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Abstract

In our daily life, we seamlessly interact with objects exhibiting a variety of shapes.

For example, mugs exist in a wide spectrum of geometrical forms and, yet, it takes

us no effort to use a new instance. Conceivably, this ability is a highly desired skill

in autonomous robotics: knowledge from one shape, such as grasping a handle of

a mug, can be easily used for a new shape if the grasping part is identified.

In this work, we formulate this problem as shape co-segmentation which seeks

to establish semantic correspondence between shape parts. Unfortunately, current

state-of-the-art approaches to co-segmentation have practical limitations: they

heavily rely on the diversity of large training sets, and their algorithms are tailored

to handle watertight object meshes.

In accordance with these limitations, we impose stringent conditions. Firstly,

we assume that only a single shape is available as a reference, and, secondly, only

a partial view of the query shape is provided.

In this thesis, we propose a novel co-segmentation approach that constructs a

part-based shape representation. We learn shape appearance of individual parts

using feature encoding, such as Bag-of-Words and Fisher vectors, and build an in-

trinsic prior measuring isometric distortion between the parts with a distribution of

diffusion distances. The query shape is pre-segmented by cutting through concave

regions and the obtained segmentation graph is transformed into a Conditional

Random Field (CRF) using the shape appearance and isometry prior.

We evaluated our approach on a large set of partial views generated from 15

categories of the Labelled Princeton Segmentation Benchmark. We also ran ex-

periments on point cloud data obtained with an RGB-D sensor. The results of the

evaluation demonstrated that our approach outperforms the state-of-the-art both

in accuracy and efficiency.
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1 Introduction

1.1 Motivation

As humans, we generally find ourselves comfortable interacting with objects of

diverse shapes that can be ascribed to the same semantic category. Mugs, for

example, take a variety of shapes, though their function of containing liquid and

drinking is not impeded. It takes us little effort to adapt to these shape variations

once we see an object and learn its use. This knowledge can then be seamlessly

generalised to all other objects of similar type that we encounter later in life.

Conceivably, the ability to generalise, or transfer knowledge between objects,

is an important skill in autonomous robotics and is related to a shape matching

problem. In manipulation tasks, determining a grasp position of a previously

unseen object might only require a retrieval of the corresponding grasp from a

known analogue (Li et al., 2007; Saxena et al., 2008). Similarly, usage of articulated

objects (e.g. scissors) and items from easily deformable materials can be adapted

from their single configuration (Schulman et al., 2013). An important task in

human-robot interaction, tracking of human body parts, can be enabled with only

one labelled body model (Ye et al., 2011). Information about corresponding parts

between compatible bodies, such as a human and a humanoid robot, can also find

application in learning from demonstration and robot teleoperation (Du et al.,

2012).

Shape matching is a challenging problem in general, owing to the ill-posed nature

of deformations. This can be exemplified with an elastic string shown in Figure 1.1.

While the precise deformation model is usually unknown, it may include elastic

“stretching”, “shrinking” (Figure 1.1b) and isometric “bending” (Figure 1.1c) de-

formations, variations of scale (Figure 1.1d) and topology (Figure 1.1e). Moreover,

partial views introduce additional complexity to the problem (Figure 1.1f).

Due to inherent ambiguities created by these deformations, a point-wise corre-

spondence may not have a single solution and, therefore, is not well defined.

In this thesis we define the problem of shape correspondence as an instance

of co-segmentation with the goal to establish a semantic correspondence between

shape subparts. We understand subparts to fulfil a certain subfunction within the

working of the whole shape, such as legs of a chair for stability, or a handle of a vase

1



1 Introduction

(a) (b) (c) (d) (e) (f)

Figure 1.1: Shape variations of a deformable string: (a) original model; (b)
elastic deformation; (c) isometric deformation; (d) scaling; (e) topology change;
and, (f) partial views.

for grasping. In contrast to pointwise correspondence problem, co-segmentation

does not seek estimates of the deformation model. Instead, it attempts to model

shape structure based on subpart appearance and their topological relation. We

argue that this formulation lends itself well for practical applications where high

shape discrepancies between same-category objects and partial views are most

ubiquitous.

We begin with a specific problem formulation in the next section followed by a

review of the related work. At the end of this chapter, we analyse the current state-

of-the-art approaches and propose an alternative concept developed in Chapter 3.

We give some background information in Chapter 2 that serves as the base to

our solution. The experimental setup and evaluation results are the main topics

of Chapter 4. In the last Chapter 5 we draw conclusions and outline the path for

future work.

1.2 Problem definition and objective

In a real-life scenario our scanty prior knowledge may comprise a single colourless

physical object or a CAD model with designated constituent parts marked with

labels. It is expected that the observer might require some “learning” time in

order to analyse the shape geometry of the given item. We refer to the provided

object as the reference shape and assume the associated labelling to be given in

the form of shape segments. In the ensuing time, the observer is presented with

a partially visible object from the same category in an arbitrary pose. We call it

the query shape and investigate the case when it is represented by a point cloud.

The new data is not dissimilar to a setting where a single frame has been obtained

from a depth sensor. Our task is to demarcate segments on the query shape which

semantically correspond to those on the reference shape.

More formally, let S :=
⋃
Si be the union of the reference shape segments

2



1.2 Problem definition and objective

(a) Reference shape (b) Query shape (c) Ground truth

Figure 1.2: The co-segmentation problem

and the mapping ` : S → L, L ⊂ Z define segment labels. A query shape

T := {ti | ti ∈ R3} is a partially visible point set of an object which belongs to

the category of the reference shape, although it can be geometrically dissimilar

to some unknown degree. The task is to find a segmentation
⋃
Tj = T with the

mapping `? : T → L such that `?(Tj) = `(Si) if and only if segments Si and Tj
represent semantically corresponding parts.

As a remark, shape analysis considers only a number of criteria that define the

semantic correspondence. Therefore, by finding a geometrically and topologically

most compatible configuration of the query shape we can only at best hope to

establish a semantic correspondence as well.

The challenges of the problem can be seen from an instance of vase co-segmentation

shown in Figure 1.2. The provided labelling of the reference shape distinguishes be-

tween four segments (Figure 1.2a): the neck (violet), handle (red), body (orange)

and the base (blue). The query shape is a single-view point cloud (Figure 1.2b)

of a vase with a different shape which in this case contains the same parts as the

reference (Figure 1.2c). In addition to potential pose variation, the geometry of

the shape parts can be strikingly different, as can be observed from the bases of

the two shapes. Therefore, it cannot be hoped that a feature descriptor alone can

be fully relied on. Some context information, however, such as relative location

of the parts (e.g. the base is “farther away” from the handle than the neck) and

structural constraints (e.g. the base can be connected to the body, but not the

handle) can be exploited to offset the biased description of local features.

We summarise the objectives of the present work as follows:

1. Build a shape representation from a limited prior knowledge (a single object);

2. Employ rotation-invariant feature encoding to describe shape appearance;

3



1 Introduction

3. Embed category-specific structural constraints to augment the description of

local geometry.

1.3 Related work

In this section, we give a brief overview of the previous work related to the

co-segmentation problem. As will become clear from the next subsection, co-

segmentation approaches make a careful choice of feature descriptors, a technique

to build a shape representation and integrate it into an objective function, usually

formulated as an inference problem of a probabilistic graphical model. For this

reason, we shortly review these topics in the subsections to come.

1.3.1 Overview

In one of the state-of-the-art approaches Kalogerakis et al. (2010) modelled the

co-segmentation problem as a Conditional Random Field (CRF). They trained a

JointBoost classifier (Torralba et al., 2007) for unary and pairwise terms repre-

sented by contextual features. The latter was obtained by re-training the classifier

on the histograms of unary feature predictions in order to capture a global distri-

bution of labels around each mesh face. A similar path was undertaken by Kaick

et al. (2011) who trained a GentleBoost classifier on 60% of randomly selected

shapes for each class. They added an additional “intra-edge” pairwise term to

the objective in order to distinguish between different shape parts based on their

feature dissimilarity.

The common idea of these state-of-the-art co-segmentation methods (Kaick et

al., 2011; Kalogerakis et al., 2010) is to model each shape represented by a mesh

via a Conditional Random Field (CRF). Each node in the CRF is associated with

a face of the mesh and the nodes are connected if the respective faces share a

common edge. The corresponding energy function is minimised

E(x) =
∑
i

φ(xi) +
∑
i,j

φ(xi, xj), (1.1)

where the terms φ(xi) and φ(xi, xj) are unary and pairwise potentials, respectively.

The unary term models geometrical similarity of a single face by means of shape

descriptors. In the same vein, the pairwise term models segment boundaries and

takes into account a number of geometrical cues, such as dihedral angles between

two neighbouring faces.

In the following years, a number of unsupervised approaches were presented

4



1.3 Related work

that perform coherent labelling of multiple shapes simultaneously. In one ap-

proach, Huang et al. (2011) formulated the problem as a quadratic integer program

and applied a linear relaxation to efficiently solve it. Sidi et al. (2011) employed

spectral clustering based on diffusion maps measuring similarities of initial shape

segments. The statistical model obtained from the clusters was then used to refine

boundaries between the segments. More recently, Meng et al. (2013) initialised co-

segmentation by clustering similar patches together using normalised cuts. They

subsequently refined the result by alternating between energy minimisation de-

fined in terms of the Markov Random Field (MRF) and the parameter update of

the Gaussian Mixture Model (GMM) used to describe shape parts.

It is worth stressing that supervised approaches required a significant part of the

datasets for training. On the other hand, unsupervised approaches cannot make

use of the provided segmentation for the reference shape. For this reason, we do

not follow the latter line of research further.

1.3.2 Feature extraction

Characterisation of 3D shape with feature descriptors has been extensively stud-

ied. The following is a very short overview of popular approaches to 3D shape

description relevant to our work.

Spin images (Johnson and Hebert, 1999) define a cylindrical coordinate system

and accumulate projections of the points within the support into bins. The re-

peatability of a local reference frame is the cornerstone of the SHOT descriptor

(Signature of Histograms of OrienTations) proposed by Tombari et al. (2010). It

combines local histograms of normals over 3D volumes of a superimposed grid

into a signature. Instead of binning the normals, the Point Feature Histogram,

PFH (Rusu, Marton, et al., 2008), and its fast successor, FPFH (Rusu, Blodow,

et al., 2009), compute various angles from pairs of normals and the vector defining

relative location of the point to its neighbour.

A number of comparative studies, such as the one conducted by Guo et al.

