
Rheinische

Friedrich-Wilhelms-Universität Bonn

Master Thesis

Textured Meshes for Semantic Mapping

Author:

Radu Alexandru Rosu

First Examiner:

Prof. Dr. Sven Behnke

Second Examiner:

Priv.-Doz. Dr. Volker Steinhage

Advisor:

Jan Quenzel

Date: October 5, 2018

Declaration

I hereby declare that I am the sole author of this thesis and that none other than

the specified sources and aids have been used. Passages and figures quoted from

other works have been marked with appropriate mention of the source.

Place, Date Signature

Abstract

Scene understanding is an important capability for robots acting in unstructured

environments. While most SLAM approaches provide a geometrical representation

of the scene, a semantic map is necessary for more complex interactions with the

surroundings. Current methods treat the semantic map as part of the geometry

which limits scalability and accuracy.

This thesis proposes to separate the semantic map into a geometrical mesh and a

semantic texture. The key idea is that in many environments the geometry can be

greatly simplified without loosing fidelity, while semantic information can be stored

at a higher resolution, independent of the mesh. We construct a mesh from depth

sensors to represent the scene geometry and fuse information into the semantic

texture from segmentations of individual RGB views of the scene. Making the

semantics persistent in a global mesh enables us to enforce temporal and spatial

consistency of the individual view predictions. For this, we propose an efficient

method of establishing consensus between individual segmentations by iteratively

retraining semantic segmentation with the information stored within the map and

using the retrained segmentation to re-fuse the semantics.

We demonstrate the accuracy and scalability of our approach by reconstructing

semantic maps of scenes from NYUv2 and a scene spanning large buildings.

Contents

1 Introduction 1

2 Related Work 5

2.1 Map representations . 5

2.1.1 Occupancy grid . 5

2.1.2 Signed Distance Field . 6

2.1.3 Surfel . 7

2.1.4 Mesh . 7

2.2 Semantic Segmentation . 8

2.3 Semantic Mapping . 9

2.4 Mesh creation . 11

2.4.1 Delaunay triangulation . 11

2.4.2 Volumetric integration . 12

2.4.3 Poisson reconstruction . 12

3 Overview 17

3.1 Pipeline . 17

3.2 Notation . 18

4 Mesh reconstruction 21

4.1 Depth preprocessing . 21

4.2 Local mesh simplification . 24

4.2.1 Ramer-Douglas-Peucker extensions 28

4.3 Local mesh refinement . 29

4.4 Global mesh generation . 30

5 Semantic and Color Integration 33

5.1 Semantic Integration . 33

5.2 Color Integration . 35

5.3 Sparse Semantic Volume . 36

5.4 Label Propagation . 37

5.5 Implementation . 39

vii

Contents

6 Experiments 41

6.1 NYUv2 Dataset . 41

6.2 Courtyard Dataset . 41

6.3 Accuracy Evaluation . 43

6.4 Registration Robustness . 47

6.5 Runtime Performance . 49

6.6 Memory Consumption . 51

6.7 Texture Resolution and Semantic Accuracy 51

7 Conclusion 55

viii

Contents

Appendices 57

ix

1 Introduction

Robots acting in real-world environments need the ability to understand their

surrounding, and know their location within the environment. While the prob-

lem of geometrical mapping and localization can be solved through SLAM meth-

ods (Zollhöfer et al. 2018), many tasks require knowledge about the semantic

meaning of objects or surfaces in the environment. The robot should, for instance,

be able to recognize where the obstacles are in the scene and also understand

whether those obstacles are cars, pedestrians, walls, or otherwise.

The problem of building maps has been extensively studied (Kostavelis et al.

2015). Most approaches can be grouped into the following three categories based

on map representation:

• Voxel-based: The scene is discretized into voxels, either using a regular grid,

or an adaptive octree. Each voxel stores the binary occupancy value (occu-

pied, empty, unknown) or the distance to the surface, commonly referred to

as Signed Distance Function (SDF).

• Surfel-based: The map is represented by small surface elements, which store

the mean and covariance of a set of 3D-points. Surfels suffer from less dis-

cretization errors than voxels.

• Mesh-based: The map is represented as a set of vertices with faces between

them. This naturally fills holes and allows for fast rendering using established

graphics pipelines.

Current semantic mapping systems treat the semantic information as part of the

geometry, and store label probabilities per map element (voxel, sufel or mesh ver-

tex/face). This approach has the intrinsic disadvantage of coupling the resolution

of the geometrical representation with the semantics, requiring a large number of

elements in order to be able to represent small semantic objects or surface parts.

This is an undesirable effect as it leads to unnecessary memory usage especially

in man-made environments, where the geometry is mostly planar, and high geo-

metrical detail would be redundant. Often, it suffices to represent the semantics

relative to a rough geometric shape.

1

1 Introduction

Figure 1.1: Semantic Reconstruction: We generate a mesh with RGB texture and
semantic annotations. The mesh enables us to ensure temporal and spatial consis-
tency between semantic predictions and allows us to perform label propagation for im-
proved semantic segmentation. Color coding of semantic labels correspond to the NYUv2
dataset (Silberman et al. 2012).

The key idea of our approach, visualized in Fig. 1.1, is to decouple the scene

geometry from the semantics by using a semantic texture mesh. In this, the scene

geometry is represented by vertices and faces, whereas the semantic texture cat-

egorizes the surface with higher resolution. This allows us to represent semantics

and geometry at different resolutions in order to build large semantic maps, while

still keeping a low memory usage. As our segmentation module we make use of

RefineNet (Lin et al. 2017) to predict a semantic segmentation for each individ-

ual RGB view of the scene. These predictions are probabilistically fused onto the

semantic texture that is supported by a coarse mesh representing the scene geom-

etry. Having a globally persistent semantic map enables us to establish a temporal

and spatial consistency that was previously unobtainable for individual-view pre-

dictors. To this end, we propose to propagate labels from the stable mesh by

projecting onto each camera frame, in order to retrain the semantic segmentation

in a semi-supervised manner. Expectation Maximization (EM) is then carried out

by alternating between fusing semantic predictions and propagating labels. This

2

iterative refinement allows us to cope with view points which were not common

in the training dataset. For example, a predictor pre-trained on street-level seg-

mentation will not work well on images captured by a micro aerial vehicle (MAV)

at higher altitudes or close to buildings. However, projecting confident semantic

labels fused from street level onto less confident parts of views will make it possible

to learn the semantic segmentation of new viewpoints (see Fig. 5.2).

We compare our method with SemanticFusion (McCormac et al. 2017), and

evaluate the accuracy on the NYUv2 dataset (Silberman et al. 2012). We show

that the increased resolution of the semantic texture allows for more accurate

semantic maps. Finally, propagation and retraining further improve the accuracy,

surpassing SemanticFusion in every class.

To showcase the benefits of textured meshes in terms of scalability and speed,

we also recorded a dataset spanning multiple buildings, annotated with the 66

classes of the Mapillary dataset (Neuhold et al. 2017). We demonstrate that we

are able to construct a large map using both RGB and semantic information in a

time- and memory-efficient manner.

3

2 Related Work

Robotic mapping addresses the problem of building and updating a model of

the environment using the sensors available on the robot (cameras, range find-

ers, sonars, GPS, etc.) There have been many solutions proposed to the problem,

each tackling the problem in a different way. We will shortly present some of the

works in the field.

2.1 Map representations

Storing a representation of the environment is a challenging problem as the choice

of underlying data structures comes with certain advantages and disadvantages.

We will briefly introduce the most common choices for map representation (be it

in 2D or 3D).

2.1.1 Occupancy grid

A popular approach to building spatial maps of the environment is to discretize

the space using a grid of cubical volumes of equal size, called voxels. Each voxel of

the map stores the probability of being occupied, free space or unknown. As more

readings of the environment are obtained (for example a laser range scanner), the

occupancy probabilities of the voxels are updated accordingly.

One of the first approaches to building a spatial model of the environment is

attributed to Moravec et al. (1985).They used sonar range measurements from a

moving robot and aggregated the readings into a 2D occupancy grid. They pre-

sented as result a map which stored the probability for each cell of being occupied,

empty or unknown. One of the drawbacks of the approach is that the occupancy

grid needs to be initialized with the expected map size. In large outdoor areas the

extent of the map may not be known beforehand. Also in scenarios where a fine

resolution of the grid is necessary, memory consumption can become prohibitive

as the scene was represented as a uniform grid.

A more recent approach to occupancy grids can be seen in Octomap (Hornung

et al. 2013). They represented the map using a 3D octree which solves part of the

5

2 Related Work

issues occurring in the work of Moravec et al. (1985). The octree defined hierar-

chical space discretization in which each node represented the volume contained

inside it. Each node was recursively subdivided into eight sub-volumes until a

certain voxel size is reached. The usage of octrees solved the issue of knowing

the map size beforehand by delaying the initialization of the map volumes until

measurements needed to be integrated. Also, by storing free space volume only at

a very coarse resolution, a more memory efficient representation than the uniform

grid was achieved.

2.1.2 Signed Distance Field

Instead of representing the cell occupancy, another approach is to represent the

distance of each cell to the surface. This implicit representation of the surface is

the idea behind the Signed Distance Field. One of the first approaches that deals

with this is the work of Curless et al. (1996) which integrated range images into a

cumulative weighted signed distance field, discretized as a uniform voxel grid. The

final manifold was extracted as the zero-crossing of the implicit representation

(where voxels change from being inside to being outside the volume) using the

Marching Cubes algorithm.

More recently, the work of Richard A Newcombe et al. (2011) demonstrated that

the Signed Distance Field can be used in a real-time fashion on GPU to reconstruct

highly detailed surfaces. They employed a Kinect sensor for obtaining depth im-

ages of the scene and integrated them into a Truncated Signed Distance Function

(TSDF). The truncated version of the SDF stores distance values only near the

surface thus gaining memory efficiency. However the volume to be reconstructed

was still limited to room sized scenarios due to the fixed size of the volume grid.

This limitation was addressed in the subsequent work of Whelan; Kaess, et al.

(2012) which streamed regions of space, that are not mapped anymore, out of the

GPU and converts them to a triangular mesh. J. Chen et al. (2013) provided a

lossless method for streaming inactive regions to CPU and Richard A. Newcombe

et al. (2015) focused on reconstructing dynamic surfaces, like people moving in the

scene, by warping a canonical static model into the deforming live frame.

Steinbrücker et al. (2014) also created a volumetric map using TSDF stored on

an octree but they provided a fast CPU implementation. Nießner et al. (2013)

described a volumetric integration method which does not use an octree but voxel

hashing which reduced the voxel lookup and insertion operations from O(log n) to

O(1) (Oleynikova et al. 2017).

6

2.1 Map representations

Figure 2.1: Surface represetations: Comparison of the same surface represented as
mesh(left), occupancy grid(middle) and distance function(right). Taken from Peasley
(2013)

2.1.3 Surfel

The space can also be discretized in ”surface elements” called surfels which store

the mean and covariance of a set of 3D-points. Data can be probabilistically

fused inside a surfel map as shown in the work of Stückler et al. (2012) which

describes a full SLAM pipeline including loop closure and color reconstruction

with a multi resolution surfel map. One of the drawbacks of the approach was

that they require an intermediate octree representation which limits scalability

and adds computational complexity.

The drawback of using the octree representation was solved in the subsequent

work of Keller et al. (2013) which treated the map as a flat array of surfel in which

new measurements were fused and denoised over many observations. Their system

was capable of real-time execution using a GPU but didn’t provide loop-closure

capabilities.

Whelan; Leutenegger, et al. (2015) built on top of Keller et al. (2013) and deal

with global loop closure by storing a deformation graph of the scene to perform

non-rigid deformation.

2.1.4 Mesh

As opposed to surfel or voxel grids, another popular space representation are

meshes. A mesh consists of a list of vertices with faces between them. They

have the advantage of naturally filling holes and being fast to render using the

already established graphics pipeline. Building meshes from a point cloud can be

a challenging problem depending on how noisy the sampled points are, the avail-

ability of normals for the points, if they densely sample the surface, etc. There

have been various works that attempt to solve this problem, the most relevant for

this thesis will be mentioned here.

Hoppe et al. (1992) reconstructed a complete mesh from points devoid of normal

information by first estimating a tangent plane for each point and creating a Rie-

7

2 Related Work

mannian graph of the points to establish a consistent normal orientation. Finally

a Signed Distance Field was built from the points with normals from which a mesh

is extracted as the zero crossing of the isosurface.

