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Abstract

For autonomous navigation of Micro Aerial Vehicles (MAVs), a reliable and effi-

cient state estimation is of utmost importance. Due to their low weight and size,

cameras are often used as sensors on MAVs and can cover a wide field of applica-

tions, such as simultaneous localization and mapping (SLAM), obstacle detection

or 3D reconstruction. Specific applications for cameras on MAVs are for example

position control, obstacle avoidance, and autonomous navigation and mapping,

showing the flexible possibilities a camera as a sensor offers. Multiple different

tasks can be performed using a single sensor.

For state estimation with visual SLAM, our MAV is equipped with six fish eye

cameras, covering an omnidirectional field of view.

In this thesis, a novel approach for estimating the egomotion of MAVs using vi-

sual SLAM from stereo cameras is presented, which combines feature-based match-

ing with semi-dense direct image alignment.

Recent visual SLAM methods can be classified into either feature-based methods

or direct methods. While feature-based methods rely on sparse image features

only, direct methods use the entire image for tracking. As feature-based methods

keep a sparse representation of the image, they are inherently faster than direct

methods. Direct methods, however, estimate the motion based on all information

of the image and are thus more accurate. By combining both paradigms we are

able to combine their strengths. We are not only able to efficiently estimate the

pose of our MAV with a high frame rate, but also reconstruct a semi-dense map

of the environment online, using direct tracking.

The major challenges are the strong radial distortions of the employed fish eye

lenses and the real-time requirements for reliable navigation on MAVs.

We evaluate our method on the popular KITTI dataset, on the EuRoC dataset

and on our MAV as well. In experiments we show, that our approach accurately

estimates the camera motion and reconstructs a globally consistent semi-dense map

of the environment. Quantitative results show, that our approach outperforms

other state-of-the-art methods on the KITTI and on the EuRoC dataset. Due to

the strong radial distortion of the fish eye lenses and a non-rigid stereo setup, our

approach shows less accurate results on our MAV dataset, but still achieves an

average absolute trajectory error (ATE) of 0.8m.
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1 Introduction

Recently, unmanned micro aerial vehicles (MAVs) have become increasingly popu-

lar in ongoing research towards autonomous mapping and exploration, surveillance

and inspection, or search and rescue missions. Due to their low weight and size,

micro aerial vehicles can be used in restricted or cluttered environments without

getting stuck as likely as ground vehicles might. Especially quadrotors and hexaro-

tors are very popular for such tasks, because they can easily hover at a position,

are reliable and compact and need only low maintenance. However, autonomous

navigation necessitates a reliable sensor setup and fast on-board methods for state

estimation and control.

On ground vehicles, laser scanners are heavily used as main sensors and are suc-

cessfully deployed for laser-based simultaneous localization and mapping (SLAM)

and obstacle avoidance. However, laser scanners are usually very heavy and large,

restricting their use on MAVs by the limited payload and battery life. Thus, a

popular approach is to equip the MAV with one or more lightweight cameras and

use computer vision techniques to estimate the state of the MAV.

While other MAVs are often equipped with one monocular camera or one stereo

pair facing forward, the presented setup consists of an omnidirectional mount-

ing of three stereo camera pairs, allowing for horizontal obstacle perception in all

directions. Moreover, they achieve a high frame rate of up to 45Hz allowing for dy-

namic maneuvers and fast reactive behavior. For state estimation and localization,

methods for visual odometry or even visual SLAM can be used with one or more

cameras. Similar to laser-based SLAM, visual SLAM simultaneously tries to lo-

calize the current pose while incrementally building a map. Recent visual SLAM

methods can be classified into either feature-based methods or direct methods.

While feature-based methods only use a sparse representation of the given image

by reducing the scene to the set of observed feature points, dense direct methods

use all pixels of the image to perform direct image alignment. As efficiency and

real-time constraints are of utmost importance for autonomous navigation, dense

methods are often unfeasible.

Recently, LSD-SLAM (Engel, Schöps, et al., 2014) has been proposed as a semi-

dense monocular method, which locally tracks the camera motion using direct

image alignment and continuously builds a semi-dense depth map. When using
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1 Introduction

monocular methods for autonomous navigation, one has to deal with the inherent

scale ambiguity by either using additional sensors to estimate the scale or by

initialization with absolute values. Monocular methods suffer from the problem

that the absolute scale of the scene cannot be observed, so that further sensors

are needed for absolute scale estimation. Moreover, the absence of absolute scale

leads to scale drift over time, yielding inconsistent maps.

The goal of this thesis is to extend LSD-SLAM to a stereo SLAM system. By

adding a second camera, the absolute scale becomes observable, greatly reduc-

ing scale drift and the necessity for additional sensor measurements. Moreover,

instant absolute depth measurements can now be used for the direct tracking of

the images, as well as for the mapping of the environment. A drawback of direct

methods for visual SLAM, which use the entire image for tracking, is that they

are more computationally demanding than feature-based methods, because—even

with VGA resolution—they deal with several hundred thousand constraints in con-

trast to a sparse set of 200 to 1000 features. Moreover, they assume very small

image displacements for tracking, and thereby tend to fail at large inter-frame mo-

tions and rotations. In addition to the stereo extension of LSD-SLAM, we present

a novel approach, which combines the direct image alignment with feature-based

matching to keep up with the high frame rate and the dynamic motions of our

MAV. We employ the direct tracking for key frames only, while all other frames

are tracked using a feature-based method.

Thus, we are not only able to track the MAV in real-time, but are also able to

reconstruct a semi-dense 3D map of the environment, as shown in Figure 1.1.

1.1 Contributions

In this thesis we present a novel approach for visual SLAM with stereo cameras,

which combines semi-dense direct SLAM with a feature-based method for visual

odometry. We build upon an open-source semi-dense direct method which uses

a monocular camera. The drawback of monocular visual SLAM methods is that

the absolute scale of the scene is not observable. This leads to scale drift over

time or to the need of additional sensor fusion from, for example, measurements

of an inertial measurement unit (IMU). As our MAV is equipped with three stereo

camera pairs, stereo vision is possible.

Thus, the first contribution of this thesis is to extend the existing monocular

approach to stereo cameras. By using stereo cameras, the absolute scale becomes

observable, leading to less scale drift. With stereo cameras, instant depth mea-

surements become available, while in monocular methods the depth can only be

2



1.1 Contributions

estimated up to a scale.

As additional contribution we introduce a novel approach of a combined visual

SLAM scheme: while the direct tracking is done on key frames only, all frames in

between are tracked using sparse visual odometry. By reducing the direct tracking

to key frames we can keep up with high frame rates and can use the estimate of

the sparse visual odometry as a decent initialization for the tracking of new key

frames. Therefore, we are not only able to track the camera motion in real-time,

Figure 1.1: 3D reconstruction of a scene captured by our MAV during flight:
while estimating the camera motion using our semi-direct approach, a semi-dense
3D map of the environment is constructed. The raw fish eye image and the corre-
sponding semi-dense depth map are shown on top. The trajectory is visualized as
pose-graph containing key frames (blue), feature-based tracked frames (pink) and
edge constraints (green).

3



1 Introduction

but also can do a dense reconstruction of the environment by semi-dense direct

tracking on stereo frames.

1.2 Outline

In Chapter 2 the MAV—used for the experimental part of this thesis—is described.

Furthermore the general theoretical background needed for retrieving the camera

pose is introduced. Then, an overview of recent related work about sparse and

dense visual SLAM methods follows in Chapter 3. Chapter 4 deals with the

calibration of our camera system and presents different calibration methods. Af-

terwards, Chapter 5 presents the approach developed in this thesis. We start with

explaining the general concepts of LSD-SLAM as our choice for a direct method

and LIBVISO2, as feature-based method, and present the algorithmic advance-

ments developed in this thesis. Moreover, we then evaluate the newly proposed

method quantitatively and qualitatively on different datasets, for example, the

well-known KITTI dataset, in Chapter 6. Finally, the contributions and results

are summarized in Chapter 7.

4



2 Background

In this chapter, we introduce the utilized MAV and its main sensors as well as the

theoretic background that forms the base of this thesis.

2.1 Sensor Setup

Our MAV is built as high-performance platform with a multimodal omnidirectional

sensor setup (Beul et al., 2015). As MAVs have very limited payload, we use only

lightweight components and are capable of navigating indoor and outdoor. Espe-

cially for (fully) autonomous navigation in unknown and dynamic environments, a

multimodal and omnidirectional sensor setup is of great advantage. The strengths

of the different sensors can be combined and their measurements can be fused in

an occupancy grid map.

The MAV is built as hexarotor with six 14′′ propellers each connected to a

MK3644/24 motor. For better stability and collision protection the MAV is sur-

rounded with a non-rigid milled frame that does not only protect the rotors, but

also serves as mount for various sensors. For on-board computation in real-time,

the MAV is equipped with a mini-ITX board, namely a Gigabyte GB-BXi7-4770R

with an Intel Core i7-4770R quad-core CPU, 16 GB DDR-3 memory and a 480 GB

SSD to process all sensor outputs.