(2016), assist in making a practical choice of local descriptors with respect to the

application domain. In particular, SHOT, PFH and FPFH descriptors have shown

best performance in object recognition from random views.

In recent years, the Laplace-Beltrami operator became an important tool for

shape analysis, matching and retrieval of non-rigid shapes. The eigenfunctions of

Laplace-Beltrami operator are invariant to isometric deformations. Local descrip-

tors based on the eigenfunctions, such as the Heat Kernel signature (Sun et al.,

2009) and its scale-invariant counterpart (M. M. Bronstein and Kokkinos, 2010),

demonstrated state-of-the-art performance in non-rigid shape retrieval (A. M.

5



1 Introduction

Bronstein, M. M. Bronstein, Guibas, et al., 2011). The diffusion distances com-

puted from the eigenfunctions were also used for non-rigid shape matching (A. M.

Bronstein, M. M. Bronstein, Kimmel, et al., 2010). In this work, they were shown

to be more resilient than geodesic distances when partial or self-occlusions result

in topological changes.

1.3.3 Feature encoding

Feature encodings for 3D shape representation mainly derive from those used in

2D image processing. For a comparative evaluation of these methods on object

recognition benchmarks we refer the reader to the survey by Chatfield et al. (2011).

A number of approaches applied the bag of visual words model to 3D shape

retrieval. Y. Liu, Zha, et al. (2006) created the vocabulary from local spin images

and used Kullback-Leibler divergence as a similarity measure between the quan-

tised vectors. Similarly, Ohbuchi et al. (2008) extracted SIFT descriptors from

images constructed from multiple view directions, not dissimilar in spirit to the

Light Field Descriptor. Toldo et al. (2009) first pre-segmented the shape using a

weighted, convexity sensitive fast marching. One of the features they used was a

Geodesic Context that measured the geodesic distance between one region centroid

and the centroids of other regions. They subsequently constructed a signature of

bag-of-words (BoW) histograms each containing frequencies of one sub-part for

a different number of bins. For a non-rigid shape retrieval, Ovsjanikov et al.

(2009) used spatial-sensitive BoW encoding of the heat kernel by accumulating

co-occurrences of word pairs into a matrix. They used a simple L1-distance for

similarity measure. A similar construction was used by Lavoué (2012) to encode

spatial relations between BoW vectors. However, they used local features com-

puted from projections of geometry on the eigenfunctions of a locally constructed

Laplace-Beltrami operator.

Fisher vectors introduced by Jaakkola, Haussler, et al. (1999) provide additional

information beyond the statistics-accumulating nature of the BoW encoding. Per-

ronnin et al. (2010) improved the discriminative properties of the Fisher vector

for large-scale image classification by additional vector normalisation. A survey

of further approaches using Fisher vectors for image classification can be found in

the work by Sánchez et al. (2013).

While Fisher vectors has matured in 2D object processing, it is still an emerging

technique for 3D shape analysis. Only recently, su2015multi used Fisher vectors

extracted from 2D images of multiple views and trained CNN for object recognition

which outperformed the state-of-the-art.

6



1.3 Related work

1.3.4 Inference techniques

The co-segmentation approaches reviewed earlier rely on optimisation of a non-

convex objective. For formulations in terms of a graphical model a number of

well-established inference algorithms may apply. Kappes et al. (2014) gave a com-

parative overview of modern inference techniques. In the following, we take a brief

look at some of the most successful.

The graph cut algorithms proposed by Boykov et al. (2001) optimise the energy

function by performing two types of moves: an α-expansion, which allows to change

the label of a node to α, and an α-β-swap in which the labels of α and β node can

be interchanged. The algorithms are guaranteed to converge to a local minimum in

which no further allowed moves can be made. However, this guarantee holds only

when the energy function is submodular. For example, an energy function of the

form E(x1, ..., xn) =
∑
Ei(xi) +

∑
i<j E

i,j(xi, xj) with binary variables xi ∈ {0, 1}
is submodular if and only if the following inequality is satisfied (Kolmogorov and

Zabin, 2004):

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0). (1.2)

The family of belief propagation (BP) algorithms is based on message passing

introduced by Pearl (1988). Although the original algorithm provides an exact

solution only when the corresponding factor graph is a tree, there are no conver-

gence guarantees for graphical models with cycles. Yedidia et al. (2005) proposed

partitioning the original graph into regions of nodes and enabling the message

passing between the regions instead of separate nodes. Although in practice this

generalised belief propagation exhibited better accuracy and convergence proper-

ties, the choice of regions, apart from some heuristics proposed in the paper, re-

mained an open problem. In another approach based on a tree-reweighted scheme

Wainwright et al. (2003) computed the maximum likelihood (ML) estimate by

maximising a concave lower bound on the log likelihood of the data. Similarly for

MAP estimation, Wainwright et al. (2005) developed a family of tree-reweighted

max-product algorithms which simplify the marginal polytope into a collection of

tree-structured distributions. The shared configuration of the trees achieved by a

message-passing algorithm was shown to reach a globally MAP-optimal solution.

However, the convergence of their tree-reweighted algorithms could not be guar-

anteed. By contrast, the sequential tree-reweighted algorithm (TRW-S) developed

by Kolmogorov (2006) converges to a local maximum of the bound if a weaker

form of the tree agreement is satisfied.

For small graphs heuristic-based approaches can perform better both in accu-

racy and efficiency. Bergtholdt et al. (2010) used small but complete graphs to

7



1 Introduction

represent their structure for object detection. They applied an A?-algorithm with

admissible heuristics which outperformed the inference techniques based on belief-

propagation.

1.4 Discussion

Although the current state-of-the-art co-segmentation methods (Kaick et al., 2011;

Kalogerakis et al., 2010) generally performed well on challenging datasets (X. Chen

et al., 2009; Sidi et al., 2011) they required a significant portion of the available

datasets to be reserved for training. One other practical limitation is the com-

putational cost of these methods. The optimisation complexity depends on the

largest clique size present in the mesh. Although inference is NP-hard in general,

it can be solved in polynomial time if the tree-width of the underlying graph is

bounded (Freuderl, 1990; Robertson and Seymour, 1986) and for a triangulated

graph the size of the tree-width is one less than the size of the largest clique (Chan-

drasekaran et al., 2012). However, complex shape structures may incur tens or

hundreds of thousands of nodes and have an appreciable size of the label space.

Considering the scale, adding auxiliary constraints (e.g. to introduce informative

structural constraints (Mitra et al., 2014)) may considerably slow down the infer-

ence. The limitations also apply to point clouds where local information analogous

to dihedral angles may be highly unstable.

We propose to revise the state-of-the-art with a two-step approach. In the first

step, we designate potential segment boundaries with a cutting plane. Instead of

letting the CRF decide on the segment boundaries using only local information, our

observation is that segment boundaries are strongly correlated with concave regions

of the shape and, hence, can be nominated in a purely unsupervised manner. In the

second step, we apply a robust feature encoding scheme to classify the candidate

segments by their semantic class. Our choice of the feature encoding will be largely

motivated by their good performance on classification tasks in other domains, such

as object recognition and retrieval. Overall, our approach considerably reduces

the size of the CRF, since the number of candidate segments is usually drastically

smaller than the number of faces in the shape. This gives us more freedom to add

structural constraints based on diffusion distance that consider spatial locality of

object parts.

Before we present out approach in 3, we review the background theory needed

to implement our method.

8



2 Background

In this section we review the necessary background for our approach. We begin

with a recent state-of-the-art segmentation method in Section 2.1 which will serve

as a baseline for our pre-segmentation step. The section 2.2 focuses on two popular

local shape descriptors, SHOT and PFH, which will be used for a low-level feature

extraction. We move on next to Sections 2.3 and 2.4 which give details on two

widely used methods for feature encoding: Bags-of-Words and Fisher vectors. In

section 2.5 we take a look at the Laplace-Beltrami operator and discuss its util-

ity for our domain. In particular, we show how some useful intrinsic properties

can be calculated on point clouds. Finally, we recall the TRW-S algorithm in Sec-

tion 2.6 that provides an efficient inference with strong convergence and optimality

guarantees.

2.1 Segmentation with Constrained Planar Cuts

A recently introduced segmentation based on constrained planar cuts for 3D

shapes (Schoeler et al., 2015) is an unsupervised bottom-up approach that outper-

formed existing supervised and unsupervised approaches on the Princeton Object

Segmentation Benchmark (X. Chen et al., 2009). The underlying idea of the

method is to use local regions with pronounced concavity as candidates for seg-

ment boundaries. Although simple Euclidean planes were used in the original work

to designate the boundaries, more complex models could be adopted.

The approach proceeds as follows. First, the cloud is over-segmented into super-

voxels. The centroids of the supervoxels are then connected with edges to form an

adjacency graph. The cornerstone of the procedure is the adoption of a weighted

RANSAC to cut though the edges of the adjacency graph. To that end, the ad-

jacency graph is represented by a point cloud where each point is an average of

the two points connected by an edge in the original graph. In order to constrain

the cutting to regions of local concavities, the set of points Pm lying within the

support region of the candidate model m proposed by RANSAC is also subject to

9
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(a) (b) (c) (d) (e)

Figure 2.1: Segmentation with constrained planar cuts. (a) The input model
represented by a point cloud. (b) Initial segmentation into supervoxels. (c) The
adjacency graph computed from supervoxel centroids with red edges indicating
concavities. (d) Point cloud representation of the adjacency graph. Blue points
denote concave regions. (e) Final segmentation obtained by cutting with planes.

a euclidean clustering. For each cluster n the score is computed as

Snm =
1

|Pnm|
∑
i∈Pnm

ωiti, (2.1)

where Pnm denotes the support region constrained to the cluster n; the parameter

ti favours orthogonal cuts through the edges by taking account of the vector sm
perpendicular to the model m, and the direction of the connection between the

supervoxel centroids x1 and x2, di := x1−x2

‖x1−x2‖2
, and is defined as

ti =

{
|di · sm|, edge i is concave,

1, edge i is convex;
(2.2)

and finally, ωi := H(αi − βthresh) is a heaviside step function with αi := di · (ni2 −
ni1) cos−1(ni1 ·ni2), where ni1 and ni2 are normals of adjacent supervoxels. Thus,

the parameter ωi simply encourages cutting through concave edges.

The entire procedure handles newly generated segments recursively until no

cuts can be found satisfying the condition Snm ≥ Smin. Figure 2.1 demonstrates

the main steps of the outlined method.

10



2.2 Local Feature Descriptors

2.2 Local Feature Descriptors

This section briefly reviews the two most successful local shape descriptors relying

on shape curvature and normals: SHOT and PFH.