Marton et al. (2009) proposed a data re-sampling approach which dealt with non

uniformly sampled and noisy point clouds. Afterwards, a greedy triangulation was

performed in which each point’s nearest neighbors were connected with edges.

Ling et al. (2017) built incremental maps from only sparse visual features with

the objective of using the map for navigation. Robustly triangulated ORB fea-

tures were used as vertices for 3D Delaunay triangulation. The tetrahedra gener-

ated were evaluated against a visibility constraint which pruned the triangulation,

finally yielding a complete mesh of the surface of the mapped environment.

Romanoni; Fiorenti, et al. (2017) proposed a joint meshing and texturing pipeline

using a Velodyne 64HD to provide laser range measurements. For meshing they

employ the batch version of the space carving algorithm presented in Romanoni

and Matteucci (2015). They also proposed a system for removing dynamic objects

like cars and pedestrians and obtaining a consistent mesh without them.

2.2 Semantic Segmentation

Semantic segmentation is the task of densely classifying each pixel of the image

as belonging to a certain class. It is used in systems which need the ability to

recognize the objects in a scene and also the boundaries of each object.

Before deep learning approaches were popular, semantic segmentation was per-

formed using TextonForests (Shotton; Johnson, et al. 2008) and Random Forest

based classifiers (Shotton; Fitzgibbon, et al. 2011). This type of classifier applies

techniques called ensemble learning, where multiple classifiers were trained and a

combination of their hypotheses was used. They were trained for a classification

task where each pixel was separately classified by using a small patch around it.

The features used to represent each image patch were usually hand crafted.

Long et al. (2015) popularized the idea of using Convolutional Neural Networks

(CNNs) for semantic segmentation. They provided a fast way of training by repur-

posing networks initially trained for the task of image classification. However the

pooling layers used in typical classification networks, while they increase the recep-

tive field, aggregating more context from the image, they also discard positional

information which is highly necessary for a high resolution semantic segmentation.

To obtain a final segmentation, the feature maps from a ImageNet pre-trained net-

work still have to be upsampled because of the pooling layers. Long et al. (2015)

solved this issue by proposing an upsampling layer that learns how to best upscale

8

2.3 Semantic Mapping

Figure 2.2: Semantic segmentation: RGB image and the corresponding semantic
segmentation. Taken from Reddy et al. (2014)

the image. However, the segmentation is still coarse due to the loss in information

during pooling.

L.-C. Chen et al. (2018) partially solved the problem in loss of information

by introducing the atrous or dilated convolution which increases the receptive

field without decreasing spatial dimensions and without an increase in parameters.

Finally, they also trained a CRF as a post-processing step that smoothed and

improved the final segmentation.

Lin et al. (2017) proposed a solution that solves some of the problems of atrous

convolution like the increased computational expense and the memory require-

ments to store the high resolution feature maps. They proposed an encoder-

decoder architecture based on pre-trained ResNet (He et al. 2016) which concate-

nates high-level semantic features from deeper layers of the network with low level

ones from earlier convolutions in order to obtain a high precision semantic seg-

mentation. This provided a state of the art segmentation at a low memory cost

with high speed.

2.3 Semantic Mapping

With the rise of autonomous robots and cars, the task of creating a semantic map

has gained more and more attention in the robotics community. Most approaches

use one of the geometrical map representations while storing inside of it the labels

9

2 Related Work

obtained from one of the semantic segmentation approaches. The most relevant

works will be shown in this section.

Figure 2.3: Example semantic map: Semantic map created by our approach. Color
coding of semantic labels correspond to NYUv2 dataset (Silberman et al. 2012)

Civera et al. (2011) paved the way towards a semantic SLAM system by pre-

senting an object reasoning system, able to learn object models using feature

descriptors in an offline step and then recognizing and registering them to the

map at runtime. However, their system was limited to a small number of objects

and, apart from the recognized objects, the map was represented only as a sparse

point cloud.

Similarly, Hermans et al. (2014) fused semantic information obtained from seg-

menting RGB-D frames using Random Forests but represented the map as a point

cloud. Their main contribution was an efficient spatial regularizing Conditional

Random Field (CRF), which smooths semantic labels throughout the point cloud.

Li et al. (2016) extended this approach to monocular video while using the semi-

dense map of LSD-SLAM (Engel et al. (2014)). Here, a convolutional neural

network (CNN) called DeepLab-CNN (L.-C. Chen et al. 2018) was used instead

of a Random Forest for segmentation. Vineet et al. (2015) achieve a virtually

unbounded scene reconstruction through the use of an efficient voxel hashed data

structure for the map. This further allows them to incrementally reconstruct the

scene. Instead of RGB-D cameras, stereo cameras were employed and depth was

estimated by stereo disparity. Semantic segmentation was performed through Ran-

dom Forest. The requirement for dense depth estimates is lifted in the approach of

Kundu et al. (2014). They use only sparsely triangulated points obtained through

monocular Visual SLAM and recover a dense volumetric map through a CRF that

jointly infers semantic category and occupancy for each voxel. A different ap-

proach is used in the keyframe-based monocular SLAM system by Tateno et al.

10

2.4 Mesh creation

(2017) where a CNN predicts per keyframe the pixel-wise monocular depth and

semantic label.

Recently, McCormac et al. (2017) integrated semantics into ElasticFusion (Whe-

lan; Leutenegger, et al. 2015) which represents the environment as a dense surfel

map. ElasticFusion is able to reconstruct the environment in real-time on a GPU

given RGB-D images and can handle local as well as global loop closure. Semantic

labels are stored on a per-surfel basis. Inference is done by a CNN before fusing

estimates probabilistically.

Closely related to our approach is the work of Valentin et al. (2013). Their map

is represented as a triangular mesh. They aggregate depth images in a Truncated

Signed Distance Function (TSDF) and obtain the explicit mesh representation via

the marching cubes algorithm. Afterwards, semantic inference is performed for

each triangle independently using an aggregation of photometric (color dependent)

and geometric (mesh related) features. Spatial regularization is ensured through

a CRF over the mesh faces.

2.4 Mesh creation

As mentioned previously, this thesis attempts to decouple the semantic information

from the geometric one by means of a textured mesh. The mesh, representing the

geometry of the environment, is reconstructed from a series of registered depth

sensor point clouds. The choice of meshing algorithm will greatly influence the

prior depth processing, therefore we will briefly introduce some of the state of the

art approaches in mesh reconstruction, their advantages and disadvantages, and

finally our algorithm of choice.

2.4.1 Delaunay triangulation

The Delaunay triangulation of a series X = x1, ...,xn ∈ R
2 of points in 3D is a tri-

angulationDT (X) such that no point inX is inside the circumcircle of any triangle

inDT (X). This definition extends naturally to a d-dimensional space, however, we

are only interested in the three-dimensional case. In 3D the empty-circle criteria is

replaced with the empty circumsphere and the triangulation doesn’t produce tri-

angles but rather tetrahedra, hence the 3D Delaunay triangulation is often referred

to as tetrahedralization.

A very attractive attribute of the Delaunay triangulation is that it comes with

provable guarantees for geometric and topological quality provided the input sur-

face is sampled densely enough. However one big downside of the Delaunay tri-

angulation is it’s lack of robustness to noise as it performs only interpolatory

11

2 Related Work

reconstruction in the sense that the computed mesh contains as vertices the same

set of points that are used to sample the surface. This poses a problem in the

case of imperfect data since the reconstruction doesn’t naturally deal with noise

or missing data, rendering it impractical for real-world scenarios.

2.4.2 Volumetric integration

Volumetric integration methods represent the surface implicitly as the zero crossing

of a Signed Distance Function (SDF). They naturally deal with noise by discretiz-

ing the space into a voxel grid and fusing the SDF computed for each individual

depth map into a global volume using a weighted average. The update for the

weighted average is given by Equation (2.1) where Di is the SDF integrated up to

frame i, with associated weight Wi and the new SDF measurement is given by di+1

with weight wi+1. After the integration of all the depth maps, an explicit mesh

can be extracted as the zero crossing of the SDF by a Marching Cubes algorithm.

Di+1(x) =
Wi(x)Di(x) + wi+1(x)di+1(x)

Wi(x) + wi+1(x)

Wi+1(x) = Wi(x) + wi+1(x)

(2.1)

The whole pipeline has been demonstrated in the work of Richard A Newcombe

et al. (2011) where they perform both tracking of the depth sensor and volumetric

integration in real-time on a GPU. Despite the maturity of volumetric integra-

tion methods, one of its downsides is the inability to cope with missing data or

varying sampling density. Therefore, this method proves inadequate for laser scan-

ner sensors which have an inherit low vertical resolution which will result in the

undersampling of some surfaces.

2.4.3 Poisson reconstruction

One of the state of the art approaches that create a mesh from orientated points

is Poisson reconstruction presented by Kazhdan and Hoppe (2013).

Poisson reconstruction approaches the problem of surface reconstruction by

computing a 3D indicator function X which is 1 inside the model and 0 outside

(see Fig. 2.4).

The gradient of this indicator function is zero almost everywhere (since the

indicator function is constant almost everywhere) except for points near the surface

where the gradient corresponds to the normal of the surface. Thus, the orientated

points can be seen as samples of the model’s indicator function. Therefore, the

problem of finding the indicator function can be formulated as finding the scalar

12

2.4 Mesh creation

Figure 2.4: Indicator function: Poisson reconstruction uses an indicator function to
recover the surface of the model as the zero crossing of it. Taken from Kazhdan; Bolitho,
et al. (2006).

function X whose gradients best match the vector field ~V defined by the normals of

the points from the point cloud, i.e. minX

∥∥∥∇X − ~V
∥∥∥. By applying the divergence

operator we can cast this as a Poisson problem: Find the scalar function X whose

Laplacian (the divergence of the gradient) equals the divergence of the vector field
~V ,

∆X ≡ ∇ · ∇X = ∇ · ~V (2.2)

To solve this problem the space is discretized into voxels using a hierarchical

octree O allowing for a high resolution representation of the indicator function

only near the surface of the model. Now Equation (2.2) can be solved across

this discretized space so that each leaf finally stores the values of X across the

reconstructed surface.

Finally, a mesh is extracted from the implicit representation of the indicator

function by using a marching cubes algorithm over the leafs of the octree. Trian-

gular faces are created for leafs which experience a sign change (parts of the voxels

are inside the surface while other parts are outside). After a full marching cube

traversal a watertight and smooth mesh is recovered.

Indicator function methods are an instance of gradient based methods. For

surface reconstruction, such a gradient based method provides robustness to noise,

non-uniform sampling, and to some extent outliers and missing data. Therefore

this makes it a viable solution for meshing the point cloud obtained from a laser

scanner.

The full pipeline of the Poisson surface reconstruction can be seen in Fig. 2.5.

One of the first steps in Poisson reconstruction is computing the normals ~N for

each point. This is performed by computing a tangent plane T (xi) around each

point of the input. The tangent plane is represented by it’s center ci together

13

2 Related Work

Figure 2.5: Original Poisson pipeline: Pipeline for computing a mesh from the orien-
tated points using Poisson reconstruction (Kazhdan and Hoppe 2013). Taken from Maiti
et al. (2016).

with a unit normal ni. The center and normal of T (xi) are determined from

the k nearest points from the set X to the current point xi. We denote the k

nearest neighbors by Nbhd(xi). The number of neighbors k is a user-specified

parameter although in practice a value of around 5 works well. The center ci of

the tangent plane T (xi) is taken as the centroid of Nbhd(xi). The normal vector

ni is determined from principal component analysis. First the covariance matrix

C of Nbhd(xi) is computed, which is a 3× 3 positive semi-definite matrix:

C =
1

k

∑

p∈Nbhd(xi)

(p− ci) · (p− ci)
T (2.3)

If λ1
i ≥ λ2

i ,≥ λ3
i denote the eigenvalues of C and v1

i ,v
2
i ,v

3
i are the associated

eigenvectors, we choose the normal ni as either v
3
i or −v3

i . The orientation of the

normals has to be chosen in such a way that it’s consistent with nearby points.

An approach to enforce this consistency was presented in Hoppe et al. (1992) by

14

2.4 Mesh creation

modelling it as a graph optimization problem on a Riemannian graph.

An example of a mesh reconstructed from Poisson reconstruction is shown

in Fig. 2.6.

Figure 2.6: Example mesh reconstruction: Left: 17K points sampled on the statue
of an elephant with a Minolta laser scanner. Right: reconstructed surface mesh. Taken
from Alliez et al. (2018).

We choose Poisson reconstruction for our meshing pipeline due to it’s natural

ability to deal with noisy data and missing measurements while only requiring

points with orientated normals as input.

