
Institute for Computer Science
Department VI
Autonomous Intelligent Systems

Rheinische
Friedrich-Wilhelms-

Universität Bonn

Rheinische
Friedrich-Wilhelms-Universität Bonn

Master Thesis

Temporal Semantic Segmentation using Sparse
Permutohedral Lattices

Author:
Peer Schütt

First Examiner:
Prof. Dr. Sven Behnke

Second Examiner:
Dr. Jens Behley

Supervisor:
Radu Alexandru Rosu

Date: September 18, 2021

Abstract
Semantic segmentation answers the question of which parts of a scene belong to
the same object. It is a core ability required by autonomous agents as it is cru-
cial for navigation and interaction with the environment. Most recent approaches
only take information from a single scan as input and therefore disregard temporal
information. This renders the agent incapable of using past information, segment-
ing moving and stationary objects or correcting faulty semantic segmentations.
Incorporating temporal information can be used to address these issues. For this
task, a backbone network for semantic segmentation is extended using methods
from recurrent neural networks. A sequence of consecutive LiDAR point clouds
are used as its input and the network outputs a prediction for every point of the
last point cloud in the sequence. Different recurrent modules are evaluated and
compared to each other. We present competitive results for the network’s perfor-
mance on the SemanticKITTI dataset that contains LiDAR scans from real urban
environments.

Contents
1 Introduction 1

2 Fundamentals 3
2.1 Notation . 3
2.2 Permutohedral Lattice . 3
2.3 Recurrent Neural Networks . 4

2.3.1 Deep RNNs . 6
2.3.2 The challenge of long-term dependencies 7

2.4 LatticeNet . 8
2.4.1 Input . 9
2.4.2 Extended Notation . 9
2.4.3 Selected Operations on Permutohedral Lattice 11
2.4.4 Temporal Correspondence 12

2.5 Scene Flow . 13

3 Related Work 15

4 Architecture 19
4.1 Method . 19
4.2 Fusion Positions . 21
4.3 Fusion Modules . 21
4.4 Network Architectures . 26

5 Evaluation 27
5.1 Implementation . 27
5.2 Dataset . 27
5.3 Quantitative Results . 28
5.4 Qualitative Results . 33

6 Conclusion 37

v

1 Introduction
Understanding and segmenting the surrounding area comes to us humans quite
natural. However, it still proves to be a challenging problem for autonomous
agents that have to cope with environments, which are designed by humans for
humans. To measure their capabilities regarding scene understanding, a variety of
tasks have been proposed. One of them being semantic segmentation:

In this thesis, we deal with the semantic segmentation of 3D point clouds, which
is defined as the process of predicting a class for every point in the point cloud.
It is one of the most crucial capabilities of autonomous agents, because an agent
has to distinguish between different objects and classes in order to navigate and
interact with its environment.

For 3D point clouds, semantic segmentation is especially challenging, due to
undersampling of the scene, a lack of explicit structure in point clouds that are
recorded in real-world scenarios and the scale of point clouds, whose size can be
orders of magnitude larger when compared to images that depict the same scene.
In this thesis, we assume that all clouds have been recorded continuously by a
sensor like a laser scanner or a depth camera.

Segmenting single point clouds is already a heavily researched area with a large
number of different architectures and methods. However, research into the gen-
eralization of semantic segmentation to segmenting sequences of point clouds is
currently sparse. This topic is also called semantic segmentation of 4D point clouds
or temporal semantic segmentation. This task has an important benefit over the
single scan segmentation: It allows an agent to distinguish between moving and
stationary objects and provides temporal information that can not be inferred
from single scan segmentation.

Additionally, planning and decision making of an autonomous agent needs to
account for dynamic objects. Information about which vehicles are parked, moving
or just waiting for a green light is crucial for navigating in an urban environment.
Temporal information might even prove beneficial for the detection of smaller
objects, that naturally have a smaller number of points, by leveraging information
from past clouds — if the same object appears in many consecutive scans it is not
as likely to be overlooked. An example for this in urban scenarios are pedestrians
or bicyclists.

1

1 Introduction

In consonance with the previously presented motivation, these goals for this
thesis were formulated:

• Extend the network LatticeNet (Rosu et al. 2020) in order to integrate tem-
poral information.

• Segment moving from non-moving objects in real urban environments.

• Provide state-of-the-art results on the SemanticKITTI (Behley et al. 2019)
dataset.

LatticeNet (Rosu et al. 2020) is a recently proposed architecture that is able
to produce state-of-the-art segmentation results for the SemanticKITTI dataset.
This dataset is one of the few that provides point cloud sequences with ground
truth annotations, which enables to train models to perform temporal seman-
tic segmentation. Furthermore, an official competition1 exists for this dataset in
which both single scan segmentation and temporal segmentation methods can be
compared.

To achieve the goals we will extend LatticeNet by adding recurrent connections
to it. The proposed architecture processes a sequence of point clouds and returns
a per-point segmentation for the last cloud in its input sequence.

An intuitive adaption of existing state-of-the-art single scan segmentation net-
work to the temporal segmentation problem is to accumulate the point cloud
sequence into a single cloud and train the model on these point clouds. How-
ever, these approaches are limited by their memory consumption and resolutions
constraints. Furthermore, such an approach requires the network to establish the
temporal relationships between points from its unstructured input and is able to
access a temporal context, which is intrinsic to recurrent architectures. In contrast,
our network takes multiple point clouds sequentially as input and can therefore
decide to reuse parts of the network from the previous timesteps.

1https://competitions.codalab.org/competitions/20331

2

https://competitions.codalab.org/competitions/20331

2 Fundamentals

In this chapter, we define the notation (Sec. 2.1), present the structure permuto-
hedral lattice (Sec. 2.2), explain recurrent neural networks (Sec. 2.3), introduce
the backbone network LatticeNet (Sec. 2.4) and discuss scene flow (Sec. 2.5).

2.1 Notation
Bold upper-case characters are used to denote matrices and bold lower-case char-
acters to denote vectors. When the term point is used it refers to one point p of
a point cloud P . The term cloud is used synonymously to point cloud. The term
coordinate is only used to describe the spatial position of a lattice vertex. In this
thesis, N is defined as the set of all non-negative integers and N+ is defined as
N \ {0}.

Each point of a cloud is defined as a tuple p = (gp, fp). gp ∈ Rd represents the
coordinates of the point and fp ∈ Rfd denotes the features stored at this point p,
like normals and reflectance. A point cloud contains m points and is denoted by
P = (G,F). G ∈ Rm×d denotes the positions matrix and F ∈ Rm×fd the feature
matrix of the cloud. The feature matrix F can also be filled with zeros, if per-point
features are not provided or needed.

2.2 Permutohedral Lattice
Due to the sparseness, the uneven sampling density and the overall lack of structure
in 3D data, we have to define a structured way to store this data. For this we
utilize permutohedral lattices (Adams, Baek, and Davis 2010; Rosu et al. 2020).

The permutohedral lattice was first introduced by Adams, Baek, and Davis
2010. A d-dimensional lattice is created by projecting the scaled regular grid
(d+ 1) ∈ Zd+1 along the vector 1 = [1, . . . , 1] onto the hyperplane Hd: p · 1 = 0.

The vertices of a lattice (Sec. 2.2) are defined as a tuple v = (cv,xv), where
cv ∈ Z(d+1) denotes the coordinates of the vertex and xv ∈ Rvd represents the
values stored at vertex v. A full lattice contains k vertices and is defined as

3

2 Fundamentals

Figure 2.1: An example permutohedral lattice for d = 2 that tesselates the space into
triangles: It represents the datastructure that all operations of the network
are performed on.

V = (C,X), where C ∈ Zk×(d+1) represents the coordinate matrix and X ∈ Rk×vd

the value matrix.
The input space is split into uniform d-dimensional simplices by the lattice. For

the case d = 2 the space is tessellated by triangles as it is illustrated in Fig. 2.1. For
every d-dimensional point of the cloud that should be represented by the lattice
the enclosing simplex can be computed in O(d2) by a rounding algorithm. We
denote the set of neighbors of vertex v with N(v) and |N(v)| = 2(d+ 1).

The implementation for permutohedral lattices (Rosu et al. 2020) saves the
lattice sparsely into memory using a hash map. This allows us to only allocate the
simplices that contain the 3D area of interest. The hash map is discussed in more
detail in Sec. 2.4.4. Due to this sparse allocation the actual number of neighbors
can be smaller than 2(d+ 1), because neighboring vertices might not be allocated
yet. An example neighborhood of a lattice is visualized in Fig. 2.7.