2.2.1 Signature of Histograms of OrienTations (SHOT)

The Signature of Histograms of OrienTations (SHOT) descriptor proposed by Tombari

et al., 2010 encodes histograms of first-order differential entities within each cell

of a superimposed 3D grid. In addition, a stable reference frame (RF) is de-

fined for each cell which allows for a geometrically meaningful grouping of the

histograms, i.e. without significant loss of spatial information. The computa-

tion of a repeatable RF is based on the Eigenvalue Decomposition (EVD) of a

covariance matrix M computed for each feature point p and its neighbours in

N (p) := {pi | ‖p− pi‖2 ≤ R} as a weighted sum:

M =
1∑

di
(R− di)

∑
di≤R

(R− di)(pi − p)(pi − p)T , (2.3)

where di = ‖p − pi‖2. The sign disambiguation for EVD is resolved by reori-

enting each eigenvector in the prevalent direction of the input data. With the

RF computed, each local histogram maintains bins with point counts according

discretisation of the dot product np · nυi between the normal of the feature point

np and the corresponding part of the grid nυi . An isotropic spherical grid that

encompasses partitions along the radial, azimuth and elevation axes is used for

signature structure.

2.2.2 Point Feature Histogram (PFH)

Like SHOT, the Point Feature Histogram (PFH) Rusu, Marton, et al., 2008 is an

affine-invariant local 3D shape descriptor based on point coordinates and surface

normals. The PFH accumulates pairwise difference of the angle between normals

in the k-neighbourhood of each point p. Concretely, for each pair of points ps and

pt located in the k-neighbourhood of p such that 〈ns,pt−ps〉 ≤ 〈ns,pt−ps〉, define

u = ns, v = (pt−ps)×u‖pt−ps‖, w = u×v. The following measures of angles,

f0 = 〈v,nt〉, f1 = ‖pt − ps‖, f2 = 〈u,pt − ps〉/f1 and f3 = atan(〈w,nt〉, 〈u,nt〉),
are subsequently used as bin coordinates for the histogram.

An efficient implementation of the PFH simplifies its computation by estimating

the entities f0, ..., f3 only for the feature point p and its neighbours pi. Further-

more, the resulting values are only concatenated to form the so called Simpli-
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fied Point Feature Histogram (SPFH). The final Fast Point Feature Histogram

(FPFH) Rusu, Blodow, et al., 2009 is obtained by

FPFH(p) = SPFH(p) +
∑

pi∈N (p)

1

di
SPFH(pi), (2.4)

where di is defined as in the previous subsection and N (p) is a k-neighbourhood

of point p.

2.3 Bag-of-Words

Let M = {mt, t = 1, ..., T} is the set of T shape feature vectors. The so-called

”codebook” can be generated by fitting a generative model to the given feature

set M (e.g. using K-means). The clusters of the codebook can then be related to

a single dimension in the bag-of-words representation. Concretely, let µµµ = {µi, i =

1, ..., K} denote the K-means clusters fitted to a given feature space F and M be

the feature set as defined previously such that M ⊂ F . The ith dimension of the

resulting bag-of-words histogram is the proportion of features assigned to cluster

µi. To compare two histograms S1 = (u1, u2, ..., uK) and S2 = (w1, w2, ..., wK) the

X 2 distance can be used:

D(S1, S2) =
1

2

T∑
i=1

(ui − wi)2

ui + wi
(2.5)

2.4 Fisher vectors

Instead of encoding data with a limited vocabulary, Fisher vectors encode the

likelihood of the data with respect to parameters of the generative model. Similarly

to the bag-of-words approach, we first represent data in the Gaussian Mixture

model (GMM) using Maximum Likelihood (ML) estimation. The parameters of

the GMM are λ = {ωi, µi, σi, i = 1, ..., K}, where ωi, µi and σi are weight, mean

and covariance of the i − th component and K is the number of components.

Fisher vectors encode 5λp(M,λ), where M = {mt, t = 1, ..., T} is the set of T

local descriptors extracted from the shape. The computation of Fisher vectors

proceeds a follows. Let γt(i) be the soft assignment if the descriptor ml to the

component i:

γt(i) =
ωiui(mt)∑K
j=1 ωjuj(mt)

(2.6)
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The gradients GM
µ,i := ∂ log p(M |λ)

∂µi
and GM

σ,i := ∂ log p(M |λ)
∂σi

are computed as:

GM
µ,i =

1

T
√
ωi

T∑
t=1

γt(i)

(
mt − µi
σi

)

GM
σ,i =

1

T
√

2ωi

T∑
t=1

γt(i)

(
(mt − µi)2

σ2
i

− 1

) (2.7)

with vector division denoting an element-wise operation. The resulting gradient

vector is simply a concatenation of the partial derivatives (2.7).

2.5 Laplace-Beltrami operator

In recent years, the Laplace-Beltrami operator has become one of the most widely

used tools for shape analysis. In this section we will recall the basic definitions

and methods to approximate the operator on real data.

Let M be a smooth manifold of dimension k that is isometrically embedded

in some Euclidean space Rd. Without loss of generality, it is assumed that M is

connected (the following results can be applied component-wise otherwise). Let

f be a twice continuously differentiable function f ∈ C2(M) (e.g. imposed on

some shapeMi ∈M) and 5Mf denote the gradient vector field of f onM. The

Laplace-Beltrami operator 4M of f is defined as the divergence of the gradient:

4Mf = div5M (f). (2.8)

Hence, for M⊂ R2 the operator is simply 4R2f = ∂
2
f

∂x
2 + ∂

2
f

∂y
2 .

Clearly, in majority of real world cases the function describing a given shape

is unknown, and there can be no closed-form solution for computing the Laplace-

Beltrami operator. However, a number of approaches exist to approximate the

Laplace-Beltrami operator on meshes and point clouds. Some of the approximation

schemes on meshes were reviewed by Reuter et al., 2009. In the following we will

focus on computing the operator for point clouds.

2.5.1 Laplace operator from point clouds

One of the earliest algorithms for approximating the Laplace-Beltrami operator

from an arbitrary point cloud was presented by Belkin et al. (2009). The algo-

rithm, called PCD Laplacian, builds a local patch around each data point and

estimates the heat kernel on each patch. The results show that these local patches
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are sufficient to approximate the manifold Laplacian, even though they do not

form a global mesh. However, in order to obtain a provable reconstruction of

the LB operator, the method requires strict sampling conditions which limits its

application in practice. In a later work, Liang et al. (2012) addressed this issue

by local surface reconstruction using moving least squares (MLS), which we later

refer to as MLS LB. The advantages of their method can be summarised using the

following criteria:

• Accuracy. The error of the computed eigenvalues was lower by at least one

order of magnitude compared to PCD Laplacian and of the same order as

the mesh-based method and lower.

• Efficiency. Local approximation can be performed simultaneously for mul-

tiple points using multi-threading.

• Flexibility. Original paper used binomial polynomial of second degree to

locally approximate the surface and solved the resulting quadratic problem.

However, the model of the manifold can be approximated with polynomials

of higher degree for complex shapes.

• Stability: Variations of density in the point cloud were shown to have a

lesser effect on the accuracy than that of the PCD Laplacian.

In view of these performance points, the approach lends itself well for our problem.

Next, we examine the main computation steps the algorithm.

Overview of MLS LB

Let (M, g) be a smooth surface in R3 and (s1, s2) be its local parametrisation near

some point p ∈ M. For a smooth function f : M → R, the LB operator ∆M
acting on f near p is defined by

∆Mf =
2∑

i,j=1

1
√
g

∂

∂si

(
√
ggij

∂f

∂g

)
(2.9)

where coefficients gij are the components of the inverse of the metric tensor G =

[gij] and g = det(G).

The method (Liang et al., 2012) can be summarised in three steps:

1. At each point pi define a local coordinate system.

2. Use moving least square (MLS) to calculate a bivariate polynomial which

best approximates the surface locally.
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3. Modify the classical MLS by introducing a special weight function to locally

approximate any function f defined on M.

We will look at these steps in detail.

Building Local Coordinate System

For each point pi ∈ P the local coordinate system is defined by the normal and

the local coordinates of pi. The normal is computed by considering k-nearest

neighbours (KNN) N(i) and performing PCA of the covariance matrix Pi =∑
k∈N(i)(pk − ci)

T (pk − ci) in a standard way (Here, ci = 1
K

∑
k∈N(i) pk). The

eigenvectors (ei1, e
i
2, e

i
3) with associated eigenvalues λi1 ≥ λi2 ≥ λi3 ≥ 0 form an

orthogonal frame. The KNN of pi are used further for surface and function ap-

proximation.

Local Surface Approximation

A local bivariate polynomial of degree two zi(x, y) is approximated by minimising

the following weighted sum:∑
k∈N(i)

ω(‖pk − pi‖)
(
zi(x

i
k, y

i
k)− zik

)2
(2.10)

where (xik, y
i
k, z

i
k) are local coordinates of point pk, w(·) is a positive weight function

typically chosen as w(d) = exp(− d
2

h
2 ) and h = maxk∈N(i)‖pk − pi‖. With this local

parametric approximation the metric tensor and other important quantities are

computed. The LB operator is written as a linear combination of deriatives on the

surface, given by

δMf = α1

∂f

∂x
+ α2

∂f

∂y
+ α3

∂2f

∂x2
+ α4

∂2f

∂x∂y
+ α5

∂2f

∂x∂y
(2.11)

where αi’s are computed by expanding and simplifying (2.9) (see Appendix 1).

Function Approximation

In order to locally approximate function Fi(x, y) = ci1+ci2x+ci3y+ci4x
2+ci5xy+ci6y

2

locally defined on the manifold M for each point pi, the following weighted sum

is minimised: ∑
k∈N(i)

w(‖pk − pi‖)
(
Fi(x

i
k, x

i
k)− fk

)2
, (2.12)

15



2 Background

(a) (b)

Figure 2.2: Some eigenfunctions of some partial view clouds of a cup (a) and
Armadillo (b).

where fk = f(pk) and the weight is empirically chosen as ω(d) = 1 if d = 0 and

ω(d) = 1/K otherwise. Minimising (2.12) leads to the following linear system:∑
ωkV

i
k (V i

k )TCi =
∑

ωkV
i
kfk, (2.13)

where ωk = ω(‖pk−pi‖), Ci = [ci1, c
i
2, c

i
3, c

i
4, c

i
5, c

i
6]
T and V i

k = [1, xik, y
i
k, (x

i
k)

2, xiky
i
k, (y

i
k)

2]T .