15

3 Overview

3.1 Pipeline

In this thesis, we present a novel approach to building semantic maps by de-

coupling the geometry of the environment from its semantics by using semantic

textured meshes. This decoupling allows us to store the geometry of the scene as

a lightweight mesh which efficiently represents even city-sized environments.

Our method operates in three steps: mesh generation, semantic texturing and

label propagation.

Mesh generation We create a mesh of the environment by aggregating the indi-

vidual point clouds recorded by a laser scanner or a RGB-D camera. We assume

that the scans are preregistered into a common reference frame using any off-the-

shelf SLAM system. We calculate the normals for the points in each scan by

estimating an edge-maintaining local mesh for the scan. Once the full point cloud,

equipped with normals, is aggregated, we extract a mesh using Poisson reconstruc-

tion (Kazhdan and Hoppe 2013) and further simplify it using QSlim (Garland et

al. 1998).

Semantic texturing We first prepare the mesh for texturing by parametrizing it

into a 2D plane. Seams and cuts are added to the mesh in order to deform it into

a planar domain. A semantic texture is created in which the number of channels

corresponds to the number of semantic classes. The semantic segmentation of each

individual RGB frame is inferred by RefineNet and fused probabilistically into the

semantic texture. We ensure bounded memory usage on the GPU by dynamically

allocating and deallocating parts of the semantic texture as needed. Additionally,

the RGB information is fused in a RGB texture.

Label Propagation We project the stable semantics, stored in the textured mesh,

back onto the camera frames and retrain the predictor in a semi-supervised manner

using high confidence fused labels as ground truth, allowing the segmentation to

learn from novel view points.

17

3 Overview

Figure 3.1: System overview: Individual range images are used to create local meshes
for fast normal estimation and cloud simplification. The resulting points, equipped with
normals, are aggregated into a global point cloud. Poisson reconstruction is employed
to extract a mesh, which is simplified and unwrapped to obtain a lightweight scene
representation. In the next step, we perform semantic integration. Individual RGB
views are segmented using RefineNet (Lin et al. 2017). The semantic labels are then
probabilistically fused into a semantic texture. Finally, label propagation is performed
by inferring pseudo ground truth views, and using them to retrain the predictor. The
retrained semantic segmentation is used to re-fuse the labels into the mesh yielding a
more accurate semantic map.

Hence, the contribution presented in this thesis is fourfold:

• a scalable system for building accurate meshes from range measurements

with decoupled geometry and semantics,

• an edge-maintaining local mesh generation from lidar scans,

• a label propagation that ensures temporal and spatial consistency of the

semantic predictions, which helps the semantic segmentation to learn and

perform segmentation from novel view points,

• fast integration of probability maps by leveraging the GPU with bounded

memory usage.

3.2 Notation

In the following, we will denote matrices by bold uppercase letters and (column-

)vectors with bold lowercase letters. The rigid transformation TF2F1
is represented

as a 4×4 matrix and maps points from coordinate frame F1 to coordinate frame F2

18

3.2 Notation

by operating on homogeneous coordinates. When necessary, the frame in which a

point is expressed is added as a subscript: e.g. pw for points in world coordinates.

A point pw is projected into frame F with the pose TF and the camera matrix

KF ∈ R
3×3. For the camera matrix we assume a standard pinhole model with

focal length fx, fy, and principal point cx, cy. The projection of pw into image

coordinates u = (ux, uy)
⊺

F ∈ Ω ⊂ R
2 is given by the following mapping:

gF (pw) : pw → pF , (3.1)

(pF , 1)
⊺ = TFw

· (pw, 1)
⊺, (3.2)

πF (pF) : pF → uF , (3.3)

(x, y, z)⊺F = KF · pF , (3.4)

uF = (x/z, y/z)⊺. (3.5)

An image or a texture is denoted by I(u) : Ω → R
n, where Ω ⊂ R

2 maps from

pixel coordinates u = (ux, uy)
⊺ to n-channel values.

19

4 Mesh reconstruction

The input to our system is a sequence of organized point clouds {P t}1, and RGB

images {I t} where t indicates the time step. We assume that the point clouds are

already registered into a common reference frame, and that the extrinsic calibration

Tcd from depth sensor to camera, as well as camera matrices, are given. The depth

sensor can be a RGB-D camera or a laser scanner. The output of our system is

threefold:

• a triangular mesh of the scene geometry, defined as a tupleM = (V ,F) of
vertices V and faces F . Each vertex ∈ (R3 × R

2) contains a 3D point and

a UV texture coordinate, while the mesh face is represented by the indices

∈ N
3 of the three spanning vertices within V ,

• a semantic texture S indicating the texels class probabilities,

• an RGB texture C representing the surface appearance.

In the next sections of this chapter we will focus on the generation of a global

mesh. We start first by describing the necessary depth preprocessing in Sec. 4.1,

and continuing with the local mesh simplification (Sec. 4.2) in and refinement (Sec. 4.3);

Lastly, we will elaborate on the global mesh generation and parametrization in Sec. 4.4.

4.1 Depth preprocessing

As mentioned previously, our system constructs a global mesh from the aggregation

of a series of point clouds {P t} recorded from a depth sensor. Since we use Poisson

reconstruction for mesh extraction we require per-point normal vectors. One way

to obtain these normals is by aggregating the full global point cloud, and using the

k-nearest-neighbors to estimate the normals for each point. However, this would

be prohibitively slow as it requires a spatial subdivision structure, like a Kd-tree,

which can easily grow to a considerable size for large point clouds, limiting the

scalability of the system. For fast normal estimation we take advantage of the

1An organized point cloud exhibits an image resembling structure, e.g. from commodity RGB-D
sensors.

21

4 Mesh reconstruction

structure of the recorded point cloud. Since depth from a RGB-D sensor is typically

structured as an image, we can easily query adjacent neighboring points. Similarly,

rotating lidar sensors can produce organized scans. A complete revolution of e.g.

a Velodyne VLP-16 produces a 2D array of size 16 ×N containing the measured

range of each recorded point, where N is determined by the speed of revolution of

the laser scanner.

a) Point cloud from lidar scanner b) Reconstructed local mesh

Figure 4.1: Local mesh: We reconstruct an approximate local mesh from the given
range measurements in order to estimate point normals needed for Poisson reconstruc-
tion.

Given the organized structure, we could create a triangular local mesh with

approximate normals as introduced by Holz et al. 2014b. They create the mesh

by traversing the cloud P and building a simple quad mesh by connecting every

point p = P(u, v) (v-th point on the u-th scanline) to his neighbors P(u, v + 1),

P(u+1, v+1) and P(u+1, v) from the same scan line and the next one (see Fig. 4.2).

Afterwards each quad is divided into two triangles using a left cut or a right cut

depending on the shortest edge length. After creating the initial triangular mesh,

low quality triangles are removed based on the following criteria:

• Triangles, which vertices have point with invalid depth measurements, are

Figure 4.2: Organized cloud connections: Meshing of an organized cloud and the
types of cut that can be applied to a quad. Adaptive chooses the best cut depending on
a distance criteria. Taken from Holz et al. (2014a).

22

4.1 Depth preprocessing

removed.

• Triangles, which have a grazing angle with respect to the sensor origin o = 0,

are removed.

• Triangles, which have an edge longer than a certain threshold, are removed.

The conditions are formalized in Equation (4.1) where λφ and λd denote the thresh-

olds for grazing angle and edge length respectively.

valid =
(
|cosφi,j| ≤ λφ ∧ (di,j ≤ λ2

d)
)

(4.1)

with φi,j =
(pi − o) · (pi − pj)

‖pi − o‖ ‖pi − pj‖
(4.2)

and di,j = ‖pi − pj‖2 (4.3)

As it can be observed in Fig. 4.1, meshing provides a rough approximation of

the scene geometry. The local mesh will help us in calculating fast normals for

each vertex by using the connectivity information of each face. The first step for

calculating vertex normals is the estimation of face normals.

v1

v2

v3 n

e1,2
e1,3

Figure 4.3: Triangle winding

order: Normal of a triangular
face calculated from the cross
product of two of it’s edges. We
assume an anti-clockwise winding
order.

Face normals The normals for each face of the

mesh are calculated using the cross product be-

tween two of its edges. The choice of edges is im-

portant as it dictates the orientation of the nor-

mals (front-side or back-side). In our approach

we take care that the triangles have an anti-

clockwise winding order of its vertices, i.e. con-

secutive vertices of the face rotate anticlockwise

around the triangle’s center (see Fig. 4.3). Given

this convention we take as edges e1,2 = v2 − v1

and e3,2 = v2 − v3. The cross product between

them yields the normal vector for that particular

face f :

nf =
e1,2 × e3,2
‖e1,2 × e3,2‖

(4.4)

Vertex normals In computational geometry literature there have been a plethora

of methods to compute vertex normals from the associated face normals. However

all of them have an easy formula which casts the problem of estimating vertex nor-

mals as a weighted average over the adjacent face normals, the difference between

23

4 Mesh reconstruction

them being in the choice of weights:

nv =
n∑

f∈AdjF (v)

αf · nf ,

nv = nv/ ‖nv‖ .
(4.5)

where nv denotes the normal for vertex v and the sum runs over the faces that are

connected to the vertex. λ is the weight associated with face f . Some of the most

common choices of weights are gathered in the work of Jin et al. (2005) which

surveys the performance and speed of different algorithms. The conclusion from

the survey is that the fastest algorithm is the one which considers each face equally,

i.e. uniformly weighted, an algorithm named Mean Weighted Equally (MWE):

nMWE =
n∑

f∈AdjF (v)

1

n
· nf (4.6)

The most accurate one with respect to the estimated normal directions and also

the slowest in terms of speed, is the Mean Weighted by Angle (MWA) introduced

by Thürrner et al. (1998) which weighs each triangles contribution by the angle

under which it’s incident to the vertex:

nMWA =
n∑

f∈AdjF (v)

αf · nf (4.7)

where αf is the angle between the two edge vectors e1 and e2 that share the vertex.

The angle between the two edge vectors can be computed using the dot product

between them: αf = arccos
(

e1·e2
‖e1‖‖e2‖

)
Due to the increase in normal accuracy and

the fact that the slightly higher computational time is not noticeable in practice,

we choose to use the MWA algorithm for vertex normal estimation.

Now that we calculated normals for each vertex we can apply Poisson reconstruc-

tion and obtain a global mesh reconstruction. However, the local mesh created

from each scan still has some issues which will be discussed in the next sections.

4.2 Local mesh simplification

One of the problems that was observed regarding the creation of the local mesh is

that by using the approach of Holz et al. 2014b, the mesh results to be overly dense

as they use all the points of the point cloud P for building the mesh. However,

not all the points are necessary for describing the geometry, as most of them lie

24

4.2 Local mesh simplification

(a) Dense mesh (b) Simplified mesh

Figure 4.4: Mesh simplification: Overly dense mesh reconstructed from all the points
of the range image containing more than 20k vertices (left) and our simplified mesh
which contains ≈ 3k vertices while still retaining the rough geometrical shape (right).

on common planes and can therefore be simplified. This issue can be especially

observed in Fig. 4.4 where a series of scan rings lying on the ground plane result

in a unnecessarily dense mesh. Simplifying the local mesh to yield a similar rep-

resentation but with a lower number of vertices is important for fast and scalable

reconstruction.

In order to perform fast simplification and take advantage of the structure of

the point cloud and the anisotropy in the sampling we decide to cast the 2D

mesh simplification problem to a 1D one by simplifying each scan ring individu-

ally. Simplifying each scan ring implies reducing the number of segments which

represent it with a subset of it while still maintaining a good approximation of

the geometry. For this we choose the Ramer-Douglas-Peucker algorithm for line

simplification (Douglas et al. 1973) which takes as input a curve C composed by

an ordered list of vertices v0,v1, ...vn ∈ R
n and the output is curve C̃, which con-

tains only a subset of the initial vertices and still represents C well. The methods

is best described recursively: to approximate curve spanning from v0 to vn, start

with line segment v0vn. If the farthest vertex from this segment has distance at

most ǫ then take that segment as the final one, otherwise split the segment in

two around the point which is the furthest. Finally we simplify the two resulting

segments recursively. The resulting curve C̃ is ensured to be within ǫ error of the

original one. Algorithm 1 describes it formally and Figure 4.5 shows an example

of a dense and simplified curve.