Compared to a standard cubic voxel representation, the permutohedral lattice
scales better to higher dimensions, since the number of vertices for each simplex
is given by d+ 1, in contrast to 2d for standard voxels.

2.3 Recurrent Neural Networks
The explanations in this section are based on the book ”Deep Learning” written by
Goodfellow, Bengio, and Courville 2016. They describe recurrent neural networks
(RNNs) in the following manner:

“Recurrent neural networks, or RNNs (Rumelhart, Hinton, and Williams
1986), are a family of neural networks for processing sequential data.
Much as a convolutional network is a neural network that is special-
ized for processing a grid of values X such as an image, a recurrent
neural network is a neural network that is specialized for processing
a sequence of values X(1), ...,X(τ). Just as convolutional networks can

4

2.3 Recurrent Neural Networks

readily scale to images with large width and height, and some convolu-
tional networks can process images of variable size, recurrent networks
can scale to much longer sequences than would be practical for net-
works without sequence-based specialization. Most recurrent networks
can also process sequences of variable length.”(Goodfellow, Bengio, and
Courville 2016)

We will focus on RNNs that take a finite sequence X = (X(1), ...,X(τ)) as in-
put and output a finite sequence O = (O(1), ...,O(δ)) with τ, δ ∈ N+. One can
distinguish between three basic recurrent neural network types which perform a
sequence-to-sequence mapping:

• One-to-many: The input is a sequence consisting only of one value X(1)

and uses this information to output a sequence of values O(1), ...,O(δ).

• Many-to-one: The input is a sequence consisting of values X(1), ...,X(τ)

and the network outputs a single value O(δ) after processing all input values.

• Many-to-many: The input is a sequence consisting of values X(1), ...,X(τ)

and the network outputs a sequence of values O(1), ...,O(δ). It is important
to note that between reading the first sequence value X(1) and generating
O(1) an arbitrary amount of input values can be processed. An example can
be seen in Fig. 2.2 on the left.

RNNs work with a hidden state H, that is updated after processing each input
X(t) and used for computation of the output O. It should aggregate all relevant
information about the current input X(t) and all previous inputs X(1), ...,X(t−1).
Therefore H(t) is calculated using X(t) and H(t−1). This can be written as:

H(t) = f(H(t−1),X(t)), (2.1)

where f is the recurrent neural network. Processing a timestep t refers to process-
ing one input value X(t) and does not always relate to a certain time passed.

Gradient computation for RNNs is done by calculating the gradient on the un-
rolled computational graph according to the backpropagation algorithm common
for neural networks. This method is called backpropagation through time (BPTT).
One example of this unrolled computational graph can be seen on the right side
of Fig. 2.2.

5

2 Fundamentals

Figure 2.2: Computational graph of a many-to-many RNN that maps an input sequence
X to an output sequence O and compares this to the target output T by
computing the loss l. On the left the network is shown with the recurrent
connection, while it is visualized unfolded on the right side (Goodfellow,
Bengio, and Courville 2016).

2.3.1 Deep RNNs
A further development of RNNs are the Deep RNNs, as shown in Fig. 2.3. Three
types are presented by Goodfellow, Bengio, and Courville 2016:

• RNNs with multiple hidden states at different depths of the network (Fig. 2.3(a)):
These can be advantageous for networks that employ downsampling with
convolutions. Using multiple of these convolution steps could help the net-
work incorporate more information from the previous inputs.

• RNNs with an additional multilayer perceptron (MLP) that is computed
from the hidden state (Fig. 2.3(b)): Adding this MLP could prove useful,
but increases the length of the shortest path between the input and the
output, which can be problematic during the backpropagation. Additionally
the number of parameters increases.

• RNNs with a direct connection between H(t−1) and H(t) and an additional
state computed by an MLP (Fig. 2.3(c)): This is a combination of both
previous types.

6

2.3 Recurrent Neural Networks

Figure 2.3: Different architectures for RNNs known as Deep RNNs (Goodfellow, Bengio,
and Courville 2016).

2.3.2 The challenge of long-term dependencies

Gradients propagated over many timesteps tend to vanish or explode, because
exponentially smaller weights are given to long-term interactions compared to
short-term interactions, since the gradients are multiplied with many Jacobians.
The probability of success with sequence lengths larger than 10 are nearly zero, if
the basic concept is not altered (Goodfellow, Bengio, and Courville 2016). Selected
methods that were developed to cope with this challenge are presented here:

Long short-term memory (LSTM) Long short-term memory (LSTM) cells are
explicitly designed to avoid the long-term dependency problem (Hochreiter and
Schmidhuber 1997). The cell state, which changes only slowly over time and has
minor linear interactions, is the core of a LSMT cell. This cell state is influenced
by the hidden state and the input at the current time step. The structure of a
LSTM is visualized in Fig. 2.4a. The standard formulation of a LSTM cell can be

7

2 Fundamentals

given by the following equations:

D(t) = σ(WD · [H(t−1),X(t)] + bD), (2.2)
I(t) = σ(WI · [H(t−1),X(t)] + bI), (2.3)

K̃(t) = tanh(WK · [H(t−1),X(t)] + bK), (2.4)
K(t) = D(t) · K(t−1) + I(t) · K̃(t), (2.5)
O(t) = σ(WO · [H(t−1),X(t)] + bo), (2.6)
H(t) = O(t) · tanh(K(t)), (2.7)

where D, I,O, K̃,K are the forget gate, input gate, output gate, memory cell
content and new memory cell content, σ is the sigmoid function, tanh is the
hyperbolic tangent function and W, b are the respective weight matrices and biases.

Gated recurrent units (GRU) GRUs were proposed by Cho et al. 2014 as a
variant of LSTM cells. They combine the forget and input gates into a single
”update gate”, getting rid of the cell state. Therefore this model is simpler than a
standard LSTM cell. The performance of LSTM and GRU are comparable (Chung
et al. 2014). The structure of GRU is visualized in Fig. 2.4b. The standard
formulation of a GRU can be given by the following equations:

R(t) = σ(WR · [H(t−1),X(t)]), (2.8)
Z(t) = σ(WZ · [H(t−1),X(t)]), (2.9)
H̃(t) = tanh(W · [R(t) · H(t−1),X(t)]), (2.10)
H(t) = (1− Z(t)) · H(t−1) + Z(t) · H̃(t), (2.11)

where R,Z are the reset and update gate, respectively.

Tackling the problem of vanishing/exploding gradients To address the prob-
lem of vanishing/exploding gradients the sequence length in this thesis is limited
to a time horizon of no more than five inputs. Nonetheless, the GRU and LSTM
are utilized as recurrent modules, because they are not only usable for long-term
dependencies, but also for the basic propagation of information across timesteps.

2.4 LatticeNet
LatticeNet (Rosu et al. 2020) is used as the backbone network for this thesis. To
combine states of different timesteps one has to compute correspondences between

8

2.4 LatticeNet

(a) Long short-term memory (LSTM) (b) Gated Recurrent Unit (GRU)

Figure 2.4: The structure of a LSTM cell and a GRU (Olah 2015).

the value matrices at different depths of the network. Fortunately, LatticeNet
already provides this correspondence by design. To explain this we will elaborate
the input to LatticeNet (Sec. 2.4.1), describe how selected operations work on
permutohedral lattices (Sec. 2.4.3) and how the hashmap that stores the lattice
values is created and maintained (Sec. 2.4.4). The definitions in the next three
subsections were adapted from Rosu et al. 2020 and for detailed explanations of
LatticeNet we refer to Rosu et al. 2020. The architecture of LatticeNet is presented
in Fig. 2.5.

2.4.1 Input

The input to LatticeNet is a point cloud P = (G,F). To change the area of
influence of the permutohedral lattice the scaling factor σσσ ∈ Rd was defined. With
it we can change the positions G to the scaled positions matrix Gs = G/σσσ. The
higher the scale σσσ, the fewer vertices will be needed to cover the point cloud and
the coarser the lattice will be. This is visualized in Fig. 2.6 and Fig. 2.7. Unless
otherwise specified, we refer to Gs as G.

2.4.2 Extended Notation

We denote with Jv the set of points p for which vertex v is one of the vertices of
the containing simplices. Furthermore, we denote with P the PointNet module,
with DG and DF the distribution of the point positions and the points features,
respectively.

