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Abstract
The motivation of this thesis is to create a system that navigates multiple robots
around in a known indoor environment. An application example of such a system
would be medicine delivery in a hospital, document delivery, or visitor accompa-
niment in an office complex.

The problem of indoor robot navigation includes such challenges as localization,
path planning, and collision avoidance. In our case, robots have to move in the
same environment with humans and other robots. This complicates localization:
a human can appear between the robot and a tracking base station; and collision
avoidance: the robot must predict human behavior to drive around humans.

We developed the navigation software that implements concepts of lane division
and future prediction. The lane division module divides each corridor into lanes.
This allows making collision avoidance easier. Future prediction relies on a prob-
abilistic human motion model. Given that the robot knows how humans usually
move, it predicts which lanes may be blocked in the future and chooses the safest
lane to follow.

We implemented a hardware prototype using a DJI Robomaster S1 robot and
SteamVR tracking and evaluated our system in simulation and with real-world
experiments.
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1 Introduction
Robot navigation is a challenging field of robotic systems development and it re-
quires new and more efficient solutions while the amount of applications of the
mobile robots is increasing constantly. In warehouses, hospitals, industrial and
office premises application of mobile robots has become more and more advanta-
geous with the continuous improvement of robotic systems.

Recent works in this field are devoted to the development and improvement of
algorithms that are able to predict accurately the consequences of robot movements
and actions, including interaction with people and other robots.

The realization of the motion planning algorithms requires significant computa-
tional resources for assuring fast and safe path planning. Efficient path planning
algorithms should be realized using minimal computational costs. At the same
time, the strongest priority of such systems is the safety of all actors: people, the
robot itself, other robots, other objects and property.

Road lane division techniques are rapidly developing in the last years with the
introduction of self-driving cars. These techniques are widely used in autonomous
driving for navigation and path planning as far as they are naturally inherited
from roads with human-driven cars. Lane division dramatically simplifies the
navigation and path planning problems in self-driving. While similar navigation
tasks for robots are arising in indoor environments, the velocity rates and scene
complexity are generally lower. The navigation techniques used for self-driving
cars can be also successfully applied to indoor-navigating robots.

In this thesis, we developed a robot navigation system with the ability to predict
the behavior of other actors and plan a safe and efficient trajectory. As far as the
system has a reasonable human motion model for human motion prediction and is
itself predictable, it can be used for the creation of a people-friendly multiple-robot
environment.

Solutions for localization, path planning, and collision avoidance problems are
introduced in this thesis. The novelty of this work is the adaption of the lane-
division and future prediction techniques to the indoor environment. The offered
system is called up to assure safe and efficient robot path planning.

In Chapter 2 we first introduce related works regarding the techniques used in
this thesis.
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1 Introduction

In Chapter 3 we describe the proposed method. The first section is related to
the hardware prototype and the control pipeline. The second one to the navigation
system and the simulator.

Chapter 4 is dedicated to the description of system tests and their results. The
tests include software tests of the simulator and hardware tests of the prototype.

We conclude the thesis in Chapter 5 where we summarize the evaluation results
and point out the drawbacks and possible improvements.
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2 Related Work

In this section, we review the related works from several research domains, i.e.
robot navigation, path planning, collision avoidance, future prediction, self-driving,
lane-changing, and robot operating system.

2.1 Path Planning Algorithms
Traditional path planning algorithms have been developing since 1959 when E.W.
Dijkstra published his paper (Dijkstra 1959). The now called Dijkstra Algorithm
finds the shortest path between two given nodes in the graph.

The A* search algorithm is an extension of Dijkstra’s algorithm. A* reduces
the total number of explored states using a heuristic estimate of the cost to get
to the target point from a given starting point. Hart et al. (1968) draw together
the mathematical approach and the heuristic approach of finding a path through
a graph.

Artificial potential field concept (Khatib 1985) represents the moving robot as
an object influenced by a potential field, which attracts the robot to its target
while repelling it from the obstacles. The method is applicable to the moving
obstacles. For processing the moving obstacles the authors use a time-varying
artificial potential field.

Probabilistic Road Maps (PRM) (Kavraki et al. 1996) is a planning method for
robots in static workspaces which effectively explores large and complex spaces.

PRM method is implemented in two steps: a learning step and a query step. In
the learning step, a probabilistic road map is constructed and stored as a graph.
The nodes of the graph correspond to collision-free configurations and the edges
correspond to paths between these configurations. In the query step, any given
start and target configurations of the robot are represented by two nodes of the
roadmap. The roadmap is then searched for a path that leads from one node to
the other.

The concept of Rapidly-exploring Random Trees (RRT) was introduced by
LaValle (1998). RRT algorithm randomly builds a tree, which branches randomly
towards unsearched areas. The path is extracted from that tree. RRT is imple-
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mented as a path planning module, which can be incorporated into a wide variety
of planning systems.

Karaman and Frazzoli (2010) further developed the RRT algorithm and intro-
duced RRT*. The RRT* algorithm rebuilds the tree structure after inserting new
nodes as it looks for new lower-cost paths between the nodes that are already in
the tree.

LaValle (2006) provides a survey of the motion planning algorithms. The author
gives a definition of the basic motion planning problem as to find a path from a
start point to a target point in an obstacle-free space and describes fundamentals
of the robot and obstacle modeling in 2D and 3D worlds.

Among the other LaValle (2006) reviews following general search schemes: best
first, iterative deepening approach, backward search, bidirectional search.

Grid-based methods are widely used for cost-optimal robot path planning. Us-
age of these methods becomes intractable when the resolution of the grid is high.
A local multiresolution path planning algorithm (Behnke 2004) provides signifi-
cant savings in computational costs combined with high accuracy of planning of
the initial parts of the paths.

2.2 Lane Division and Lane Changing
As far as one of the main ideas of this thesis is using lane division and lane changing
for indoor robot navigation, we have studied existing papers in the related field
of self-driving vehicles, where lane changing is one of the core techniques. Self-
driving vehicles are an important application of robotics and one of the main
industry drivers. Self-driving technology requires automation of driving tasks such
as safe lane following, obstacle avoidance, overtaking slower traffic, following the
vehicle ahead, assessing and avoiding dangerous situations, and determining the
route. According to Chakraborty (2021), the most noteworthy are self-driving
technologies created by Tesla, Waymo, Pony.ai, Volvo, and Voyage.

The problems that arise in a self-driving domain are similar to indoor navigation
problems, but they appear much stronger, taking into consideration the complexity
of the roads, the variety of the involved actors and their behaviors, high speeds and
masses of the vehicles, and emerging risks. At the same time, a lot of solutions in
the field are already designed, tested, approved, and used. “An intelligent vehicle
able to assess the driving scenario and react in case of danger would allow up to
90% of traffic accidents that are caused by human errors to be eliminated” (Broggi
et al. 2008).

The authors describe the following technologies which are indispensable for im-
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2.2 Lane Division and Lane Changing

plementation in self-driving vehicles: recognition of the other vehicles, work with
digital maps and satellite navigation, communication with intelligent transporta-
tion infrastructure, road scene understanding, collision avoidance, lane keeping,
and parking assistance. These technologies can be realized by combining two con-
cepts: gathering the information by the cameras/sensors built into the vehicle,
and exchanging the information coming from infrastructure and other vehicles.

The abovementioned concepts are useful for our work as far as they are well
transferred to the indoor environment, where information from cameras and sen-
sors of the robot can be combined with information obtained from the external
sources, e.g. SteamVR base-stations.

As far as the self-driving industry is rapidly developing, its solutions can be
adopted in the related domains, including indoor robot navigation or seamless
indoor to outdoor robot navigation. (Robotics 2020. Multi-Annual Roadmap for
Robotics in Europe. Horizon 2020 2015) among the wide range of reviewed tech-
nologies pays attention to both indoor and outdoor navigation domains. Among
other topics, this work covers the operation of robots in close proximity to humans.

During the last 10 years, there were published a lot of papers in the field,
addressing specific problems and offering solutions. E.g. Brechtel et al. (2011)
present a method for high-level decision making in traffic environments. The
method employs Markov Decision Process (MDP) to plan the optimal decision-
making policy by assessing the outcomes of actions. Decisions are deduced from
the knowledge about the behavior of the road users.

Ulbrich and Maurer (2015) present an approach for tactical behavior planning
for lane changing in a planning horizon in between 100 ms and 30 s (see Fig. 2.1).

Figure 2.1: Typical scenario for lane change decision making with two dynamic objects
and three regions of interest rear left (RL), front left (FL) and front ego (FE)
(Ulbrich and Maurer 2015)

Xu et al. (2012) propose a dynamic cooperative lane-change maneuver, aiming
to maintain safety both on the early stage of lane-change maneuver and during
the lane-change process. We have considered such complex maneuvering, but in
the case of indoor robot navigation, this is an overcomplication. Nevertheless, it
is a possible extension, that can be used in some indoor environments.