Applying the simplification algorithm to each individual laser ring allows us to

severely reduce the total number of vertices in the scan without sacrificing much

25

4 Mesh reconstruction

Algorithm 1 Simplify a subchain from i to j of an array of vertices V

1: procedure Simplify(V, i, j)
2: Find the vertex vk farthest from line vivj
3: Let dist be it’s distance
4: if dist > ǫ then
5: Simplify(V, i, k)
6: Simplify(V, k, j)
7: else
8: Return (i, j)

Figure 4.5: Line simplification: Curve with a dense number of samples and the corre-
sponding simplified curve after applying the Ramer-Douglas-Peucker algorithm.

of the geometrical accuracy (in our experiment we choose ǫ to be 5cm).

Simplifying each line individually, while fast, has the drawback of making the

point cloud lose it’s organized structure, meaning we cannot create a mesh just by

connecting the immediate neighbors of each point. To solve this issue we propose

to cast the meshing process as a Constrained Delaunay triangulation in the planar

domain. For this we first ”unwrap” the point cloud into the planar domain by

transforming each point using spherical coordinates. Each position in space will

be represented as three numbers: the radial distance from the fixed origin r, the

inclination with respect to the horizontal plane theta and the azimuthal angle

around the origin phi. The transformation to spherical coordinates is described

by Equation (4.8) where x, y, z denote the cartesian coordinates of the point.

r =
√

x2 + y2 + z2,

φ = arctan(x/− z),

θ = arcsin(y/r).

(4.8)

Once in the spherical domain, a 2D map of the points is created by taking φ and

θ as x and y coordinates respectively. The r is set to 0, therefore disregarding the

z depth coordinate. In the planar domain we perform a 2D Constrained Delaunay

26

4.2 Local mesh simplification

a) Original cloud b) Simplified

c) Unwrap

d) Delaunay e) Lifted to 3D

Figure 4.6: Local mesh pipeline: Individual point clouds from range images are line
simplified using our edge-aware extension of Ramer-Douglas-Peucker (top right). The
point cloud is unwrapped using spherical coordinates and a 2D Constrained Delaunay
triangulation is performed (bottom left). The resulting mesh is lifted back to 3D and
low quality triangles are removed. Pruning of triangles based on their quality follows
the method of Holz et al. (2014b) by which triangles which are too grazing with respect
to the view direction or too long, are removed.

triangulation of the points, setting the constraint edges as the one obtained from

the previous line simplification. The constrained triangulation is a generalization of

the standard triangulation in which certain predefined segments are enforced to be

present. The enforced segments may cause the triangulation to lose the Delaunay

property, however this is not an issue in our case since it will get lifted and further

refined in 3D. The constraint edges merely ensure that points in the same scan ring

will be connected together by triangles as they are likely to be spatially close in

3D and should contribute to each others normal vector estimation. An illustration

of the process is depicted in Fig. 4.6.

A comparison between a dense mesh in which every point of the range image is

used and our simplified mesh can be seen in Fig. 4.4.

27

4 Mesh reconstruction

4.2.1 Ramer-Douglas-Peucker extensions

(a) Original

scanline

(b) Simplified

scanline

(c) Simplified

with offset

points

Figure 4.7: Line simplification: The orig-
inal scan line (left) is overly dense in planar
areas. The original simplification greatly
reduces the number of points but creat-
ing a global surface using a method like
Poisson reconstruction overly-smooths the
edges(middle). Our extension simplifies the
line and preserves hard edges by adding fur-
ther constraints which allow Poisson recon-
struction to maintain sharp features (right).

Despite the obvious benefit of line sim-

plification applied to laser rings, there

are still some issues that need to be

addressed in order to ensure accurate

reconstruction when using an indica-

tor function method like Poisson recon-

struction. The search space of indicator

functions is restricted to smooth func-

tions with respect to the input points

and the given normals. However, dur-

ing line simplification hard edges like L

shaped corners are approximated with

only a point at the 90◦ edge which

leaves a normal vector for that point

to be tangent to both surfaces inci-

dent into it. This enforces the indica-

tor function to create an overly smooth

surface around the hard edge which is an undesirable effect. The solution comes by

adding offset points at each side of the corner to ensure that the indicator function

has normal information from both edges. The effect of the offset points is shown

in Fig. 4.7.

The second extension to the algorithm is to cap the maximum segment length by

a certain threshold in order to disallow unreasonably large sub-chains that could

possibly span meters. In our implementation we set the maximum length to 30 cm.

Algorithm 2 Simplify a sub-chain from i to j of an array of vertices V

1: procedure Simplify extended(V, i, j)
2: length← ‖vivj‖
3: Find the vertex vk farthest from line vivj
4: Let dist be the distance to the line
5: if dist > ǫ and length > λ then
6: Simplify extended(V, i, k)
7: Simplify extended(V, k, j)
8: else
9: Return (i, i+ 1, j − 1, j)

The final algorithm for line simplification is shown in Algorithm 2.

28

4.3 Local mesh refinement

a) Point cloud
from lidar scanner

b) Local mesh c) Top view of the
ground plane

d) After
edge-flipping

e) After
edge-flipping

and simplification

Figure 4.9: Local mesh connections problem: During sudden movements of the
laser scanner, the scan rings are compressed behind and expanded in front of the sensor.
This creates many small and steep triangles which negatively affects normal estimation.
We perform iterative edge-flipping in order to connect each vertex with their closest
neighboring vertex, hence, improving the likelihood for estimating correct normals. Fur-
thermore, we apply line simplification to each scan ring independently for data reduction
without sacrificing mesh fidelity.

4.3 Local mesh refinement

v1

v2

v3

v4

v1

v2

v3

v4

Figure 4.8: Edge flip: Example of edge flip
in which the edge between v1 and v3 (left)
gets flipped in order to connect vertices v2

and v3 (right).

Until now, we explained how to obtain

fast normals from the point cloud of a

range image. However, in the case of a

laser scanner, their sampling presents

high anisotropy since the vertical res-

olution is order of a magnitude lower

than the horizontal one (in our case we

use the Velodyne VLP-16 which records

16 scan lines of around 1800 points

each). This anisotropy in the sampling

poses problems since the triangulation

is made in 2D and the connections be-

tween the points may not be optimal

when lifted back into 3D. This problem can be especially visible during sudden

movements of the laser scanner where the scan rings become ”compressed” in one

direction and ”expanded” in the other as shown in Fig. 4.9.

The 2D triangulation will therefore connect points which are actually far in 3D

which may cause the normal estimation for the vertex to be incorrect. Under the

assumption that points should be connected to their closest neighbors for reliable

and accurate vertex normal estimation, we try to tackle this problem.

One way to overcome this issue would be to use a 3D spatial subdivision struc-

ture like a Kd-tree or an octree and search for the closest neighbors of each point in

29

4 Mesh reconstruction

order to connect them together. However, this would prove slow as the subdivision

structure would need to be rebuild for each new scan.

Instead, we propose a faster local approach based on edge flipping that refines

triangulation and ensures that vertices are connected to the ones that lie spatially

closer in 3D. For this we choose a quality measure for a pair of triangles which we

choose to be monotonically increasing and to promote more equilateral triangles.

We define it as:

q =
4a
√
3

h2
1 + h2

2 + h2
3

, (4.9)

Bank 1998

where a denotes the area of the triangle and h is the length of the edge. We

perform edge flipping in a greedy fashion by choosing first the triangle which will

experience the biggest quality increase. After performing the flip for a triangle,

the quality of adjacent triangles may change and is updated. We continue flipping

edges until the quality measure can no longer be increased.

4.4 Global mesh generation

(a) Dense mesh (b) Simplified mesh

Figure 4.10: Mesh decimation: Iterative edge
collapsing using QSlim (Garland et al. 1998)
greatly reduces the number of triangles while
preserving the shape of the mesh.

After the aggregation of the points

with corresponding normals from

all simplified scans, we perform

Poisson reconstruction to recover a

high quality mesh, despite having

potentially noisy data and miss-

ing measurements. Poisson recon-

struction has three important pa-

rameters to tune for a faithful re-

construction. We will explain some

of them more in detail as they can

have a big impact on the final re-

sulting mesh.

• Tree depth: The indicator function X is discretized in an octree O. The

depth of the octree dictates how dense the resulting mesh will be. Lower tree

depth will result in a lightweight but also overly smooth mesh while higher

values will generate a higher resolution mesh that might however show the

slight noise in the input cloud. Empirically we found out that values between

9 and 11 work well.

• Position confidence: The confidence that is applied globally for the position

30

4.4 Global mesh generation

of the points. Higher values result in the mesh aligning more tightly to the

input cloud while lower ones smooth the possibly noisy measurement. We

found little change by modifying this parameter so we left it as the default

one.

• Normal confidence: The confidence to which we trust the normals of the

points to be correct. Since our normals are only an approximation, we prefer

to lower this parameter more than the default value.

The resulting mesh after Poisson can still be overly dense in areas which are

geometrically simple, like the ground. Hence, we apply a second global simpli-

fication step following the QSlim method (Garland et al. 1998). This approach

iteratively collapses edges of the mesh until a certain error threshold, or a prede-

termined number of faces, is reached. The error used to determine if an edge will

be collapsed or not is a quadratic energy which implicitly tracks how much error

is committed by collapsing the edge by looking at how much the adjacent planes

of vertex change. Each edge of the mesh is placed into a heap sorted by the cost,

so the edge with the minimum cost is always on top. The algorithm iteratively

removes the first element from the heap, performs the contractions and updates

the cost of the adjacent edges. An example of a mesh decimated using QSlim is

shown in Fig. 4.10.

The last step in the creation of the global mesh is to prepare it for texturing

by parametrizing the mesh in the 2D domain in order to obtain UV coordinates

for the vertices. For that, we make use of the UV smart project function provided

within Blender2. The Blender unwrapping initially computes a set of planar regions

(sometimes called charts or islands) by using a breadth-first search along the mesh.

The planar regions are then individually parametrized in 2D by using an orthogonal

projection. Finally all the charts are packed together into a final UV map by

approximating their area by their corresponding bounding box and aligning the

bounding boxes using a greedy algorithm. The steps of the UV unwrapping are

shown in Fig. 4.11.

2https://www.blender.org

31

4 Mesh reconstruction

a) Mesh b) Planar segmentation c) UV parametrization

Figure 4.11: UV parametrization: Planar unwrapping is performed by segmenting
the mesh into roughly planar regions and packing them into a 2D map.

As the parametrization is a critical step for creating a texture map, we also

experimented with other tools for creating it.

The work of Poranne et al. (2017) computes an UV parametrization by jointly

optimizing both UV positions to minimize distortion and seam positions. Since the

optimization contains both a continuous (for the distortion) and a discrete term

(for the positions of the seams) the problem is highly non-smooth and non-convex.

They tackle the problem by using homotopy optimization which initially starts

with a smoother energy function which is iteratively sharpened, helping with the

convergence towards a minima. However, we found that their method has high

memory requirements as they treat the mesh as a triangle soup (i.e. vertices are

replicated as per the number of degrees). Also the method is not fully automatic

and they require the intervention of a human to resolve possible charts that overlap

in the UV space. For these reasons we discard this method as a possible algorithm

for our purposes.

Thekla Atlas3 is a tool mainly designed for lightmapping but can be used for

the general case of UV mapping. While the tool works quite well, we found that it

provides little control over the output and that the documentation is quite sparse.

It also offers no guarantees that the charts won’t overlap.

Zbrush UVMaster4 is a tool that seems to provide fully automatic UV parametriza-

tion with a guarantee of no overlaps. However it’s licensed as a plug-in to a

commercial tool which limits it’s usage in our case.

For all of these reasons, we chose Blender for creating our UV maps as the tool

is freely available and the parametrization can be created automatically with no

intervention from the user. A number of batch scripts were also written for this

thesis in order to fully automatize the process.

3https://github.com/Thekla/thekla_atlas
4http://pixologic.com/zbrush/features/UV-Master/

32

5 Semantic and Color Integration

In this chapter we will focus on the integration of the semantic and color infor-

mation into the mesh and the creation of the semantic texture S and the RGB

texture C.

We will start by detailing the semantic integration (Sec. 5.1) and the color

integration (Sec. 5.2). We continue with the sparse semantic volume integration

in Sec. 5.3 which helps alleviate the memory problems of the naive integration

scheme. We elaborate on the label propagation algorithm in Sec. 5.4 and we

finally conclude with implementation details in Sec. 5.5.

5.1 Semantic Integration

In this section we detail our approach on how to update the global semantic texture

S using individual color images I t. For semantic segmentation, we train RefineNet

on the Mapillary dataset (Neuhold et al. 2017) for street level segmentation. The

dataset contains 25 000 images densely labelled with 66 classes. Given the input

image Ik, the output of the predictor can be interpreted as a per-pixel probability

over all the class labels P (Ou = li|Ik), with u denoting pixel coordinates.