9

2 Fundamentals

GN
ReLU

1x1, 16, 32, 64
×3

MaxPool

64-d

GN
ReLU

conv, 256
×2

+

256-d

Gather

MaxPool
SubtractMax
Linear+Tanh

slice

P 64-d

64× pd-d

delta

Input

Distribute
PointNet

ResNet Block
Downsample
ResNet Block
ResNet Block

Downsample
ResNet Block
ResNet Block

Upsample

ResNet Block
ResNet Block

Upsample

ResNet Block
DeformSlice

Linear

C

C

P V

Figure 2.5: Architecture of LatticeNet (Rosu et al. 2020).

Figure 2.6: Comparison between lattice tesselation for different scaling factors σσσ: The
two scaling factors presented are 0.6 (left) and 0.9 (right). G0.6 consists
of 42582 positions, while G0.9 consists of 22793 positions. The fine lattice
covers the area more densely. Additionally the sparse allocation of lattice
vertices is easy to see; only the areas where points are or were in the last
timestep are covered with lattice vertices.

10

2.4 LatticeNet

Figure 2.7: The neighborhood in a lattice visualized: On the left only the neighborhood
is displayed, while on the right the input cloud is added to the scene. A
scaling factor σσσ of 0.9 was used. It is important to note is that every vertex
has at most 2(d+ 1) neighbors.

Figure 2.8: Convolution on the lattice structure: The one-hop neighborhood and the
center vertex are convolved similarly to standard 2D convolutions. A not
allocated neighbor is assumed to have a value of zero (Rosu et al. 2020).

2.4.3 Selected Operations on Permutohedral Lattice

In this section, we will explain selected operations on permutohedral lattices that
are necessary to understand the temporal correspondence of two lattices across
timesteps. For all other operations we refer to Rosu et al. 2020.

Convolution: The convolution operation on lattices operates the same as stan-
dard spatial convolutions. The weighted sum of all neighbors and the center vertex
is computed. Our convolutions are performed on the one-hop neighborhood of a
vertex and therefore we convolve the values of 2(d+ 1) + 1 vertices (Fig. 2.8).

Distribute The points of the input cloud have to be distributed onto the lattice
structure. For this we define the distribute operation as the feature vectors that
each lattice vertex receives: The distribute operators DG and DF concatenate

11

2 Fundamentals

Figure 2.9: Distribute operation: Distributing stores all the features of the contributing
points, causing no loss of information and allows further processing by the
network. (Rosu et al. 2020)

coordinates and features of the contributing points:

xv = P(Dvg ;Dvf), (2.12)
Dvg = DG(P, V) = {gp − µv | p ∈ Jv }, (2.13)
Dvf = DF (P, V) = { fp | p ∈ Jv }, (2.14)

µv =
1

|Jv|
∑
p∈Jv

gp, (2.15)

where Dvg ∈ R|Jv |×d and Dvf ∈ R|Jv |×fd are matrices containing the distributed
coordinates and features, respectively, for the contributing points into a vertex v.
The matrices are concatenated and processed by a PointNet P to obtain the final
vertex value xv.

We distribute coordinates and point features in two different ways. The co-
ordinates are centered, before they are distributed, while the point features are
distributed as they are.

2.4.4 Temporal Correspondence
All points p of the input cloud P get distributed to their corresponding lattice
vertices — each d-dimensional point gets distributed to d + 1 lattice vertices and
each of them has coordinates cv and values xv. For this data, Rosu et al. 2020
designed an implementation to save this information sparsely in memory: The
coordinates cv act as the key to be inserted into a hash map, while the values
xv are stored there. The hash map assigns each vertex a unique number that is
used to index the entries vector. This procedure is visualized for a single point in
Fig. 2.10.

If the corresponding value in the entries vector is -1 (”empty”) we atomically
increase the size of the keys C and values array X and insert the key cv and
the value xv vectors at the new row that is located at the bottom of the respec-

12

2.5 Scene Flow

point(1x3) GetV ertices

V ert1 = (5, 8, 1, 3)T

V ert2 = (8, 1, 9, 5)T

V ert3 = (1, 3, 2, 7)T

V ert4 = (5, 7, 2, 8)T

Hash

Hash

Hash

Hash

-1
-1
0
1
-1
2
-1
-1
-1
3
-1
-1

Entries Values X

Figure 2.10: Lattice storage: The encircling four-dimensional simplex is calculated for
the three-dimensional input point. The value and position of each encircling
vertex is calculated and then hashed to generate the value in the entries
array. The value in the entries vector is the corresponding row of the value
matrix.

tive matrix. Otherwise the stored value vector is updated with the new values
xv. Therefore, the values are stored sequentially in memory while the entries are
sparsely populated.

Usually the hash map is reset after processing each cloud, because otherwise the
entries vector would contain an ever increasing number of entries and X would
therefore keep on growing with many rows that do not contain values. In contrast,
for the sequence learning it is not reset after each cloud of the input, but after
a whole sequence is processed. The reason for this is that the hash map can
be utilized to map the coordinates of all vertices of each lattice of the sequence
to the same row in the coordinate and value matrices C and X. Therefore, the
correspondence between vertices that are allocated at the same positions during
different timesteps is given and we are able to compare the values of vertices
across time. A reset hash map would most likely assign the same coordinates cv

to different rows in the values matrix.

2.5 Scene Flow
For the task of segmenting moving from non-moving objects scene flow could be
utilized: ”Scene flow is the three-dimensional motion field of points in the world,
just as optical flow is the two-dimensional motion field of points in an image.“
(Vedula et al. 1999).

For the prediction of scene flow mostly supervised learning is applied. A problem

13

2 Fundamentals

of this type of learning is the need for large-scale labeled flow data. There are many
synthetic datasets (Mayer et al. 2016) that provide this, but only a small amount
of large-scale real-world datasets, because these are costly to create. One real-
world dataset that provides such information is the KITTI dataset (Menze and
Geiger 2015). Therefore, most state-of-the-art networks are trained on synthetic
data and sometimes refined on small real-world datasets (Gu et al. 2019; Liu, Qi,
and Guibas 2019; Mittal, Okorn, and Held 2020).

Scene flow could be incorporated in our network by either using the prediction
as additional input data for the backbone network or by combining the flow pre-
diction with the semantic segmentation from the backbone network to refine the
segmentation, similar to recently proposed approaches which perform panoptic
segmentation (Kirillov et al. 2019; Mohan and Valada 2020; Xiong et al. 2019).
These networks often merge the prediction of semantic and instance segmentation
for the final prediction.

Combining scene flow and semantic segmentation by using scene flow as an ad-
ditional input was not pursued, since it would have constituted a combination
of multiple networks into one pipeline rather than an extension to LatticeNet.
Instead, the Abstract Flow (AFlow) module has been designed that aims at im-
plementing an abstract flow in the lattice structure and is discussed later in this
thesis (Sec. 4.3).

14

3 Related Work
In this chapter, temporal semantic segmentation in recent work will be discussed.
An overview over the state-of-the-art for semantic segmentation as a whole will
not be given, because it is a topic too broad for this thesis that only focuses on
a certain sub-sector of it. For an overview regarding semantic segmentation on
point clouds, we refer to Guo et al. 2020 and Rosu et al. 2020.

Many previously proposed approaches which address temporal semantic segmen-
tation can be grouped by their type of input: methods which process sequences
of clouds in a recurrent manner to predict the class labels (Duerr et al. 2020; Shi
et al. 2020), and methods that accumulate multiple clouds into one single cloud
to solve the task as a single-cloud segmentation (Behley et al. 2019; Thomas et al.
2019).

The advantage of processing a sequence of clouds is that for each input only the
current cloud needs to be processed as the past information has already been sum-
marized and stored in memory. However, they require more complex architectures
than the methods that segment a large aggregated point cloud.

Shi et al. 2020 present their U-Net based architecture SpSequenceNet for tempo-
ral semantic segmentation. Two consecutive point clouds are voxelized and given
as input to an encoder network. Connections are added between the two timesteps
in order to gather temporal information before decoding the representation into
class probabilities of the last point cloud. They designed two modules to combine
the information from the two consecutive point clouds; the Cross-frame Global
Attention (CGA) and the Cross-frame Local Interpolation (CLI) module. The
CGA is based on attention networks and uses the data from Pt−1 to focus the
network on the important features of Pt by weighting all features from Pt based
on the corresponding feature vectors in Pt−1. The CLI module fuses information
between the point clouds of the sequence by combining the spatial and temporal
information: For each point p in Pt the three-neighborhood of it in Pt−1 is analyzed
and combined to a new feature vector that is concatenated with the feature vector
of the point in Pt and then passed through a residual layer. In contrast to our
approach Shi et al. can only process sequences of length two and they voxelize the
point cloud, which leads to a loss of information and discretization artifacts.