Solution to this system can be written as Ci = M iF , where M i is some 6×N ma-

trix. The partial derivatives of f are proportional to cij’s. For example, ∂f
∂x

(pi) = ci2.

Using equation (2.11), the appoximation of the LB operator is ∆Mf(pi) = LiF ,

where Li is some row vector. Therefore, the i-th row of the MLS LB operator is

simply Li.

Some of the computed eigenfunctions are shown in Figure 2.2.

2.5.2 Spectral shape distances

As noted previously, eigenfunctions of Laplace-Beltrami operator are invariant un-

der isometric deformations. This quality lies at the core of some informative spec-

tral shape properties, such as diffusion and commute distance (M. M. Bronstein

and A. M. Bronstein, 2010). We recall that diffusion distance measures proximity

of two points x and y on the surface and can be computed as

d2t (x, y) =
∑
i

K2t(λi)(φi(x)− φj(y))2, (2.14)

where λi and φi are ith eigenvalue and eigenfunction of the Laplace-Beltrami oper-

ator respectively, and Kt defines a scale space (or, a low-pass filter). A particular

choice of Kt is based on the heat operator H t(λ) = e−tλ. In the interpretation of

the diffusion distance as a random walk, dt corresponds to the likelihood of reach-
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t = 0.01 t ≈ 0.34 t = 2

(a) Diffusion distance for various t
(b) Geodesic (left) and commute
time distance (right)

Figure 2.3: Some illustrative properties of diffusion and commute time distance

ing y from x (or vice versa) within walk distance t ≥ 0. The effect of parameter t on

the diffusion distance is illustrated in Figure 2.3a. Unlike geodesic geometry, the

diffusion distance was shown to be robust to topological noise (A. M. Bronstein,

M. M. Bronstein, and Kimmel, 2009).

For many practical applications, one might be interested in avoiding the choice

of t to decrease the impact of scale variation and computing an “average” diffusion

distance. This notion is closely connected to the commute time distance:

d2CT(x, y) =
∑
i

1

λi
(φi(x)− φj(y))2, (2.15)

which can be related to the diffusion distance by 1
2
d2CT(x, y) =

∫∞
0
d2t (x, y)dt. We

can trace the same resilience of the commute distances to topology changes when

compared to geodesic distances as demonstrated in Figure 2.3b.

2.6 Inference with A∗ search

Originally designed to efficiently obtain the ground-truth solution in small graphs,

the inference based on A? search outperformed other approaches used in the com-

parative study by Bergtholdt et al. (2010) even in runtime. In this section, we

take a look at some of the notable features of this algorithm which will motivate

its choice for our problem.

First, let us introduce some notation. Define a graph G = (V , E) with a set of

n vertices V and a set of edges E . To each vertex s ∈ V we associate a variable xs
from some discrete space Xs. The configuration x is a concatenation of variables
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xs assigned to each node s ∈ V such that x ∈ X := X1 × X2 × ... × Xn. For

some index set I a family of potential functions {φα : X → R | α ∈ I} has a

corresponding set of parameters {θα | α ∈ I}. The energy function is defined as

E(x | θ) =
∑
α∈I

θαφα(x) (2.16)

To simplify notation, we let θα;xα := θαφα(x), i.e. θα;xα denotes the score of

assigning variables xα to nodes α.

The A∗ algorithm for inference relies on the following two components:

• a spanning tree T of the graph G used to compute the lower bound (*);

• and a fixed arbitrary ordering of the graph G (**).

The A∗ induces a tree structure T ∗ on the configuration space X . Each node of

the tree corresponds to a partial configuration of length equal to the node’s level

in the search tree. The algorithm progressively expands nodes starting from the

root node (“zero-length” configuration) and finishing at the leaf node representing

a complete configuration. Hence, the nodes in the tree are connected by an edge

if their configuration differs by only one variable.

The choice of the next node to expand is governed by a score value assigned

to each node. A∗-search algorithm is guaranteed to find the global solution if the

heuristic is admissible, i.e. the score of each node is a lower-bound estimate of the

optimal solution. For large graphs, however, the exponential growth of the tree

structure results in impractical storage demands. A common remedy to reduce

the memory footprint is the tree pruning that excludes some branches of the tree

from the search. The global solution cannot be guaranteed once this procedure

has been applied.

Let v?, u? ∈ T ∗ denote partial configurations such that v?, u? ⊂ X and their

cardinalities given by |v?| and |u?| respectively. The prerequisite (**) implies a

strict total order on V in a sense that s < t if and only if the level at which node

s is included in the configuration node of the tree T ∗ is less than the level of node

t. While considering the expansion of node v∗ with parent u∗ in the search tree

T ∗, the search heuristic was defined by Bergtholdt et al. (2010) as follows:

H(v∗ | u∗) := min
x∈X

x|
v
∗=v
∗

[ ∑
t∈V
t>|v∗|

θt;xt +
∑
st∈E

s≤|u∗|, t>|v∗|

θs,t;xs,xt+

+
∑
s>|u∗|
t>|v∗|

( ∑
st∈E(T )

θs,t;xs,xt +
∑

st∈E\E(T )

min
xs∈Xs

θs,t;xs,xt

)]
,

(2.17)
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Algorithm 1: MAP-inference algorithm with A∗

Data: θ, T
Result: x, opt
v∗ ← [], τ ← +∞;
while |v∗| < |V | do

u∗ ← v∗;
compute H(v∗ | u∗), ∀v∗, |v∗| = |u∗|+ 1;
for i ∈ X|u∗|+1 do

v∗ ← {u∗, i};
NodeQueue.insert({v∗, J(v∗) +H(v∗|u∗)});
if Size = MaxSize then

∆← lowest value of the 50% worst energy estimates;
τ ← min (τ , ∆);

end

end
v∗ ← NodeQueue.pop()

end
x ← v∗, opt ← false;
if J(x) ≤ τ then

opt ← true;
end

where E(T ) ⊂ G are the edges of the preconditioned spanning tree T (*) of graph

G. Intuitively, the heuristic (2.17) consists of the terms including the assignment

in the current configuration (the first two terms) and projected costs of future

assignment (the third compound sum).

The following is given without proves which can be found in the original work

by Bergtholdt et al. (2010).

Proposition 1 Heuristic (2.17) is admissible; it is the lower bound correspond-

ing of the energy of any configuration given by a top-down path in T ∗.

Lemma 1 The lower bound (2.17) in the leaf node of the search tree T ∗ is equal

to the energy function corresponding to a complete configuration represented by the

node.

For completeness, Algorithm 1 summarises theA∗-search algorithm for inference.

The expansion begins with the root node denoted by [] and indicating an empty

configuration. The algorithm then consequently adds new variables into a priority

queue NodeQueue that maintains the ascending order of the nodes by the energy

value. If the size of the tree reaches the maximum threshold given by MaxSize the

pruning is applied. This mechanism keeps the memory demand mentioned earlier
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in check. Parameter τ maintains the lowest value of the pruned branches in the

tree T . Note that opt = false returned if the final energy value J(x) exceeds τ

merely implies that the solution is not guaranteed to be the global minimum.

20



3 Method

3.1 Overview

In this section we present our approach to the co-segmentation problem. The main

goal of the proposed method is to build a part-based 3D shape representation from

a range of single views. This representation enables the use of more holistic feature

encodings that model complete shape subparts instead of accumulating an array

of local descriptors. Furthermore, an unsupervised state-of-the-art segmentation

can provide meaningful part candidates on the query shape. This allows structure

constraints to be incorporated at the level of shape parts and avoid the limitation

of modelling only the segment neighbourhood. The resulting model is effectively

a moderately-sized complete graph.

The flowchart of our approach is presented in Figure 3.1. Initially, we scan

the reference shape from multiple view angles using a virtual scanner. The data

gathered from the single views is used to create a part-based representation of

the reference shape. Next, we pre-segment the query shape by “cutting” through

concave regions and obtain a segmentation graph whose nodes represent separate

segments and edges indicate segment neighbourhood. Note that segment bound-

aries created with the cutting are “fuzzy” in the sense that the divided segments

may eventually receive the same label. In the final step, we incorporate the prior

knowledge and structural constraints from our part-based shape representation

into a Conditional Random Field (CRF) framework to find the optimal labelling.

In contrast to the previous approaches (Kaick et al., 2011; Kalogerakis et al.,

2010), the resulting graph is much more compact, since nodes represent whole

shape segments rather than single mesh faces. Also, a feature representation of

complete shape parts should intuitively be more discriminative than that of local

descriptors with a limited support.

Note that our approach does not restrict the type of the underlying shape data

structure. In present work we assume that the input shape is a point cloud

whereas the reference shape is provided as a mesh. Moreover, implementation

of the flowchart may vary depending on the specific choice of the shape represen-

tation and the objective function for label optimisation. This work addresses only

one feasible configuration.
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In the next section, we formulate our objective function by combining the notions

of intrinsic and extrinsic similarities. We then elaborate on each step of the

flowchart in Figure 3.1 in the consecutive sections.

3.2 Objective

Concrete models prescribing the spectrum of possible shape variations consid-

erably simplify the task of establishing correspondences between a pair shapes.

For example, assumptions of isometric deformations afford reasonable accuracy

of pointwise correspondence (Q. Chen and Koltun, 2015) and there are emerg-

ing techniques addressing the problem for partially visible shapes (Rodolà et al.,

2015).

Although isometry assumption does not hold in general, we can still exploit

it in a weaker form by measuring isometric distortion (A. M. Bronstein, M. M.

Bronstein, Kimmel, et al., 2010) that was originally developed for point-to-point

shape matching. Given point sets S, T and a pointwise correspondence C =

{(s, t) | s ∈ S, t ∈ T } the distortion is characterised by pairwise difference of the

corresponding points,

dis(C) := sup
(s,t),(s

′
,t
′
)∈C
| dS(s, s′)− dT (t, t′) | . (3.1)

The objective to embed one surface into another with minimum distortion can be

Reference
Scanning Shape learning

Input Fuzzy cuts Inference Result

Figure 3.1: Overview of our approach

22



3.2 Objective

Intrinsic Extrinsic

Figure 3.2: Illustration of intrinsic and extrinsic similarity

expressed using Gromov-Hausdorff distance,

dGH(S, T ) :=
1

2
inf
C

dis(C), (3.2)

where inf stands for the infimum.