Scheel et al. (2018) studied understanding of complex and dynamic scenes by
self-driving vehicles for the planning of maneuvers, especially for the lane chang-
ing. Scheel et al. (2018) proposed a situation assessment algorithm for classifying
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driving situations with respect to their suitability for lane changing using deep
learning architecture based on a Bidirectional Recurrent Neural Network.

Killing et al. (2021) studied situations in which there are no well-defined traffic
rules available and introduce a “high-conflict driving scenario requiring negoti-
ations between agents of equal rights and priorities”. The proposed scenario is
modeled as a decentralized partially observable Markov Decision Process (dec-
POMDP) (F.A. Oliehoek 2015). In our work, we encountered a similar problem,
which led to the agent oscillation (see Sec. 4.2.2).

2.3 Future Prediction and Collision Avoidance
In this chapter, we review papers concerning motion trajectory prediction, collision
avoidance, and social behavior aspects of robots and humans moving in a common
environment. As far as in the considered indoor environments moving robots
interact with humans, we reviewed the papers in the field of human movement
patterns and robot-human social behavior.

Bennewitz et al. (2005) propose a technique for studying the typical motion pat-
terns of people. The information about such motion patterns is used for improving
mobile robot navigation and path planning. A Hidden Markov Model was applied
to estimate the current and future positions of persons based on sensory input.

Ziebart et al. (2009) offered an approach for determining robot movements that
efficiently accomplish the robot’s tasks while not hindering the movements of peo-
ple within the environment. Authors model the sequence of actions that lead to a
person’s future position using a deterministic Markov Decision Process over a grid
representing the environment.

Kirby (2010) studied human-human interaction and applied the discovered prin-
ciples to human-robot interaction. It is argued that “robots should behave accord-
ing to human social principles”.

The author developed mathematical models of human behavior, in such a way as
to allow a robot to follow similar conventions when navigating through hallways.
The human social conventions for movement are represented in the discussed mod-
els as a set of mathematical cost functions: “Robots that navigate according to
these cost functions are interpreted by people as being socially correct”. Paper
demonstrates how the resulting behaviors follow human social norms and further
describes “how the behaviors can be altered to produce different social “personal-
ities”, such as extremely deferential (always moving to the right out of a person’s
way) or more aggressive (continuing to face a person while passing)”.

The prediction of the future motion of dynamic actors is well studied in the
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literature. Lefevre et al. (2014) review classical methods, including Physics-based,
Maneuver-based, and Interaction-aware motion models and highlight algorithms,
which focus on the most relevant trajectories to speed up the computation.

Paden et al. (2016) survey the current state-of-the-art planning and control
algorithms with particular regard to the urban setting and review the effectiveness
of the proposed techniques. The paper overviews the decision-making hierarchy
of self-driving vehicles, modeling for planning and control, motion planning, and
vehicle control.

Chen et al. (2018) studied robot navigation in pedestrian-rich environments and
emphasized the importance of modeling human behaviors and navigation rules
(e.g., passing on the right). Using deep reinforcement learning the authors de-
veloped a time-efficient navigation policy that respects common social norms and
presented the socially aware multiagent collision avoidance algorithm with deep
reinforcement learning (SACADRL). The authors first described a strategy for
shaping normative behaviors for a two-agent system in the RL framework and
then generalized the method to multiagent scenarios.

Tang and Salakhutdinov (2019) introduce a probabilistic framework that effi-
ciently learns latent variables to jointly model the multi-step future motions of
agents in a scene. Presented Multiple Futures Predictor (MFP) is a probabilistic
latent variable model that learns directly from multi-agent trajectory data. The ef-
fectiveness of MFP was checked using CARLA simulator (Dosovitskiy et al. 2017)
and confirmed by an experiment on a standard dataset of real vehicle trajectories,
the NGSIM dataset (Colyar and Halkias 2007).

Rudenko et al. (2020) provide a detailed survey in the field of human motion
trajectory prediction. The authors also summarize the state-of-the-art and discuss
the inherent strengths and limitations of different classes of approaches.

2.4 ROS
We used the open-source robot operating system (ROS) as a middleware for com-
munication between sub-modules (tracking node, ROS controller, and Mapsim)
and also for managing the coordinate frame transforms. Therefore, we are inter-
ested in studies connected to the usage of ROS.

Quigley et al. (2009) give an overview of the developed Robot Operating System
(ROS) which provides a communication layer above the host operating system.
The authors compare ROS with existing robot software frameworks and overview
some application software that uses ROS.

Allgeuer et al. (2018) introduce the NimbRo-OP - an open humanoid platform
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developed by team NimbRo of the University of Bonn. They describe a software
framework for the NimbRo-OP that is based on the Robot Operating System
(ROS) middleware. The software provides functionality for hardware abstraction,
visual perception, and behavior generation, and has been used to implement basic
soccer skills. The NimbRo-OP robot was tested and demonstrated in the setting
of humanoid soccer (i.e. RoboCup).

Tsardoulias and Mitkas (2017) describe ROS as a framework targeted for writing
robot software. ROS includes a large number of tools, libraries, and conventions
that aim for complexity reduction in writing complex and robust robotic software.

ROS includes a large number of tools for software development, robot manage-
ment, and communication. Software development tools include powerful visualiza-
tion programs as rviz and rqt. Robot management modules include localization,
mapping, navigation, and other algorithms. Communication infrastructure is a
low-level message passing interface. Apart from the message-passing functional-
ity, it supports the recording and playback of messages via the rosbag tool, remote
procedure calls, and a distributed parameter system.

8



3 Method
This chapter consists of two parts. In the first part, we describe the hardware
prototype of the navigation system. The second one is dedicated to the planner
and the use of lane division and future prediction.

3.1 Robomaster
In this section, we will describe all the components of our hardware prototype
along with their specifications. We will show the data flow and describe, how the
components are interconnected.

3.1.1 Setup
The setup of the hardware prototype is composed of a robot, which has to navigate
through an environment, obstacles that the robot has to avoid, a tracking system
that tracks the positions of both the robot and the target, and a Mapsim controller
that will be described in Sec. 3.2 of the thesis.

The hardware components used to realize this prototype are the DJI Robomaster
S1, a SteamVR tracking system, a Linux system with ROS, a Windows system
with DJI native controller, and a router connecting the subsystems together (see
Fig. 3.1).

The command pipeline works as follows:

• The simulator that is running on a Linux machine analyzes the robot’s sur-
roundings and decides where the robot should go (see Sec. 3.2.1). The sim-
ulator generates the world frame coordinates of a waypoint the robot should
navigate to and publishes the coordinates to ROS.

• ROS node controller compares the robot and the waypoint coordinates to
generate a movement vector (see Sec. 3.1.4).

• By communicating with the Windows machine via websocket, the vector is
sent to the DJI Robomaster application, which sends the data to the robot
(see Sec. 3.1.5).

9



3 Method

(a) DJI Robomaster S1. (b) Steam VR tracking system. (c) Windows machine with
DJI controller.

(d) Linux machine with ROS
and Mapsim.

(e) Smartphone with WiFi
Hotspot.

Figure 3.1: Components of our system.

• After receiving the motion command, the robot moves in the direction of the
waypoint.

• This movement is tracked by the SteamVR tracking system (see Sec. 3.1.3).
Tracking data is collected by the tracker and sent to the Linux machine via
a Bluetooth dongle, where the SteamVR application manages the incoming
data.

• The data is then accessed and published to ROS by an openvr_tracking
ROS node.

• The published odometry is then used by the simulator for replanning.

3.1.2 Robot
For the purpose of testing the proposed solution we chose a DJI Robomaster S1
robot. The robot is based on an omnidirectional platform, equipped with a camera
and WiFi adapter.

The Robomaster S1 is a tank-like wheeled rover remotely controlled via Wi-
Fi from an app on Microsoft Windows, Apple iOS, and Google Android mobile

10



3.1 Robomaster

Figure 3.2: System setup with data flow

Table 3.1: Robomaster S1 specifications.

Dimensions (L×W×H) 320×240×270 mm
Weight Approx. 3.3 kg

0–3.5 m/s (forward)
Chassis Speed Range 0–2.5 m/s (backward)

0–2.8 m/s (sideward)
Max Chassis Rotational Speed 600 ◦/s

Max Motor Output Power 19 W
Battery Capacity 2400 mAh

Battery Life in Use 35 minutes

devices. It was designed to be an advanced educational robot, so the user has to
assemble it from loose parts out of the box.

The robot can only be controlled by a DJI Robomaster application (the problem
is described in 3.1.5) that is available on a smartphone or a Windows PC. There are
two ways of connecting the robot: direct connection or connection via a router.
Since the Windows machine has to also be connected to the Linux machine, a
router was used to connect the robot.