Duerr et al. 2020 present their recurrent architecture TemporalLidarSeg that

15

3 Related Work

uses temporal memory alignment to predict the semantic labels of sequences of
point clouds. Their sequences have the potential to be of unlimited length. They
project the 3D point clouds onto the 2D plane and use a U-net backbone net-
work to output per-frame feature matrices F(t). These feature matrices are then
combined with the feature matrices of the hidden state H(t−1) using the temporal
memory unit, which uses the real-world poses of each point cloud to compute the
transformation from the coordinate system of H(t−1) to F(t). The 2D semantic
segmentation is at last projected back into the 3D representation. Similarly to our
approach, they require the poses of the point clouds, but they additionally need
the mapping from 3D to 2D and therefore do not work directly on the point cloud.
Additionally, our method uses multiple fusion points in contrast to a single fusion
point in their approach.

Kernel Point Convolution (KPConv) (Thomas et al. 2019) operates directly on
the point clouds by assigning convolution weights to a set of kernel points located
in Euclidean space. Points in the vicinity of these kernel points are weighted
and summed together to form feature vectors. The kernel function is defined as
the correlation between the location of the kernel point and the distance to the
points in the radius neighborhood. To be robust to varying densities, the input
clouds are subsampled at every layer of the network using a grid subsampling
and the convolutions use an adaptive neighborhood radius. The kernel points are
usually static, but can also be learned by the network itself to adapt to more
challenging tasks. Due to memory limitations, their approach cannot process a
complete point cloud for outdoor scenes. To address the memory constraints,
Thomas et al. fit multiple overlapping spheres into the point cloud and evaluate
these. The final results are generated by a voting scheme. In contrast to our
method, KPConv performs temporal semantic segmentation by accumulating all
clouds of the sequence into one large point cloud and uses no recurrent architecture.

DarkNet53Seg (Behley et al. 2019) and TangentConv (Tatarchenko et al. 2018)
were used as the two baseline networks for the segmentation of 4D point clouds
in the SemanticKITTI (Behley et al. 2019) dataset. The input for these were
accumulated clouds of the sequences. DarkNet53Seg (Behley et al. 2019) is an
extension of SqueezeSeg (Wu et al. 2018) — a U-net with skip connections that
uses the spherical projection of LiDAR point clouds to predict point-wise labels.
These are subsequently refined by a conditional random field and clustering. Tan-
gentConv (Tatarchenko et al. 2018) is based on the notion of tangent convolution -
a different approach to construct convolutional networks on surfaces that assumes
the data is sampled from locally Euclidean surfaces. The points of the input are
projected onto a tangent plane around them. These tangent images can then be
used as 2D grids for convolutions. Based on this input, Tatarchenko et al. designed

16

a U-net with skip connections. In contrast to our approach, both DarkNet53Seg
and TangentConv were developed to output dense per-point predictions for single
point clouds and therefore contain no recurrent connection.

17

4 Architecture

In this chapter, we explain our extensions of LatticeNet. The differences in the
input are highlighted (Sec. 4.1), the position of the recurrent connections is elab-
orated (Sec. 4.2), the fusion modules are presented (Sec. 4.3) and it is described
how both are combined with the backbone network to form our RNNs (Sec. 4.4).

4.1 Method
The input to our network is a sequence of point clouds P = (P0, P1, ..., Pn−1),
where Pi = (G,F) with n ∈ N+ and 0 ≤ i < n. The parameter n is also referred
to as sequence length. The network outputs the likelihood for each possible class
for every point p ∈ Pn−1. An overview is given in Fig. 4.1. All clouds Pi within
the input sequence are transformed into a coordinate system which positions the
point clouds relative to P0.

Just like it was done for LatticeNet, the positions G are scaled by a scaling factor
σσσ ∈ Rd as Gs = G/σσσ. If not otherwise stated, we refer to Gs as G. The matrix
F denoting the per-point features contains the reflectance value from the LiDAR
scanner or is filled with zeros. In addition, the network is also able to support the
input of accumulated point clouds. For this P is transformed to only contain a
single point cloud Pconcat. G and F of Pconcat are the result of concatenating the
position and feature matrices of the sequence (P0, P1, ..., Pn−1). The network then
outputs a prediction for P = (Pconcat).

The basic operations of LatticeNet can still be applied in our temporal setting,
because the above definitions for a sequence of clouds P follow the same specifi-
cations as for LatticeNet.

We insert recurrent connections at various points of the LatticeNet architecture
as illustrated in Fig. 4.2. At these newly introduced recurrent units, the states
of two lattices V (t−1) and V (t) have to be fused. We refer to the value matrix of
each lattice, X(t−1) and X(t) respectively, as state of the network. To compute the
hidden state H(t), we fuse the previous hidden state H(t−1) together with the cur-
rent state of the network X(t). For this, a correspondence between the coordinate
matrices C of both lattices has to be known. This correspondence is achieved by

19

4 Architecture

Figure 4.1: We use multiple consecutive point clouds with a common reference frame as
the input to our backbone network. The value matrices of different timesteps
are fused together to allow information propagation through time. The se-
mantic class for each point in the last point cloud is predicted. The number in
the squares correspond to the dimension of the value matrix in the recurrent
network.

transforming the point clouds Pi into a common frame and the distribute operation
of LatticeNet (Sec. 2.4.4). Vertices corresponding to previously unknown areas in
the input are inserted at the end of the coordinate and value matrices C and X.
A toy example for this fusion procedure is given in Fig. 4.3.

20

4.2 Fusion Positions

4.2 Fusion Positions
Our RNN is a many-to-one deep RNN, with recurrent connections positioned at
different depth of the network. We refer to the recurrent connections as fusion
positions and propose a temporal extension to the LatticeNet with four fusion po-
sitions: An early fusion immediately after the PointNet, a middle fusion before the
downsampling, a bottleneck fusion at the U-Net bottleneck layer and a late fusion
after the upsampling. The extended/modified architecture is illustrated in Fig. 4.2.
We chose these four promising positions based on the following observations:

Early Fusion The PointNet acts as an early feature descriptor and was therefore
chosen as the earliest fusion position. It can influence the decisions of the network
at early stages, but it suffers from a small receptive area.

Middle Fusion The middle fusion can be seen as a compromise between the
concepts of early and late fusion. Compared to the early fusion more information
has been aggregated, because of the ResNet-Layers in-between.

Bottleneck Fusion This fusion position is placed before the first upsampling and
after the last downsampling. At this point the highest value dimension has been
reached by the network and the lattice structure is the coarsest, therefore having
the highest receptive area per lattice vertex.

Late Fusion Positioning the late fusion after the upsampling layer allows our
network to retain fine grained lattice features, which are in a global context. The
global scene understanding provided through upsampling enables classification of
large objects like cars and buses. Since those objects have a high likelihood to
be dynamic objects, a correct classification of them is important for any possible
application. Note that late fusion alone is not sufficient, since the network has
few layers left to combine these features with features extracted for the currently
processed cloud.

4.3 Fusion Modules
In this section, multiple fusion modules are presented and discussed that can be
used to fuse H(t−1) and X(t). For the last point cloud of the sequence, H(n−1) is
used to generate the networks output. For t = 0, no computation is performed
with H(0) = X(0).

21

4 Architecture

Input t

Distribute

PointNet
Temporal Fusion

ResNet Block

ResNet Block
Temporal Fusion

Downsample

ResNet Block

ResNet Block

Downsample

ResNet Block

ResNet Block

ResNet Block
Temporal Fusion

Upsample

ResNet Block
Upsample

Temporal Fusion

ResNet Block

ResNet Block

DeformSlice

Linear

C

C

P V

Early Fusion

Middle Fusion

Bottleneck Fusion

Late Fusion

Input t-1

Distribute

PointNet
Temporal Fusion

ResNet Block

ResNet Block
Temporal Fusion

Downsample

ResNet Block

ResNet Block

Downsample

ResNet Block

ResNet Block

ResNet Block
Temporal Fusion

Upsample

ResNet Block
Upsample

Temporal Fusion

ResNet Block

ResNet Block

DeformSlice

Linear

C

C

P V

Figure 4.2: Recurrent architecture: The values from previous timesteps are fused in the
current timestep at multiple levels of the network. This allows the network
to distinguish moving objects from static ones. The architecture visualized
in this figure is designed for a sequence length of two.