One common approach to integrate semantic information is to perform a Bayesian

update over the classes probability, fusing new observations into the global belief

for the semantic labels. However, this scheme of updating can quickly become slow

for a large number of classes since the belief for all labels needs to be updated.

In our approach we choose to approximate the probability over the classes with

only the argmax probability. Hence, a new observation will consist of only the

label with the highest confidence and its corresponding probability instead of the

full distribution. This approximation is valid as modern neural networks tend

to be overconfident in their predictions as analysed in the work of Guo et al.

(2017). They conclude that modern neural networks, due to a combination of

increased depth, batch normalization and lack of regularization tend to output

overly confident output despite the fact that the accuracy of the predictions may

be lower than what the uncertainty measure may lead us to believe. Due to this,

we argue that we can simplify the full Bayesian update by only the argmax class

33

5 Semantic and Color Integration

significant loss of information. This enables us to use a fast integration scheme

with run-time independent to the number of classes. We observe that in practice

this approximation works well.

We define the best class L and its corresponding probability P ∗ using:

L = argmax
c

P (Ou = li|Ik),

P ∗ = max
c

P (Ou = li|Ik).
(5.1)

We perform rendering of the mesh as it lies in texture space so as to effectively

rasterize every point on it that is covered by a texel. This provides us with texel

values which inherit the attributes of the containing faces by means of barycentric

interpolation. Therefore we obtain a map of texels where each texel x lies at a

certain coordinate ux in UV space and inherits the position in world coordinates

px from the vertices of the corresponding mesh face.

We perform a visibility check prior to updating the global semantic texture

using individual segmentation results. Inspired by shadow mapping techniques in

computer graphics, we first render a depth map D from the current camera view.

Afterwards each texel’s world coordinates px is projected into the current view,

and discarded if it’s depth dx is larger than the stored value within the depth map

D(π(gF (px))), as it lies behind the visible part of the mesh. To indicate visibility,

we use a per texel indicator variable rx ∈ {0, 1}:

rxi
=

{
1, if dx ≥ D(π(gF (px)))

0, otherwise
. (5.2)

All remaining texels (rx > 0) are fused with the current segmentation result by

increasing the probability of the obtained classes:

S(ux, l)
t = S(ux)

t−1 + rxi
· wxi

· pxi
, (5.3)

W (ux)
t = W (ux)

t−1 + rxi
· wxi

, (5.4)

lxi
= L(π(gF (px))), (5.5)

pxi
= P ∗(π(gF (px))). (5.6)

Additionally, we weigh the fused probability by the face’s distance from the cam-

era under the assumption that pixels are more difficult to recognize from farther

34

5.2 Color Integration

away, due to the low resolution of semantic segmentation.

wxi
=

{
1, if dx ≤ dmin

1− dx−dmin

dmax−dmin

, otherwise
, (5.7)

where dx denotes the depth of the current texel, and dmin and dmax are thresholds

for the distance which define a linear fall-off for the weight. In our experiments

we set them to 30m and 100m, respectively.

5.2 Color Integration

In addition to the semantics, we also fuse the raw images into a global color texture.

The fusion is carried out by a weighted running average:

C(ux)
t =

W (ux)
t−1C(ux)

t−1 + wxI(π(gF (px)))

W (ux)t−1 + wx

,

W (ux)
t = W (ux)

t−1 + wx.

(5.8)

The weight wx takes the distance, the radial intensity fall-off within an image,

and the viewing angle into account:

wx = wdist · wvign · wφ,

wdist = (‖gF (pw,x)‖22)−1,

wvign = cos(θx)
4,

wview = (ow − pw,x) · nx.

(5.9)

Here, wdist is the inverse distance from the texel to the camera, which promotes

frames that are spatially closer to the mesh, improving the resolution of the fused

colors. The viewing angle θx between reprojection of the texel and the principal

axis of the camera is used to account for the radial decrease in intensity by following

the cos4 law (Goldman et al. 2005). The third term wview increases the weight for

texels that are viewed by the camera originating at ow from a frontal perspective,

further improving the quality of the fused texture.

We choose different update schemes for color and semantics as their behaviour

is radically different. Firstly, the semantic segmentation is trained to be robust

to illumination changes, hence the vignetting term is unnecessary. Secondly, it

is not clear that the angle to the surface is a good indicator for confidence in

semantic segmentation. In our experiments, we observed that the predictor learns

to some extent the relative angle of surfaces with respect to camera view, thus

35

5 Semantic and Color Integration

weighting based on relative angle may be adversarial. For example during sudden

camera movements tilting toward the ground, the semantic segmentation decreases

in accuracy as the view is unfamiliar to the predictor. Thirdly, the distance weight

assumes that the accuracy of the semantics is more confident for closer surfaces.

However, this is not accurate for large semantic entities like buildings for which the

accuracy decreases as we go closer, due to large untextured areas, and increases

as we take a step back and observe the bigger picture.

5.3 Sparse Semantic Volume

a) Dense volume b) Sparse, only committing c) Sparse

Figure 5.1: Semantic probability volume for the courtyard dataset: The mem-
ory consumption of the dense 3D semantic texture (left) is prohibitive for most modern
GPUs. Committing memory pages with non-negligible probabilities results in a sparse
volume (middle) with only 12.29% allocated. Periodically removing low probability
pages (right) further reduces the necessary memory (4.25%) and ensures bounded mem-
ory usage that easily fits into GPU memory.

The semantic 3D texture S contains for each texel the probability distribution over

all the classes. However, for reasonable sized resolutions and number of classes,

this volume can occupy more memory than is typically available in modern GPUs,

rendering this process infeasible. For a texture with 8.192 × 8.192 pixels and the

66 classes of the Mapillary dataset, we would need to allocate a volume of 16.5GB

(assuming we store each element as a floating point number of 4 bytes). This

problem will only become worse as we add more class labels or increase texture

size. In order to overcome this issue, we propose to store the semantics into a

sparse 3D texture in which we allocate and deallocate dynamically the memory,

ensuring bounded memory usage.

In the first step, we divide our global semantic volume into pages of size 128×
128 × 1. Each page1 stores the probability for only one class and can be either

1Page size was chosen based on commonly supported values for multiple computers used during
development.

36

5.4 Label Propagation

allocated in GPU memory or not. The volume starts initially with all pages in a

deallocated state. Hence, it occupies no space on the GPU.

When fusing the semantic probability from the current frame into S, the cor-

responding pages that will be affected are computed and targeted for committing

on the CPU. This ensures that we only add the parts that are actually relevant.

After each frame, we also check for pages that have low probability and deallocate

them from memory. The probability for a texel is computed as:

pxl
= S(ux, l)/W (ux). (5.10)

If any texel inside a page is above a certain threshold, we will keep the corre-

sponding page in memory, otherwise we target it for decommitting. This scheme

of committing and decommitting portions of the memory can be seen as intrinsi-

cally tracking the modes of the distribution over the classes, ignoring parts with

negligible probability.

5.4 Label Propagation

a) Fuse b) Retrain c) Re-fuse

Figure 5.2: Label propagation: semantic segmentations are probabilistically fused in
the scene (left). Frames with the largest deviation (middle) from the stable mesh are
used for retraining. Inference is repeated for all images and re-fused into the scene mesh
to achieve a more accurate semantic map.

The fusion of semantic information from various view points into a global rep-

resentation opens up possibilities to enforce temporal and spatial consistency of

the semantic predictions by propagating the labels. The key insight is that if

the majority of observations of the texture element predicts the correct class, the

fused information S∗ will be confident enough (pxl
≥ pmin) to be used as ground

truth. Hence, we can reproject the mesh into any camera frame, propagate the

label L̃(uF), and retrain the semantic segmentation in a semi-supervised fash-

ion to minimize the discrepancy between image predictions L and mesh label S∗.

37

5 Semantic and Color Integration

Reprojecting the semantics into a camera frame is performed as follows:

uF = π(gF (px)),

S∗ = argmax
c

S,

S∗
F (uF) = S∗(ux),

L̃(uF) =

{
S∗
F (uF), pxl

≥ pmin

Unlabeled, otherwise
.

(5.11)

The result consists of the image L̃(uF) which we denote as pseudo ground truth.

This semantic labelling, together with the corresponding RGB view I, will be used

to retrain the predictor.

The retraining ensures that the semantic segmentation will segment objects

and surfaces more consistent as belonging to a certain class, regardless of differ-

ent or extreme view points or even illumination changes. Furthermore, the label

propagation and retraining stages can be applied iteratively in an Expectation

Maximization scheme, e.g. for a certain number of iterations, or until all camera

frames reach a consensus. This process is illustrated in Fig. 5.2. The obvious

caveat are wrong predictions used for retraining since bootstrapping this has a

self-reinforcing character. We have seen this behaviour only in some rare cases

where the initial single-frame predictions were already incorrect, e.g. the table in

the bottom row of Fig. 6.4.

Due to the significant number of camera frames contained in a large-scale dataset,

we perform a conservative frame selection in order to choose only a subset of frames

on which to reproject the semantics for retraining. The frame selection is based on

an inconsistency coefficient, which rates frames higher the more the instantaneous

semantic segmentations deviates from mesh semantics.

The inconsistency coefficient γ is calculated as:

γ =
∑

i

B(Li, S
∗
F (uF))P

∗,

B(Li, S
∗
F (uF)) =

{
1, Li 6= S∗

F (uF)

0, Li = S∗
F (uF)

(5.12)

Given this coefficient for each frame, we select a restricted percentage of frames

with the highest coefficient (in our experiments we choose 5% of the frames for

NYU and 15% for the courtyard dataset) to be used for retraining. The intuition

is that there is more information to gain by retraining on inconsistent frames

as opposed to the ones which are already correct. However, in order to avoid

38

5.5 Implementation

forgetting during retraining, we add the original training set (in our case all the

images from the Mapillary dataset or the images from the NYU training set) to

the new views. Moreover, we also restrict the selected views to be at least 10

frames apart from one another in order to avoid adding redundant views that are

too similar.

Additionally, we also experiment with another type of label propagation in which

we select for retraining not the frames with the highest inconsistency but rather

the ones with the lowest. The intuition behind this alternative scheme is that by

reinforcing the good frames (or the ones that are close to being good), the other

frames that are ”close” to them will also naturally be improved. Therefore per-

forming this label propagation iteratively will eventually ”lift” the less consistent

frames to become better by reinforcing the ones that are already good or close to

being good. An illustration of this process is depicted in Fig. 5.3. Also during this

type of label propagation we ignore the frames which have too high of a consistency

level as we saw that in the general case they provide little information. Rather we

focus on the frames that are in the ”middle zone”, meaning that they are quite

consistent but not fully. Therefore, we ignore the frames which have more than

98% of the pixels labelled as consistent with the mesh. From the rest of them we

select the same percentages as mentioned earlier.

a) Fuse b) Retrain c) Re-fuse

Figure 5.3: Label propagation with best frames: semantic segmentations are prob-
abilistically fused in the scene (left). Frames with low (but not too low) deviation from
the stable mesh are used for retraining (middle). The frames that are close are naturally
improved through the retraining. Inference is repeated for all images and the semantic
labels are re-fused into the scene mesh to achieve a more accurate semantic map (right).

5.5 Implementation

Our pipeline consists of three modules, the mesh generator, the semantic texture

integrator and the segmentation retraining. The mesh generator module is fully

implemented in C++ and integrated into ROS (Quigley et al. 2009) to simplify

interaction with other ROS packages. The texturer was also developed in C++

39

5 Semantic and Color Integration

with the addition of OpenGL for rendering and semantic integration using GLSL

compute shaders.

We will describe the optimization choices made for semantic integration in detail

as they are the main focus of this work. The segmentation map is initially pre-

calculated from the predictor and stored to disk. An asynchronous module reads

the RGB images and the corresponding segmentation maps and stores them in

ringbuffers ready to be processed by the texturing module. The texturing module

receives the images and transfers them to the GPU using double buffered Pixel

Buffer Objects (PBO) in a method commonly known as ping ponging. This en-

sures that the transfer can be done on the GPU side using Direct Memory Access

(DMA), freeing the CPU to do other tasks in the meantime. The semantic inte-

gration is performed fully on the GPU by efficient compute shaders. However, the

committing and decommitting of pages for the sparse semantic volume can only

be performed from the CPU side, which requires synchronization and communica-

tion between CPU and GPU. We use two buffers for this communication, one for

signalling to the CPU which pages require committing and one for confirmation

to the GPU that they were committed. These buffers are updated asynchronously

and are also double buffered in order to avoid stalling the pipeline. While double

buffering allows maximum usage of the available resources, it also implies a delay

of one frame between the CPU-GPU communication which in our case does not

pose a problem due to the high frame rate at which the camera images arrive.