We employ a multimodal sensor setup consisting of IMU, laser scanners and

cameras. The MAV is equipped with a Pixhawk Autopilot flight control unit

(FCU) (Meier et al., 2012) for low-level velocity and altitude control. The Pixhawk

FCU comes with accelerometers, a barometer, gyroscopes and a compass. The

included firmware has been adapted to fulfill our needs by additional integration

of visual and laser odometry estimates. Moreover, our system is equipped with two

laser scanners and six cameras for high-level autonomous operation and navigation.

In particular, we use two rotating Hokuyo UST-20LX laser scanners, each with

a scan range of 20m and 270◦ apex angle. Together they can perform a full 3D

scan of the environment with 4Hz. They are used for obstacle perception and

SLAM-based 6DOF localization (Nieuwenhuisen et al., 2015).

For visual obstacle detection and visual SLAM, the MAV is equipped with an

5



2 Background

Figure 2.1: High performance MAV during flight. The omnidirectional sensor
setup includes three fish eye stereo pairs covering a wide field of view for au-
tonomous navigation.

Figure 2.2: Top down view of possible camera configurations: the left image
shows a fully omnidirectional setup with independent optical axis, while on the
right a stereo setup consisting of three independent stereo pairs is shown.

6



2.2 Camera Model

omnidirectional camera setup. The cameras are mounted to the non-rigid body

frame using dampers to filter out vibrations induced by the six propellers. The

camera mounting can easily be switched from a fully omnidirectional setup with

independent optical axes to a stereo setup with three stereo camera pairs, as can be

seen in Figure 2.2. The multi-camera setup allows omnidirectional perception of

the environment and allows robust state estimation due to redundant information

sources, i.e., even if one stereo pair faces a homogeneous wall with no texture the

other two pairs still allow for robust localization. We use XIMEA MQ013MG-E2

global-shutter monochrome USB 3.0 cameras with 1.3 MP resolution in combi-

nation with Lensagon BF2M2020S23 fish-eye lenses for a wide field of view. By

making use of the available independent USB controllers of the on-board system,

we distribute the USB traffic and thus can achieve high camera frame rates at full

resolution. Each stereo pair is connected to a USB 3.0 HUB, which is connected

to a dedicated on-board USB 3.0 port that offers full USB 3.0 speed. Through

this setup we ensure that for each camera enough bandwidth is available. Assum-

ing that each HUB offers 2400Mbit/s (300MB/s), each camera may use up to

1200Mbit/s (150MB/s). Theoretically, each camera can achieve the best possible

frame rate of 60Hz in 8-bit mode and 57Hz in 16-bit mode.

However, the real data rate is limited by additional system and protocol overhead

when reading and writing from the connected devices.

Under real lighting conditions and depending on exposure times we achieve up

to 50Hz for each camera in 16-bit mode. Our camera driver not only ensures that

the images are published synchronously, but also offers advanced functionality like

downsampling, gamma correction or rectification.

2.2 Camera Model

2.2.1 Perspective Camera Model

The Perspective Camera Model or Pinhole Camera Model, as shown in Figure 2.3,

is a simple and widely used model. It describes the mathematical projection

from 3D world coordinates to a 2D image plane. This perspective transformation

contains the projection from 3D world coordinates to 3D camera coordinates,

which is a mapping from R
3 to R

3, and the projection from 3D camera coordinates

to 2D image coordinates, which by contrast is a mapping from R
3 to R

2.

The origin of the camera coordinate system is called center of projection COP .

The line from the COP perpendicular to the image plane is called principal axis,

and its intersection with the image plane is called principal point or optical center,

denoted with c = (cx, cy)
T , whereas the distance of the COP to the image plane

7



2 Background

Figure 2.3: Perspective camera model: a 3D Point P is mapped to a point p on
image plane I by the ray connecting P with the center of projection C.

is called focal length f . A 3D point in camera coordinates Pcam = (X, Y, Z)T is

mapped to the image plane I at the intersection of the ray connecting the 3D

point with the COP , as visualized in Figure 2.3. Using similar triangles the 2D

projection (u, v) of a 3D point Pcam = (X, Y, Z)T can be calculated by:

(
u

v

)

=
f

Z

(
X

Y

)

. (2.1)

Equation (2.1) assumes that the origin of the image plane is at its principal point

c, while in practice the image plane’s origin is located—depending on definition—

at the lower or upper left corner of the image. Thus, the mapping π from camera

coordinates to image coordinates becomes:

(
u

v

)

= π(X, Y, Z) :=
f

Z

(
X

Y

)

+

(
cx
cy

)

. (2.2)

For the inverse mapping from image coordinates to camera coordinates, the

depth Z has to be known, as it is lost in the projection from π : R3 → R
2:





X

Y

Z



 = π−1(u, v, Z) := Z





f−1u− cx
f−1v − cy

1



 . (2.3)

The projection can be expressed as matrix multiplication when using homoge-
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2.2 Camera Model

neous coordinates:

Z





u

v

1



 =





f 0 cx
0 f cy
0 0 1





︸ ︷︷ ︸

K





1 0 0 0

0 1 0 0

0 0 1 0





︸ ︷︷ ︸

(I|0)








X

Y

Z

1








. (2.4)

The matrix K is also called camera calibration matrix and contains the so-

called intrinsic camera parameters f and c. Using Equation (2.4), 3D points

given in camera coordinates can now be mapped to 2D image coordinates. To

describe the mapping from world coordinates to camera coordinates we introduce

an additional transformation between coordinate frames. The coordinate frame

of the camera must not have the same origin as the world, and instead may be

rotated and translated in the world coordinate frame. A mapping from a point in

world coordinates to a point in camera coordinates presents itself as:

Pcam = RPworld + t. (2.5)

The 3D rotation matrix R ∈ R
3×3 and 3D translation t ∈ R

3 form the extrinsic

parameters and can also be expressed as matrix:

M =
[
R|t

]
. (2.6)

By combining the transformation from world to camera coordinates with the in-

trinsic camera matrix, which describes the mapping from camera coordinates to

the image plane, we can describe the projection from world coordinates to image

coordinates by the projection matrix G = KM :

w





u

v

1



 = GPworld = KMPworld =





f 0 cx
0 f cy
0 0 1




[
R|t

]








X

Y

Z

1








. (2.7)

2.2.2 Modeling the Lens Distortion

The pinhole camera model describes a very simple camera with a very small pinhole

as aperture and no additional lens. The smaller this pinhole is, the sharper the

projected image, because ideally each 3D point is projected by a single ray to the

image plane. However, in reality this leads to a very dark picture or the need

for very long aperture times. Contrarily, making the pinhole larger, to allow for

9



2 Background

more light, results in a blurred image, due to an increasing center of confusion

as more light rays project the same 3D point to a broader area on the image

plane. Therefore, in modern cameras, lenses are used, to admit more light into

the camera, but also to refract the light rays to get a sharp projection.

In practice, real lenses are not perfect and come with certain radial and tangen-

tial distortion. While radial distortions result from the lens itself, and are usually

stronger on fish eye lenses, tangential distortions are caused by imperfect manu-

facturing and alignment of the camera, causing the lens and image plane to be not

exactly coplanar.

The distortions can be modeled by further nonlinear transformations from dis-

torted image coordinates (u′, v′) to undistorted coordinates (u, v). The distortion

at the center of distortion cd is usually zero, but gets higher with increasing radius

r =
√
u′2 + v′2. The radial distortion (∆ur,∆vr) as correcting factor for (u′, v′)

can me modeled using an even polynomial

∆ur = (1 + k1r
2 + k2r

4 + k3r
6 + ...)

∆vr = (1 + k1r
2 + k2r

4 + k3r
6 + ...).

(2.8)

Additionally, the tangential distortion (∆ut,∆vt) as correcting offset can be

modeled using a slightly different polynomial with tangential distortion coefficients

pi

∆ut = (p1(r
2 + 2u′2) + 2p2u

′v′)(1 + p3r
2 + ...)

∆vt = ((2p1u
′v′) + p2(r

2 + 2v′2))(1 + p3r
2 + ...).

(2.9)

The undistortion of image points (u′, v′) can now be expressed as:

u = u′ ·∆ur +∆ut

v = v′ ·∆vr +∆vt.
(2.10)

Depending on the distortion of the lens, usually the five distortion coefficients

k1, k2, k3, p1, p2 are used.