In order to fuse H(t−1) and X(t) they need the same shape and therefore H(t−1)

is padded. The padding value differs based on certain properties of the layers and
we elaborate each of them individually. If not otherwise stated the padding value
is 0. A simplified overview of this fusion process is presented in Fig. 4.3.

Linear Layer The matrices H(t−1) and X(t) are concatenated and input into a
linear layer followed by a non-linearity, in our case a ReLU. This shallow temporal

22

4.3 Fusion Modules

0 0
0 0

0 0
0 0

H(t) H(t−1) X(t)

= f



}
pad

}
new vertices

}
unoccupied

,

Figure 4.3: Temporal fusion: The values from the previous time-step H(t−1) are zero-
padded in order to account for the new vertices that were allocated at the
current time-step X(t). Lattice vertices that are not hit/occupied are as-
sumed to have a value of zero. The value matrices are afterwards fused by
the chosen fusion module.

connection is a basic multilayer perceptron (MLP).

MaxPool Layer The matrices H(t−1) and X(t) are stacked along a new axis and
the element-wise maximum of both matrices is taken as the new value. H(t−1)

is padded with -9999, because the values of X(t) can be negative. A maximum
operator with a zero padding would otherwise discard some information. Addi-
tionally, the zero entries in X(t), which are caused by no point hitting this specific
lattice vertex, are changed to -9999 entries, because if not, similar to the first case,
information would be deleted from H(t−1).

Long short-term memory (LSTM) The functionality of LSTM cells is explained
in Sec. 2.3.2. H(t−1) and X(t) are used as input to the respective gates of the
network. For the first LSTM cell in the sequence both the cell state and the
hidden state are initialized with a zero vector, because we have no information
regarding H(−1). We use the output H(t) as our new value vector. The cell state
is never explicitly used for further computations.

Gated recurrent units (GRU) GRUs are discussed in Sec. 2.3.2. Since they
only use an input and a hidden gate and no cell state like LSTMs, they are better
suited for our task. We will nonetheless use both LSTM and GRU, because we
are interested in the comparison of their performance. Again, the output is used
as the new value vector H(t).

Cross-Frame Global Attention (CGA) Shi et al. 2020 designed the CGA module
to guide the network’s computation (Fig. 4.4). Inspired by self-attention mecha-

23

4 Architecture

nisms, their approach uses H(t−1) to compute an attention map for X(t). H(t) is
computed by element-wise multiplication of the modified H(t−1) with X(t).

In the implementation in this thesis, H(t−1) gets padded by zeros and then
modified by the CGA module. After this modifications, all entries that were added
by the zero padding get changed to one before H(t−1) is multiplied with X(t). The
entries in X(t) that now get multiplied by these padded entries are not changed in
the CGA layer and are just passed through it.

H(t−1)

Convolution

ReLU

BatchNorm

Convolution

Global Average
Pooling

Sigmoid

X(t)

×

Figure 4.4: CGA Module with all relevant computational layers. Shi et al. state that
it is based on self-attention and aims at directing the computation towards
interesting areas of X(t). In this figure × represents the element-wise multi-
plication.

Abstract Flow (AFlow) This module is inspired by the CLI module from SpSe-
quenceNet (Shi et al. 2020) that aims to fuse local information and capture tem-
poral information between two point clouds. Our AFlow module can be seen
as a convolution with an adaptive convolution kernel. This resembles the ideas
presented in Pixel-Adaptive Convolution (Su et al. 2019). Therefore, AFlow is
designed to extract partial differences between X(t) and H(t−1). First, the near-
est neighbors N(v) of each lattice vertex v with v ∈ V (t) in the lattice from the
previous timestep V (t−1) are identified (Fig. 4.5). They are used to generate a
new local value vector x to fuse temporal information and at the same time to
summarize the surrounding area in the previous timestep. The neighbors N(v)

of each lattice vertex are given by the one-hop neighborhood. The neighboring
vectors from V (t−1) are denoted with NH(v). For d = 3 the number of neighbors
is given by |NH(v)| = 8. The value vectors of the vertices in NH(v) are weighted
according to their distance to the value vector xv in X(t). The weight is calculated

24

4.3 Fusion Modules

Figure 4.5: Abstract Flow module: Features from the one-hop neighborhood of the pre-
vious timestep H(t−1) are compared with the center value xv at the current
time. A weighted sum is computed based on the distance and the result is
concatenated with xv and fused using a linear layer and a ReLU. A direction
can also be established in lattice space between the center value and the
most similar value from the previous timestep, yielding a coarse notion of
the movement in the 3D scene. This direction is visualized with an arrow.

as
∀i ∈ NH(v) : wi = (α−min(dist(xv,hi), α)) · β, (4.1)

where hi is the value vector of the i-th neighbor of xv and α and β are learnable
parameters that are initialized with α, β = 0.1. The parameter α impacts the
maximum distance a neighbor can have from the value vector we are evaluating
at the moment, while β controls the maximum value of the resulting value vector.
We denote with dist the Euclidean distance between the value vectors xv and hi.
The AFlow value vectors lv of the matrix L are calculated as

lv =
8∑

i=1

hi · wi. (4.2)

L is then concatenated with X(t) and passed through a linear layer followed by a
non-linearity to get the new value matrix H(t).

25

4 Architecture

The weights calculated in AFlow measure the similarity between values at dif-
ferent timesteps. Similar value vertices that move through time correspond to
moving object in 3D space. In Fig. 4.5 we visualize the design of the module and
the direction between the center value vertex and the most similar value vertex
at the previous timestep. Further experiments with the directionality in 3D space
are discussed in Sec. 5.4.

It is important to note that not all of the neighbors might be initialized due
to the sparse initialization of the lattice. Therefore, all not allocated vertices are
ignored in the calculation of AFlow.

4.4 Network Architectures
The fusion positions (Sec. 4.2) and modules (Sec. 4.3) can be combined arbitrarily.

To distinguish the different architectures the following notation will be used:
The four fusion positions will be separated by a hyphen, e.g. GRU-GRU-AFlow-
GRU refers to a network that has a GRU for the early, middle and late fusion
and a AFlow module for the bottleneck fusion. If one of the fusion positions is
not used a slash is inserted, e.g. GRU-/-/-/ only uses a GRU for the early fusion,
while not utilizing the other fusion positions. The linear and the maxpool module
are represented by LIN and MAX respectively in this definition. As previously
described the network can use an accumulated cloud Pconcat as its input. A network
that uses Pconcat is named ACCUM, but is just a LatticeNet that differs in its input
type.

With six possible fusion modules at four different positions the number of possi-
ble architectures is quite big and has to be reduced by filtering out networks that
have overt difficulties in representing temporal relationships or can be expected to
perform similarly. Therefore, AFlow will only be used for the bottleneck and late
fusion, because the early and middle fusion lack the value dimension to benefit
from the similarity measure in the value space. Additionally, GRU and LSTM
will not be mixed in a network, because they serve the same purpose. Further-
more, only networks that at least utilize three fusion positions, and always utilize
the early and middle fusion, will be examined, because we predict that only using
fewer than two fusion position results in deteriorating classification performance.

26

5 Evaluation
In this chapter, we discuss details regarding the implementation (Sec. 5.1), ex-
plain which dataset is used (Sec. 5.2) and analyze the quantitative (Sec. 5.3) and
qualitative (Sec. 5.4) results.

5.1 Implementation
LatticeNet was implemented by Rosu et al. 2020 and all lattice operators are
exposed to PyTorch (Paszke et al. 2017). All convolutions are pre-activated using
a ReLU unit (He et al. 2016; Huang et al. 2017).

For the lattice scale a σσσ of 0.6 was used, because it is the lowest σσσ that can still
fit into the GPU memory. Additionally, a coarse lattice with σσσ = 0.9 was used for
intermediate tests, that are further explained in Sec. 5.3.

The models were trained using the Adam optimizer (Kingma and Ba 2014;
Loshchilov and Hutter 2017) with a learning rate of 0.001 and a weight decay of
10−4. The learning rate was reduced by a cosine annealing scheduler (Loshchilov
and Hutter 2016). The number of epochs between two restarts was chosen as three,
because it proved effective.