11



3 Method

3.1.3 Tracking
To successfully apply the method to the prototype we need to know the location
of the robot and the obstacle. Tracking is realized by the means of SteamVR. For
the prototype testing, we use two HTC Vive trackers 2.0 and four SteamVR Base
Stations 2.0 mounted around the testing area.

The HTC Vive Tracker is a small circular device that has 18 IR sensors that
monitor its orientation and position along the X, Y, and Z axes. These sensors
are located around the top surface of the tracker to maximize tracking accuracy.
There are three protruding parts on the top of the tracker that have the sensors
at different angles. The prototype setup includes one robot and one obstacle, so
we have a tracker mounted on top of each of them.

According to the producer’s specification, four base stations cover the area of
10× 10m. The base stations have a field of view of 150◦×110◦. They are mounted
in the corners of the testing area, directed into the center of the room, overlapping
at the region of interest, where the robot is tested. Overlapping is required for the
tracking to stay consistent if some of the base stations get obstructed.

SteamVR software is running on the Linux system and receives data from both
trackers via Bluetooth. Then openvr_tracking module takes the tracking data
from SteamVR and sends it into ROS as an Odometry message.

The received messages are in a base station frame, which is initialized inside
one of the base stations, so we never can reliably say where the frame origin is
located and where the base axes are pointed. To solve this we wrote a calibration
module, which is run after the start of the SteamVR. We drive the robot around
while recording the coordinates. After that, we fit a plane to the data and we can
arbitrarily pick the origin point and X axis direction. Finally, we calculate the
transform from the base station frame to the new world frame.

After calibration is done we use the calculated transform to transform all the
incoming data to the world frame before processing. The odometry is then sent to
Mapsim for path calculation and to the ROS controller node for control commands
computation.

3.1.4 ROS controller
The controller node is responsible for transforming the waypoint coordinates into
motion commands and sending them to the DJI controller. The node listens to
tracking and simulator ROS topics. The simulator callback resets the target to
new waypoint coordinates and a new target yaw angle. The tracking callback
triggers a recalculation of the motion and rotation commands and sends the data
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3.1 Robomaster

to the DJI controller.
First, to calculate the motion command, the angle from the robot to the target Θ

is calculated relative to robot’s heading direction. Vrobot is a vector that describes
robot’s heading direction in the world frame. Vtarget is a vector from the robot to
the target in the world frame:

Θ = sign(Vrobot × Vtarget)
arccos(Vrobot ∗ Vtarget)

||Vrobot|| · ||Vtarget||
(3.1)

Then we take a unit vector that describes the angle Θ and multiply it with the
PD control. The PD control (C) is calculated as follows, where G stands for gain,
T is target coordinates, R is robot coordinates, and S is the robot’s velocity:

C = Gp · ||T −R||+Gd · abs(S) (3.2)

The robot’s velocity is given by odometry from the tracker. The PD controller
is used here to slow down the robot in advance so that it does not overshoot its
target. Since the vector of length 1 describes the full throttle, it is then capped at
1.

The rotation command (R) is given by the difference between the robot’s angle
(Θrobot) and the target angle (Θtarget) and a control coefficient (C):

R = (Θrobot −Θtarget) · C (3.3)

Lastly, the websocket message is constructed. The message consists of 4 values
separated by a space: two values for each of two virtual control sticks. The first
two values are sagittal and lateral movements, the third is looking up and down,
so it is always set to 0, and the fourth is left and right rotation.

The websocket is now used to send the message to the DJI controller.

3.1.5 DJI controller
There is no API for the robot control, it is encrypted and is only available via
DJI ‘Robomaster’ application. The application is available on smartphones and
Windows. We used a Windows application and modified it to enable robot control
from ROS.

The application is written in the Unity game engine on C#. We used a decom-
piler ‘dnspy’ to decompile the controller and add our own code to it. The main
.dll that contains the core code is called Assembly-CSharp.dll. We merged it with
a WebSocketServer.dll (Mazlov 2019) which realizes a websocket server on C#.

13
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We added a class WebSocket to the {-} namespace, where we implemented the
use of the websocket: we receive messages from a client and parse them as control
commands, and send confirmations back.

In the code, we located two important places. One being the creation of the
Controller class, which is called only once when the program starts. We create
an instance of our WebSocket class there. The other is where the Controller gets
input from the keyboard and sends it to the robot. We intercept the keyboard
data and switch it to the data from the websocket.

The movement function is still called only if there is any keyboard input, but we
use it as a failsafe. We hold a button while the robot is moving and if something
goes wrong, it is easy and fast to release a button to make the robot stop.

We use a python websocket module in a ROS node to connect to and com-
municate with the DJI Robomaster app. The server is running on the Windows
machine, so we can connect and reconnect as a client without having to restart
the DJI app. From this ROS node, we send the velocity information to the DJI
controller. The information stays relevant until the next message arrives or until
one second passes. If for some reason a connection with ROS is broken, the robot
stops in one second.

3.2 Mapsim
In this section, we describe the planning part of our method. We describe the use
and benefits of the lane division and future prediction techniques.

3.2.1 Simulator
This software is used by the robot to determine its movement, so the robot will
have to intelligently react to its surroundings. So the first thing to do in creating
this software is creating a simulator that will represent the map, the robot, and
the obstacles.

To implement the software in python we used two libraries: pygame and net-
workx.

Pygame is a library created for the purpose of game development, but it perfectly
suits our needs. It includes a drawing module, which displays the simulated map
in a window. The simulator runs as a game with continuous change in its parts
and pygame provides the looping for this constant iteration.

Networkx is a module that provides graph functionality. We define nodes, edges,
and connections and assign them properties. Nodes have just one property –
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3.2 Mapsim

coordinates. Edges have 12 properties, describing the connected nodes, width,
length, amount of lanes, lane width, and corridor orientation.

Networkx is also providing functionality for finding the shortest routes on the
graph, for which the weight of each edge is specified by the ‘length’ parameter.

Corridor orientation is described by two angles, which are calculated in the
equations below. ”Start” and ”end” are nodes of the edge, here their sequence is
important, so directionality of the edge is stored as a parameter.

Θacross = atan2(Xstart −Xend, Yend − Ystart) (3.4)
Θalong = atan2(Ystart − Yend, Xstart −Xend) (3.5)

The sin and cos of these angles are changed only during the creation of the map
but are frequently used at runtime, so it makes sense to calculate those only when
the map is changed and store as edge parameters.

The angle parameters are used at runtime to convert the coordinates between
the world and corridor coordinate frames. Each corridor has its own frame that
is described by distances across and along the corridor. The origin is located in
the corridor corner to the left hand side of the start node, facing towards the end
node (see Fig. 3.3).

Figure 3.3: Coordinate frames. World coordinate frame described with X and Y, corridor
coordinate frame described with Along and Across.

To represent the map we use a graph structure, where each corridor is repre-
sented by a graph edge and a node is placed in each corridor intersection. An
example of such a graph is shown in Fig. 3.4a. The program loads the graph from
a file, where all the coordinates of nodes and all the connections are specified.

For user convenience, we added some functionality to change the graph numer-
ically (via loadable file representation of a graph) and by hand (at runtime). The
graph is saved as a .txt file, in which every line is a new object. Lines start with
a keyword that is followed by the parameters of a specific object. If a line starts
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(a) Map layout. (b) Lanes drawn. (c) Robot (red) and agents
(blue) drawn.

Figure 3.4: Simulator.

with any other word or symbol than a keyword, it is considered a comment and is
skipped.

A line with the keyword ‘node’ adds a node to the graph. This keyword should
be followed by 3 integers: node id and x and y coordinates. Anything after these
parameters is considered a comment. Keyword ‘edge’ describes an edge and re-
quires two node ids and corridor width. Rooms are added by keyword ‘room’ with
the specified id, a corridor id (given by two node ids), and a distance along the
corridor at which the room is located.

The chosen file format is convenient when it is necessary to precisely specify the
required distances and angles. It may also be convenient to move the nodes to their
proper place by hand. That is why it is possible to change the nodes’ coordinates
by dragging the nodes or the corridors around in the simulator at runtime.

In the case of a large map, it is required for the map to be scalable and mov-
able. We defined our own functions for drawing primitives that are built on top of
the pygame draw functions, that incorporate the scale and shift variables. These
variables are also defined in the graph file using keywords ‘scale’ and ‘shift’ respec-
tively. The scale and shift are changed by scrolling or dragging the mouse over
the background.

All performed changes may be saved or discarded by reloading the previous
version of the graph by pressing a respective button. Saving and reloading are
crucial for the runtime adjustments to be possible. Otherwise, to make a small
change to the graph the user would have to tune the numerical parameters in the
file and restart the program to test the new configuration.