2.2.3 Spherical Camera Model

Contrarily to normal lenses, fish eye lenses have a very wide field of view (FOV)

and high radial distortions, so that the perspective model often is not sufficient

to model the projection. Instead of mapping 3D points to a 2D image plane,

the points are mapped to a spherical projection surface. For simplicity, a sphere
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2.2 Camera Model

Figure 2.4: Fish eye camera model: a 3D point P = (X, Y, Z) is projected to
normalized image coordinates p = (u, v) depending on radius r and angles α, ϕ.

with radius one is often used: the unit sphere S
2 = {P ∈ R

3|∥P∥ = 1}. The

transformation from 3D world coordinates to 3D camera coordinates does not

change and is equal to Equation (2.5). The main difference to the perspective

transformation is that, in order to project a point P on the unit sphere, we now

divide by the distance from the COP instead of division by the Z-coordinate as in

Equation (2.1):

(
u

v

)

=
f

∥X∥

(
X

Y

)

=
f√

X2 + Y 2 + Z2

(
X

Y

)

. (2.11)

There exists a variety of different projection functions, that describe the mapping

from the unit sphere to an image plane. An overview of various projection functions

and their mappings from camera coordinates to normalized image coordinates and

backwards is shown in Table 2.1. For example, one of the models of Abraham and

Foerstner (2005) models image coordinates (u, v) dependent on angles α and ϕ,

and on the center of projection (cx, cy). Image coordinates are then calculated by

u = cx cos[α]r
′[ϕ] + cx +∆u

v = cy sin[α]r
′[ϕ] + cy +∆v

(2.12)

with r′ as radial projection function (see Table 2.1) and (∆u,∆v) as correction

offset depending on the chosen distortion model.
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projection model
from camera coordinates to
normalized image coordinates
(X,Y, Z) → (x′, y′)

from normalized image coordinates
to camera coordinates
(x′, y′) → (X,Y, Z)

perspective
r′ = f tan(φ)

x′ = X
Z

y′ = Y
Z

X = x′

Y = y′

Z = 1

stereo-graphic
r′ = f tan(φ/2)

x′ = X√
X2+Y 2+Z2+Z

y′ = Y√
X2+Y 2+Z2+Z

X = 2x′

1+x′2+y′2

Y = 2y′

1+x′2+y′2

Z = 1−(x′2+y′2)
1+x′2+y′2

equi-distant
r′ = fφ

x′ = X√
X2+Y 2

arctan
(√

X2+Y 2

Z

)

y′ = Y√
X2+Y 2

arctan
(√

X2+X2

Z

)

X = x′√
x′2+y′2

sin
(√

x′2 + y′2
)

Y = y′√
x′2+y′2

sin
(√

x′2 + y′2
)

Z = cos
(√

x′2 + y′2
)

orthogonal
r′ = f sin(φ)

x′ = X√
X2+Y 2+Z2

y′ = Y√
X2+Y 2+Z2

(Z > 0)

X = x′

Y = y′

Z =
√

1− (x′2 + y′2)

equi-solid-angle
r′ = f sin(φ/2)

x′ = X√
2(X2+Y 2)

√

1− Z√
X2+Y 2+Z2

y′ = Y√
2(X2+Y 2)

√

1− Z√
X2+Y 2+Z2

X = 2x′
√

1− (x′2 + y′2)

Y = 2y′
√

1− (x′2 + y′2)

Z =
√

1− (x′2 + y′2)

Table 2.1: Projection models for fish eye lenses in terms of a radial projection
function r′.
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2.3 Rigid Body Motion

2.3 Rigid Body Motion

A rigid body motion is a Euclidean transformation, consisting of a rotation R and

translation t, that preserves distances and angles of the transformed object. Rigid

body motions form the so-called special Euclidean transformations and form the

so-called special Euclidean group SE(3). In the three-dimensional space we define

a rigid body motion as a mapping g:

g : R3 → R
3; (2.13)

g(x) = Rx+ t. (2.14)

In homogeneous coordinates we can express the rotation and translation together

in one transformation matrix T ∈ R
4×4:

g

(
x

1

)

= Tx =

(
R t

0T 1

)(
x

1

)

(2.15)

and its inverse T−1 as

g−1

(
x

1

)

= T−1x =

(
RT −RT t

0T 1

)(
x

1

)

(2.16)

By using this matrix representation, we can concatenate multiple rigid body

motions by left multiplication of consecutive transformations:

Ti+1 = TiTi−1 · · ·T0 (2.17)

There is a variety of representations for three-dimensional rotations, including

rotation matrices, quaternions, Euler-angles or the axis-angle representation. The

representation of a three-dimensional rotation as 3×3 matrix is very common and

has the advantage that rotations can be concatenated by matrix multiplication.

A major drawback is that with nine parameters and only three degrees of free-

dom, rotation matrices are over-parametrized. For minimization problems using

numerical optimization it is useful to greatly reduce the effort and use a minimal

representation of rotation and translation in a rigid body motion. We achieve this

by using the associated Lie Algebra se(3) of the Lie Group SE(3). Every trans-

formation T ∈ SE(3) has a corresponding parameter vector ξ = (ν, ω)T ∈ se(3),

consisting of the translational velocity ν = (ν1, ν2, ν3)
T and the angular velocity

ω = (ω1, ω2, ω3)
T . These so called twist coordinates have 6 parameters for 6 de-
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grees of freedom, and thus, form a minimal representation of a rigid body motion.

The mapping from twist coordinates ξ to the corresponding Lie Group is calcu-

lated using the exponential map:

exp : se(3) → SE(3)

G(ξ) = expξ̂ 7→ T
(2.18)

where ξ̂ is the following 4× 4 matrix, also known as twist:

ξ̂ =

[
[ω]× ν

0 0

]

=








0 −ω3 ω2 ν1
ω3 0 −ω1 ν2
−ω2 ω1 0 ν3
0 0 0 0







. (2.19)

The matrix exponential of twist ξ̂ is then computed as

expξ̂ =

[
exp[ω]

× V ν

0 1

]

=

[
R t

0 1

]

(2.20)

with

expξ̂ = I +
sin (∥ω∥)

∥ω∥ [ω]× +
1− cos (∥ω∥)

∥ω∥2
[ω]2×

V = I +
1− cos (∥ω∥)

∥ω∥2
[ω]× +

∥ω∥ − sin (∥ω∥)
∥ω∥3

[ω]2× .

(2.21)

Elements from the Lie Group are mapped to elements of their Lie Algebra by

the logarithmic map:

log : SE(3) → se(3)

ξ̂ = log(T )
(2.22)

with

log

([
R t

0 1

])

=

[
[ω]× V −1t

0 0

]

=

[
[ω]× ν

0 0

]

(2.23)

where

[ω]× =
ϕ

2 sinϕ

(
R−RT

)
(2.24)
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2.4 Visual SLAM

with ϕ satisfying 1 + 2 cosϕ = Tr(R) and

V −1 = I − 1

2
[ω]× +

2 sin ∥ω∥ − ∥ω∥ (1 + cos ∥ω∥)
2 ∥ω∥2 sin ∥ω∥

[ω]2× . (2.25)

2.4 Visual SLAM

In visual SLAM systems, localization and mapping is performed using inputs from

one or more cameras only. Visual SLAM methods are often built upon visual

odometries. In visual odometry problems we seek the camera motion between

subsequent frames given an input image stream. More formally, visual odometry

is “the process of estimating the egomotion of an agent [..] using only the in-

put of a single or multiple cameras attached to it” (Scaramuzza and Fraundorfer,

2011). Historical, visual odometry evolved from structure from motion problems.

Structure from motion deals with simultaneously estimating the relative camera

motion and 3D structure of the environment from a set of camera images, which do

not necessary need to be ordered. Visual odometry can be described as sub-case

of structure from motion, which only deals with estimating the relative camera

poses. The term visual odometry has been first introduced by the work of Nister

et al. (2004), relating it to wheel odometry, that similarly estimates the egomotion

incrementally using, for example, rotary encoders. While earlier structure from

motion problems focused on an accurate offline optimization, this work proposed

the first real-time camera pose estimation over a long trajectory. They reduce

the computational complexity by using, for example, feature matching instead

of tracking, 3D-to-2D motion estimation instead of 3D-to-3D and RANSAC for

outlier detection. In contrast to wheel odometry, visual odometry does not suf-

fer from wheel slip on difficult terrains, but needs sufficient illumination, texture

and scene overlap to work robustly. When these assumptions are fulfilled, visual

odometry has been shown to be more accurate than wheel odometry (Scaramuzza

and Fraundorfer, 2011) and is especially well-suited in GPS-denied environments

as for underwater or aerial vehicles.

Equipped with a monocular or stereo camera, the agent moves through the

environment and captures images at subsequent discrete time-steps i. We define

the camera motion as rigid body transformation consisting of a rotational and

translational part. Therefore, the camera motion between two (mono- or stereo-)

frames can be described by the rigid body transformation Ti,i−1 ∈ SE(3):

Ti,i−1 =

[
Ri,i−1 ti,i−1

0 1

]

(2.26)
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Figure 2.5: Visual odometry incrementally updates the camera pose estimate.
Absolute camera poses Ci with regards to a global coordinate system, can
be obtained by concatenating all previous estimated relative transformations
T1,0 · · ·Ti,i−1 starting from an initial pose C0.

Given the transformation between subsequent frames, the camera pose Ci at

time-step i can be computed incrementally by concatenating all previous transfor-

mations:

Ci = T1,0 · · ·Ti,i−1 = Ci−1Ti,i−1. (2.27)

The initial camera pose C0 can be set arbitrarily by the user, and is usually chosen

as the identity matrix. A visualization of this transformation chain is given in

Figure 2.5.