5.2 Dataset
We use the SemanticKITTI (Behley et al. 2019) dataset. It provides 3D LiDAR-
scans from real urban environments and semantic per-point annotations for moving
and non-moving classes. It is based on the KITTI dataset (Geiger et al. 2013).
The annotations are done for a total of 19 different classes in the single scan task
and 25 different classes for the multiple scans task. The classes and corresponding
colors are displayed in Fig. 5.5. The scans vary in size from 82K to 129K points
with a total of 4.549 billion annotated points. Additionally to the x, y and z
coordinates the reflectance values are given for each point. We process each scan
entirely without any cropping. In total the dataset contains 43,552 scans, where
the train split contains 19,130, the validation set 4071 and the test set 20,351
scans.

27

5 Evaluation

Generating Predictions The hyperparameters sequence length n and cloud scope
s,with s ∈ N, have to be chosen for the dataset. For SemanticKITTI s = 3 was
chosen, which means that between clouds in the sequence P two clouds in the
dataset are skipped. The sequence length n defines the cardinality of the input
for the network and was chosen as 3 ≤ n ≤ 5. It is our belief that n < 3 does not
allow the network to aggregate enough information, while n > 5 leads to memory
and time constraints in addition to the problem of vanishing/exploding gradients.
We found that a sequence length of n = 4 worked best for our models.

Data augmentation The training data was augmented for the training to em-
phasize generalization. The methods used for this were random translations in the
direction of the x and z axes, a random rotation around the y-axis, random mirror-
ing of the x and/or z axis and artificial noise. The equivalent data augmentations
were applied to all point clouds within the same sequence.

5.3 Quantitative Results
As described previously (Sec. 4.4) there exists a multitude of possible architec-
tures. Therefore, their number has to be reduced to filter out the potentially
best performing architectures. Additionally, the number of submissions to the
SemanticKITTI competition website1 is limited to ten tries to counteract learning
by heart on the results.

The architectures will be evaluated initially based on the mean Intersection-
over-Union (mIoU) of the validation set, while using a coarse lattice with a scaling
factor σσσ = 0.9 and a shallow network. Afterwards the best ones are chosen and
their results on the test set with the fine lattice are analyzed. If not otherwise
stated we will use the reflectance values of the input clouds P for the feature
matrix F. The validation set was chosen for the tests, because it is not known
to the network during training and the ground truth segmentation is provided,
and the choice of σσσ = 0.9 with a shallow network based on time constraints. The
inference time is a lot smaller in comparison to the fine lattice and allows faster
testing. In previous tests, the performance of the coarse lattice with a shallow
network proved as a good indicator for the performance of the fine lattice.

The resulting mIoU for some of the tested networks are reported in Tab. 5.1.
Overall, the fusion modules LSTM, GRU and AFlow are present in the top per-
forming network configuration. A combination of GRU and AFlow was able to
reach the highest mIoU score. As expected using the AFlow module for the bottle-

1https://competitions.codalab.org/competitions/20331

28

https://competitions.codalab.org/competitions/20331

5.3 Quantitative Results

Table 5.1: Intermediate tests: Results on the validation set of SemanticKITTI for
different recurrent architectures with a scaling factor σσσ = 0.9, a shallow
network and reflectance values as per-point features.

Approach LI
N-

LI
N-

/-
LI

N
G

RU
-G

RU
-/

-G
RU

LS
TM

-L
ST

M
-/

-L
ST

M
LI

N-
LI

N-
AF

low
-L

IN
M

AX
-M

AX
-A

Fl
ow

-M
AX

G
RU

-G
RU

-A
Fl

ow
-G

RU
G

RU
-G

RU
-A

Fl
ow

-A
Fl

ow
LS

TM
-L

ST
M

-A
Fl

ow
-L

ST
M

CG
A-

CG
A-

AF
low

-C
G

A
AC

CU
M

mIoU 42.5 43.2 42.7 41.9 42.2 43.6 42.6 43.2 41.8 40.4

Table 5.2: Results on the test set of SemanticKITTI for selected architectures.
Overall, networks that utilize reflectance as input perform better.

Approach mIoU with
reflectance

LSTM-LSTM-AFlow-LSTM 46.7

GRU-GRU-AFlow-AFlow 46.9

GRU-GRU-AFlow-GRU 47.1
GRU-GRU-/-GRU 44.1

GRU-GRU-AFlow-GRU 42.8 x

LatticeNet-MLP (Rosu et al. 2021) 45.2 x

neck fusion proved advantageous in comparison to omitting it. Still the difference
between LSTM/GRU with and without AFlow is only 0.4/0.5. An explanation for
this would be the distance in value space that is calculated by AFlow: The highest
dimension of the value matrix in the shallow network is 128 in comparison to 256
in the full RNN network as depicted in Fig. 4.2. Additionally, we compare the
fusion modules to the CGA module designed by Shi et al. 2020. It proved overall
worse than the other fusion modules and was therefore not further investigated.
The worst performing network is the ACCUM network, which was expected, since
the network does not utilize the recurrent architecture.

The four best networks from the intermediate tests were retrained with the
fine lattice and the full network. Furthermore, we wanted to analyze the im-
pact of the reflectance as input to the network and due to this, we calculated the
mIoU on the test set of SemanticKITTI for networks that were trained with and
without reflectance values as their input. We report them in Tab. 5.2. LatticeNet-
MLP (Rosu et al. 2021) corresponds to a LIN-LIN-/-LIN network that was trained

29

5 Evaluation

without reflectance values, but was named differently, since these results are al-
ready published. In comparison to the results on the validation set the AFlow
module now makes a clear difference with an improved mIoU of 3.0 points com-
pared to the base-network that only utilizes GRUs. Adding another AFlow layer
at the late fusion instead of an GRU resulted in slightly worse results, which can
be explained by the lower value matrix dimension (192 in comparison to 256 in the
bottleneck) and therefore a worse comparability in the space of the value matrices.
The LSTM-networks performed a bit worse, than their GRU counterparts. This
was already predicted in their definitions in Sec. 4.3.

Without using the reflectance as input, the result for the GRU-GRU-AFlow-
GRU model deteriorated significantly. The reason for this could be that the
reflectance is a very useful feature for distinguishing similar value vectors and
omitting it leads to inferior results. This applies to the other recurrent blocks
as well, albeit not so much, because they rely on different update mechanisms,
which is reflected by the good performance of LatticeNet-MLP in comparison to
GRU-GRU-AFlow-GRU when omitting the reflectance values.

Finally, we need to compare our network’s results to the state-of-the-art on Se-
manticKITTI: We chose the best performing network GRU-GRU-AFlow-GRU and
LatticeNet-MLP. The IoU for 23 of the 25 classes are presented in Tab. 5.32. We
improved performance in relation to the already published architecture LatticeNet-
MLP (Rosu et al. 2021). Our network’s performance is comparable to TemporalL-
idarSeg (Duerr et al. 2020), but is outperformed by KPConv (Thomas et al. 2019)
with a mIoU that is smaller by 4.1 points in comparison to KPConv.

Our networks beat the competition for the classes sidewalk, building, terrain,
pole and moving-motorcyclist. Especially moving-motorcyclist is an important
class for urban scenarios, since they are usually represented by only a fraction of
the points of a car and are quite vulnerable traffic participants. The segmentation
results for vegetation and traffic sign are equal to the previously best reported
results for these classes.

It is important to note that KPConv (Thomas et al. 2019) cannot process the
whole cloud due to memory constraints, but has to rely on fitting multiple spheres
into the cloud to ensure that each point is tested multiple times. The final result is
then determined by a voting scheme, in contrast to our approach that processes the
whole cloud at once with a single prediction per point. TemporalLidarSeg (Duerr
et al. 2020), on the other hand, relies on the spherical projection of the 3D cloud to
perform 2D operations, while our approach is able to utilize the 3D cloud without
any projection.

2We do not report the classes bicyclist and motorcyclist, because no points with these classes
are part of the test set and therefore their IoU is always zero.