Clearly, measuring isometric discrepancy cannot be used to find part correspon-

dences alone due to intrinsic symmetries and topology changes. A. M. Bronstein,

M. M. Bronstein, Kimmel, et al. (2010) introduced the notion of intrinsic and

extrinsic similarity that we illustrate in Figure 3.2. Isometric deformations do

not affect intrinsic properties of the shape (Figure 3.2, left), whereas changes in

shape appearance are non-isometric, yet bear visual resemblance to the original

shape (Figure 3.2, right). The core idea of our contribution is to combine these two

notions of the intrinsic and extrinsic similarity for a part-based shape representa-

tion. Accordingly, our objective is to minimise the discrepancy in the appearance

of the subparts and inter-part isometric distortion.

Let us introduce the notation used throughout the chapter. We define a label

function ` : S → L and let the label of segment Si be denoted by `i for short.

We relate probability p(`i | Tj) to appearance similarity of the segment Tj with

the segments in S labelled `i. Similarly, we model probability p(`i, `j | Ti, Tj) to

measure the degree of isometric distortion between each pairwise assignment. Our

objective can be formulated as a maximum likelihood estimate of the form:

maximize
`

∏
i,j

p(`i | Ti)p(`j | Tj)p(`i, `j | Ti, Tj), (3.3)

which is equivalent to a CRF optimisation in the logarithmic scale:

minimize
`

−
∑
i

log p(`i | Ti)−
∑
i,j

log p(`i, `j | Ti, Tj). (3.4)

The description of our approach is split into three parts. In the next section,
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we develop the segmentation step used to create segment candidates on the query

shape. The learning of the shape representation is detailed in Section 3.4. First, we

model the shape appearance using feature encoding, and then define the pairwise

measure distance between shape segments based on the distribution of diffusion

distances. We wrap up the chapter by incorporating the learned model as the

unary p(`i | Tj) and pairwise p(`i, `j | Ti, Tj) terms into our original objective (3.4)

and specify the procedure to obtain the CRF hyperparameters in Section 3.5.

3.3 Segmentation

We base the construction of segment candidates on the recently introduced Con-

strained Planar Cuts (CPC) method (Schoeler et al., 2015) discussed in Section 2.1.

While in preliminary experiments the CPC algorithm showed good results, we also

observed some shortcomings of the post-processing step. In the original CPC al-

gorithm small segments that resulted from multiple locally concentrated cuts are

merged to larger neighbours. The problem with this approach can be illustrated

with a simple example shown in Figure 3.3a. Consider an imaginary profile seg-

mented with cuts 1 and 2 into parts A, B and C such that |B| < |C| < |A|,
where |·| is a segment size measure (e.g. number of points, segment area, etc.). If

segment B is small enough to be merged, the CPC algorithm will assign it to seg-

ment A since |A| > |C|. However, cut 1 exhibits a more pronounced concavity

than cut 2 and, hence, merging B with C will be more visually cohesive.

To mitigate this issue, we refined the original algorithm and devised a replace-

ment for the merging scheme. The resulting procedure is summarised as Algo-

rithm 2. We keep close track on the adjacency of the initially generated super-

voxels. First, the edges bisected in the cutting procedure are removed from the

graph to find the connected components using the depth-first search in O(V +E)

time. Next, we construct a new graph where each node corresponds to a connected

component and the edges obtain a score averaged over all edges cut between the

subgraphs. Finally, the merging algorithm sequentially considers each edge in the

ascending order of the respective scores and merges two segments if either the edge

score is lower than a threshold or either of the connected segments is considered

“small”. The larger segment receives neighbours of the smaller one and a new

weighted average of the edge score is computed for already connected neighbours.

Since one such iteration is guaranteed to remove at least one edge and the sorting

of the edges by their score takes O(E logE), the running time of this modification

is O(E2 logE). In practice, however, the number of edges is comparatively small

(5–30) which does not lead to a noticeable overhead.
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3.3 Segmentation

Algorithm 2: Modified CPC algorithm

Data: Point cloud Cloud
Result: Labels Labels
Initialise VoxelGraph from Cloud using adjacency-octree structure;
Construct EdgeCloud from VoxelGraph;
EdgesCut ← ∅;
repeat

NoCutFound ← true;
Inliers ← WeightedRANSAC(EdgeCloud, MaxIterations);
if Score(Inliers) > ScoreThreshold then

NoCutFound ← false;
EdgesCut ← EdgesCut ∪ Inliers;
EdgeCloud ← EdgeCloud \ Inliers;

end

until NoCutFound;
/* Segment Merging */

VoxelClusters ← FindConnectedComponents(VoxelGraph \ EdgesCut);
Initialise EdgeQueue from VoxelClusters and EdgesCut ; // See text for

// details

while EdgeQueue 6= ∅ do
(V1, V2) ← EdgeQueue.pop();
if Score(V1, V2) < ScoreThreshold or
|V1| < SizeThreshold or |V2| < SizeThreshold then
MergeNodes (V1, V2) ; // See text for details

update EdgeQueue;

end

end
Labels ← NearestNeighbourSearch(Cloud, VoxelGraph, VoxelClusters)

Some qualitative results of our modification can be seen in Figure 3.3b and

Figure 3.3c. The original issue with merging manifested itself through a number

of different ways. In the airplane model shown in Figure 3.3b, a cut found with

RANSAC initially separated the wing and the tailplane from the fuselage while also

cutting off some boundary points of the latter. Subsequent cuts created individual

segments from the tailplane and the wing, but the cut-off segment on the fuselage

was not subsequently merged due to a sufficient size. In contrast to this result, the

condition added in our modification verified that the region between the fuselage

and the segment is convex and merged the two. The same explanation applies

to the breakaway segment on the wing. For a more complex model such as that

of a human shown in Figure 3.3c the modification might have more dramatic
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(a)

(b) (c)

Figure 3.3: Our modification of the CPC segmentation: (a) illustration of the
problem; (b), (c) qualitative comparison between the modified and the original
CPC algorithm on the airplane and human models. (Best viewed in colour)

consequences. The subtle concavity which characterises the chest protrusion was

partially ignored by the original algorithm which merged small fractions of the

solar plexus to the larger “shoulder” segment. Similarly, segment fractions on the

hand cut multiple times due to its convoluted structure were merged to the arm.

The small segment on the foot, by contrast, happened to be large enough to avoid

the merging. These limitations were overcome by our modification with a benign

side-effect: identifying a new hip segment which was initially fractured with cuts

owing to its narrow size and the resulting distortion of the concavity estimates.

Still, our merging appeared to yield a more consistent segmentation throughout

qualitative experiments and we leave a more extensive, quantitative comparison

with the original method for future work.

In addition to the aforementioned advantages, the new algorithm allows us to

maintain a segmentation graph that is crucial to impose topological constraints in

our optimisation problem. For instance, the two wings and the tailplane in Fig-
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ure 3.3b cannot be neighbours in the segmentation graph. Similarly, there can

be no edges connecting the torso segment with a leg on the human model (Fig-

ure 3.3c). We incorporate such constraints in the pairwise term of the objec-

tive (3.4) as a large penalty value.

Note that the segmentation step is applied only to the query model, since the ref-

erence shape is already provided with the target segments. We use these segments

to model the shape representation covered next.

3.4 Shape learning

In this section, we show how we extract features and encode them into a feature

descriptor. As per our objective (3.4) we distinguish between shape appearance

terms and the terms encoding intrinsic spatial relations between shape parts. First,

however, we scan the reference shape in order to create viewpoint-sensitive data

for feature extraction. We describe this step next.

3.4.1 Object scanning

In real-world scenarios objects can be observed only partially from the view angle

of the sensor. We regard this as an important hint and incorporate object scanning

into a pre-processing stage of our pipeline since our reference shape is a known

CAD model. By analogy, this step simply imitates real object scanning usually

performed prior to feature extraction.

We use a virtual scanner placed in a grid of viewpoints to create a subset of

partial clouds from the provided reference shape. Each labelled part of the partial

cloud extracted with scanning is seen to represent a particular variation of this

part within the complete shape. Accumulation of this variation over different

viewpoints provides raw data for the shape learning step.

In this work, we investigate applicability of Bag-of-Words (BoW) and Fisher

vectors (FV) to 3D part-based shape representation. We outline the details of

BoW and FV representations in the following sections and refer the reader to

sections Section 2.3 and Section 2.4 for a more general overview of these methods.

3.4.2 Shape learning with Bag-of-Words (BoW)

A number of issues have to be addressed prior to feature encoding. First, we

can expect some degree of over-segmentation of the query shape, i.e. the pre-

segmentation step does not necessarily divide the shape into its functionally mean-
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Figure 3.4: Illustration of the feature extraction with subsequent encoding

ingful components. For these reasons, instead of modelling complete subparts of

the reference shape we need to reduce the support size of the feature encoding.

Second, we have to consider the difference in relative size of shape subparts. The

palm of a hand, for example, has a larger surface area then each finger. We argue

that encoding of all available feature vectors extracted from an individual segment

might result in misrepresentation of the segment’s geometry. One can draw a

parallel with text analysis. A news article featuring a new science-fiction film might

contain words like “dark energy”, “plasma” or “radiation”, and a travel agency’s

advert might include “sun”, “stars”, “water”. Yet despite the apparent difference

of the text genre, all of this vocabulary can be subsumed by an astrophysics paper,

not least because of a larger volume. This suggests that a discriminative feature

encoding should be constructed from an (approximately) equal number of feature

descriptors.

Third, since we cannot rely on complete visibility of the shape, features extracted

from shape patches in one view might be unavailable in another view. Unfortu-

nately, characterisation of self-occlusion in partial views is largely dependant on

the unknown shape geometry itself and, hence, hard to quantify.

In an attempt to address these issues, we propose the following procedure based

on random sampling. For each view v and shape part with label `, we extract a

set of point clusters P`,v whose centres are uniformly sampled. From each set of

point clusters we draw an equal number of randomly sampled fixed-sized subsets

P`,v,i ⊂ P`,v. We will call P`,v,i a “feature packet” for short.

The general procedure of the feature encoding is illustrated in Figure 3.4. Let

M`,v = {m`,v,t | m`,v,t ∈ RD, ∀t = 1, ..., T} denote the set of T shape feature
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vectors with label ` ∈ L visible from view angle v ∈ V . We model the union of the

feature vectors over all labels and views
⋃
`∈L,v∈V M`,v by the Gaussian mixture

model (GMM):

p(m`,v,t) =
K∑
i=1

wiN (m`,v,t|µµµi,Σi), (3.5)

where N (m`,v,t|µµµi,Σi) is a multinomial normal distribution with the mean µµµi and

the diagonal covariance matrix Σi.