40

6 Experiments

All tests were performed on a Intel Core i7-940 2.93GHz CPU with an NVIDIA

Titan GPU.

6.1 NYUv2 Dataset

For comparison against SemanticFusion (McCormac et al. 2017) we utilize the

NYUv2 dataset (Silberman et al. 2012) and use 108 out of all sequences where

ElasticFusion did not exhibit significant drift. For comparability, we use the final

surfel map for meshing and the segmentation module of Eigen et al. 2015 used

within SemanticFusion that is trained on the 13 NYU classes. Furthermore, we

store the semantics for Intersection-over-Union (IoU) calculation after the scene is

completed and fused semantics are static. In contrast to McCormac et al. 2017 we

only use the RGB-CNN since we want our method to work well even in outdoor

scenarios where dense depth may not be obtainable.

The network is retrained using both methods of LP (retraining on worse frames

or on the best frames). In the case of retraining with the worse frames we add from

each NYU scene 5% of the frames with the highest inconsistency coefficient. We

chose this in order to have a number of pseudo ground truth frames comparable

to the 795 originally used for training. The retraining then uses both the original

training set and our pseudo ground truth.

In the case of retraining with the best frames we choose the 5% frames with

the lowest inconsistency coefficient, ignoring however those that have too few in-

consistent pixels (in our case we choose those that have at least 2% of the pixels

labeled as inconsistent). In both cases we use a learning rate of 1× 10−6 and the

model is saved after each epoch. The training is stopped when the model begins

to overfit and the IoU for the epoch starts to decrease.

6.2 Courtyard Dataset

The courtyard dataset (Droeschel et al. 2018) was captured using a DJI Matrice

600, with a horizontally attached Velodyne VLP-16 laser scanner. The lidar has

41

6 Experiments

Mesh RGB reconstruction Semantic map

Figure 6.1: Scenes from NYUv2: The mesh (left) is reconstructed from the surfel
map of ElasticFusion and textured with RGB appearance (middle) and semantic labels
(right).

42

6.3 Accuracy Evaluation

16 horizontal scan lines and a vertical field-of-view of 30◦ with a maximum range

of 100m. The color images were captured at 10Hz using two synchronized global

shutter Point Grey Blackfly-S U3-51S5C-C color cameras, with a resolution of

2448 × 2048 pixels. The MAV poses for this dataset were provided by Droeschel

et al. (2018). The poses were represented as the transformation between the world

coordinate system and the laser scanner. The poses for the two cameras were

calculated from the provided extrinsic calibration between the laser scanner and

the cameras. However, due to the delay in transferring the camera images from the

sensor to the onboard PC, and the fact that the laser scanner poses may not exactly

align time-wise with the time when the camera images arrive, the computed poses

were not very reliable. To solve this issue, a continuous-time trajectory represented

as a spline was computed that interpolates the poses in between the discrete ones

provided for the laser scanner. Therefore, for a single camera image, together

with its corresponding timestamp, we query the poses on the spline with a 40ms

delay in the past in order to account for said processing and transfer duration.

Empirically we saw that this delay was the one that provides the most accurate

poses. The two cameras are mounted outwards and pointing to the left and right

side of the copter to improve visual coverage. In total 13 458 frames were captured

during the experiment.

We densely annotated 48 images spread throughout the area to conduct accuracy

experiments.

RefineNet with ResNeXt-101 (Xie et al. 2017) as a feature extractor was trained

on the Mapillary dataset for 50 epochs with a learning rate of 10−5 and a batch

size of 1 using Adam as a gradient descent optimizer. The retraining with pseudo

ground truth has to be done with a larger batch size of 16 to account for the

decreased signal-to-noise-ratio introduced by the pseudo ground truth. We per-

form only one iteration of LP consisting of five epochs using the worse frames as

the improvement for more iterations would not be significant. We use the SGD

optimizer as Adam proved to be too aggressive for the task of fine-tuning.

6.3 Accuracy Evaluation

We execute the two variants of Label Propagation for three iterations on the

NYUv2 dataset. We observe that retraining on the worse frames yields a higher

IoU hence we prefer this option for all further experiments. Furthermore the

highest increase in IoU is experienced after the first iteration, while the subsequent

ones yield a noticeably less improvement.

43

6 Experiments

RGB reconstruction Semantic Map

Figure 6.2: Courtyard semantic map: The courtyard is reconstructed from a simpli-
fied point cloud recorded with a Velodyne VLP-16 laser scanner. The color coding of
semantic labels corresponds to the Mapillary dataset (Neuhold et al. 2017).

0 1 2 3

0.364

0.366

0.368

0.370

0.372

LP iterations

Io
U

LP on worse frames
LP on best frames

Figure 6.3: LP variants: We evaluate the IoU
increase by performing LP on both the worse
frames and the best frames. Propagating the
labels towards the worse frames yields a higher
IoU. Both LP variants converge quickly after the
first iteration.

We computed the IoU for differ-

ent configurations on the NYUv2

dataset, including single-frame pre-

dictions and SemanticFusion. La-

bel propagation was performed us-

ing our approach to retrain the pre-

dictor and executed for three it-

erations. We denote in Tab. 6.1

the use of the retrained semantic

segmentation as with LP. Tab. 6.1

shows that our method outper-

forms single-frame as well as Se-

manticFusion. Using label prop-

agation further improves the IoU.

A visual comparison is provided in

Fig. 6.4 for four different scenes.

Already SemanticFusion improves single-frame predictions e.g. on the TV (yel-

low, first row), the window (blue, third row) and wall (gray, last row), but the

result is noisy and partially inconsistent. We attribute this mostly to surfels of

different scales that are not correctly fused. In comparison, our mesh is more con-

sistent, for example on the bath tub (second row), but smoother around the edges.

Yet, the bed (third row) is still mostly classified as a sofa. Through our label prop-

agation and subsequent retraining, we were able to correct the classification. In

the last row, we show a failure case in which the Label Propagation decreases the

accuracy as the table (green) gets segmented as furniture. This decrease in ac-

curacy is due to the fact that most single-frame predictions are wrongly labelling

44

6.3 Accuracy Evaluation

the object and establishing consistency through LP reinforces this wrong labelling.

Further complete reconstructed scenes from NYUv2 are shown in Fig. 6.1.

Method B
ed

B
o
o
k
sh

el
f

C
ei
li
n
g

C
h
a
ir

F
lo
o
r

F
u
rn

it
u
re

O
b
je
ct
s

P
ic
tu

re

S
o
fa

T
a
b
le

T
v

W
a
ll

W
in
d
o
w

Avg.

IoU

Single frame 0.46 0.17 0.13 0.25 0.68 0.34 0.28 0.33 0.22 0.15 0.12 0.51 0.29 0.302

Single frame LP 0.52 0.20 0.14 0.27 0.68 0.35 0.30 0.35 0.26 0.14 0.14 0.53 0.31 0.322

SemanticFusion 0.47 0.15 0.18 0.30 0.65 0.36 0.30 0.35 0.24 0.15 0.20 0.53 0.33 0.324

SF with LP 0.52 0.18 0.21 0.31 0.65 0.38 0.31 0.38 0.28 0.16 0.20 0.54 0.36 0.343

Ours 0.54 0.17 0.23 0.35 0.71 0.40 0.33 0.39 0.28 0.18 0.21 0.56 0.37 0.363

Ours with LP 0.56 0.20 0.25 0.35 0.68 0.40 0.34 0.41 0.31 0.17 0.23 0.57 0.38 0.372

Table 6.1: NYUv2 results: We compare our method against single-frame predictions
and SemanticFusion (McCormac et al. 2017). All cases are evaluated with and without
Label Propagation (LP). For the case of single-frame, we exclude pixel without a valid
depth measurement. All evaluations were performed at a 320× 240 resolution.

We also conduct accuracy experiments on the courtyard dataset for which we

densely labelled 48 frames around the scene. For fairness we labelled sky as back-

ground due to missing representation within the mesh. Fig. 6.5 shows that re-

training using label propagation greatly improves the accuracy for most classes.

However, an interesting observation from this experiment is that the single-frame

predictions have on average higher accuracy than the fused semantics from the

mesh. This is due to the fact that both the camera poses and the mesh are im-

perfect, hence fusing the information from various points of view may lead to

discrepancies. This limitation is further reinforced by the fact that the classes

which experience a higher drop in accuracy from the fusing process are those

which are spatially small (lane-markings, poles, and street lights), while broader

classes like building and vegetation remain largely unaffected by errors from the

scene reconstruction.

For this reason we conduct further experiments to evaluate the impact of mis-

alignments in the following Sec. 6.4. Nevertheless, we can conclude that label

propagation grants a net improvement in the semantic accuracy, increasing the

mean IoU for single-frame prediction by 7% and for the fused information by 3%.

Fig. 6.6 shows a visual comparison of the semantics using various view points from

the courtyard. The copters landing gear and rotor arm visible within camera im-

ages are masked out prior to evaluation. A partial failure case is shown in the

first row. The thin lane-markings are actually degraded through fusion and LP.

45

6 Experiments

RGB image Ground Truth Single frame SemanticFusion Ours Ours with LP

Figure 6.4: NYUv2 qualitative results: We compare our method, with and without
Label Propagation, against single-frame predictions and SemanticFusion. The first three
rows show a clear improvement achieved through Label Propagation, as the predictor
learns to segment the table, bathtub and bed more accurately. The last row shows a
failure case in which the Label Propagation decreases the accuracy as the table repre-
sented in green gets segmented as furniture. This decrease in accuracy is due to the
fact that most single-frame predictions are wrongly labelling the object and establishing
consistency through LP reinforces this wrong labelling.

46

6.4 Registration Robustness

Figure 6.5: Courtyard results: We com-
pare our method (bottom) against single-
frame predictions (top). The per class IoU
is denoted by blue bars. An increase in
IoU due to Label Propagation is marked in
green, a decrease in red. For single-frame
we mask out the landing gear of the MAV
and the areas which are not covered by the
mesh.

0

0.2

0.4

0.6

0.8

1

C
a
m
er
a

L
ig
h
t

C
u
rb

M
a
n
h
o
le

P
o
le

M
a
rk
in
g

B
a
si
n

T
ra
sh

P
a
rk
in
g

S
id
ew

a
lk

S
ig
n

R
o
a
d

T
er
ra
in

B
ik
e

F
en

ce
W

a
ll

B
il
lb
o
a
rd

C
a
r

V
eg

et
a
ti
o
n

B
u
il
d
in
g

0

0.2

0.4

0.6

0.8

1

We trace this back to inaccurate manual extrinsic and temporal calibration, since

the corresponding single-frames continuously contained the lane-markings. Still,

we observe improvements after LP on the container next to the service station.

The second view was captured from behind the same service station. Insufficiency

in the meshing process created only the top of the pole (front, left), which is cor-

rectly classified, but not connected to the ground plane reducing the overall IoU

compared towards single-frame predictions. Further improvements through LP are

especially visible in the last two rows. The left window is classified as a sign prior

to retraining and a large portion of the sidewalk was incorrect. Also the building in

the background is improved. The rooftop (third row) presents a unique novel view

that is largely misclassified in the single-frame. Our mesh-based fusion improves

the result as expected and allows successful retraining.

6.4 Registration Robustness

Mapping with known poses always raises the question of how robust the system is

regarding misalignment. For this we perform experiments on the synthetic Synthia

dataset (Ros et al. 2016) which provides ground truth poses, depth and semantics.

We add random noise to the poses in order to observe the effect on the accuracy

of the semantic map. We chose the seq 4 summer scene, due to the low number

of dynamic objects. We aggregated the depth images and meshed the resulting

point cloud (see Fig. 6.8). Synthia provides images from eight cameras arranged

in groups of four to create an omnidirectional view-cone. For simplicity, we chose

for the reconstruction only the front-facing camera of the left group. In order

47

6 Experiments

RGB image Ground truth Single frame Single with LP Ours Ours with LP

Figure 6.6: Courtyard qualitative results: We compare our method against single-
frame with and without the label propagation.

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

Noise [%]

In
te
rs
ec
ti
on

-o
ve
r-
U
n
io
n
(I
oU

) Sky

Build.

Road

Path

Veg.