As the pose is updated incrementally, the error on previous pose estimates is

accumulated over time. Additionally, uncertainties in the motion estimates further

increase the uncertainty of new poses. Those uncertainties lead to drift over time,

causing the estimated trajectory to differ from the real path. It is therefore neces-

sary to keep the uncertainties of the camera transformations small, to decelerate

the drift.

In contrast, visual SLAM systems use optimization techniques as global pose-

graph optimization or bundle adjustment to counteract drift. Both methods are

commonly used in visual SLAM systems to obtain a globally consistent trajec-

tory. Bundle adjustment is often used locally to optimize over a window of the

last m images, to ease the computational effort. It tries to optimize the cam-

era motion, while optimizing the position of 3D landmark detections at the same

time. Moreover, it only considers a local window of n images, instead of opti-
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2.4 Visual SLAM

mizing over all camera poses. Thereby, it is possible to reduce the computational

amount by choosing a smaller window, which makes real-time bundle adjustment

tractable. The optimization of the camera poses and landmark parameters is done

by minimizing the reprojection error of known 3D landmarks X i:

argmin
Xi,Ck

∑

i,k

∥
∥pik − g(X i, Ck)

∥
∥
2
, (2.28)

where pki is the point corresponding to landmark X i in image k and g(xi, Ck) is

the reprojection of the same landmark according to the current camera position

Ck. In bundle adjustment the world is represented through sparse feature points.

When using pose-graph optimization the world is represented as a graph con-

sisting of the camera poses as nodes that are connected with edges, representing

the rigid body camera motion. If additional transformations between images are

found, they can be added as further edge constraints to the graph. So-called loop

closures, as visualized in Figure 2.7, occur when the agent reobserves places that

he already visited before. This allows to draw inferences about accumulated drift,

that can then be corrected by defining a cost function over all edge constraints eij:

∑

eij

∥
∥Ci − TeijCj

∥
∥
2
, (2.29)

which can be minimized by using, for example, nonlinear optimization algorithms

to find a global consistent trajectory.

Besides, another possibility to reduce the drift is to incorporate measurements

from other sensors, for example, from an IMU, GPS or laser scanner, and filter

the result. Especially, for monocular versions additionally sensor measurements

are necessary to recover the absolute scale of the scene.

While the main goal of visual odometry is to compute the relative camera motion

Ti,i−1 incrementally and to be locally consistent, visual SLAM aims not only at

tracking the camera motion, but also at building a globally consistent map. As

visual odometry does not keep a representation of the environment, or at least

builds a local map over the last m frames, it is not possible to recognize landmarks,

that have been visited earlier. These so-called loop closures are of great importance

for reducing drift. A great advantage of SLAM systems is the ability to detect loop

closures and to maintain a globally consistent map. In general, visual odometry

methods can be extended to SLAM by adding loop-closure detection and a global

optimization scheme. Loop-closures are usually detected by doing a constraint

search over a window of the nearest frames.

Methods for visual SLAM can be classified into feature-based and direct meth-
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2 Background

Figure 2.6: Visual odometry methods suffer from pose-drift due to noise and
uncertainties in estimates of the previous pose (green dashed ellipses) and of the
last transformation (red solid ellipses).

ods. Both approaches will be discussed in the following sections.

2.4.1 Feature-based Methods

Feature-based methods estimate the camera motion by using sparse interest points.

The features are either tracked or matched over subsequent frames. The general

scheme of these methods can be generalized as follows:

1. Image Acquisition from single or multiple cameras

2. Image Correction (Distortion, Rectification)

3. Feature Detection using Interest Point Operator

4. Feature Tracking or Matching

5. Motion Estimation (3D-3D, 3D-2D, 2D-2D)

6. Mapping

7. Optimization

In the first two steps the images of a mono or stereo camera are captured,

undistorted and—in the case of stereo cameras—rectified to speed up the corre-

spondence search. Afterwards, the image is searched for salient points, so-called
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2.4 Visual SLAM

feature or interest points. There is a variety of different feature point detectors

that detect corners (Förstner, 1986; Harris and Pike, 1988; Rosten and Drum-

mond, 2006) or blobs (Bay et al., 2008; Calonder et al., 2012; Lowe, 2004) in the

image (Scaramuzza and Fraundorfer, 2011). A good feature detector is character-

ized by repeatability, localization accuracy, robustness, distinctiveness, invariance

to photometric and geometric changes and computational efficiency. The choice

of the feature detector heavily depends on the application. While corner detec-

tors are fast to compute, blob detectors are often slower. On the other hand blob

detectors are more distinctive than corner detectors.

Therefore, the choice of the right detector is often a trade-off between fast or

more distinct matching.

In the fourth step the detected feature points are either tracked or matched in the

next frame. Tracking describes the local search for the same detection in the next

images, while matching individually detects features in both images and then tries

to find the best matches using a similarity measure (SSD, NCG). Both approaches

have their pros and cons: Feature tracking is best used when the motion between

frames is small, to keep the search range feasible (small-scale environments). On

the other hand feature matching is well-suited for wide-baseline approaches and

large motions (large-scale).

The given correspondences are then used in a fifth step to compute the relative

camera motion. In general, there are three different approaches, depending on the

feature representation:

• 3D-to-3D: features are represented as 3D world coordinates. The camera

motion can be determined by finding the transformation that best aligns

both point sets, for example, by minimizing over the L2 distance (ICP).

• 3D-to-2D: features of the first frame are specified as 3D world coordinates,

while features of the second frame are represented as 2D image coordinates.

The optimal camera motion is found by minimizing the reprojection error.

• 2D-to-2D: features are represented as 2D image coordinates. The cam-

era motion is computed by estimating the essential matrix and afterwards

extracting R and t from it.

In the next step these feature correspondences are maintained in a map, so that

newly tracked frames can be localized with regards to previous feature observa-

tions.

The final optimization step addresses the problem of accumulating drift over

time. In addition to the constraints found by localizing to feature points in the

current map, it is often possible to match features between frame k and the last
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n frames. These constraints help to minimize the accumulated drift and can be

either inserted in a global pose-graph optimization, or in a bundle adjustment to

simultaneously the landmarks positions in the map.

2.4.2 Direct Methods

In contrast to feature-based methods that compute the camera motion based on

a sparse abstraction of feature observations, direct methods recover the camera

motion directly from the intensities of the pixels in the image. They do not need

to extract feature points and track or match them between frames, which both can

be computationally demanding. Instead of using a sparse set of feature points as

representation of the image, direct methods use the brightness information from all

pixels in the image. The underlying assumption is the so-called photo-consistency

constraint (or brightness constancy equation), which states that, given a world

point PW = (X, Y, Z)T , the projections of this point in two frames Ik and Ik+1

have the same intensity value in both images:

Ik(p) = Ik+1(p
′), (2.30)

where p and p′ are the projections of PW in the first and in the second frame

respectively.

Assuming that the photo-consistency holds for all pixels of the image, this leads

to much more constraints than in the feature-based methods: For example, even

an image with VGA resolution (640 × 480) provides about 300.000 constraints,

compared to about 100 to 200 feature observations.

Ideally, Equation (2.30) always holds, but in reality one has to deal with dif-

ferent lighting conditions, sensor noise, pose-errors, non-Lambertian surfaces and

dynamic objects, so that the photo-consistency assumption is often violated. In

other words, this means that the residual

r = ∥Ik(p)− Ik+1(p
′)∥ (2.31)

will be non-zero.

Therefore, the idea is to find a camera motion ξ, that minimizes the residual,

also called the photometric error. Each pixel contributes to the minimization by

adding one constraint. The constraints from all pixels are combined to minimize

the photometric error:

E =
∑

p∈Ω

∥Ik(p)− Ik+1(π(ξ, P ))∥ , (2.32)
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Figure 2.7: Loop constraints occur when a already visited scene is reobserved
as highlighted by the red ellipse. When loop closures are detected, the resulting
edges of the estimated transformation between involved frames are added as further
constraints to the pose-graph optimization.

where π(ξ, P ) is the projection function, which warps a 3D Point P transformed

by the camera motion ξ to image coordinates, as in Equation (2.2). The error

function can then be solved numerically, using, for example, the Gauss-Newton

algorithm. For using a numerical optimization algorithm to estimate the camera

motion parameters it is efficient, if the number of parameters is kept minimal.

Thus, the camera motion ξ = (v1, v2, v3, ω1, ω2, ω3, )
T is represented as 6D vector

containing the twist parameters. As the camera motion is nonlinear in the rotation,

the error function E is linearized using a second-order approximation.