A vocabulary representation fBoW (p`,v) ∈ RK for each cluster in the feature

packet ρ`,v,i ∈ P`,v,i can be constructed as:

f
(k)
BoW(ρ`,v,i) =

wk
|ρ`,v,i|

∑
t

N (m`,v,t|µµµk,Σk), (3.6)

where m`,v,t ∈ ρ`,v,i, |ρ`,v,i| is the number of low-level feature descriptors and

f
(k)
BoW(·) is the kth dimension of vector fBoW ∈ RK .

We vectorise each feature packet by taking the average over the clusters it con-

tains:

fBoW(P`,v,i) =
1

|P`,v,i|
∑
ρ`,v,i

fBoW(ρ`,v,i), ρ`,v,i ∈ P`,v,i (3.7)

As the underlying feature we use SHOT descriptors discussed in Section 2.2.1.

3.4.3 Shape learning with Fisher vectors (FV)

We use the same routine of fitting the GMM to the data as in the BoW to construct

the Fisher vectors. Our arguments favouring random sampling of the feature

packets are still valid for the Fisher vector representation and we apply them here

as well. Using the Equation (2.7) the gradients are computed for each point cluster

ρ`,v,i of the feature packet P`,v,i extracted from a segment with label ` in view v:

Gµµµk
(ρ`,v,i) :=

∂ log p(ρ`,v,i|λ)

∂µµµk

=
1

|ρ`,v,i|
√
ωk

|ρ`,v,i|∑
t=1

γ`,v,t(k)

(
m`,v,t − µµµk

σk

)
,

(3.8)
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Gσσσk
(ρ`,v,i) :=

∂ log p(ρ`,v,i | λ)

∂σσσk

=
1

|ρ`,v,i|
√

2ωk

|ρ`,v,i|∑
t=1

γ`,v,t(k)

(
(m`,v,t − µµµk)2

σ2
k

− 1

)
,

(3.9)

where vector division is element-wise, σi := diag(Σi) and

γ`,v,t(k) =
ωkuk(m`,v,t)∑K
j=1 ωjuj(m`,v,t)

, m`,v,t ∈ ρ`,v,i (3.10)

is the soft assignment of descriptor m`,v,t to the Gaussian centre k. The Fisher

vector is formed by concatenating the gradients (3.8) and (3.9) of each Gaussian

centre:

fFV(ρ`,v,i) = (GT
µµµ1

(ρ`,v,i), ..., G
T
µµµK

(ρ`,v,i), G
T
σσσ1

(ρ`,v,i), ..., G
T
σσσK

(ρ`,v,i))
T . (3.11)

The sparsity of the Fisher vectors fFV (ρ`,v) ∈ R2KD becomes apparent as the

number of Gaussians grows: feature vectors will tend to have a hard-assignment

(i.e. γ`,v,t(i) ≈ 1) potentially resulting in empty Gaussians with the gradients (3.8)

and (3.9) close to null. In this scenario, the commonly used L2-distance might limit

the descriptive properties of the Fisher vector representation. Perronnin et al.

(2010) proposed power normalisation to uniformly rescale the vector by applying

the following function element-wise:

f(z) = sign(z)|z|α (3.12)

We adopt this normalisation here. By contrast, the use of the L2-normalisation

proposed in the same work is not well motivated for our problem and we omit it.

By our assumption, all points of the shape are potentially relevant (i.e. there is

no background to neglect).

In order to keep the size of the Fisher vector moderate and not resort to PCA

a the risk of loosing potential information, we use FV in conjunction with the

compact FPFH feature descriptors reviewed in Section 2.2.2.

3.4.4 Classifier training

The computed representation vectors, fX(·) (where X stands for the type of the

feature encoding used: BoW, SS-BoW or FV) along with the corresponding labels

{(fX(·), `) | ρ`,v,i ∈ P`,v,i, ` ∈ L, v ∈ V }i=1,...,I form the training dataset of the

shape appearance model. We use the Support Vector Machine (SVM) with an
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Figure 3.5: Comparison of spectral distances between two pairs of segments

RBF kernel for BoW and SS-BoW vectors, whereas a linear SVM is used for

Fisher vectors.

Similarly to the feature extraction from the reference shape, we extract the same

number of feature packets on the query shape T from the segments {Tj | Tj ⊂ T }
generated in the pre-segmentation step. The scores obtained from predictions

of the individual feature packets are averaged over complete segments and the

result of the prediction of the label assignment `i to the segment Tj is naturally

interpreted as p(`i | Tj).

3.4.5 Diffusion distance

In this section, we construct the pairwise term p(`i, `j | Ti, Tj) from our objective

(3.4) based on the spectral distances discussed in Section 2.5.2.

We recall that the distribution of the diffusion and commute time distances can

be used as a measure of shape similarity (M. M. Bronstein and A. M. Bronstein,

2010). Intuitively, we could also apply the same principle to pairs of shapes, or as

in the context of our problem, to segments of the same shape. More concretely,

we can extract diffusion distances between two point sets we want to analyse and

compare the resulting distribution to that derived from another pair of point sets.

We illustrate the information contained in the segment distances with an ex-

ample of two partially visible vases shown in Figure 3.5. The distribution of the

commute time distances between pairs of points on the base and the handle (green)

and on the handle and the neck (red) are shown in the histograms next to the cor-

responding vase. Despite shape discrepancy, the histograms still capture the key

features of the shape topology: the base is “farther away” to the handle than the

neck. Furthermore, the histograms are highly suggestive of a normal distribution

for the underlying model where each distance dCT (si, sj) between points of two

segments si ∈ Si, sj ∈ Sj can be seen as sampled from N (µij, σi,j).

Unfortunately, partial views and shapes with symmetries can introduce ambigu-
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(a) (b)

Figure 3.6: (a) Cumulative distribution of distances between the hand and the
shoulder of a human model (b) An example of the learned graphical model

ity for a single Gaussian model. Somewhat expectedly though, multiple discrepant

segments with the same label induce a multinomial distribution as can be seen from

a human model shown in Figure 3.6a. Hence, we can still attempt to approximate

the distribution with a multinomial Gaussian model.

In view of this observation, we propose to learn a multinomial distribution of dis-

tances extracted from the corresponding pairs. Let DCT (`i, `j) := {dCT (si, sj)} de-

note the set of commute time distances between segments with labels i and j. Note,

that by construction DCT (`i, `j) = DCT (`j, `i) and we allow i = j since the distance

distribution is also informative within a single segment. We fit the GMM to obtain

a maximum likelihood estimate θθθ?ij := arg maxθθθij
∑

k ω
ij
k N (µijk , DCT (`i, `j) | σijk )

with parameters θθθij = {(µijk , σ
ij
k , ωk)}k.

With some abuse of notation, let DCT (Ti, Tj) := {(dCT (tin, tjn)) | tin ∈ Ti, tjn ∈
Tj, n = 1, ..., |Ti × Tj|} be the set of all distances extracted between points on the

two segments Ti and Tj of the query shape T . Denoting by `i∼i′ the assignment of

label i′ to segment Ti, we can compute the likelihood estimate of the data given

any pairwise assignment as follows:

p
(
DCT (Ti, Tj) | `i∼i′ , `j∼j′

)
=
∑
n

∑
k

ωi
′
j
′

k N (µi
′
j
′

k , σi
′
j
′

k | dCT (tin, tjn)) (3.13)

Similar to the single labels we assume that any given pairwise assignment is

equiprobable. we can compute an estimate of assignment probability using the
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Bayes rule:

p
(
`i∼i′ , `j∼j′ | DCT (Ti, Tj)

)
=

p
(
DCT (Ti, Tj) | `i∼i′ , `j∼j′

)∑
i
′′
,j
′′ p
(
DCT (Ti, Tj) | `i∼i′′ , `j∼j′′

) (3.14)

Finally, we let p(`i, `j | Ti, Tj) := p
(
`i∼i′ , `j∼j′ | DCT (Ti, Tj)

)
define our distance

measure between the two segments in our objective (3.4).

3.5 Inference

Our model effectively results in a small to medium-sized complete graph G =

{V , E}, an example of which is demonstrated in Figure 3.6b. Each unary potential

θi;`i := − log p(`i | Ti) of the node i ∈ V models the shape appearance of the sub-

part, and the pairwise term θij;`i,`j := − log p(`i, `i | Ti, Tj) measures the isometric

distortion between each pair of the subparts. Hence, our objective can be solved

by the inference of a second-order CRF with the energy given by

J(T ) =
∑
i

θi;`i +
∑
i,j

θij;`i,`j . (3.15)

One issue left for consideration is the trade-off between the unary and pairwise

terms. Clearly, unary features can be relied more upon where structure varia-

tions dominate shape appearance. For example, legs and the surface of a table

should be well-recognisable whereas partial views may convolute the overall struc-

ture as perceived through diffusion distance. Likewise, complex models with rich

structures, such as animals and human, may benefit from additional structural in-

formation. For this reason, we incorporate a trade-off parameter λ in the pairwise

term and use N (µi
′
j
′

k , (λ + 1)σi
′
j
′

k | dCT (tin, tjn)) in Equation (3.13) instead of the

original normal distribution with deviation σi
′
j
′

k . Intuitively, large values of λ will

“dampen” the effect of the pairwise term while λ = 0 would leave the distribution

unchanged.

To learn the parameter λ, we could attempt to weigh up the expected benefits

(or a detrimental effect) of the pairwise term by performing the pre-segmentation

on the reference shape. We use a grid search of λ in the range starting from zero

(“no change”) to a small positive value by running our co-segmentation pipeline

on the resulting segments. Note that since the new segmentation might not be

identical to the original one and there is a random factor in sampling of the fea-

ture descriptors we do not expect a perfect accuracy in segment classification and,

hence, some tangible variation of the effect λ has on the overall solution is rea-

sonable to anticipate. For the query shape, we naturally use the value of λ that
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returned the best accuracy on the reference shape.

We observe, that our compact model is not dissimilar to the one used by Bergth-

oldt et al. (2010) in the context of object part detection. One of their main results

was a competitive comparison of various established inference techniques, such as

the (Loopy) Belief Propagation (Yedidia et al., 2005) and the Tree Reweighted Be-

lief Propagation (Wainwright et al., 2005) with the ground-truth computed using

the A∗ search. The outcome of the comparison was that for small graphs, A∗-

based inference often outperformed the other algorithms in the runtime as well.