The data format was chosen to be as simple and as readable as possible so that
it is easy to understand what and where to change if necessary. It is simple and
compact enough to work well with large graph sizes.

A drawback to this configuration is that it is impossible to apply a shift to a
group of nodes. This leads to problems in the case of merging maps. The user will
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have to manually make sure that all the node and room ids are unique and apply
a shift by hand in the graph file.

The simulator includes a time progression. There is a movement model for the
robot and a simple human motion model. The simulated robot can be controlled
in 3 ways: manually from the keyboard, automatically by the simulator, or by a
tracker, moved by the real robot.

The human motion model requires start and goal nodes to navigate between.
An agent in the simulation can be controlled by the motion model or by a tracker.
The robot and the agents are shown in Fig. 3.4c. With the highest likelihood, the
model will move the agent in a straight line, but there is a chance that the agent
will move sideways, change its speed, stop for a moment or will randomly change
its goal (see Eq. 3.6). To simulate abrupt behavior like a person remembering
something and changing plans, the goal change happens after a stop for a random
period of time with a probability of 4%.

Agent’s behavior :


Change speed, 3%
Change lane, 3%
Stop for a random period of time, 3%
Continue without changes, 91.3%

(3.6)

The percentages indicate probability per second. Continue without changes
has a probability of 91.3% because other possibilities are independent and do not
exclude each other.

3.2.2 Lane division
To describe the movement across corridors and to make robot navigation easier
the corridors are divided into lanes. The robot navigates along a lane as long as
the lane is empty and will switch to another one if anything appears on the way.

The lanes are drawn in the simulator by thin green lines inside the corridors
(see Fig. 3.4b). All lanes of one corridor have the same width and the number of
lanes depends on the width of the corridor.

3.2.3 Path Planning
Path planning starts with calculating the shortest path between every pair of
nodes on the graph. This function is called at the start and whenever the layout
of the map is changed. The result is a double dictionary that lists the nodes
of the shortest path given start and goal nodes. The calculation is done by the
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shortest_path method from the networkx library using the Dijkstra method with
the weight of the edges being corridor length.

At every iteration of the program’s main loop we look up the node path from the
robot to the goal, but there may be a problem to solve. The robot may not start
exactly at a node but from an arbitrary point inside a corridor. In this case, there
are two nodes that are close to the robot and both of them may be the starting
nodes. The goal of the robot (which is a door to a room) is also located in the
middle of a corridor, so we have two possible goal nodes (see Fig. 3.5a).

(a) Start and goal ambiguity. (b) Chosen path.

Figure 3.5: Path choice.

To solve this issue we consider all four possible combinations of start and goal
nodes, we look up the shortest distances between the nodes and sum them with
the respective distances from nodes to the robot and the goal. We then select the
path with the shortest distance (see Fig 3.5b).

If a robot is initially located close enough to a node, the start ambiguity is
resolved. We now have to consider only two paths to resolve the goal ambiguity.

3.2.4 Future Prediction
The future prediction mechanism is realized with the simulated movement of the
robot and the agents. As this function is the most computationally heavy, it
is reasonable to only consider agents in proximity to the robot. The Euclidean
distance between the robot and the agents is not applicable here because an agent
can be spatially close but in a separate corridor. So we initially decided to consider
only agents located in the same corridor with the robot and the next one on the
robot’s path if the path contains at least one more corridor. In order to account for
the agents, coming into the intersection from adjacent corridors, we now consider
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all the corridors connected to the next node on the robot’s path. After selecting
the corridors, Mapsim loops over all the agents present on the map and looks up
in which corridors they are located.

To run the future prediction we use the automatic movement functions of the
robot and the relevant agents. This leads to a position change of the agents in
the simulation. After the future prediction is finished, the initial agents’ positions
have to be restored. So before running the prediction all the relevant agents are
copied and only the copies are propagated into the future. These copies are deleted
afterwards and all the agents are in their proper places for the program to continue.

Given the dynamic office environment, exact future prediction is impossible
due to the prediction uncertainty, so it is only feasible to predict the agents’
movement for several seconds. Since the robot is very agile, a short-term prediction
is sufficient to ensure a safe path. To perform the future prediction, we take the
robot’s current speed and divide the corridor into pieces that the robot will traverse
in one time step of the simulation. Starting with the first section of the corridor,
all the agents are moved to the next time step, and the program checks if any
appear inside the section. After this, Mapsim takes turns in considering the next
section and moving the agents.

If an agent is located very close to the considered section, it is possible that
on the next time step it will be bypassed without triggering a collision, so the
considered section is always buffed with some margins.

If an agent is detected in the section, Mapsim looks up in which lane the agent
is moving. In Fig. 3.6 the horizontal corridor is divided by the black vertical lines
into sections. All the cells, resulting from the crossing of sections and lanes, which
are colored green are safe to traverse and the ones in red are dangerous. One can
see that dangerous are the cells in between the robot and the agent. The agent is
slow enough not to endanger the robot in the left-most cells. The agent will also
move from the cell that it occupies at the moment making the cell safe for the
robot to traverse when it gets to it.

Figure 3.6: Future prediction corridor segmentation. Green cells are safe to traverse, red
ones are dangerous.

After running the future prediction, the data is saved as a list of lists, where
every inner list is an analyzed time cell, that contains numbers of lanes that will
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be occupied by the agents and are therefore dangerous. This data will be used
later in the obstacle avoidance module.

3.2.5 Collision Avoidance
To perform collision avoidance we define waypoints on the robot’s path. Each
waypoint is located on one of the lanes at a certain distance along the corridor
from a previous one. The obstacles are being avoided by choosing a proper lane
for each waypoint.

We start calculating waypoint coordinates by determining to which prediction
cell it belongs. Since the robot coordinates and all the distances between the
waypoints are known, the waypoint distance along the corridor is also known. It is
then compared to the prediction cell start and end distances. We then process the
data from the future prediction module and see which lanes are occupied. Given
the number of lanes in the corridor and the occupied lanes, free lanes are found.
The right-most free lane is assigned to the waypoint.

After determining the lane, the waypoint coordinates are calculated. First,
we calculate the coordinates of the waypoint in the corridor coordinate frame
(described in 3.2.1). Since we already know the distance along, only distance
across is to be calculated. I stands for lane index, W – for width, D – for distance:

Dacross = (I + 0.5) ∗Wlane −
Wcorridor

2
(3.7)

Now we transform the coordinates from the corridor frame (across, along) to
the world frame (X, Y). xstart and ystart are the origin coordinates of the corridor
frame, D stands for distance, and Θacross and Θalong angles that describe corridor
orientation, sin and cos functions of which are looked up edge parameters.

X = xstart − cos(Θacross) ·Dacross − cos(Θalong) ·Dalong (3.8)
Y = ystart − sin(Θacross) ·Dacross − sin(Θalong) ·Dalong (3.9)

We iterate over all waypoints from the robot to the goal, appending the coordi-
nates (X, Y) to the waypoint path (see Fig. 3.7a). The future prediction module
only returns data for the next several seconds, so if the goal is further than the
predicted distance, all further waypoints will be assigned the default right-most
lane. The coordinate calculation is fairly cheap, so it is not a problem to calculate
them all the way until the goal.

There is one more problem to be solved regarding the waypoint path, which is
the corridor overlap. We calculate the waypoints from the robot to the end of the
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(a) Waypoint path. (b) Overlap shown. (c) Overlap removed.

Figure 3.7: Waypoint path.

corridor and then start again at the beginning of the next corridor. Since corridors
are rectangles, they may overlap (see Fig. 3.7b). To solve this problem, we save
the indices of waypoints at the end of each corridor and run a function after the
path is calculated. The function removeWaypointOverlap looks at the distance
between the ending and starting waypoints. If removing a waypoint shortens the
distance, then the waypoint should be removed (see Fig. 3.7c).

The solution leads to a removal of the unnecessary loop in case of a right turn.
Since the turn is sharp, the waypoints are also positioned sharply.

In case of a left turn, the rectangular corridors are spaced out, this leads to a
corner being cut. This behavior is desired since there is no explicit need for sharp
turns and these soft turns will lead to the robot being faster and more predictable
for others.

3.2.6 ROS Bridge

To connect the Mapsim with the trackers it has to be able to communicate with
ROS. The RosBridge module realizes this communication and manages the in-
coming data from the trackers and the outgoing waypoint data.

RosBridge consists of three main functions: robot callback, agent callback,
and publish. Robot callback is called whenever there is new robot odometry and
resets the robot’s position, orientation and velocity. Agent callback resets agent’s
coordinates in the world and the corridor frames, and velocity. If the bridge is
active, from the simulator’s main loop the publish function is called and passed
the next waypoint and the desired robot’s direction. The function then forms a
PoseStamped ROS message from the data and publishes it to ROS.
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3.2.7 Multiple robots
The method proposed in this thesis is suitable to perform in a multiple-robot
environment. There were two main possibilities for making it possible: centralized
and distributed systems. Both solutions have some benefits and some drawbacks.