Car

Pole

Sign

Light

Figure 6.7: Registration robustness:

Incorrect sensor poses for semantic map
creation affects the accuracy as measured
by IoU of larger object classes like build-
ings less than light posts or signs. Increas-
ing amounts of noise are applied on the
translation (≤ 0.5m) and rotation (≤ 5◦)
of the sensor poses.

48

6.5 Runtime Performance

Figure 6.8: Synthia semantic map: We reconstruct a semantic map from a subset
of frames from the Synthia dataset (Ros et al. 2016). We use the ground truth data
and apply noise to evaluate the impact of camera misalignment on the semantic map
accuracy.

to analyze the behaviour of the semantic map under incorrect poses or incorrect

calibration between depth and color camera, the IoU is calculated for increasing

amounts of noise on the translational (≤ 0.5m) as well as rotational (≤ 5◦) part

of the camera poses. The IoU with increasing portion of noise is visualized per

class in Fig. 6.7 with invisible or dynamic classes being disregarded. We choose

to retain the cars as most of them were parked, and hence do not pose a problem

for the reconstruction. As expected, the IoU decreases faster for smaller object

classes, like poles, lights, and signs, than for buildings or the road. In conclusion,

as the robotics community moves towards larger and bigger datasets with more

semantic classes, the detail of the semantic maps will heavily depend on correct

sensor poses.

6.5 Runtime Performance

We evaluate the runtime performance of our meshing and texturing modules sep-

arately, as they are performed sequentially with no overlap. Fig. 6.9 shows the

resulting meshes after Poisson reconstruction for our simplified cloud, and the

näıvely aggregated full point set recorded by the Velodyne scanner. It can be

observed that the reconstruction quality does not suffer while the runtime and

memory consumption is significantly lower (see Tab. 6.2).

The runtime of the semantic integration on the courtyard dataset is summarized

in Fig. 6.10. We achieve real-time performance with an average texturing time

of 27.1ms per frame using an 8K texture. Decommitting the sparse volume is,

however, a demanding functionality, and causes the average time per frame to

49

6 Experiments

Cloud#Points#Verts Time(s)Mem(GB)
full 103M 4.5M 521.9 2.82

simple 21M 3.3M 193.8 1.99

Table 6.2: Poisson reconstruction using the näıvely aggregated cloud and our edge-aware
simplified cloud. We report the number of points of the input cloud, the number of
vertices of the reconstructed mesh, and the time and peak memory used by the recon-
struction process.

Figure 6.9: Poisson reconstruction comparison: Reconstruction from the edge-
aware simplification (left), and its difference (right) toward the full reconstruction. The
colormap denotes the deviation between the two meshes where red equals a difference of
15 cm and blue shows no difference. The deviation is minimal in areas of interest while
reconstruction after simplification is faster (see Tab. 6.2).

1,024 4,096 8,192
0.0

50.0

100.0

150.0

Frame number

T
im

e
(m

s)

w/o at 8K
w/ at 8K
w/ at 4K

Figure 6.10: Timing results

for the courtyard dataset:

Semantic integration using a tex-
ture resolution of 8K without de-
committing (blue line) can be
performed in real-time. Enabling
the decommiting at the same tex-
ture resolution (red line) proves
to be too slow for real-time us-
age. Lowering the texture reso-
lution to 4K allows the semantic
integration with decommitment
(green line) to be performed at
real-time speeds.

50

6.6 Memory Consumption

Figure 6.11: GPU memory us-

age for a 10K texture on the

courtyard dataset: Dense alloca-
tion (red dashed line) would occupy
more than 25.7GB. Sparse alloca-
tion (red line) without decommit-
ting quickly overburdens the avail-
able 6GB causing a system fail-
ure. The memory usage drops
with decommitting (blue line) be-
low 3.1GB at all times enabling the
full reconstruction of the semantic
map. 0 4,096 8,192 13,272

3

6

16

32

Frame number
G
P
U

m
em

or
y
u
se
d
(G

B
)

With decommiting
Without decommiting

Dense volume
Max GPU memory

increase to 90.1ms. Nevertheless, the semantic integration achieves 38.6ms per

frame for a smaller texture resolution of 4K.

6.6 Memory Consumption

Memory usage of the texturing system is also evaluated with and without decom-

mitting of pages of the sparse texture. The results for the courtyard dataset are

summarized in Fig. 6.11. We also analyse the relation between the decommit-

ting threshold (the probability below which the pages in the sparse texture are

deallocated) and the Intersection-over-Union (IoU) in Fig. 6.12. We evaluate this

measure on the NYU dataset due to the presence of more labelled images than in

the courtyard dataset which allows for a more accurate evaluation. We observe

that while using low values for the threshold greatly reduces memory usage, higher

values cause the IoU to degrade as more valuable information from the semantic

texture is disregarded. However the decrease is still minor (≤ 0.6%), as we restrain

from decommitting pages that contain the argmax class. For further experiments,

we choose a threshold value of 0.1.

6.7 Texture Resolution and Semantic Accuracy

We evaluate the impact of the semantic texture resolution and the accuracy of the

semantic map. We perform the evaluation on the courtyard dataset as it spans

a larger area than the NYU dataset and therefore the impact of the texture size

becomes more noticeable. Semantic texture integration is performed for a series

51

6 Experiments

0 0.1 0.2 0.3 0.4
1,800

2,000

2,200

Page decommitement aggressiveness

M
ax

G
P
U

m
em

or
y
u
se
d
(M

B
)

0.366

0.368

0.370

0.372

In
te
rs
ec
ti
on

-o
ve
r-
U
n
io
n
(I
oU

) Figure 6.12: Maximum

GPU memory usage for

different decommitting

thresholds on NYUv2:

Increasing the decom-
mitting threshold quickly
reduces the memory con-
sumption (blue line), while
the IoU decreases slowly.
As a consequence, we
typically fix the threshold
to 0.1.

of texture resolutions ranging from 512 to 12 288 and IoU is evaluated for each

one. We observe that the IoU steadily increased and becomes stable at around a

resolution of 4k.

0 4,096 12,288

0.26

0.30

0.36

Semantic texture resolution

Io
U

Figure 6.13: Texture resolution

and IoU: We evaluate the mean
IoU on the courtyard dataset as
we increase the resolution of the
semantic texture. The accuracy
quickly rises and converges at a res-
olution of around 4K.

However, there is some variation in the mean

IoU as we increase the resolution, so we de-

cide to further investigate this behaviour by

analysing each class independently. For eas-

ier visualization we plot the IoU normalized

between its minimum and maximum value:

NIoU = (IoU − min)/(max − min). We ob-

serve that while most classes behave as ex-

pected; their accuracy increasing as we increase

the texture resolution and eventually stabiliz-

ing, we observe a series of classes which behave

more erratically. These ”erratic classes” have

their accuracies increasing and decreasing spo-

radically as the texture resolution is increased.

The behaviour is depicted in figure Fig. 6.14

where the ”stable” classes are depicted on the

left and the erratic ones on the right. Note that the IoU accuracy shown is nor-

malized individually for each class and therefore the relative differences between

the different colored plots should not be taken into account.

We observe that the classes that behave erratically correspond to very small ob-

jects, particularly the classes of street-light, lane-marking, traffic-sign and trash.

This leads us to conclude that their sporadic behaviour is due to discretization

artifacts when texture resolution is too low which makes their segmentation sus-

ceptible to aliasing effects. Due to this, some low resolution textures may actually

52

6.7 Texture Resolution and Semantic Accuracy

0 4,096 12,288

0.00

0.50

1.00

Semantic texture resolution

N
or
m
al
iz
ed

Io
U

a) Stable classes

0 4,096 12,288

Semantic texture resolution

N
or
m
al
iz
ed

Io
U

a) Erratic classes

Figure 6.14: Texture resolution and normalized IoU: We plot the normalized IoU
for each class and observe that some of them experience an accuracy increase as the
resolution increases (left) while others behave more ”erratically” fluctuating in accuracy
due to aliasing issues (right). The erratically behaving classes correspond to small objects
like lane-marking, street lights, traffic signs and trash bins.

have a higher measured accuracy as the texels that cover a bigger area may fit the

small object completely. On the other side, with increased texel resolution, the

inaccuracies due to imperfect poses become more apparent and the IoU for the

small classes decreases drastically.

53

7 Conclusion

This thesis presents an end-to-end pipeline for the creation of semantic maps from

depth and color images. Contributions were made in the areas of fast meshing from

structured point clouds, in using semantic information to create a lightweight map

which is decoupled from the underlying coarse geometry and finally, in a label

propagation scheme which ensures temporal and spatial consistency and allows

the predictor to learn from novel view points.

The whole system was demonstrated on the NYUv2 dataset and compared with

the state of the art SemanticFusion(McCormac et al. 2017). Our mesh-based

semantic mapping achieves higher accuracy than SemanticFusion and our Label

Propagation scheme boosts the accuracy even further.

A possible extension to the work would be to incorporate a more scale aware

fusion. At the moment the semantic labels are associated projectively with the

texture on the mesh which disregards the fact that some objects are smaller than

others. This causes issues for smaller semantic objects which can get blurred out

by incorrect camera poses. Taking into account the scale of them may alleviate

this issue.

Another interesting extension would be to investigate in a join map creation

in which geometry and semantics are inferred simultaneously and both iteratively

improve upon the estimate of the other. This would require however a change in

the underlying data structure as meshes, while efficient in representation, are not

suitable for large topology changes.

55

List of Figures

1.1 Semantic reconstruction system . 2

2.1 Surface representations . 7

2.2 Semantic Segmntation . 9

2.3 Semantic Map . 10

2.4 Poisson indicator funcion . 13

2.5 Original Poisson pipeline . 14

2.6 Poisson mesh . 15

3.1 System overview . 18

4.1 Local mesh . 22

4.2 Connections for meshing organized cloud 22

4.3 Triangle winding order . 23

4.4 Mesh simplification . 25

4.5 Line simplification original algorithm 26

4.6 Local mesh pipeline . 27

4.7 Line simplification extended algorithm 28

4.9 Local mesh connections problems 29

4.8 Edge flip . 29

4.10 Mesh decimation . 30

4.11 UV parametrization . 32

5.1 Sparse semantic volume . 36

5.2 Label propagation . 37

5.3 Label propagation best frames . 39

6.1 NYUv2 semantic maps . 42

6.2 Courtyard semantic map . 44

6.3 Incremental LP NYU . 44

6.4 NYUv2 qualitative results . 46

6.5 Courtyard results IoU . 47

6.6 Courtyard qualitative results . 48

6.7 Registration robustness experiment 48

57

List of Figures

6.8 Synthia semantic map . 49

6.9 Poisson reconstruction comparison 50

6.10 Timing results for the courtyard dataset 50

6.11 GPU memory usage for each image frame 51

6.12 GPU mem usage for various decommiting thresholds 52

6.13 Texture resolution and IoU . 52

6.14 Texture resolution and IoU per class 53

58

List of Tables

6.1 NYUv2 results IoU . 45

6.2 Poisson meshing time comparison 50

59

Bibliography

Alliez, Pierre; Saboret, Laurent, and Guennebaud, Gaël (2018). “Poisson surface
reconstruction”. In: CGAL User and Reference Manual. 4.12. CGAL Editorial
Board. url: https : / / doc . cgal . org / 4 . 12 / Manual / packages . html #
PkgPoissonSurfaceReconstructionSummary.

Bank, Randolph E. (1998). PLTMG, a Software Package for Solving Elliptic Par-
tial Differential Equations: Users’ Guide 8.0. Vol. 5. Siam.

Chen, Jiawen; Bautembach, Dennis, and Izadi, Shahram (2013). “Scalable real-
time volumetric surface reconstruction”. In: ACM Transactions on Graphics
32.4, p. 113.

Chen, Liang-Chieh; Papandreou, George; Kokkinos, Iasonas; Murphy, Kevin, and
Yuille, Alan L. (2018). “Deeplab: semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected CRFs”. In: IEEE
transactions on pattern analysis and machine intelligence 40.4, pp. 834–848.

Civera, Javier; Gálvez-López, Dorian; Riazuelo, Luis; Tardós, Juan D., and Mon-
tiel, Mart́ınez (2011). “Towards semantic SLAM using a monocular camera”.
In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, pp. 1277–1284.

Curless, Brian and Levoy, Marc (1996). “A volumetric method for building complex
models from range images”. In: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques. ACM, pp. 303–312.

Douglas, David H. and Peucker, Thomas K. (1973). “Algorithms for the reduction
of the number of points required to represent a digitized line or its caricature”.
In: Cartographica: The International Journal for Geographic Information and
Geovisualization 10.2, pp. 112–122.

Droeschel, David and Behnke, Sven (2018). “Efficient continuous-time SLAM for
3D lidar-based online mapping”. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA).