One great advantage of direct methods is the sub-pixel accuracy that comes

from the over-parametrized equation system: given constraints from all pixels and

only six parameters of ξ to estimate, these parameters can be estimated with very

high precision. This means that usually the misalignment error is less than 0.1

pixel (Irani and Anandan, 2000). By using confidence weighted local constraints,

for example, by weighting pixel differently depending on their gradient magnitude,

image regions with homogeneous texture contribute less to the minimization than
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regions with sufficient texture. Direct methods work best for small motions of less

than one pixel and sufficient image overlap. However, it has been shown that using

a coarse-to-fine refinement, starting with a high level of an multi-resolutional image

pyramid and refining on lower levels, greatly increases the success on large motions,

making it possible to track motions up to 10-15 percent of the image size (Irani

and Anandan, 2000). This range can be further increased by handing over good

initial estimates to the minimization step. Moreover, when using a coarse-to-fine

approach, direct methods lock to the dominant motion present on the coarse level

and are thereby robust to outliers or multiple motions in the images.

On the other hand, when compared to feature-based approaches, direct methods

are computationally very demanding as they deal with thousands of more con-

straints. Additionally, wide-baseline comparisons are very challenging for direct

methods and often an initial estimate is needed. Changes in image brightness can

affect the results, as the brightness constancy assumption is violated and tracking

may fail.

22



3 Related Work

Visual SLAM continuously estimates the motion of a vehicle or robot using image

information alone, while—in parallel—building a map of the environment. There

exists a wide variety of different visual SLAM methods starting with monocular

methods, that use only a single camera, to stereo or multi-camera methods, that

use two or more cameras. The visual odometry tutorials by Scaramuzza and Fraun-

dorfer (2011) give a brief overview of the research conducted in the last decades.

As in the early stages only limited processing power was available, most methods

were executed offline. With increasing processing power real-time computation

became possible and the motion of a robot could now be tracked online.

Visual SLAM is particularly important for autonomous navigation of MAVs,

since cameras are the preferred sensor due to their size and weight.

Ross et al. (2013) use a monocular camera for obstacle avoidance with a MAV

in cluttered forest environment. As the detection of frontal obstacles with a single

camera is challenging, Mori and Scherer (2013) employ a relative size detector for

obstacle avoidance. Since monocular methods suffer from scale ambiguity, visual-

inertial methods have become popular for the use on MAVs (Weiss, Achtelik,

et al., 2012). Recent methods for visual-inertial odometry also include stereo

cameras (Schmid et al., 2014) or multiple cameras (Schauwecker and Zell, 2014).

The existing approaches can often be split into sparse feature-based and dense

direct visual SLAM methods, as described in Section 2.4:

3.1 Feature-based Methods

Feature-based methods abstract the images to a sparse set of feature correspon-

dences. The general pipeline for feature-based methods consists of feature de-

tection and extraction, feature matching between subsequent frames, egomotion

estimation based on the estimated feature correspondences as well as mapping

and optimization. At the beginning, features are detected in the incoming images

and are then either matched or tracked over time. Based on the feature corre-

spondences between subsequent frames the relative motion between these frames

is computed by minimizing the reprojection error. Stereo methods can retrieve
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Figure 3.1: Feature-based SLAM methods abstract the image to a sparse set of
feature detections. Left: ORB features (green) tracked by ORB-SLAM during a
flight with our MAV. Right: corresponding sparse map of the environment built
by ORB-SLAM including the retrieved key frame graph. Key frame positions are
shown in blue, edge constraints in green and the landmarks of the map are drawn
red (for active) and black (for currently inactive).

3D features and thus some methods also use ICP to align the 3D measurements

of two subsequent stereo frames. In some methods the recent extracted features

are also tracked to the existing map for further refinement and loop detection.

Without loop closure Visual SLAM degrades to visual odometry, as the camera

motion is updated incrementally from frame to frame, which tends to drift over

time. Hence, the error of the motion estimates resulting from noise in the mea-

surements are propagated to the next frame. This again leads to an increased

uncertainty of the new camera pose, so that the error is accumulated over time.

Popular monocular feature-based methods are, for example, MonoSLAM (Davi-

son et al., 2007) or Parallel Tracking and Mapping PTAM (Klein and Mur-

ray, 2007). PTAM is a widely used feature-based monocular SLAM method,

which allows robust state estimation in real-time. It was first developed for AR-

applications, but has been successfully used on MAVs with a monocular cam-

era (Achtelik et al., 2011; Weiss, Scaramuzza, et al., 2011). PTAM was one of

the first visual slam systems that introduced distinct threads for tracking and

mapping, that run independently. While the tracking part continuously estimates

the camera motion by matching FAST features (Rosten and Drummond, 2006)

and compares them to the map, the mapping part updates the map with new

key frames and optimizes the camera poses and point features by minimizing the

reprojection error.

However, as a monocular method, PTAM requires sufficient camera translation

parallel to the image plane as initialization pattern. The scale is then often ini-

tialized, so that the average distance between the camera position and feature
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points is one. Weiss, Scaramuzza, et al. (2011) employ PTAM on a MAV with

a down-looking camera to achieve sufficient scene overlap. To allow for real-time

performance, they greatly reduce the number of tracked feature points. As PTAM

does not recover the absolute scale of the scene they integrate measurements from

an IMU by fusing them with the visual measurements in an Extended Kalman

Filter (EKF).

Recently, ORB-SLAM (Mur-Artal et al., 2015) has been proposed as a monoc-

ular visual SLAM system that tracks sparse ORB features (Rublee et al., 2011).

Similarly to PTAM, it distributes the work along different threads: tracking, map-

ping and loop closing is done separately to enable real-time processing.

When using monocular methods, additional sensors are needed to observe the

absolute scale of a scene. In contrast stereo methods for visual SLAM do not

suffer from scale ambiguity. Stereo methods have been broadly used on ground

vehicles, as, for example, for planetary rovers (Moravec, 1980) or autonomous

driving cars (Nister et al., 2004). They have the great advantage that no additional

sensory input is needed to observe the absolute scale of the scene. The egomotion

estimation can be done by minimizing the distances of 2D image correspondences

using the reprojection error or by aligning 3D point features using ICP.

In our work we rely on an efficient feature-based library for visual stereo odom-

etry (Geiger, Ziegler, et al., 2011), that shows a good trade-off between accuracy

and runtime.

3.2 Direct Methods

In contrast to feature-based methods, which abstract the images into a sparse set

of feature points, direct methods use the whole image for tracking by minimizing

the photometric error. The underlying brightness constancy equation is visualized

in Figure 3.2: Given the projection p of a 3D Point P in the first image, the point

can be warped into the second image using the relative camera motion between

both images ξ. As the projections in both images represent the same 3D point P ,

ideally the intensity values of both points should be equal.

As direct methods minimize the photometric error over all pixels in the images,

they are computationally very intense and thus much slower than feature-based

methods. Usually, direct tracking can only recover small motions and needs suf-

ficient image overlap. Therefore, often coarse-to-fine approaches are applied. In-

stead of tracking all pixels of the original image, a multi-resolution image pyramid

is built. The tracking starts on a coarse resolution with small motion and is it-

eratively refined in finer levels of the pyramid. Thereby, even large motions can
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Figure 3.2: Direct image alignment assume that, given two projections, p and
ω(p, ξ) of the same 3D Point P have identical intensity values (visualized as boxes
with different color). Therefore, direct methods seek the camera motion ξ that
minimizes the photometric error.

be tracked using direct alignment (Irani and Anandan, 2000). Moreover, with

the coarse-to-fine approach direct methods are robust to dynamic motions in the

image: even if multiple motions are present, direct methods lock to the most dom-

inant motion. A great advantage of direct methods is, that every pixel contributes

to the minimization of the error function. Thereby, the camera motion can be

retrieved up to a very high precision. The estimation of the minimal camera pose

ξ ∈ se(3) is done using thousands of constraints. However, outliers can disturb

the minimization and are often handled by using weighted residuals in the least

square estimation.

Direct approaches go back to the work of Lucas and Kanade (1981) on 2D

image alignment using global optimization techniques. Comport et al. (2007)

extend their approach to 3D by defining a quadrifocal warping function, that warps

points from a stereo reference pair to the current stereo pair. Hereby, the stereo

reference pair has to be initialized with dense correspondences. In particular, the

quadrifocal warping is composed of two trifocal tensors that depend on the intrinsic

and extrinsic camera parameters and on the current relative motion. Both pairs

are then aligned by minimizing the photometric error between the warped reference

pair and the current pair using efficient second order approximation. They claim

that their approach runs at 1.5Hz on a resolution of 759× 280, but would be real-

time capable when dense correspondences for the reference pair are found online.
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As the approach is based on warping 3D points into the next view, it has been

adapted to RGB-D cameras (Kerl et al., 2013; Newcombe et al., 2011), as RGB-D

cameras already come with depth measurements for each image. Hence, the costly

stereo matching step can be skipped, as dense depth maps are already provided by

the sensor. As the minimization over all pixels is very costly, recent approaches,

that perform in real-time, often make use of heavy GPU parallelization.

A different way of reducing the workload, is to track only image points with

sufficient information. These so-called semi-dense methods estimate depth only

for pixels with sufficient gradient magnitude and have been proposed for monoc-

ular (Engel, Schöps, et al., 2014) and stereo cameras (Engel, Stueckler, et al.,

2015). They directly track images and estimate a semi-dense representation of the

environment in real-time using a CPU only.