Centralized System

In a centralized case, all the robots are controlled by one machine. This enables
the system to better handle situations where the robots are passing each other, or
to make sure such situations never happen. Since the robots only need to listen
for commands and not calculate anything on their own, they can also be simpler
than in the distributed case. There is no need for an on-board computer.

On the other hand, this control option leads to a higher computation load on
the machine it runs on. As future prediction is the most time-consuming task
for the system, when scaled in size and numbers of robots and agents, it may
become unfeasible to run on one machine. Although, since the agents mostly
run independently, optimization with paralleling the computations on a GPU is
possible. It is also vulnerable to failures. If something goes wrong and the system
breaks, all the robots will stop working.

Distributed System

In a distributed system all the navigation software is running directly on the robot.
This demands a robot to have an on-board computer. Although, for many possible
applications it is necessary either way, and the computer has to be installed for
other purposes. This may decrease route efficiency in the case of robot interaction,
but it is expected for it to be minuscule since robots are far more predictable than
humans.

On the positive side, if there is a problem and the system breaks, it will only
stop one robot from working, all the others will continue as expected. Since the
robots have on-board computing powers, the system can be extended with visual
recognition software. The distributed system is also simpler to implement. All the
interaction between robots is basically the same as between robots and humans,
so to make this system support multiple robots one just has to add the robots.

Due to the benefits and simplicity of the distributed model, it was chosen for
the thesis. The system can not currently be completely distributed, due to the
necessity of one SteamVR application for tracking. So only the navigation part
was distributed.

To create a prototype a SteamVR tracking system was chosen. It has to run
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on a single machine and then split the tracking data between the robots. So the
distributed system data flow will have a tracking hub (see Fig. 3.8).

Figure 3.8: Multiple robots data flow.
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4 Evaluation
In this chapter, we describe the experiments that we conducted with the robot
and the navigation system. We show the test results and their evaluation. This
chapter is divided into two sections: hardware and software evaluation.

4.1 Robomaster
In this section, we describe the prototype development testing and establish a
bridge to the ROS ecosystem. The tests include the robot tests and the connection
tests.

4.1.1 Tracking
Tracking system consists of the following components:

• 4 SteamVR Base Stations 2.0
• 2 HTC Vive Trackers 2.0
• 2 Bluetooth dongles
• SteamVR application.
Four StemVR base stations cover the area of 10× 10m. This area is sufficient

for initial experiments but is insufficient for rolling out a practical system. Base
stations are compact sized and only connected to a power supply. The work of the
base stations during the tests was stable. To the naked eye, the tracking precision
was not influenced by the number of base stations, however multiple base stations
were necessary in case of obstructions. The tracker on top of the robot is always
visible from any direction, but there is a chance of a person appearing between the
robot and the base station. While the prototype was tested, a human agent was
also equipped with a tracker, which was carried in a hand. This led to the tracker
being always obstructed from some direction. This is why during testing we set
up 4 base stations in the corners of the testing space.

The trackers determine their 6D coordinates using laser rays from the base
stations, generate the tracking data, and then relay this data through Bluetooth
to the dongles. Each tracker is paired with its own dongle. The dongles are
connected to the Linux machine by wire. The trackers are powered by a battery,
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which lasts on average 4 hours. This is mostly enough for testing purposes, but
when the battery died it was convenient that the trackers can also be powered
directly by wire, connected to the computer instead of the dongle.

The Bluetooth connection has been tested and showed no problems in data
transmission on distances up to 6m.

SteamVR is an application developed by Valve Corporation to manage VR ac-
cessories. It manages the trackers in such a way that we can conveniently get
the tracking data from it. But it has a couple of drawbacks. First, it only sup-
ports tracking with four base stations in parallel. This is not a problem for the
prototype, since here, the environment is small and no significant occlusions oc-
cur. Nevertheless, this limitation can pose a problem for larger setups that cover a
more complex environment. The second problem is that the data that the trackers
send via Bluetooth is encrypted and we can not manage it ourselves without the
SteamVR application.

The use of SteamVR also restricts our aim for a distributed system. All the
robots with a Mapsim on board would have to be connected to a single SteamVR
machine.

We first test the tracking and movement precision. The robot started at an
arbitrary position in the testing area and moved to its target. We recorded the
tracked distance from the target, which is presented in Tab. 4.1. To give a visual
impression of the achievable accuracy, we show snapshots of the evaluation in
Fig. 4.1.

Figure 4.1: Precision test setup. We show three iterations of the test after the robot
reached the target. The origin was marked with yellow papers directly under
the front wheels.

The test results show that positioning precision is sufficient for the proposed
application and the robot can stop at a point with a 2 cm tolerance. This tolerance
may be lowered even further, but our goal was for the robot to go in a straight
line and come to a full stop on the target without going too slow or overshooting
the target.
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Table 4.1: Movement precision. Shown as tracked coordinates in mm from the
target point. The test was repeated 8 times.

i x y z
1 −4 −4 1
2 1 19 0
3 9 9 0
4 −12 −4 1
5 1 7 1
6 −7 11 0
7 1 21 0
8 3 15 0

Figure 4.2: Precision test with 1 sigma confidence ellipse.

4.1.2 ROS Controller
To combine the tracking data from SteamVR with the navigation data from Map-
sim and to compute the motion commands a controller ROS node was imple-
mented.

During the testing of the initial version of the ROS controller, some issues with
the rotation commands appeared. The formula 3.3 did not account for the angle
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difference larger than pi. So it was enhanced to properly calculate the direction
and speed of rotation.

The testing also showed that the robot is very fast and often overshoots the
target, so a PD control was implemented. After some testing, the coefficients were
set for the robot to navigate around with high speed but approach a target point
slowly.

The ROS controller also implements the websocket client to communicate with
the DJI controller. During testing, we figured out that error messaging is necessary
for the system. If an error is encountered in the DJI controller it is being sent to
the ROS controller and displayed on the Linux machine.

4.1.3 DJI Robomaster
Here we evaluate the choice of DJI Robomaster S1 as a hardware robot platform
for the prototype. There are many positive sides to this choice. The robot’s
omnidirectional platform is very agile and easy to control. The robot has a camera,
data from which could be used to facilitate its environmental awareness.

The significant drawback of the S1 robot is that it is not ROS compatible.
The robot can only be controlled by a Robomaster application. The control is
encrypted, so we can not intercept it anywhere except from the Robomaster app
itself. We had to manually fix this issue (see Sec. 3.1.5). The platform also does
not support any extra modules to be placed on top of the robot, but for prototype
purposes, this is not an issue.

Another issue is the automatic robot connection. We encountered some prob-
lems while trying to connect the robot to the Robomaster application. The con-
nection should happen automatically, but if it doesn’t, we can not easily fix it, as
there is no way of troubleshooting.

Although there are some drawbacks, the robot’s price is much smaller than any
other educational robots’ with similar capabilities.

4.1.4 Communication
In this section we describe the intra-system communication issues and solutions.
The robot’s internal WiFi router has one major drawback: only one device can
be connected to it simultaneously. Since the Windows and Linux machines have
to be connected together, we could not use the robot’s internal router. The other
possibility is to use an external WiFi router and connect both computers and the
robot to it. This solution was realized and tested.

We tested multiple routers from different manufacturers and the testing showed,
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that the connection is difficult to set up. In some cases, the robot refused to connect
to the router for an unknown reason.

The solution was found using an Android smartphone hotspot instead of a
router. During testing, the system connected with a hotspot demonstrated fast
and stable work.

4.1.5 Calibration
In this section we describe, how the calibration module (described in Sec. 3.1.3)
was tested and evaluated. We have to define our own world frame to be able to
shift it around without touching the base stations. This shifting is necessary to
conveniently align the world frame with the simulated map.

To fit a plane to the data we need at least 3 data points. The tracking frequency
is around 500Hz, which is much more than necessary. For calibration, we lowered
the tracking frequency to 1Hz. During calibration testing, the dependency between
the number of data points and the fitting precision was not confirmed.

After the calibration procedure is done, we calculate the transform between the
abovementioned frames. Then we use a static tf broadcast function of ROS to
conveniently transform the tracking data to the new frame and broadcast the data
further to ROS controller and Mapsim. This ensures that every tracking subscriber
gets the data in a proper frame and doesn’t have to worry about frame conversion.

We now describe the precision test of our calibration method. First, we calibrate
the robot inside an area of 1m2 (see Fig. 4.3). We then record the robot’s reported
height (see Tab. 4.2) at a distance from the calibration area with 1m increments.