Eigen, David and Fergus, Rob (2015). “Predicting depth, surface normals and se-
mantic labels with a common multi-scale convolutional architecture”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV),
pp. 2650–2658.

Engel, Jakob; Schöps, Thomas, and Cremers, Daniel (2014). “LSD-SLAM: Large-
scale direct monocular SLAM”. In: Proceedings of the European Conference on
Computer Vision (ECCV). Springer, pp. 834–849.

61

Bibliography

Garland, Michael and Heckbert, Paul S. (1998). “Simplifying surfaces with color
and texture using quadric error metrics”. In: Visualization proceedings. IEEE,
pp. 263–269.

Goldman, Daniel B. and Chen, Jiun-Hung (2005). “Vignette and exposure calibra-
tion and compensation”. In: Proceedings of the IEEE International Conference
on Computer Vision (ICCV).

Guo, Chuan; Pleiss, Geoff; Sun, Yu, and Weinberger, Kilian Q. (2017). “On cali-
bration of modern neural networks”. In: Arxiv preprint arxiv:1706.04599.

He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing, and Sun, Jian (2016). “Deep resid-
ual learning for image recognition”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.

Hermans, Alexander; Floros, Georgios, and Leibe, Bastian (2014). “Dense 3d se-
mantic mapping of indoor scenes from rgb-d images”. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA). IEEE,
pp. 2631–2638.

Holz, Dirk and Behnke, Sven (2014a). “Approximate triangulation and region
growing for efficient segmentation and smoothing of range images”. In: Robotics
and Autonomous Systems 62.9, pp. 1282–1293. issn: 0921-8890.

— (2014b). “Registration of non-uniform density 3D point clouds using approx-
imate surface reconstruction”. In: ISR/Robotik 2014; 41st International Sym-
posium on Robotics; Proceedings. VDE, pp. 1–7.

Hoppe, Hugues; DeRose, Tony; Duchamp, Tom; McDonald, John, and Stuetzle,
Werner (1992). Surface reconstruction from unorganized points. Vol. 26. 2.
ACM.

Hornung, Armin; Wurm, Kai M; Bennewitz, Maren; Stachniss, Cyrill, and Burgard,
Wolfram (2013). “Octomap: an efficient probabilistic 3D mapping framework
based on octrees”. In: Autonomous robots 34.3, pp. 189–206.

Jin, Shuangshuang; Lewis, Robert R., and West, David (2005). “A comparison of
algorithms for vertex normal computation”. In: The visual computer 21.1-2,
pp. 71–82.

Kazhdan, Michael; Bolitho, Matthew, and Hoppe, Hugues (2006). “Poisson sur-
face reconstruction”. In: Proceedings of the Fourth Eurographics Symposium on
Geometry Processing. SGP ’06. Cagliari, Sardinia, Italy: Eurographics Associ-
ation, pp. 61–70. isbn: 3-905673-36-3. url: http://dl.acm.org/citation.
cfm?id=1281957.1281965.

Kazhdan, Michael and Hoppe, Hugues (2013). “Screened poisson surface recon-
struction”. In: ACM Transactions on Graphics 32.3, p. 29.

Keller, Maik; Lefloch, Damien; Lambers, Martin; Izadi, Shahram; Weyrich, Tim,
and Kolb, Andreas (2013). “Real-time 3D reconstruction in dynamic scenes
using point-based fusion”. In: 3D Vision-3DV 2013, 2013 International Con-
ference. IEEE, pp. 1–8.

62

Bibliography

Kostavelis, Ioannis and Gasteratos, Antonios (2015). “Semantic mapping for mo-
bile robotics tasks: A survey”. In: Journal of Robotics and Autonomous Sys-
tems 66, pp. 86–103.

Kundu, Abhijit; Li, Yin; Dellaert, Frank; Li, Fuxin, and Rehg, James M (2014).
“Joint semantic segmentation and 3D reconstruction from monocular video”.
In: European Conference on Computer Vision. Springer, pp. 703–718.

Li, Xuanpeng and Belaroussi, Rachid (2016). “Semi-dense 3D semantic mapping
from monocular SLAM”. In: Arxiv preprint arxiv:1611.04144.

Lin, Guosheng; Milan, Anton; Shen, Chunhua, and Reid, Ian (2017). “Refinenet:
Multi-path refinement networks for high-resolution semantic segmentation”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Ling, Yonggen and Shen, Shaojie (2017). “Building maps for autonomous navi-
gation using sparse visual SLAM features”. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE,
pp. 1374–1381.

Long, Jonathan; Shelhamer, Evan, and Darrell, Trevor (2015). “Fully convolutional
networks for semantic segmentation”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440.

Maiti, Abhik and Chakravarty, Debashish (2016). “Performance analysis of differ-
ent surface reconstruction algorithms for 3D reconstruction of outdoor objects
from their digital images”. In: Springerplus 5.1, p. 932. issn: 2193-1801. url:
https://doi.org/10.1186/s40064-016-2425-9.

Marton, Zoltan Csaba; Rusu, Radu Bogdan, and Beetz, Michael (2009). “On fast
surface reconstruction methods for large and noisy point clouds”. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 3218–3223.

McCormac, John; Handa, Ankur; Davison, Andrew, and Leutenegger, Stefan (2017).
“SemanticFusion: Dense 3D semantic mapping with convolutional neural net-
works”. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). IEEE, pp. 4628–4635.

Moravec, Hans and Elfes, Alberto (1985). “High resolution maps from wide angle
sonar”. In: Robotics and Automation. Proceedings. 1985 IEEE International
Conference. Vol. 2. IEEE, pp. 116–121.

Neuhold, Gerhard; Ollmann, Tobias; Bulo, S. Rota, and Kontschieder, Peter (2017).
“The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes.”
In: Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pp. 5000–5009.

Newcombe, Richard A.; Fox, Dieter, and Seitz, Steven M. (2015). “Dynamicfusion:
reconstruction and tracking of non-rigid scenes in real-time”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 343–352.

63

Bibliography

Newcombe, Richard A; Izadi, Shahram; Hilliges, Otmar; Molyneaux, David; Kim,
David; Davison, Andrew J.; Kohi, Pushmeet; Shotton, Jamie; Hodges, Steve,
and Fitzgibbon, Andrew (2011). “KinectFusion: Real-time dense surface map-
ping and tracking”. In: Mixed and augmented reality (ISMAR), 10th IEEE
international symposium. IEEE, pp. 127–136.

Nießner, Matthias; Zollhöfer, Michael; Izadi, Shahram, and Stamminger, Marc
(2013). “Real-time 3D reconstruction at scale using voxel hashing”. In: ACM
Transactions on Graphics 32.6, p. 169.

Oleynikova, Helen; Taylor, Zachary; Fehr, Marius; Siegwart, Roland, and Nieto,
Juan (2017). “Voxblox: incremental 3D euclidean signed distance fields for
on-board mav planning”. In: Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, pp. 1366–1373.

Peasley, Brian (2013). Large scale 3d mapping of indoor environments using a
handheld RGB-D camera.

Poranne, Roi; Tarini, Marco; Huber, Sandro; Panozzo, Daniele, and Sorkine-Hornung,
Olga (2017). “Autocuts: simultaneous distortion and cut optimization for UV
mapping”. In: ACM Transactions on Graphics 36.6, p. 215.

Quigley, Morgan; Conley, Ken; Gerkey, Brian; Faust, Josh; Foote, Tully; Leibs,
Jeremy; Wheeler, Rob, and Ng, Andrew Y (2009). “ROS: an open-source Robot
Operating System”. In: ICRA Workshop on Open Source Software.

Reddy, N. Dinesh; Singhal, Prateek, and Krishna, K. Madhava (2014). “Semantic
motion segmentation using dense CRF formulation”. In: Proceedings of the
2014 Indian Conference on Computer Vision Graphics and Image Processing.
ACM, p. 56.

Romanoni, Andrea; Fiorenti, Daniele, and Matteucci, Matteo (2017). “Mesh-based
3D Textured Urban Mapping”. In: Arxiv preprint arxiv:1708.05543.

Romanoni, Andrea and Matteucci, Matteo (2015). “Incremental reconstruction of
urban environments by edge-points delaunay triangulation”. In: Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, pp. 4473–4479.

Ros, German; Sellart, Laura; Materzynska, Joanna; Vazquez, David, and Lopez,
Antonio M. (2016). “The SYNTHIA Dataset: A Large Collection of Syn-
thetic Images for Semantic Segmentation of Urban Scenes”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3234–3243.

Shotton, Jamie; Fitzgibbon, Andrew; Cook, Mat; Sharp, Toby; Finocchio, Mark;
Moore, Richard; Kipman, Alex, and Blake, Andrew (2011). “Real-time human
pose recognition in parts from single depth images”. In: Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference. Ieee, pp. 1297–1304.

Shotton, Jamie; Johnson, Matthew, and Cipolla, Roberto (2008). “Semantic tex-
ton forests for image categorization and segmentation”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, pp. 1–8.

64

Bibliography

Silberman, Nathan; Hoiem, Derek; Kohli, Pushmeet, and Fergus, Rob (2012). “In-
door Segmentation and Support Inference from RGBD Images”. In: Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 746–760.

Steinbrücker, Frank; Sturm, Jürgen, and Cremers, Daniel (2014). “Volumetric 3D
mapping in real-time on a CPU”. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp. 2021–2028.

Stückler, Jörg and Behnke, Sven (2012). “Integrating depth and color cues for
dense multi-resolution scene mapping using RGB-D cameras”. In: Multisensor
Fusion and Integration for Intelligent Systems (MFI), 2012 IEEE Conference.
IEEE, pp. 162–167.

Tateno, Keisuke; Tombari, Federico; Laina, Iro, and Navab, Nassir (2017). “CNN-
SLAM: Real-time dense monocular SLAM with learned depth prediction”. In:
Arxiv preprint arxiv:1704.03489.

Thürrner, Grit and Wüthrich, Charles A (1998). “Computing vertex normals from
polygonal facets”. In: Journal of Graphics Tools 3.1, pp. 43–46.

Valentin, Julien; Sengupta, Sunando; Warrell, Jonathan; Shahrokni, Ali, and Torr,
Philip (2013). “Mesh based semantic modelling for indoor and outdoor scenes”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, pp. 2067–2074.

Vineet, Vibhav; Miksik, Ondrej; Lidegaard, Morten; Nießner, Matthias; Golodetz,
Stuart; Prisacariu, Victor A.; Kähler, Olaf; Murray, David W; Izadi, Shahram;
Pérez, Patrick, et al. (2015). “Incremental dense semantic stereo fusion for
large-scale semantic scene reconstruction”. In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, pp. 75–82.

Whelan, Thomas; Kaess, Michael; Fallon, Maurice; Johannsson, Hordur; Leonard,
John, and McDonald, John (2012). “Kintinuous: Spatially extended Kinectfu-
sion”. In:

Whelan, Thomas; Leutenegger, Stefan; Salas-Moreno, R.; Glocker, Ben, and Davi-
son, Andrew (2015). “ElasticFusion: Dense SLAM without a pose graph”. In:
Robotics: Science and Systems.

Xie, Saining; Girshick, Ross; Dollár, Piotr; Tu, Zhuowen, and He, Kaiming (2017).
“Aggregated residual transformations for deep neural networks”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, pp. 5987–5995.

Zollhöfer, Michael; Stotko, Patrick; Görlitz, Andreas; Theobalt, Christian; Nießner,
Matthias; Klein, Reinhard, and Kolb, Andreas (2018). “State of the Art on 3D
Reconstruction with RGB-D Cameras”. In: Computer graphics forum. Vol. 37.
Wiley Online Library, pp. 625–652.

65

	Introduction
	Related Work
	Map representations
	Occupancy grid
	Signed Distance Field
	Surfel
	Mesh

	Semantic Segmentation
	Semantic Mapping
	Mesh creation
	Delaunay triangulation
	Volumetric integration
	Poisson reconstruction

	Overview
	Pipeline
	Notation

	Mesh reconstruction
	Depth preprocessing
	Local mesh simplification
	Ramer-Douglas-Peucker extensions

	Local mesh refinement
	Global mesh generation

	Semantic and Color Integration
	Semantic Integration
	Color Integration
	Sparse Semantic Volume
	Label Propagation
	Implementation

	Experiments
	NYUv2 Dataset
	Courtyard Dataset
	Accuracy Evaluation
	Registration Robustness
	Runtime Performance
	Memory Consumption
	Texture Resolution and Semantic Accuracy

	Conclusion
	Appendices

