 · 103 14.46s

δ = 1.5m +18.1ms +4.7s 10.3 · 103 14.15s

δ = 2.0m +18.4ms +4.8s 13.3 · 103 14.06s

δ = 2.5m +18.8ms +4.4s 16.2 · 103 13.98s

δ-Space
iterative
w = 1.83

δ = 1.0m 147ms 3.5s 7.1 · 103 14.55s

δ = 1.5m +17.9ms +2.4s 10.3 · 103 14.22s

δ = 2.0m +18.0ms +2.2s 13.3 · 103 14.12s

δ = 2.5m +18.2ms +1.9s 16.2 · 103 14.05s

δ-Space
iterative
w = 2.2

δ = 1.0m 154ms 1.8s 7.1 · 103 14.69s

δ = 1.5m +18.0ms +1.0s 10.2 · 103 14.40s

δ = 2.0m +18.3ms +0.92s 13.3 · 103 14.28s

δ = 2.5m +18.6ms +0.74s 16.2 · 103 14.20s

δ = 3.0m +18.9ms +0.60s 19.0 · 103 14.15s

δ = 3.5m +19.0ms +0.51s 21.7 · 103 14.13s

δ = 4.0m +19.3ms +0.44s 24.4 · 103 14.12s

Table A.7: Results for the δ-Space of Experiment 5.2.4
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lower-
dimensional
planning time

higher-
dimensional
planning time

higher-
dimensional
pathcost

Tunnel
iterative
w = 1.0

radius= 2.0m 97ms 3.07s 14.98s

radius= 2.5m +3.39s 14.84s

radius= 3.0m +3.88s 14.77s

radius= 3.5m +4.11s 14.74s

Tunnel
iterative
w = 1.4

radius= 2.0m 103ms 2.84s 14.98s

radius= 2.5m +2.97s 14.85s

radius= 3.0m +3.33s 14.77s

radius= 3.5m +3.48s 14.74s

Tunnel
iterative
w = 1.83

radius= 2.0m 100ms 2.12s 15.16s

radius= 2.5m +2.27s 15.00s

radius= 3.0m +2.55s 14.91s

radius= 3.5m +2.61s 14.86s

Tunnel
iterative
w = 2.2

radius= 2.0m 99ms 1.31s 15.19s

radius= 2.5m +1.32s 15.01s

radius= 3.0m +1.4s 14.93s

radius= 3.5m +1.41s 14.89s

radius= 4.0m +1.52s 14.86s

radius= 4.5m +1.60s 14.85s

radius= 4.5m +1.59s 14.84s

Table A.8: Results for the Tunnel of Experiment 5.2.4
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A.6. Step Sizes for Iterative δ-Spaces
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#
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δ-
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δ-Space
iterative

stepsize 0.25m

δ = 1.0m 155ms 3.6s 7.1 · 103 14.55s

δ = 1.25m +10.7ms +1.3s 8.6 · 103 14.33s

δ = 1.5m +10.8ms +1.4s 10.3 · 103 14.21s

δ = 1.75m +10.8ms +1.2s 11.6 · 103 14.17s

δ = 2.0m +10.6ms +1.3s 13.3 · 103 14.12s

δ = 2.25m +9.1ms +1.0s 14.6 · 103 14.08s

δ = 2.5m +13.1ms +1.1s 16.2 · 103 14.04s

δ-Space
iterative

stepsize 0.5m

δ = 1.0m 147ms 3.5s 7.1 · 103 14.55s

δ = 1.5m +17.9ms +2.4s 10.3 · 103 14.22s

δ = 2.0m +18.0ms +2.2s 13.3 · 103 14.12s

δ = 2.5m +18.2ms +1.9s 16.2 · 103 14.05s

δ-Space
iterative

stepsize 0.75m

δ = 1.0m 159ms 3.6s 7.1 · 103 14.55s

δ = 1.75m +25.1ms +3.2s 11.6 · 103 14.19s

δ = 2.5m +25.7ms +3.1s 16.2 · 103 14.05s

δ = 3.25m +26.2ms +2.4s 20.4 · 103 13.99s

Tunnel
iterative

stepsize 0.25m

radius= 2.0m 96ms 1.99s − 15.06s

radius= 2.25m +1.53s − 14.95s

radius= 2.5m +1.47s − 14.88s

radius= 2.75m +1.56s − 14.84s

radius= 3.0m +1.68s − 14.80s

radius= 3.25m +1.78s − 14.78s

radius= 3.5m +1.58s − 14.77s

Tunnel
iterative

stepsize 0.5m

radius= 2.0m 96ms 1.99s − 15.06s

radius= 2.5m +2.08s − 14.90s

radius= 3.0m +2.29s − 14.82s

radius= 3.5m +2.34s − 14.77s

Tunnel
iterative

stepsize 0.75m

radius= 2.0m 103ms 2.12s − 15.06s

radius= 2.75m +2.73s − 14.87s

radius= 3.5m +3.06s − 14.79s

radius= 4.25m +3.37s − 14.74s
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Table A.9: Results for Experiment 5.2.5
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