30

5.3 Quantitative Results

Table 5.3: State-of-the-art results on SemanticKITTI in comparison to our best
performing network.2

A
pproach

mIoU

car

bicycle

motorcycle

truck

other-vehicle

person

road

parking

sidewalk

other-ground

building

fence

vegetation

trunk

terrain

pole

traffic sign

moving-car

moving-bicyclist

moving-person

moving-motorcyclist

moving-other-vehicle

moving-truck

TangentC
onv

(Tatarchenko
et

al.2018)

34.1
84.9

2.0
18.2

21.1
18.5

1.6
83.9

38.3
64.0

15.3
85.8

49.1
79.5

43.2
56.7

36.4
31.2

40.3
1.1

6.4
1.9

30.1
42.2

D
arkN

et53Seg
(B

ehley
et

al.
2019)

41.6
84.1

30.4
32.9

20.2
20.7

7.5
91.6

64.9
75.3

27.5
85.2

56.5
78.4

50.7
64.8

38.1
53.3

61.5
14.1

15.2
0.2

28.9
37.8

SpSequenceN
et

(Shiet
al.2020)

43.1
88.5

24.0
26.2

29.2
22.7

6.3
90.1

57.6
73.9

27.1
91.2

66.8
84.0

66.0
65.7

50.8
48.7

53.2
41.2

26.2
36.2

2.3
0.1

K
P

C
onv

(T
hom

as
et

al.
2019)

51.2
93.7

44.9
47.2

42.5
38.6

21.6
86.5

58.4
70.5

26.7
90.8

64.5
84.6

70.3
66.0

57.0
53.9

69.4
67.4

67.5
47.2

4.7
5.8

Tem
poralLidarSeg

(D
uerr

et
al.

2020)

47.0
92.1

47.7
40.9

39.2
35.0

14.4
91.8

59.6
75.8

23.2
89.8

63.8
82.3

62.5
64.7

52.6
60.4

68.2
42.8

40.4
12.9

12.4
2.1

LatticeN
et-M

LP
(R

osu
et

al.
2021)

45.2
91.1

16.8
25.0

29.7
23.1

6.8
89.7

60.5
72.5

26.9
91.9

64.7
82.9

65.0
63.7

54.7
47.1

54.8
44.6

49.9
64.3

0.6
3.5

G
R

U
-G

R
U

-
A

Flow
-G

R
U

47.1
91.6

35.4
36.1

26.9
23.0

9.4
91.5

59.3
75.3

27.5
89.6

65.3
84.6

66.7
70.4

57.2
60.4

59.7
41.7

9.4
48.8

5.9
0.0

31

5 Evaluation

Table 5.4: Average time used by the forward pass and the maximum memory used
during training.

SemanticKITTI

[ms] [GB]

LSTM-LSTM-AFlow-LSTM 151 20

GRU-GRU-AFlow-GRU 154 20

GRU-GRU-AFlow-AFlow 159 22

GRU-GRU-/-GRU 140 18

KPConv (Thomas et al. 2019) 225 15

SpSequenceNet (Shi et al. 2020) 477 3

As an ablation study, we wanted to compare the performance of our architec-
tures in comparison to the state-of-the-art (Tab. 5.4). The measurements were
performed on a NVIDIA GeForce RTX 3090 and the inference time was measured
on the validation set. Each AFlow module increases the inference time and mem-
ory consumption, caused by the high number of weights in the AFlow module
and the distance calculation per vertex. We are able to segment the cloud faster
than KPConv (Thomas et al. 2019), because we are able to reuse value matrices
from previous segmentations due to our recurrent architecture. In addition, we are
significantly faster than SpSequenceNet (Shi et al. 2020), which takes more than
thrice as long as our best performing architecture.

32

5.4 Qualitative Results

Figure 5.1: In comparison to SpSequenceNet we are able to better segment stationary
() and moving cars () in small streets with a high number of cars in
the vicinity. SpSequenceNet on the other hand is able to better distinguish
between parking space () and road ().

5.4 Qualitative Results
We recorded a video of the output of our best network for the validation set of
SemanticKITTI. It can be found here3. As a comparison we provide the ground
truth segmentation here4. The colormap for the qualitative results is presented in
Tab. 5.5.

We provide frame-by-frame comparisons between our semantic segmentation
results, the results of SpSequenceNet (Shi et al. 2020) and the ground truth in
Fig. 5.1 and Fig. 5.2. This comparison uses point clouds from the validation
set. We compare our proposed architecture to SpSequenceNet, because it is the
best performing network that provides a working implementation with pre-trained
models5 for SemanticKITTI.

In order to analyze the effects of the AFlow model we mapped the directionality
from lattice space to 3D space to obtain a coarse direction for the movement of the
3D objects within the scene. The coordinates of lattice vertices are approximated
in 3D by the average of the points that contribute to them. In Fig. 5.3 we show one
car at two different timesteps. For each relevant lattice vertex in 3D we draw an
arrow that shows the most similar feature from the current timestep towards the
previous one. We see that for the car driving towards the left, the directionality

3https://uni-bonn.sciebo.de/s/sjYJ3HTXeUvdmZS
4https://uni-bonn.sciebo.de/s/rNvJrxEvGLojcMM
5https://github.com/dante0shy/SpSequenceNet

33

https://uni-bonn.sciebo.de/s/sjYJ3HTXeUvdmZS
https://uni-bonn.sciebo.de/s/rNvJrxEvGLojcMM
https://uni-bonn.sciebo.de/s/sjYJ3HTXeUvdmZS
https://uni-bonn.sciebo.de/s/rNvJrxEvGLojcMM
https://github.com/dante0shy/SpSequenceNet

5 Evaluation

Figure 5.2: In comparison to SpSequenceNet we are able to better segment moving-
bicyclists (), a quite challenging class due to the small number of points
per object.

from AFlow corresponds to the inverse of the driving direction and therefore, the
module was able to extract the direction.

A failure case of our architecture are potentially moving objects, which are
waiting/standing still for an amount of time that exceeds our temporal scope. In
the SemanticKITTI dataset this applies for cars that are waiting at crossroads
— a situation quite common in urban scenarios. Examples of this are presented
in Fig. 5.4 and Fig. 5.5. This should not result in problems for an autonomous
agent that takes actions based on this segmentation, because the object actually
is standing still and is correctly classified as moving once it starts driving again.
This leads to worse results on the IoU of the class moving-car (Tab. 5.3). A larger
temporal scope might give the network the ability to track the object as moving.
However, an important consideration is that after remaining still for a period of
time a car might actually be parked and will not start moving again in the near
future. To distinguish between parking and waiting the network has to learn the
correspondence between road and car. A waiting car is on a road, while a parked
car is on parking areas or close to sidewalks.

34

5.4 Qualitative Results

Figure 5.3: Visualization of the AFlow module on the segmentation: Birds-eye view of
the same car at two different timesteps. The correspondence between the
car in the previous timestep () and the current timestep () is made by
the module and therefore the car is correctly segmented as moving-car ().

(a) Ground truth segmentation.

(b) Predicted segmentation.

Figure 5.4: Failure case: The prediction fails for the car on the left side, because it is
predicted as car () instead of moving-car (). The reason for this is that
the car is waiting at the crossroads for many timesteps.

35

5 Evaluation

(a) Car is driving towards the junction.

(b) Car is waiting at the junction.

Figure 5.5: Failure case: While the car is driving towards the junction most of its points
are segmented correctly as moving-car (). While it is waiting at the junc-
tion our network classifies it as stationary car (), because it did not move
for an amount of time.

Table 5.5: The colormap used for the visualization of SemanticKITTI. They follow
the colors proposed by the authors.
Class label Color

unlabeled
car
bicycle
motorcycle
truck
other-vehicle
person
bicyclist
motorcyclist
road
parking
sidewalk
other-ground

Class label Color
building
fence
vegetation
trunk
terrain
pole
traffic-sign
car (moving)
bicyclist (moving)
person (moving)
motorcyclist (moving)
truck (moving)
other-vehicle (moving)

36

6 Conclusion
In this thesis we presented a novel extension to LatticeNet that is able to pro-
cess sequences of point clouds as its input and can successfully segment moving
from non-moving objects. We achieved competitive results on the SemanticKITTI
dataset for the multiple scan task. While we are only the second best performing
network w.r.t. mIoU, we are able to predict the classes for every cloud faster than
the best approach KPConv.

To integrate temporal information, we successfully extended LatticeNet to a
RNN. This is achieved by adding four fusion positions at different depths in the
LatticeNet architecture, which can be arbitrarily combined with six fusion mod-
ules. These modules vary in complexity from a basic MLP to the novel AFlow mod-
ule that uses neighboring vertices from the hidden state to extract the movement
direction in the lattice space. Our best performing network uses a combination of
GRU modules with an AFlow fusion module.