3.3 Semi-direct Methods

There is little work regarding the combination of direct methods and feature-based

methods. The existing approaches often use both methods separately by comput-

ing the camera motion of the whole trajectory using a feature-based approach,

and afterwards performing an offline dense reconstruction of the scene using direct

approaches. A recent semi-direct method uses a combination of both—direct and

feature-based—methods for fast visual odometry on a MAV with a downward-

looking camera (Forster et al., 2014). They distribute tracking and mapping to

two separate threads as proposed by Klein and Murray (2007) and achieve frame

rates up to 55Hz. With the initialization of new key frames FAST features are

detected at different image pyramid levels. New frames are then tracked towards

the key frame using sparse image alignment on the extracted feature set. The

computational complexity of the direct alignment is reduced by minimizing the

photometric error on coarse pyramid levels only, and only for a subset of all pixels.

Afterwards, the estimated motion is further refined by minimizing the reprojection

error of the observed features, as this greatly reduces drift. The mapping thread

continuously updates the depth estimates of the key frames’ features with every

new reobservation in the newly tracked frames. However, as the approach was

designed for a downward-looking camera, it struggles with forward motion and

pure rotations.

In contrast to this, we use the motion estimates of feature-based tracking as

initialization for direct tracking of key frames. We thereby combine feature-based

and direct tracking over time, taking advantage of the fast tracking from the

feature-based method and the accurate alignment of a direct method.
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In order to calibrate and rectify the fish eye stereo camera system, we evaluate

different calibration methods. The goal of the calibration is to estimate the in-

trinsic and extrinsic parameters of the camera system and as well to rectify the

images onto a plane, so that corresponding points lie on horizontal scan-lines. In

particular we employed four different methods, which were publicly available and

capable to deal with fish eye distortion. We start with the methods that use a

2D checkerboard as calibration target, then discuss the method that uses a 2D

aprilboard and finally discuss the method that uses a 3D calibration target. The

different calibration targets are shown in Figure 4.1. As a quality measure we

compare the average reprojection error.

4.1 OpenCV

With the release of the newest version of OpenCV (3.0.0) support for images

acquired with a fish eye camera has been added allowing for a wide-angle lens

model. The model is based upon the pinhole projection model but uses a different

distortion model. As described in Equation (2.5) 3D world coordinates Pw are

projected into 3D camera coordinates Pc by a rigid body motion. The points are

(a) Checkerboard (b) Aprilboard (c) 3D Point Target

Figure 4.1: Calibration targets for camera calibration. We evaluate fish eye
calibration methods with 2D and 3D targets.
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Figure 4.2: Left and right rectified images after fish eye stereo rectification with
OpenCV. As can be seen, corresponding feature points lie on the same horizontal
scan-line.

then projected on a planar surface, so that:

x′ =
X

Z
y′ =

Y

Z
. (4.1)

Furthermore, radius r and angle θ are defined as

r2 = x′2 + y′2

θ = atan(r).
(4.2)

The fish eye distortion is modeled as higher-order polynomial of θ with distortion

coefficients (k1, k2, k3, k4)

θd = θ(1 + k1θ
2 + k2θ

4 + k3θ
6 + k4θ

8). (4.3)

The image coordinates of the distorted points (u′, v′) can be retrieved by

u′ =

(
θd
r

)

Xc v′ =

(
θd
r

)

Yc (4.4)

leading to undistorted coordinates (u, v)

u = fx(u
′ + αv′) + cx v = fyv

′ + cy (4.5)

For a good calibration the calibration pattern has been presented to the camera

in different positions and viewing angles. After stereo rectification, corresponding
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(a) (b)

Figure 4.3: (a) Reprojection Error of the Omnidirectional Camera Calibration
Toolbox. (b) Estimated extrinsics of the captured checkerboard planes used for
calibration.

features can be found along horizontal scan-lines, as highlighted in Figure 4.2.

The average reprojection error with this calibration is 0.994 pixel and the re-

trieved baseline is 53.129 cm.

4.2 OCamCalib

As a second calibration method we evaluate the Omnidirectional Camera Calibra-

tion Toolbox for Matlab (OCamCalib) by Scaramuzza, Martinelli, et al. (2006).

It can be used for the intrinsic calibration of catadioptric and fish eye cameras.

Similarly to the OpenCV calibration, OCamCalib uses a 2D checkerboard as cal-

ibration target to estimate the lens parameters. The toolbox offers an automatic

corner extraction, that—in our case—had problems in detecting all corners of the

checkerboard. As a solid corner extraction has a severe influence on the quality

of the calibration, we opted for the manual extraction of corners. When using

manual corner detection, the user has to select the corners for each image manu-

ally. The toolbox offers assistance by using a corner detector for finding the best

corner point around the selected point. Even though the manual extraction for

every corner on every image is very time consuming, it yields the best result.

In the underlying omnidirectional model a 3D vector P is calculated from image
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Figure 4.4: Reprojection error of Kalibr for left and right camera of a stereo
system.

coordinates (u, v) as

P =





X

Y

Z



 =





u

v

f(r)



 , (4.6)

where the z coordinate is a function of the distance from the image point (u, v) to

the image center—the radius r =
√
u2 + v2. The function f(r), that backprojects

the extracted grid corners from 2D to 3D, is defined as a higher-order polynomial,

which coefficients a0, a1, ... are estimated in the calibration procedure:

f(r) = a0 + a1r + a2r
2 + a3r

3 + ... (4.7)

We followed the authors advice to use a 4th order polynomial for calibration. The

average reprojection error we got is 0.743 pixels. Reprojection errors and extrinsics

are shown in Figure 4.3.
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(a) (b)

Figure 4.5: Stereo Rectification with TCC. Raw fish eye images (a) are rectified
onto a plane with half the resolution (b).

4.3 Kalibr

The third calibration method we employ is Kalibr (Maye et al., 2013), a calibration

toolbox for multi-camera calibration and camera to IMU calibration. Additionally

to a 2D checkerboard, Kalibr also supports 2D aprilboards, consisting of multiple

different apriltags, as calibration target. This bears the advantage that different

apriltags—in contrast to the general checkerboard corners—can be distinguished

individually, so that even only partially visible targets can be used. Moreover, the

targets pose can be fully resolved, because there are no ambiguous poses as with

a symmetric checkerboard. Therefore, the calibration procedure is more robust to

images where the calibration target is only partly visible. Kalibr offers support

for the standard pinhole model, as well as a generic omnidirectional camera model

for wide-angle and fish eye lenses, described in Kannala and Brandt (2006). For

data acquisition the MAV is fixed and the aprilgrid is moved in front of the stereo

camera system with varying distances and angles. Unfortunately, the calibration

did not converge for the pinhole camera model. When using the omnidirectional

model the average reprojection error is 0.26 pixel, as shown in Figure 4.4, and the

baseline was recovered to 53.364 cm.

4.4 TCC

As a fourth calibration method, we use the calibration toolbox TCC (Test field

based self-Calibration of multi-Camera-systems) by Abraham (2004), that was
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especially developed for fish eye camera calibration. The software supports dif-

ferent projection models for standard and fish eye lenses. Contrarily to the other

calibration methods, it uses a 3D calibration target with various points on three

orthogonal planes (see Figure 4.1c), that is observed from different distances and

angles. The approximate positions of the 3D targets have to be known. After-

wards, the intrinsic and extrinsic calibration parameters are estimated together

with the 3D coordinates of the calibration target by bundle adjustment, formu-

lated as least squares problem. Once the bundle adjustment is done, the user has

the choice between different projection and distortion models. For modeling our

cameras, we selected the epipolar equi-distant model for fish eye cameras, that

describes the projection of a spherical image onto a plane as shown in Figure 2.4.

The lens distortion is described using a Cheby-chev polynomial as described in

Equation (2.12). Afterwards, TCC generates look-up tables for the rectification

onto a plane with horizontal epipolar lines. Overall, we get a reprojection error of

0.75 pixels and a baseline of 53.362 cm.
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5.1 Overview

The approach presented in this thesis is based on LSD-SLAM (Engel, Schöps, et al.,

2014) and LIBVISO2 (Geiger, Ziegler, et al., 2011). LSD-SLAM is a monocular

direct SLAM method and thus not capable of retrieving the absolute scale of

the scene. The contributions of this thesis are the extension of LSD-SLAM to

stereo, which allows to estimate the absolute scale of the scene and greatly reduces

scale drift. In addition, we combine the direct approach with a feature-based

approach to be more robust to large inter-frame motions and strong rotations. We

choose LIBVISO2 as feature-based method for visual odometry, because it shows

a good trade-off between accuracy and runtime. In the following, we will first

introduce the underlying methods LSD-SLAM and LIBVISO2. Afterwards, the

stereo extension and semi-direct tracking will be described.

5.2 LSD-SLAM

The general processing pipeline of LSD-SLAM consists of three main components:

Tracking, Depth Map Estimation and Global Map Optimization. A key frame at

timestep i is represented as KFi = (Ii, Di, Vi), consisting of the intensity image

Ii : Ω → R, the depth map Di : Ω → R
+ and the variance of the depth map

Vi : Ω → R
+, where Ω ∈ R

2 is the image space that maps pixel coordinates to

their brightness value.