We could also confirm a better performance of the algorithm in our preliminary

tests. In fact, for simple models such as vase and cups, the solution could be

found even with a brute-force search in reasonable time. For more complex mod-

els, however, A∗ provided a faster solution with strong optimality guarantees. This

motivated our choice of the A? for the inference in our model. For an overview of

this algorithm we refer the reader to Section 2.6.

3.6 Implementation details

For initialisation of the Gaussian mixture model we used Gonzalez’s algorithm (Gon-

zalez, 1985) with a fixed number of centres K = 128. We used SVM implemen-

tation provided by libsvm library (Chang and Lin, 2011). Both BoW and Fisher

vector representations relied on SHOT as a low-level feature descriptors imple-

mented in the PCL library (Rusu and Cousins, 2011). The feature clusters were

obtained from the support size of |ρ`,v| = 128 points which constituted ≈ 1.5% of

each shape surface area. For computation of pairwise distances, we also used a

sparse grid to sample a compact subset of points from each segment. For the infer-

ence in the mode with the A∗ algorithm the node order and the spanning tree were

computed randomly. We remark, however, that although a better solution could

have been reached with a more meaningful choice, the energy values computed were

still lower than those attained by other algorithms, such as TRW-S (Kolmogorov,

2006).
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We have performed an extensive evaluation of our approach and compared its

performance to the state-of-the-art methods in two experiments. Experiment I

is based on a subset of the Labelled PSB dataset (Kalogerakis et al., 2010). We

selected 15 out 20 representative categories derived from the Princeton Object

Segmentation Benchmark (X. Chen et al., 2009). Each category contained 20

object meshes with the ground-truth segmentation. In Experiment II we used

point cloud data of two watering cans recorded with an ASUS Xtion sensor. The

goal of this experiment is to demonstrate applicability of our approach to the

real-world data and compare its efficiency to the state-of-the-art.

In the next section, we describe our experimental setting for Experiment I and

the evaluation criteria used for benchmarking. The results are presented in the

section afterwards. We introduce Experiment II and analyse the results in Sec-

tion 4.4. In the last section, we summarise the overall performance of our method

based on the two experiments.

4.1 Experimental setup: I

For each selected category in the Labelled PSB dataset (Kalogerakis et al., 2010)

we generated a dataset of valid random views. In the context of this work, a

random view is considered valid if at least 20% of each shape part is visible. This

requirement is motivated by the desire to retain object diversity (segmentation re-

sults would be only misleading if the dataset contained trivial cases with a single

label, or the number of labels was less than in the original model). To generate

random views for each shape we created a uniform grid of view points as in Fig-

ure 4.1a. Next, we proved each view point for the validity criterion defined above

(green points in Figure 4.1a). In order to create a rich subset of random views, we

selected randomly only 8 viewpoints with the highest estimate of mutual scatter

(in Figure 4.1a discarded viewpoints are red). The flowchart of this process is

shown in Figure (4.1b).

We performed a comparison of our approach with two baseline methods derived

from the state-of-the-art co-segmentation developed by Kalogerakis et al. (2010)
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Figure 4.1: Generation of partial clouds: (a) a uniform grid on the sphere; (b)
the flowchart of the process (see text for details).

and Kaick et al. (2011). Recall that the number of shapes allocated for training

in Kalogerakis’s work ranged from 3 to 19 out of total 20 in a category, and the

training set of van Kaick constituted 60% of the dataset. In line with our problem

formulation, we provided only one reference shape for training.

Random views necessitate further alteration to the choice of shape descriptors

used in the original methods. Concretely, volumetric feature descriptors, such as

shape diameter (Shapira et al., 2008) and distances from medial surface points (R.

Liu et al., 2009) cannot be applied to partial views. Likewise, the Average Geodesic

Distance (Hilaga et al., 2001) relies on holistic shape representation and will only

be misleading in a partial setting. Hence, these feature descriptors were omitted

in the implementation of the original methods.

For computation of curvature features used by Kalogerakis et al. (2010) and

Kaick et al. (2011) we used bivariate polynomial fitting and estimated the principal

curvatures according to (Cazals and Pouget, 2005). In implementation of the

approach by Kalogerakis et al. (2010) the context features were restricted to a

local scale with maximum distance to the neighbour 30% of the shape diameter.

The pairs of features used for training the inter-mesh term in implementation of

van Kaick’s approach were extracted from the same shape.

We sampled the points with uniform density from the surface of the generated

mesh parts to create point clouds for our approach. In order to make our results

comparable with those obtained from meshes, we projected the estimated labels

of points to the mesh surface and selected the dominant label for each face.
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4.2 Evaluation criteria

For benchmarking our results, we adopted the evaluation metrics proposed by X.

Chen et al. (2009), namely the Hamming distance, Rand index, the Global and

Local Consistency Error (GCE and LCE, respectively) and accuracy. Another

measure proposed by X. Chen et al. (2009), the Cut Discrepancy, was not used

in the comparison, due to ill-defined non-informative notion of cuts and geodesic

distances between them in partial views of point clouds. Since we projected the

labels of the points back to the mesh surface, we used the standard measure on

segment ‖X‖ equal to its area.

Next, we give a brief overview of the above-mentioned evaluation metrics used

in the experiments.

Intuitively, the Hamming Distance is a sum of a set difference between pairs of

corresponding segments. Let S = {S1,S2, ...,Sn} and T = {T1, T2, ..., Tm} denote

the results of segmentation of two shapes. Let Si ∼ Tj iff i = arg maxk ‖Sk ∩ Tj‖.
The Directional Hamming Distance is defined as DH(S ⇒ T ) :=

∑
Si∼Tj ‖Tj \Si‖.

Considering T to be the ground truth, the missing rate Rm and false alarm rate

Rf are defined as follows:

Rm(S, T ) =
DH(S ⇒ T )

‖T ‖
Rf (S, T ) =

DH(T ⇒ S)

‖S‖
, (4.1)

where the measure ‖A‖ is applied to a collection A in a natural way: ‖A‖ =∑
i ‖Ai‖, Ai ∈ A. Note also that in our case ‖T ‖ = ‖S‖. The Hamming Distance

is the average of the missing rate and false alarm rate.

Rand index Rand, 1971 corresponds to the likelihood that a pair of faces

(points) is either in the same or different segments in two segmentations. It is

computed by first counting

• the number of pairs of faces a in the same segment;

• the number of pairs of faces b in different segments.

The final score for a shape of size N is computed as R =
(
N
2

)−1
(a+ b).

Consistency Error measures region-based difference between two segmenta-

tion results S and T . Let Si denote a segment in S containing face i (equivalently

for segmentation T ). The local refinement error is defined by Ei(S, T ) := ‖si\Ti‖
‖Si‖

.

For a shape with N faces, the global and local versions of the error measure, GCE
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and LCE, are defined as:

GCE(S, T ) =
1

N
min
{∑

i

Ei(S, T ),
∑
i

Ei(T ,S)
}

LCE(S, T ) =
1

N

∑
i

min
{
Ei(S, T ), Ei(T ,S)

}
.

(4.2)

Finally, given the ground truth segmentation, accuracy is naturally defined as

the ratio of correctly labelled faces to the total number of faces.

In addition to these standard metrics, we also report average recall of shape

parts. This metric can be especially useful for shapes with only a few subparts,

or shapes with a dominant part. The body of the vase, for example, or the torso

of the human model might make up a significant share of the total surface area.

Predictors that simply return the dominant label on every query could be falsely

regarded as well performing.

4.3 Results: I

For each selected category of shapes, we consecutively chose one object as the

reference shape and ran the co-segmentation pipeline against all compatible partial

shapes in the category. We refer to a query shape as compatible if it doesn’t contain

labels not present on the reference shape. Hence, with 20 objects in the category,

we run at most 20×8×20 = 3200 co-segmentation instances for each object group.

The results are averaged for each category. Comparison results of the reference

object with its own partial views were excluded from quantitative results.

In the first part of Experiment I we compared four configurations of our ap-

proach with the state-of-the-art using 15 categories of the Labelled PSB dataset.

Each configuration is built on either BoW or Fisher vector representation, with

or without pairwise features. To simplify notation, we use BoW for the plain

Bag-of-Words classification and BoW+ISO for the Bag-of-Words with the isome-

try prior. The same notation applies to the Fisher Vectors referred to as FV for

short. Recall also that the Bag-of-Words implementation relied on SHOT feature

descriptors, whereas the Fisher vector used FPFH. The main results on accuracy

are summarised in Figure 4.2.

As can be seen from the accuracy values, the plain Fisher vector classifica-

tion performs best on average while BoW and FV+ISO already outperform the

state-of-the-art. The state-of-the-art still shows higher accuracy on three cate-

gories: “Fish”, “FourLeg” and “Octopus”. We believe that these results stem from

mediocre performance on the pre-segmentation step which fails to identify con-
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Category van Kaick et al. Kalogerakis et al. BoW BoW+ISO FV FV+ISO

Ant 58.8 58.9 66.2 65.6 77.7 74.1

Airplane 62.7 62.0 59.2 57.0 64.0 60.0

Bird 58.1 57.0 57.4 52.0 58.5 53.6

Chair 59.6 59.6 60.6 56.7 60.2 55.5

Cup 81.6 81.8 90.0 87.6 88.7 87.5

Fish 84.2 84.4 72.1 71.7 78.4 77.7

Fourleg 60.1 59.4 51.1 48.1 54.9 50.6

Hand 52.2 52.7 53.4 46.8 56.0 49.6

Human 41.3 41.6 35.8 34.2 43.7 40.4

Mech 81.3 81.7 82.4 84.4 84.1 84.6

Octopus 82.0 82.8 76.5 75.0 69.6 69.8

Plier 33.7 32.5 70.5 57.3 71.9 58.8

Table 71.6 70.9 88.9 87.5 85.4 84.1

Teddy 71.9 71.1 64.5 69.4 76.4 77.0

Vase 64.3 65.5 70.6 65.3 70.3 63.8

Average 64.2 64.1 66.6 63.9 69.3 65.8

Figure 4.2: Average accuracy on the LPSB dataset used in Experiment I (in
percent)
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cave regions on partial views of smooth-surfaced (“Fish”) and complex-structured

(“FourLegt” and “Octopus”) objects. Another observation from the obtain results

is that the isometry prior seems to decrease the overall accuracy. One explanation

might be high sensitivity of the Laplace-Beltrami eigenfunctions to partial views

in the current implementation. Still, the use of the isometry prior in conjunction

with Fisher vectors achieved best accuracy among all evaluated methods in two

categories: “Teddy” and “Mech”.