Table 4.2: Calibration precision. Measured as mm of height at a distance from
calibration area.

Number of
calibration points 33 52 43
Distance from

calibration area in m Error in mm
0 0 0 0
1 −11 0 −1
2 −30 −2 −3
3 −48 −5 −6
4 −65 −7 −9
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Figure 4.3: Calibration test setup. The calibration area of 1 m2 is marked with green
dashed line, the distance was measured with the yellow ruler.

Figure 4.4: Calibration test. Robot’s tracked height (0 expected, measured in mm) at a
distance from calibration square (measured in m).
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Then we plot the data to a graph (see Fig. 4.4). From this test, we concluded,
that the calibration precision is sufficient for the targeted application, given the
small region of calibration. The consistency of negative numbers on the y axis
would be interesting to investigate. Since we only conducted this test in one
setup, the possible reason for this trend could be a not completely straight floor.
The blue line differs from the others but still shows acceptable precision. The
possible problem with this test run could be a human factor or a tracking error
during calibration.

4.1.6 Runtime
In this section, we describe runtime testing of the whole prototype assembled. We
have tested the system in a 3× 3m space in the middle of a room, the testing space
is shown in Fig. 3.1c from one of its corners captured by the robot’s camera and
displayed on the Windows machine. The testing setup was described in Sec. 3.1.1.

For the first test, we have created a simple square map. The map consists of
four orthogonal corridors, each divided into three lanes. We forbid the robot to
move directly to the target, so the robot had to go around.

Initially, we did not use any obstacles, and the robot navigated around the map
flawlessly. During the second test, a tracker was placed on the robot’s path as a
stationary obstacle. The robot successfully avoided the collision by switching the
lane and continued on its path to the goal.

The robot’s progression is shown on Fig. 4.5:

• The robot anticipated the obstacle movement, so initially, it built a path
straight through the obstacle.

• After the start of the movement, it detected the idleness of the obstacle and
changed its path around it.

• On the third set of images it is shown, how the robot continues on its path.

To perform the test with a moving obstacle, we created another map with one
straight corridor. The corridor was divided into two lanes, one of which was
occupied by a person, who moved in the direction of the robot at various speeds.

The test results are shown on Fig. 4.6:

• The robot is standing still at the beginning of the corridor. The obstacle
is not yet moving, so the robot plans a path with a lane switch directly in
front of the obstacle.
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Figure 4.5: Static obstacle test. In three rows three different perspectives depicted, top
to bottom: external camera, robot camera, Mapsim view. In three columns
three time steps shown: before movement, moment of obstacle passing, move-
ment continuation after obstacle passing. In Mapsim the robot is shown in
red, the obstacle is shown in blue.

• Both the robot and the obstacle start moving simultaneously, the robot
starts moving on the right lane (in Mapsim). Then the robot predicts the
collision and switches to the safe lane. Given relatively high obstacle speed
in the shown test, the robot switches to the left lane (in Mapsim) almost
immediately.

• After passing the obstacle, the robot returns to the desired lane and continues
on its path.

In this test, the rviz view shows the testing area from above. The world frame
origin’s axes are shown in green and red. During its movement, the robot leaves
a blue trail. We flipped the rviz view upside down so that it matches the Mapsim
view.

After testing, several minor mistakes were found, e.g. mirroring. The Mapsim
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Figure 4.6: Dynamic obstacle test. In four rows four different perspectives depicted,
top to bottom: external camera, robot camera, Mapsim view, rviz view. In
three columns three time steps shown: before movement, moment of obstacle
passing, movement continuation after obstacle passing. In Mapsim the robot
is shown in red, the obstacle is shown in blue.

coordinate system was inherited from the pygame window pixel coordinates, so
the y axis is pointed down. This led to the map being mirrored. This was easily
fixed.

The test was repeated with different obstacle speeds: from very slow to fast
walking. Running was not tested as there was not enough space in the testing
area. The robot avoided all collisions successfully. It also showed different behavior
depending on the obstacle speed: the slower the obstacle was moving the later the
robot changed its lane. Given slow enough obstacle, the robot did not return to
the right (in Mapsim) lane but continued directly to the goal.
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4.2 Mapsim
This section contains the evaluation of the simulator along with all the techniques
and algorithms that are used in it. It also contains the descriptions of all the
performed tests and their results.

4.2.1 Simulator
External modules

For the creation of Mapsim, we used a pygame module. Its main tasks are time
management, visualization, and event handling. Pygame was designed for video
games. Since a simulator is itself a system very similar to a video game, a game
engine is perfectly suitable for it. Initially, we considered the possibility of using
an existing simulator, e.g. Gazebo. Gazebo is a complicated instrument, its size is
120 Mb, in comparison, Mapsim weighs 1.5 Mb. Our simulator is specialized for
our tasks and therefore is much more simple to use.

Pygame is equipped with draw functionality. We initially used these functions
for drawing the map. This limited the map size by the window size and did
not provide any zooming functionality. To solve these issues we defined our own
functions for drawing primitives that are built on top of the pygame draw functions,
that incorporate the scale and shift parameters. This extension allowed us to create
maps of unrestricted size and conveniently zoom to regions of interest (see Fig. 4.7).

(a) Restricted map size. (b) Unrestricted map size. (c) Unrestricted sized map
zoomed in.

Figure 4.7: Incorporating scale and shift into the simulator.

Complex corridor structures are easily and conveniently represented by graphs.
We chose the networkx module to provide us graph functionality. We studied
the possibility of creation of our own graph implementation. After testing the
networkx module, it showed all the necessary functionality along with ease of use
and convenient path planning features.
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Optimization

Although the simulator is easy and functional, some features of it are not opti-
mized. The simulator was tested on large-sized maps and it was found to signifi-
cantly drop in performance with an increase in the number of corridors. For the
performance test, we generated maps of various sizes (see Fig. 4.7). We ran the
program for exactly 10 seconds and used a profiler to record the drawing time
of the corridors (see Tab. 4.3, Fig. 4.8). The node distance is measured in the
Mapsim units. Their scale to meters is a variable parameter, in the prototype we
used a 40:1 scale.

Table 4.3: Corridors drawing time in ms depending on distance between nodes.

Number of corridors
Node distance 12 60 112 180

100 716 1149 2469 3881
600 933 1799 3289 5214
2000 1360 2971 5331 7468

Figure 4.8: Drawing time is shown against the number of corridors. (t) denotes the
distance between the nodes in Mapsim units.

Optimization possibilities were researched and we discovered that a large amount
of data was being recalculated at each iteration of the main loop. This issue
was only partially fixed. All the trigonometric functions are now only calculated
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once, after any change in the map layout, but a lot of pixel coordinates are still
recalculated. We neglected these calculations initially, but it turned out to be a
problem given a large enough amount of objects to draw.

We are unsure about the dependence of the drawing time on the corridor lengths
since it does not affect the amount of calculations in Mapsim. This is probably
related to how drawing is realized in pygame.

The excessive calculations may be a problem for a large environment, in case
constant human monitoring is necessary. Otherwise, this is not a problem, since all
the UI may be easily turned off without any consequences for the path planning.
It also may be a problem for the testing, but currently, it is not, because all of our
testing environments are small enough.

Corridors

We chose a rectangle as a corridor representation on the map. A rectangle is a
natural choice since typical real world corridors have this form. It is easy to work
with rectangles because they are easy to draw, it is easy to figure out if a point is
inside the rectangle or not, they are easily scalable and easily dividable in lanes.

During development, we figured out that this approach has some drawbacks.
Graph nodes are located in the center of opposite rectangle sides, so the corridors
overlap at intersections. This problem was solved for path planning (see Sec 4.2.6),
but given another corridor representation, we probably would not have to deal with
it at all.

We researched the possibilities of changing the representation and came to a
conclusion that it is possible to improve this representation without changing it
too much. The nodes that bound the corridors may be located not exactly at
the rectangle’s side, but have some padding. This would remove the problem of
corridor overlaps, but we would have to work out the robot’s and agents’ movement
inside the nodes. Such representation would be more logical and would look nicer,
but the current representation works good enough not to worry about it.

Map File

The graph representation of the map is stored in a .txt file. The file structure
along with the used keywords is described in Sec. 3.2. The representation is very
convenient to understand and use in the case of a simple map. The drawback of
more complex maps is that it is impossible to group the nodes and apply certain
changes only to those groups. This also makes it quite hard to merge different
maps, since the user will probably have to change all the coordinates of one of the
maps by hand.
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A solution that groups the nodes and allows shift application only to certain
groups is expected to be easy to implement, so we consider it an expedient exten-
sion.