Tracking is based on maximizing photo-consistency and thus minimizing the

photometric error between two frames using Gauss-Newton:

E(ξ) := IKF (x)− I(π(p′)) (5.1)

where p′ is the warped point from I to IKF by ξ. New frames are tracked towards

a key frame and the rigid body motion of the camera ξ ∈ se(3) is estimated.

In the Depth Map Estimation tracked frames are then used to refine the existing

depth map of the key frame by many small baseline stereo comparisons: with each
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Figure 5.1: Overview LSD-SLAM (Engel, Schöps, et al., 2014): In LSD-SLAM
incoming frames are always tracked towards the current key frame. If tracking
succeeds, they either refine or replace the current key frame. If a key frame got
replaced, and hence, will not be further refined, it is added to the pose graph. A
constraint search on nearby key frames is performed to add further edge constraints
for to the graph for optimization and drift compensation.

new tracked frame the depth map of the key frame is refined, by either creating

new depth hypotheses or improving existing ones. New key frames are created

when the distance exceeds a certain threshold and are initialized by propagating

depth of the previous key frame towards the new candidate. Once a key frame is

replaced it is added to the pose-graph for further refinement and loop closing. As

for monocular methods no instant depth information is available, the first frame is

initialized with random depth and large variance. Afterwards, the frame is added

to the pose-graph as initial key frame. The following frames are tracked using

the random initialization and with sufficient translation the algorithm locks to a

certain camera movement and the depth measurements are refined.

5.2.1 Tracking

New frames are always tracked with regards to the current key frame and its depth

map. Given the current key frame KFi = (Ii, Di, Vi) the relative pose ξ ∈ se(3) is

computed by minimizing the photometric error E(ξ). This is done by warping the
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image points from the key frame to the tracked frame using their existing depth

hypothesis z:

w(p, z, ξ) := exp(ξ)






u−cx
fx

v−cy
fy

z




 (5.2)

Given the projection in the first and second frame their intensity difference form

the residual rp:

rp(p, ξji) = IKFi
(p)− Ij(π(w(p,Di(p), ξji))) (5.3)

The uncertainty of the depth estimates is incorporated by normalizing the pho-

tometric error E(ξji) with variance σ2
rp(p,ξji)

:

Ep(ξji) =
∑

p∈ΩDi

∥
∥
∥
∥
∥

r2p(p, ξji)

σ2
rp(p,ξji)

∥
∥
∥
∥
∥
δ

(5.4)

with σ2
rp(p,ξji)

:= 2σ2
I +

(
∂rp(p, ξji)

∂Di(p)

)2

Vi(p), (5.5)

where σ2
I is defined as Gaussian image intensity noise and ∥ · ∥δ is the Huber

norm, used to down-weight strong outlier:

∥r2∥δ :=







r2

2δ
if |r| ≤ δ

|r| − δ
2

otherwise.
(5.6)

The photometric error is minimized with regards to the relative camera motion

ξji ∈ se(3) using weighted Gauss-Newton optimization. The optimal camera pose

is the camera pose ξ∗ which minimizes the photometric error:

ξ∗ = argmin
ξ

Ep(ξ). (5.7)

The camera motion of the previously tracked frame serves as initialization for the

optimization. The tracking is done using a coarse-to-fine scheme to cope with large

motions. Starting on a high pyramid level corresponding to a coarse resolution,

the result is used as initial estimate on the following pyramid level.

Afterwards, the new tracked frame is either chosen to become a new key frame

or to refine the depth map of the current key frame.
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5.2.2 Depth Map Estimation

In the depth map estimation the current depth map Di is continuously refined

with stereo measurements to newly tracked frames. The new tracked frames are

either used to refine the depth map of the current key frame or chosen to replace

the current key frame.

The refinement of the current key frame is done by using adaptive baseline tech-

niques. With increasing camera motion the baseline from the key frame to the

following frames grows, allowing for stereo correspondence search along different

baselines. Given the transformation between a tracked frame and the key frame,

that has been estimated prior in the tracking, the epipolar lines are calculated.

Afterwards, for each pixel with sufficient gradient its depth hypothesis is updated

with stereo measurements. The depth is calculated by finding the best matching

point along the epipolar line, that is the point which minimizes the SAD error

measured over five equidistant points along the epipolar line (Engel, Sturm, et al.,

2013). Given the disparity d depth can be retrieved using the known transforma-

tion between both images. The computed depth is then integrated into the depth

map by either creating a new depth hypothesis for the pixel or refining an existing

one. If the pixel does not have a depth hypothesis yet, it is simply initialized

with the estimated one. Otherwise, the new depth znew is fused with the existing

hypothesis zold to depth z similar to the update step in a Kalman filter:

z = (1− w) ∗ zold + w ∗ znew, (5.8)

where w stands for the respective variance.

If the camera moves too far away from the key frame, which is measured using

an adaptive threshold on the relative distance to the key frame

dist(ξji) := ξTjiWξji, (5.9)

the current key frame is replaced with the latest tracked frame. As new frames

come without depth information, the depth map is initialized by propagating the

replaced depth maps to the new one. This is done by projecting all points in the old

depth map in the coordinate system of the new frame using the estimated relative

transformation ξji between the key frame and the tracked frame. Afterwards, the

depth map is regularized and outliers are removed.

Once a key frame is replaced, its depth map will not be refined anymore and

the key frame is added to the pose-graph in the map optimization part.
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5.2.3 Global Map Optimization

In the global map optimization key frames are added as vertices to the graph-based

SLAM back-end g2o (Kümmerle et al., 2011). The edges between key frames are

similarity constraints ξ ∈ sim(3) between nearby key frames: before a key frame

is added to the graph, the similarity transformation to the previous key frame

is estimated in a constraint search using direct tracking on sim(3) minimizing

following error function:

E(ξji) :=
∑

p∈ΩDi

∥
∥
∥
∥
∥

r2p(p, ξji)

σ2
rp(p,ξji)

+
r2d(p, ξji)

σ2
rd(p,ξji)

∥
∥
∥
∥
∥
δ

(5.10)

with σ2
rd(p,ξji)

:= Vj([p
′]1,2)

(
∂b

∂a

)2

+ Vi(p) (x)
2 , (5.11)

and rd(p, ξji) := [p′]3 −Dj([p
′]1,2). (5.12)

(5.13)

The minimization itself is similar to the direct tracking on se(3) using the

weighted Gauss-Newton method.

Once, the key frame is added to the map, further constraints for loop closure

detection are searched. Therefore, the key frame is compared to the n closest key

frames to find further similarity edges, that can be added as additional constraints

to the graph optimization. To find robust constraints a reciprocal tracking check

is introduced, which independently tracks the transformation ξji and ξij ∈ sim(3).

Only if both estimates are similar the constraint is added to the pose graph.

5.3 LIBVISO2

LIBVISO2 is a very fast feature-based visual odometry library for mono and stereo

cameras. While the monocular version is still very experimental and expects the

camera to be in a fixed and known height above the ground, the stereo version

is more robust to outliers and, significantly faster. Furthermore, the approach is

very general and does not require a certain motion model. The only prerequisite

is, that the input images have to be rectified and the calibration parameters have

to be known.

Similar to other feature-based methods, LIBVISO2 extracts and matches fea-

tures over subsequent stereo frames and estimates the egomotion by minimizing

the reprojection error. To be robust to outliers RANSAC is used for initialization
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(a) Blob detector (b) Corner detector (c) Feature descriptor

Figure 5.2: LIBVISO2 filter masks and feature descriptor: A corner (a) and
a blob filter (b) are used to extract and group salient features into four classes
(corner min, corner max, blob min, blob max). Features are matched within their
classes by comparing the SAD of horizontal and vertical sobel responses from the
highlighted locations (c).

of the minimization step.

5.3.1 Feature Matching

In the feature matching step, image features are matched between the current and

the previous stereo pair. For feature extraction each image is filtered with a 5× 5

corner (Figure 5.2b) and blob mask (Figure 5.2a) independently, resulting in two

filtered images each. Afterwards, salient features are found by performing non-

maximum- and non-minimum-suppression on both filtered images. The resulting

features are then grouped into the four classes corner min, corner max, blob min

and blob max. To reduce the computational cost of the following matching stage,

features are only matched within their classes. Two feature points are matched,

by comparing their responses to 11× 11 horizontal and vertical sobel filters. The

sum of absolute distances is used as error metric. Instead of computing the SAD

over all 121 points of the window, a sparse set of 16 locations is chosen as rep-

resentatives, which again greatly reduces computational costs. The descriptor is

shown in Figure 5.2c.