In the second part of the Experiment I we used the evaluation criteria reviewed

in Section 4.2 to look at the quality of segmentation. We present the results for

each category in Figure 4.3 with the last graph showing the overall average. Note

that the rand index shown is actually subtracted from one by convention.

From the graphs in Figure 4.3 we observe that all our methods exhibit a sharp

decrease of GCE and LCE. We explain this phenomenon by the “greedy” property

of our approach: whereas the state-of-the-art methods tend to produce segmen-

tations with many local inconsistencies, our tactics of “cutting and classifying”

assigns labels to large segments.

The results of the evaluation criteria in Figure 4.3 also agree well with those

in Figure 4.2: the configuration based on the Fisher vectors achieves best scores

overall while the isometry prior generally seems to exacerbate the performance.

A selection of qualitative examples computed with FV from the Experiment I is

shown in Figure 4.4. It can be seen, that our best-performing configuration fails

to identify small segments, such as the tail of the airplane, of the centre of the

pliers. In other instances, some parts are misclassified (e.g. the leg of a chair)

which might also be the result of the pre-segmentation failing to separate them

from the main body. Our approach also shows decent results on some challenging

problems, such as the vase, table and octopus.

As a concluding remark of Experiment I, all co-segmentation approaches showed

a particularly weak performance on the “Hand” and “Human” datasets. This

categories are also most challenging, because they include variations of scale, shape

appearance and isometric deformations.

4.4 Experiment II

In Experiment II we evaluated our best performing approach (FV) on real data and

qualitatively compared its efficiency and accuracy with the state-of-the-art (Kaick

et al., 2011).

We supplied both algorithms with a reference shape obtained from a sensor,

and manually labelled segmentation. Since this data was initially obtained as
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4.4 Experiment II

Figure 4.3: The average performance of different co-segmentation algorithms per
category used in Experiment I (continue)
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Figure 4.3 (cont.): The average performance of different co-segmentation algo-
rithms per category used in Experiment I
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Figure 4.4: Selected results obtained from our co-segmentation approach. Left:
Reference shape. Right: Query shape
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(a) Reference shape (b) Query shapes

Figure 4.5: Two types of watering cans used in Experiment II

a point cloud, we computed a mesh model from a representative partial view

using fast triangulation (Marton et al., 2009) to make it compatible with the

mesh-based state-of-the-art. The computed mesh of the reference shape and the

corresponding labelling is shown in Figure 4.5a. Our approach, however, does not

require a complete model; it was sufficient to provide a small number of labelled

partial-view point clouds which were provided using a separate train sequence of

frames.

We proceed with the experiment by obtaining two frame sequences. The first is a

recording of the original model (see Figure 4.5, left) but previously unseen action.

A representative set of frames demonstrating the resulting segmentation of the

evaluated algorithms is shown in Figure 4.6. We note that although our approach

failed to detect the handle in frame 99, it still performed well in other sequences.

By comparison, the state-of-the-art method (Kaick et al., 2011) identified only

patches of the handle throughout the sequence.

In a more challenging experiment, we presented both algorithms with a sequence

containing a novel object (see Figure 4.5, right). We used exactly the same ref-

erence shape as in the first part. As can be seen from Figure 4.7 our approach

misclassified the spout as a handle in frame 2 and detected only part of the handle

in frame 22. The state-of-the-art misclassified a large fraction of the container in

the first two frames while showing relatively good segmentation in the last ones.

As a final part of Evaluation II we compared the computational time required for

both methods. The ran the first part of the Experiment II on a laptop with Intel

Core i7 CPU and 8GB RAM. The code was parallelised for point- and face-wise

operations, such as computing the normals and curvatures.

The results of the benchmarking are summarised in Figure 4.8. While the train-

ing time of the state-of-the-art required both the classifier training and the learning

of the CRF parameters, our method FV needs only the latter. Notwithstanding an

additional pre-segmentation step, our approach was almost six times faster than
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Frame 6 Frame 34 Frame 56 Frame 99

Figure 4.6: Test sequence with the same query shape as the reference. Top row:
Kaick et al. (2011); Bottom row: Ours (FV).

Frame 2 Frame 17 Frame 22 Frame 28

Figure 4.7: Test sequence with a novel query shape. Top row: Kaick et al.
(2011); Bottom row: Ours (FV).
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van Kaick et al. FV

Training 259.6 581.0

Learning CRF 506.5 -

Total 766.1 581.0

Pre-segmentation - 34.2

Inference 290.15 16.1

Total 290.15 50.3

Figure 4.8: Average time per object pair in Experiment II (in seconds)

the state-of-the-art implementation.

4.5 Summary

In this section, we performed quantitative and qualitative comparison of our

method the state-of-the-art approaches. In the first experiment, we established

that three out of four variations of the proposed algorithm showed higher aver-

age accuracy on a challenging Labelled PSB dataset. In the second experiment,

our method demonstrated good performance on training data and almost six-fold

improvement over the state-of-the-art in computational time.
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In the concluding part of the thesis we highlight some of the limitations of our

approach and outline the direction for future work. We summarise our contribution

in the final section.

5.1 Limitations

There are some limitations of our approach. The first obvious one, is the weak

link between the segmentation and inference. In a way, the pre-segmentation step

imposes an upper bound on the segmentation accuracy.

Another issue is that the heavy reliance of the pre-segmentation step on concave

regions can easily fall prey to partially observed point clouds. The boundaries

between parts which exhibit concavity might be occluded from the view in the first

place. Another consideration offer nearly flat objects with the concavity expressed

only in profile views. Imagine a human hand with the viewpoint of the observer

directed towards the palm. The concavity between the fingers is apparent, yet the

normals expressing it would fall short of the support region due to little depth

information.

What is more, the representation of shape appearance can be closely linked

to the over-fitting problem in machine learning. In general, one cannot expect

a robust generalisation of a feature encoding obtained from a single shape to all

other shapes of the same kind.

5.2 Future work

We plan to undertake a number of steps in future work to mitigate the limitations

discussed. First, incorporating more sophisticated concavity cues, such as ones

observed from profile views, might potentially improve the quality of the pre-

segmentation. We also intend to investigate other feature encoding schemes, such

as spatially sensitive Bag-of-Words (Ovsjanikov et al., 2009). We still believe that

contextual information based on isometric distortion can bring in a significant

boost to the segmentation accuracy. The diffusion distances computed either from
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different approximations of the Laplace-Beltrami operator (Y. Liu, Prabhakaran,

et al., 2012) or directly from the Euclidean distance with a Gaussian kernel (A. M.

Bronstein, M. M. Bronstein, Kimmel, et al., 2010) are reasonable candidates to

study.

5.3 Summary

In this work, we proposed a new approach to the co-segmentation problem that

takes into account practical limitations of the existing state-of-the-art methods.

Our algorithm is readily applicable to point clouds captured from real sensors and

does not require a complete object model both for the reference and the query

shape. The generality of our pipeline allows a number of variations and we have

investigated only a subset of plausible configurations. However, our results already

demonstrated a superior performance compared to the state-of-the art methods.

This makes us believe that the introduced concept opens promising directions for

future research of shape understanding.
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Appendix

1 Expansion of Laplace-Beltrami operator

We can expand and simplify the local Laplace-Beltrami operator as follows:

∆Mf =
2∑

i,j=1

1
√
g

∂

∂si

(
√
ggij

∂f

∂g

)
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1
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√
gg11

∂f

∂x
+
√
gg12

∂f
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√
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√
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(
∂
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√
gg22

)
∂f
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]
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∂f 2

∂2x
+ (g12 + g21)

∂f 2
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+ g22

∂f 2

∂2y

+
1
√
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∂
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)∂f
∂x
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( ∂
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√
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∂
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]
(1)

Therefore, the coefficients αi are defined as:

α1 =
1
√
g

(
∂

∂x

(√
gg11

)
+

∂

∂y

(√
gg21

))
α2 =

1
√
g

(
∂

∂x

(√
gg12

)
+

∂

∂y

(√
gg22

))
α3 = g11

α4 = g12 + g21

α5 = g22

(2)

In order to obtain the values gij we’ll need to consider the inverse of the metric

tensor G. Assume zi(x, y) = a1 +a2x+a3y+a4x
2 +a5xy+a6y

2. The two tangent

vector basis are given by Γx(pi) = (1, 0, ∂zi
∂x

), Γy(pi) = (0, 1, ∂zi
∂y

). By definition,
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gij = 〈Γi,Γj〉, so

G =

(
〈Γx,Γx〉 〈Γx,Γy〉
〈Γx,Γy〉 〈Γy,Γy〉

)
=

 1 +

(
∂zi
∂x

)2
∂zi
∂x

∂zi
∂y

∂zi
∂x

∂zi
∂y

1 +

(
∂zi
∂y

)2

 (3)

Let γ(x, y) := ∂zi
∂x

= a2 + 2a4x + a5y and β(x, y) := ∂zi
∂y

= a3 + a5x + 2a6y.

Since we take pi as the origin of the coordinate system, the values of interest are

γ := γ(0, 0) = a2 and β := β(0, 0) = a3. It’s also easy to see that ∂
∂x
γ = 2a4,

∂
∂y
γ = a5,

∂
∂x
β = a5,

∂
∂y
β = 2a6. Then (3) can be rewritten accordingly:

G =

(
1 + γ2 γβ

γβ 1 + β2

)
(4)

The inverse of the 2× 2 matrix is well defined:

G−1 =
1

g

(
1 + β2 −γβ
−γβ 1 + γ2

)
=

1

g

(
1 + β2 −γβ
−γβ 1 + γ2

)
, (5)

where we used notation g = detG. Using the expressions for gij, we can plug

them into (2) to find partial derivatives for α1..5. Making use of the fact ∂
∂x

1√
g

=

− 1
g
√
g

(
2a2a4+a3a5

)
and ∂
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1√
g

= − 1
g
√
g

(
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)
we can simplify the deriva-

tion of α1 and α2 by breaking it up into parts:
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Combining the derivations (6) - (9) with (2), we obtain the final formulas for the

α’s:
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1

g

(
2a3a6 −

1 + a23
g

(2a2a4 + a3a5) +
a2a3
g

(2a3a6 + a2a5)− 2a2a6 − a3a5
)

α2 =
1

g

(
2a2a5 −

1 + a22
g

(a2a5 + 2a3a6) +
a2a3
g

(2a2a4 + a3a5)− 2a3a4 − a2a5
)

α3 = 1 + a22

α4 = 2a2a3

α5 = 1 + a23
(10)
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