4.2.2 Agents
For the purpose of people simulation and behavior prediction, a simple human
motion model (HMM) was created and applied to agents that navigate around the
map. HMM contains a set of behavioral patterns that resemble a real human nav-
igating a corridor. The modular concept of HMM allows a possibility of replacing
it with another model, that contains different patterns. As long as this module
has a proper interface, it can be connected to the simulator without issues.

Initial testing discovered several problems. The first problem is related to how
agents avoid hitting each other. Agents are navigating along corridors looking
at other agents nearby. If an agent nearby is detected and it is moving on the
same lane, this lane is then considered dangerous and the first agent tries to move
from this lane. The passing-on-the-right rule is implemented here, so given enough
empty lanes no problem occurs (see Fig. 4.9a).

The problem arises when there is only one empty lane. The agents detect each
other at the same time and each sees their lane as occupied and the other as empty.
This leads to them both trying to switch lanes only to discover that after the lane
switch nothing has changed (see Fig. 4.9b).

We have solved this problem by forbidding the passing-on-the-left for the agents
(see Fig. 4.9c). This leads to a slightly unrealistic movement of the agents but
solves the oscillation problem.

(a) Everything is fine given
enough empty lanes.

(b) Oscillation happening. (c) Oscillation solved.

Figure 4.9: Agent oscillation problem.

The second problem is also related to a drawback of the HMM. If an agent comes
close enough to another agent and there is no empty lane to go to, the agent will
stop and wait for other agents to move. In case the corridor gets initially obstructed
in some way, other agents that are trying to go through this corridor will come
close to the obstruction from both sides and stop moving.

In some testing scenarios, we ran a large number of agents, and sometimes these
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situations occurred. These situations can happen both in the middle of a corridor
(see Fig. 4.10a) and at an intersection (see Fig. 4.10b).

(a) Jam in the middle of a corridor. (b) Jam at a corridor intersec-
tion.

Figure 4.10: Corridor jam problem.

This is an unsolved problem so far, but it is not a crucial one. During testing,
this problem occurred only when excessive amounts of agents were released, which
is an unrealistic situation. In other tests this situation never took place.

Table 4.4: Agent move time in ms depending on the number of agents.

Number of agents 10 50 100 500
time in ms 484 1502 2936 9539

move call count 5375 27 940 55 387 77 625
max move call count 6000 30 000 60 000 300 000

We tested, how much time does the program need to simulate the movement of
the agents. We ran the program for 10 seconds at 60 fps, so if we multiply both
numbers with the number of agents, we get the maximum number of calls to the
move function. In the first 3 tests (see Tab. 4.4) the call count was slightly less
than maximum, as the program also does some extra calculations at the start.
During the last test, the number of agents was too high, so the program throttled.
This is shown by the call count being much lower than expected.

From this test, we can conclude that the program is capable of running dozens
of simulated agents without problems. At runtime, the program is able to handle
even more agents, as they are not simulated.
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Figure 4.11: Agent move time is shown against the number of agents.

4.2.3 Lane Division
Initially, we chose the corridors to be divided into three lanes, which allows the
ease of navigation around obstacles. This division showed an acceptable result but
is too restricted for real use. A couple of hyperparameters were added to ensure
the flexibility of the solution. Real corridors significantly differ in width, so many
more people may simultaneously use them. In such a case all three lanes would be
permanently blocked, so we need to calculate the number of lanes depending on
the width of the corridor. Another aspect of the variable lane width is the ease of
obstacle avoidance: we can assume the size of the obstacle to be the same as the
lane width, this assures a safety margin between the robot and the obstacle.

It is possible to create corridors of different widths in Mapsim (see Fig. 4.12).
We have tested corridors from very narrow to very wide. Such wide corridors may
be useful to describe large halls, so we did not put any boundaries on corridor
widths. In a corridor with a single lane the robot can not avoid any obstacles and
will always stop if someone enters the corridor from the other side.

4.2.4 Path Planning
The path planning calculation is realized by the shortest_path method from the
networkx library. The library provides two methods to solve the problem: Dijkstra
and Bellman-Ford algorithms. We run both algorithms on the graph and calculate
the shortest path between each pair of nodes. The planning of the path at runtime
comes down to a simple look-up. We evaluated the computation time of this look-
up table initially depending on the number of nodes and on the used algorithm
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(a) Narrow corridor with 1
lane.

(b) Regular corridor with 3
lanes.

(c) Wide corridor with 8 lanes.

Figure 4.12: Corridors of different widths.

(see Tab. 4.5, Fig. 4.13).

Table 4.5: Path calculation time in ms against the number of nodes.

Number of nodes
Algorithm 9 36 100
Dijkstra 0.35 2.76 21.08

Bellman-Ford 0.43 7.97 69.22

Figure 4.13: Path calculation time against the number of nodes. Two algorithms shown.

The tests show that for our problem the computation time is minuscule. It is
notable, how much faster the Dijkstra algorithm is. Unlike Dijkstra, the Bellman-
Ford algorithm is capable of handling negative weights, but since we are dealing
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with distances, we don’t need it.

4.2.5 Future Prediction
For the purpose of facilitating obstacle avoidance, a future prediction technique
was used. It uses the human motion model to predict, where the agents will move
and which lanes should the robot avoid. As described in Sec. 3.2.4, we divide the
corridor into time sections. Section size (S) is defined by multiplication of the
distance, that the robot covers in one time step and a fastforward (F) parameter
(will be described later). The time step is calculated, given simulator’s frames per
second (f). R stands for robot’s current speed:

S =
R

f
· F (4.1)

In the initial version of the future prediction subsystem, the number of time
sections to consider was equal to the number of time steps in the prediction horizon
(will be described later). This led to excessive amounts of computations since the
prediction precision is insufficient to support such small time sections. We then
introduced a fastforward parameter, which allowed us to increase the size of these
time sections, which led to much faster computations without loss in precision.

Table 4.6: Future prediction computation time in ms depending on the number of
agents that are close to the robot and the fastforward parameter. In
each data cell the call count is reported at the top and the time at the
bottom.

Number of agents
Fastforward 1 3 5 10 20

1 589 341 – – –
3850 7925 – – –

5 586 588 589 426 –
1007 3044 4536 7257 –

10 594 590 589 593 372
580 1708 2711 4868 7411

30 589 588 588 588 590
230 777 1278 2309 4606

We conducted a test to see the performance of the future prediction module. We
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ran the program for 10 seconds and with the help of a profiler recorded the time
used by this module (see Tab. 4.6). The call count of this module only depends on
the run time and the fps. So the expected call count is around 590. The gathered
data shows that given a low fastforward value, the supported agent count is also
very low, e.g. with a fastforward of 1, a maximum of 2 agents is supported without
throttling.

Figure 4.14: Future prediction computation time is shown against the fastforward pa-
rameter. Only a single agent is predicted.

Figure 4.15: Future prediction computation time is shown against the number of agents.
Fastforward parameter is set to 30.

During tests, we also looked at the resulting paths of the program. With a
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(a) Current prediction step. (b) Next prediction step.

Figure 4.16: Neighboring time sections problem. Robot is shown in red, obstacle is
shown in blue.

fastforward parameter of 30, the paths looked very similar to ones that used lower
values.

Developing the future prediction module we found two major issues. The first
one is encountered when the fastforward parameter is low enough so that the time
section size is less than the robot’s size. This leads to such a path that robot’s
center avoids hitting the obstacle’s center, but of course, in the real world, a
collision would happen. The second one happens when the robot and the agent
appear in the neighboring time sections and switch places in the next prediction
step. This is demonstrated in Fig. 4.16.

To solve both these issues we introduced the prediction margin parameter. Dur-
ing prediction, when the section coordinates are calculated, we extend the section
size in both directions by a safety margin. For the first problem, it leads to the
section size never being less than the minimum distance between the robot and
the obstacle.

As for the second problem, it is solved, given a reasonable agent speed. If an
agent moves fast enough, currently, it is impossible to predict the collision, since
the infinite margins are not feasible. On the other hand, this is not a problem,
since a human is far better at solving dangerous situations than the robot, and if
a person is running along a corridor, the robot has to stay as predictable as it can
be. This is achieved exactly by ignoring the running person.

We now introduce the concept of the prediction horizon. As mentioned in
Sec. 3.2.4 it is only feasible to perform the prediction in the nearest future. The
prediction boundary, which we call the prediction horizon is defined as the time
(in seconds) that we predict into the future.

4.2.6 Collision Avoidance
The collision avoidance module builds a waypoint path that leads the robot around
the obstacles, using the input data from the future prediction module.

We decided that the suitable format for the prediction data transfer would be
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the list of lists, where every inner list is a time section, that contains ids of lanes
that will be occupied by the agents when the robot will reach that time section.