Our network is able to segment moving and non-moving classes. LatticeNet-
MLP provides significantly better results on the class moving-motorcyclist than
the competitors. Distinguishing moving from stationary objects is still a challenge
for our network. We observed that our best-performing network is unable to model
the correspondence between road and car, which inhibits it from distinguishing
between waiting and parked cars.

In the future, we would like to test our temporal architectures on additional
datasets that provide sequentially captured point clouds and ground truth seg-
mentation for stationary and moving objects. With these we would like to further
investigate which type of classes are problems for our network and how it can be
changed to improve our performance on them. Motivated by CLI, our proposed
AFlow module demonstrated its capability to capture temporal feature correspon-
dences, which align well with the actual scene movement. Based on these obser-
vations, we propose that further research into recurrent networks, which explicitly
utilize temporal fusion based on scene flow, could be appropriate.

37

List of Figures
2.1 Permutohedral lattice for d = 2. 4
2.2 Computational graph of a many-to-many RNN. 6
2.3 Different architectures for RNNs known as Deep RNNs. 7
2.4 The structure of a LSTM cell and a GRU. 9
2.5 Architecture of LatticeNet. 10
2.6 Fine and coarse lattice comparison. 10
2.7 Neighborhood in a lattice. 11
2.8 Convolution on lattices. 11
2.9 Distribute operation of LatticeNet. 12
2.10 Lattice storage and the resulting temporal correspondence. 13

4.1 Abstract overview of the segmentation pipeline. 20
4.2 Recurrent architecture. 22
4.3 Temporal fusion. 23
4.4 CGA module. 24
4.5 Abstract Flow module. 25

5.1 Visual comparisons to SpSequenceNet: Cars. 33
5.2 Visual comparisons to SpSequenceNet: Bicycles. 34
5.3 Visualization of the AFlow module on the segmentation. 35
5.4 Failure case: Cars waiting at crossroads. 35
5.5 Failure case: Car drives towards crossroad. 36

39

List of Tables
5.1 Intermediate tests on the validation set with a coarse lattice and a

shallow network. 29
5.2 Results on the test set for selected architectures. 29
5.3 State-of-the-art results on SemanticKITTI in comparison to our

best performing network. 31
5.4 Average time used by the forward pass and the maximum memory

used during training. 32
5.5 Colormap of SemanticKITTI. 36

41

Bibliography
Adams, Andrew, Jongmin Baek, and Myers Abraham Davis (2010). “Fast High-

Dimensional Filtering Using the Permutohedral Lattice”. In: Computer Graphics
Forum. Vol. 29. 2. Wiley Online Library, pp. 753–762.

Behley, Jens, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill
Stachniss, and Jürgen Gall (2019). “SemanticKITTI: A Dataset for Semantic
Scene Understanding of LiDAR Sequences”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 9297–9307.

Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio (2014). “Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Transla-
tion”. In: Arxiv preprint arxiv:1406.1078.

Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio (2014).
“Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Mod-
eling”. In: arXiv preprint arXiv:1412.3555.

Duerr, Fabian, Mario Pfaller, Hendrik Weigel, and Jürgen Beyerer (2020). “LiDAR-
based Recurrent 3D Semantic Segmentation with Temporal Memory Align-
ment”. In: Intl. Conf. on 3D Vision (3DV). IEEE, pp. 781–790.

Geiger, Andreas, Philip Lenz, Christoph Stiller, and Raquel Urtasun (2013). “Vi-
sion meets robotics: The KITTI dataset”. In: The International Journal of
Robotics Research (IJRR) 32.11, pp. 1231–1237.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT
press.

Gu, Xiuye, Yijie Wang, Chongruo Wu, Yong Jae Lee, and Panqu Wang (2019).
“HPLFlowNet: Hierarchical Permutohedral Lattice FlowNet for Scene Flow Es-
timation on Large-scale Point Clouds”. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3254–3263.

Guo, Yulan, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Ben-
namoun (2020). “Deep Learning for 3D Point Clouds: A Survey”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Identity map-
pings in deep residual networks”. In: European Conference on Computer Vision
(ECCV). Springer, pp. 630–645.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”.
In: Neural Computation 9.8, pp. 1735–1780.

43

https://arxiv.org/abs/1906.05332
https://arxiv.org/abs/1906.05332

Bibliography

Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger
(2017). “Densely connected convolutional networks”. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic opti-
mization”. In: Arxiv preprint arxiv:1412.6980.

Kirillov, Alexander, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollár
(2019). “Panoptic segmentation”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 9404–9413.

Liu, Xingyu, Charles R Qi, and Leonidas J Guibas (2019). “FlowNet3D: Learning
Scene Flow in 3D Point Clouds”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 529–537.

Loshchilov, Ilya and Frank Hutter (2016). “SGDR: Stochastic gradient descent
with restarts”. In: Computing Research Repository (CoRR) abs/1608.03983.

– (2017). “Fixing weight decay regularization in adam”. In: Computing Research
Repository (CoRR) abs/1711.05101.

Mayer, N., E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox
(2016). “A Large Dataset to Train Convolutional Networks for Disparity, Optical
Flow, and Scene Flow Estimation”. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Menze, Moritz and Andreas Geiger (2015). “Object Scene Flow for Autonomous
Vehicles”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Mittal, Himangi, Brian Okorn, and David Held (2020). “Just Go with the Flow:
Self-Supervised Scene Flow Estimation”. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 11177–11185.

Mohan, Rohit and Abhinav Valada (2020). “EfficientPS: Efficient Panoptic Seg-
mentation”. In: International Journal of Computer Vision (IJCV) 129, pp. 1551–
1579.

Olah, Christopher (2015). Understanding LSTM Networks. https : / / colah .
github.io/posts/2015-08-Understanding-LSTMs/. Accessed: 2021-09-17.

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer
(2017). “Automatic Differentiation in PyTorch”. In: NIPS Autodiff Workshop.

Rosu, Radu Alexandru, Peer Schütt, Jan Quenzel, and Sven Behnke (2020). “Lat-
ticeNet: Fast Point Cloud Segmentation Using Permutohedral Lattices”. In: Pro-
ceedings of Robotics: Science and Systems (RSS).

– (2021). “LatticeNet: Fast Spatio-Temporal Point Cloud Segmentation Using
Permutohedral Lattices”. In: Autonomous Robots (AURO).

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986). “Learning
representations by back-propagating errors”. In: Nature 323.6088, pp. 533–536.

Shi, Hanyu, Guosheng Lin, Hao Wang, Tzu-Yi Hung, and Zhenhua Wang (2020).
“SpSequenceNet: Semantic Segmentation Network on 4D Point Clouds”. In:

44

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://pdfs.semanticscholar.org/b36a/5bb1707bb9c70025294b3a310138aae8327a.pdf

Bibliography

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4574–
4583.

Su, Hang, Varun Jampani, Deqing Sun, Orazio Gallo, Erik Learned-Miller, and
Jan Kautz (2019). “Pixel-adaptive convolutional neural networks”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11166–
11175.

Tatarchenko, Maxim, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou (2018).
“Tangent convolutions for dense prediction in 3D”. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3887–3896.

Thomas, Hugues, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui,
François Goulette, and Leonidas J. Guibas (2019). “KPConv: Flexible and De-
formable Convolution for Point Clouds”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Vedula, Sundar, Simon Baker, Peter Rander, Robert Collins, and Takeo Kanade
(1999). “Three-Dimensional Scene Flow”. In: Proceedings of the Seventh IEEE
International Conference on Computer Vision. Vol. 2. IEEE, pp. 722–729.

Wu, Bichen, Alvin Wan, Xiangyu Yue, and Kurt Keutzer (2018). “SqueezeSeg:
Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object
Segmentation from 3D LiDAR Point Cloud”. In: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE, pp. 1887–
1893.

Xiong, Yuwen, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, and
Raquel Urtasun (2019). “UPSNet: A Unified Panoptic Segmentation Network”.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 8818–8826.

45

https://lmb.informatik.uni-freiburg.de/Publications/2018/Tat18/

	Introduction
	Fundamentals
	Notation
	Permutohedral Lattice
	Recurrent Neural Networks
	Deep RNNs
	The challenge of long-term dependencies

	LatticeNet
	Input
	Extended Notation
	Selected Operations on Permutohedral Lattice
	Temporal Correspondence

	Scene Flow

	Related Work
	Architecture
	Method
	Fusion Positions
	Fusion Modules
	Network Architectures

	Evaluation
	Implementation
	Dataset
	Quantitative Results
	Qualitative Results

	Conclusion