We equip the robot with a set of behavioral rules that allows it to avoid moving
and standing obstacles efficiently and in a way predictable for humans. For exam-
ple, we implemented a passing-on-the-right rule, that makes the robot to prefer
a socially more expected action. In case passing-on-the-right is impossible, the
robot then chooses to pass on the left.

In case all the lanes will be occupied by agents at some point in time, the robot
stops and stands still waiting for the agents to move. The drawback of such an
approach is that in case the corridor is blocked by a group of obstacles, that do not
wish to move, the robot will be stuck indefinitely. A valuable extension, solving
this issue would be a ban of movement in this corridor after a timeout. This
will lead to the robot recalculating its path using other corridors. It would be
then important to set a checking function for unbanning the corridor whenever
the blockage is gone.

Testing demonstrated that there is a drawback in the robot’s rule set. When-
ever the robot encounters the situation displayed in Fig. 4.17, it falls into a trap.
While calculating the path, the robot decides not to switch lanes avoiding the first
obstacle, because it does not consider the second obstacle yet. Then the second
obstacle is encountered and it can’t be avoided, because the first obstacle pre-
vents the robot from changing the lane through it. So the robot sees this obstacle
formation as unavoidable, even though there is an empty lane on the left.

This problem can be solved using retrodiction. After calculating the prediction
data, we should look through the data in reverse order and in case of such trap
formations extend the obstruction of the trap lane.

Figure 4.17: The trap that prevents the robot from avoiding the collision is shown.

We have tested the Mapsim on dozens of complex maps and have visually ex-
amined the calculated paths. We came to a conclusion that the paths are close to
the shortest ones possible. There is one parameter that defines the distance be-
tween the consequent waypoints. Since we define a lane change as an assignment
of different lanes to different waypoints, this distance defines the smoothness of
the lane change. The higher is the distance, the smoother is the change, but the
more time the robot needs to avoid danger.
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As an extension, it is feasible to change the constant waypoint distance to a
variable one depending on the distance to the closest agent. To have more maneu-
verability in proximity to an agent and to ensure a smoother and more predictable
path at a distance.

The initial version of the collision avoidance module was called at every time
step of the simulation to recalculate the waypoint path. This has been proven
to be excessive, as the same result could be achieved with planning at a lower
frequency with a major performance improvement.

A throttling test has been carried out, where the throttling parameter shows the
number of simulation updates between planning recalculation. The recorded time
(see Tab. 4.7) is given by the profiler after 10 seconds of program runtime with
5 agents near the robot and a fastforward parameter of 30. It is shown that it is
possible to reduce the planning time by a lot, but it affects how quickly the robot
can respond to a sudden situation. In our further tests, the throttling parameter
was set to 1.

Table 4.7: Path planning time in ms depending on throttling parameter.

Throttling 1 3 5 10 30
Time is ms 4427 1622 1035 497 160

Figure 4.18: Dependency of planning performance on plan throttling.
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4.2.7 RosBridge
RosBridge is a part of Mapsim that is responsible for communication with ROS.
This module realizes the subscription to the odometry topics and updates the
coordinates of the robot and the obstacle.

The odometry message is 3-dimensional and represents the rotation as a quater-
nion. Mapsim is 2-dimensional, so the rotation should be converted to a euclidean
angle. The conversion is done with the following formulas, where Q stands for
quaternion and Θ is the sought angle:

A = 2(Qw ·Qz +Qx ·Qy) (4.2)
B = 1− 2(Q2

y +Q2
z) (4.3)

Θ = arctan2(A,B) (4.4)

The bridge is then used at each Mapsim iteration to publish the coordinates of
the next waypoint to ROS.

The big issue that RosBridge solves is the consistency of units of measurement.
The odometry is measured in meters, but the Mapsim operates in its own units
of measurement. Those units were initially the pixels, but since scaling was intro-
duced, we can not call them pixels any more. After some tests, we determined a
coefficient that is used for coordinate scaling in RosBridge.

4.2.8 Runtime Evaluation
We have tested the Mapsim in various situations, some of which are shown in the
images below. As navigation without obstacles does not pose any challenges, only
tests with multiple agents are shown (see Fig. 4.19).

Tests that are shown in Fig. 4.19a and Fig. 4.19b depict how the robot avoids
collision in easy and complex situations. The directions used in the description are
the directions on the images. Test in Fig. 4.19c shows how the robot goes around
the agents, that move in the opposite direction. It may seem that the margin
between the robot’s path and the agents is too small, but the agents will move
further left when the robot will reach that point in space. So there is no risk of
collision.

The last test (see Fig. 4.19d) shows a complex scenario when multiple agents
are coming from the left and top corridors and go down directly into the robot.
The test shows that the robot is capable of predicting all the incoming traffic and
build a safe path to the target. One of the agents is located directly on the robot’s
path and this may be confusing, but in the simulation, it moved at a relatively
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high speed and went down before the collision.

(a) Test 1. (b) Test 2.

(c) Test 3. (d) Test 4.

Figure 4.19: Mapsim test.

A scaling test was conducted with 70 agents running on a large map. it is shown
in Fig. 4.20 that the robot is able to avoid collision and build the path directly to
the target. It is actually possible for the robot to go to its target in a straight line,
which would make the path shorter. But this is the case only in such a testing
environment, in a real world situation, such shortcuts would not be possible.

Mapsim was designed as a distributed system. Each robot in an environment
should run its own instance of the navigation software. Mapsim is able to simulate
the robots the same way as with the humans by using another behavioral rule
set. We ran a test with 1 robot and 1 agent that represented a second robot and
looked at the robot’s behavior (see Fig. 4.21). We also set the robots to prefer the
middle lane for navigation. Then we reversed this scenario and looked at it from
the perspective of the second robot. In this case, the collision was easily avoided
by the robots moving from each other’s way.
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Figure 4.20: Mapsim scaling test.

(a) Point of view of robot 1. (b) Point of view of robot 2.

Figure 4.21: Test with two robots. Robot that is navigated by Mapsim in red, the other
robot in blue.
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Achievement

In this work, we developed a Mapsim method for robot navigation and collision
avoidance. Mapsim offers a simple and computationally low-cost path planning
solution with the ability to predict the behavior of other robot and human agents.

Mapsim sequentially implements four tasks: lane division, path planning, future
prediction, and collision avoidance.

Mapsim is optimized for environments consisting of complex corridors. The sim-
ulator divides the corridor into a finite number of imaginary lanes. Such a concept
simplifies the path planning and makes it possible to apply a wide variety of exist-
ing navigation and path planning methods created for self-driving vehicles, such
as lane changing policies, following another object, solving a conflicting scenario
with an approaching agent moving in the opposite direction, etc.

Path planning in a complex corridor environment can be easily solved using a
Dijkstra algorithm. Such type of environment is not prone to change and even
in the most complex map, all the paths can be precomputed. The path planning
problem remains easily solvable until other actors are added to the scene. In such
a case, precomputed path planning can still be used, but it has to be enhanced by
a collision avoidance module.

In a dynamic social environment, the robots are expected to navigate safely
and predictably in proximity of people. For the purpose of safety, we predict the
movement of other agents in the vicinity of the robot. This leads to plausible
behavior and a sufficient safety margin.

Prediction of other actors in the scene facilitates our collision avoidance algo-
rithm. We use the lane changing technique with a set of defined rules in order to
efficiently perform collision avoidance. This set of rules allows to achieve robot
predictability.

During software simulations in Mapsim, the robot showed its ability to navi-
gate safely in complex environments with dozens of agents. The robot efficiently
changes lanes to avoid static and dynamic obstacles utilizing the rules of social
behavior. The system has a big number of parameters that can be changed to ac-
count for different situations. Depending on corridor width and robot and obstacle
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size, the number of lanes can be easily changed.
We have designed a safe system, using inexpensive and widely available hardware

components, easily adaptable for different tasks. The system was tested as a
hardware prototype, using DJI Robomaster S1 and SteamVR. Testing confirmed
the ability of the system to be applicable to real hardware. Our method showed
the ability to avoid static and dynamic obstacles.

We achieved our goal of creating a safe, effective, and computationally cheap
navigation software and applied it as a real world prototype.

Extension

The developed system demonstrated safe and reliable behavior and can be further
developed with a perspective for practical applications.

Mapsim can be extended in multiple ways. The simulator lacks some func-
tionality, like grouping nodes and simultaneously shifting a group of nodes. The
future prediction module can be enhanced by using a more profound human motion
model. The collision avoidance module could be extended by more sophisticated
lane changing maneuvers. The robot behavior can be enhanced by handling special
situations at intersections.

As a hardware extension, other hardware platforms can be used, as far as both
Robomaster S1 and SteamVR showed some limitations. For example, the tracking
system can be enhanced or even replaced by a camera with a computer vision
module that would detect and track obstacles.

The prototype can be extended to include several robots moving in a common
environment.
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