Given the stereo pairs of the current and previous view, features are matched

in a circle between the left and right images as well as over time. Starting from

all feature candidates of the current left images, for each feature the best match

within a m ×m search window is found in the previous left image. This feature

is then again matched with its best match along the epipolar line of the previous

right image.
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Figure 5.3: Circular matching of feature points by LIBVISO2: starting from the
current left image (lower left) a windowed correspondence search (visualized as
blue box) is performed on the previous left image (upper left). If a match has
been found it is matched along the stereo baseline to the previous right image and
from there on to the current right image. As a last step the best match for this
point is searched in the current left window. Only if this feature location coincides
with the starting location the match is accepted.

Afterwards, the best candidate is searched within a window in the current right

image and this candidate is then matched back to the current left image, which

closes the circle. The circle matching is visualized in Figure 5.3. If the last match

found in the current left image coincides with the starting point, the circle match

gets accepted and will be used for egomotion estimation.

Even though the matching costs are already reduced by in-class matching and

a sparse descriptor, the computation over all feature points in four images takes

several seconds. By splitting the computation into two stages the feature extrac-

tion process becomes real-time capable. In a first pass only a subset of all features

is used for matching. The subset is estimated by using a more restrictive non-

maxima-suppression than before, which leads to a much smaller set of features,

that can be matched very efficiently. In a second pass the found correspondences

of this subset serve as prior for all remaining features. For this the image is di-

vided into equally distributed bins and for each bin an individual search space

is estimated using the prior information. This greatly narrows down the search

space for the remaining feature matches. To further increase the efficiency the first

matching pass can be estimated on half of the resolution and can be refined in the

second pass on full resolution.

Based on all found circle matches the egomotion is then estimated by minimiz-

ing the reprojection error using Gauss-Newton in combination with RANSAC for

outlier removal.
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5.3.2 Egomotion Estimation

Given all the circular correspondences from the feature matching stage the ego-

motion is computed by minimizing the sum of reprojection errors. In a first step

the image is divided into buckets of size k × k and the number of features is re-

duced to n features per bucket. Usually, a set of 200 to 500 features is used for

the minimization. The bucketing allows to keep the real-time performance and

additionally enforces a uniform feature distribution over the image. Afterwards,

feature points found in the previous stereo pair are projected into 3D using the

calibration parameters of the camera and the inverse projection function π−1:

X =
(u− cx) ∗ baseline

d
(5.14)

Y =
(v − cy) ∗ baseline

d
(5.15)

Z =
f ∗ baseline

d
; (5.16)

where d is the disparity of the corresponding image match in pixel.

The 3D Point is then transformed with a rotation R and translation t and back

projected into the current stereo image using the projection function π given in

Equation (2.2). Comparing this reprojection with the feature coordinates esti-

mated in the matching stage, gives the reprojection error, we seek to minimize.

The rotation and translation represent the camera motion from the previous to

the current stereo pair and are initialized with the identity.

Then, the reprojection error is iteratively refined with regards to R and t using

Gauss-Newton optimization:

E(R, t) =
n∑

i=1

∥
∥xL

i − πL(Xi, R, t)
∥
∥
2
+
∥
∥xR

i − πR(Xi, R, t)
∥
∥
2

(5.17)

RANSAC is used for outlier detection and to determine a good initialization. In

a first step three randomly chosen point correspondences are used for estimating

the camera motion using Gauss-Newton. This step is repeated n-times and the

estimate with the highest inlier count is chosen for the final optimization. In the

final optimization step all inliers are used for the iterative refinement.

5.4 Stereo Extension

In this section, we present our stereo extension of LSD-SLAM. The main moti-

vation behind this is that absolute scale becomes observable when using stereo
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Figure 5.4: Computed semi-dense depth maps for KITTI datasets (sequences
00, 01 and 08). Color encodes depth: while close objects are drawn red, distant
objects are drawn blue.

cameras. As we plan to navigate our MAV with visual SLAM, absolute values are

of utmost importance for obstacle avoidance and navigation in the constructed 3D

map. In contrast to the monocular version of LSD-SLAM, in the stereo version

the absolute scale becomes observable. In addition, the stereo extension greatly

reduces scale drift, as absolute depth values can be observed for each contribut-

ing pixel at every timestep. Moreover, stereo is much more robust to rotational

motion, as the depth of new points can be calculated instantly and does not need

the propagation over several images. With one camera it often occurs that more

than half of the feature correspondences are lost at rotations due to missing im-

age overlap between subsequent frames. In the stereo variant these lost features
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can be retrieved immediately using a correspondence search along epipolar lines.

In the following sections we propose our stereo contributions to LSD-SLAM as

well as a semi-direct approach, that employs LIBVISO2 as feature-based method

for tracking the motion between key frames. We define a key frame at time i as

KFi = {ILi , IRi , Di, Vi}, where ILi and IRi are the left and right intensity image, Di

and Vi are the depth map and corresponding variance map.

5.4.1 Stereo Tracking

In stereo tracking new frames are always tracked with regards to the current key

frame. The first key frame is initialized with corresponding left and right intensity

images. In contrast to the monocular version, we do not initialize the depth map

with random values and large variance, but, as instant stereo is available, initialize

the first key frame with ELAS (Geiger, Roser, et al., 2010) for a reliable depth

estimate. We belief that the initialization of the depth map with a reliable and

accurate stereo method is preferable to bootstrapping from random values. How-

ever, with an average runtime of approximately 90ms ELAS is very expensive,

which is why we only use it for a decent initialization. Afterwards, the following

frames are tracked towards the key frame by minimizing the photometric error as

well as the depth error. While in the monocular case absolute depth is not observ-

able, with stereo cameras absolute depth is observable for every incoming stereo

pair. This allows us to minimize the depth error in addition to the photometric

error. Hence, for direct tracking with stereo we extend the minimization of the

photometric residual rp to take the depth residual rd into account:

ESTEREO = ∥rp + rd∥ (5.18)

with

rp(p, ξji) = IKFi
(p)− Ij(π(w(p,Di(p), ξji)))

rd(p, ξji) = DKFi
(p)−DSTEREOj

(p′j, ξji)
(5.19)

whereDSTEREOj
(p′j, ξji) is the depth of the warped point p′. The minimization is

performed analogue to Section 5.2.1 by using the weighted least square formulation

and solving it with the Gauss-Newton method. The residual is formulated as

stacked residual

r =

(
rp
rd

)

(5.20)
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5.4 Stereo Extension

and is weighted with a 2× 2 weight matrix

W =

(
wp 0

0 wd

)

, (5.21)

where both residuals are weighted with the Huber norm as described in Equa-

tion (5.6).

For fast convergence tracking is started on the coarsest level of a gaussian image

pyramid with four levels. If tracking did not converge, the estimated transforma-

tion is further refined at finer levels of the pyramid. Once, the relative pose to the

current key frame is estimated, the tracked frame, together with its relative pose

to the key frame, is fed into the depth mapping thread, where it either refines or

replaces the current key frame.

5.4.2 Depth Map Update

By extending LSD-SLAM to stereo, we combine the existing depth map computa-

tion over time with instant stereo of the current image pair. The depth map of each

key frame is updated with instant stereo measurements as well as with propagated

depth from the previous key frame. Once a frame is chosen to become a new key

frame, we immediately initialize its depth map with instant stereo depth from the

left and right intensity images. An efficient and simple way for stereo estimation

is to compute the sum of squared distances (SAD) along epipolar lines and to

choose the best match, that minimizes the SAD error. As our images are already

rectified, epipolar lines lie in the same image rows, and thus the correspondence

search reduces to a one-dimensional search along image rows with the same row

index. We compute the SAD error over a 15× 15 pixel wide search window to be

more robust to outliers. The depth of a pixel is computed using the disparity of

the best match and the focal length f and baseline b of the camera system:

Z =
bf

disparity
. (5.22)

The variance of the new depth hypothesis is computed using the SAD error and

gradient magnitude: low SAD response and high gradient magnitude correspond

to a low variance, while a high error and low magnitude correspond to a large

variance.

In addition, we add a different weighting scheme for fish eye lenses. As fish eye

lenses suffer from distortion at the image borders, we further increase the variance

of a pixels depth hypothesis depending on the distance r(u, v) to the optical center
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5 Approach

Figure 5.5: In the global map optimization edges between key frames (shown in
blue) are added to the pose-graph. Nearby key frames usually match better than
distant key frames (visualized as line color). The top picture shows the graph
before optimization with many red edges. Below: after graph optimization the
key frame poses have been refined, and the red edges turned green.

(cx, cy):

r(u, v) =
√

(u− cx)2 + (v − cy)2. (5.23)
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5.4 Stereo Extension

After the initialization of the depth map with stereo measurements, the depth

estimates are refined by propagating depth hypotheses of the old key frames’ depth

map to the new candidate:

Pnew(P ) = RC,KFP + tC,KF , (5.24)

where P is the 3D point in the old key frame. The rotation RC,KF and translation

tC,KF describe the coordinate transformation from the key frames coordinate sys-

tem KF to the candidates coordinate system C. Depth values are extracted from

the Z coordinate of the propagated 3D points and from available instant depth

measurements. If the depth residual between the propagated and instant depth is

high, the depth value with smaller variance is chosen. Otherwise both estimates

are fused as a variance-weighted sum:

dnew = (1− ω)dSTEREO + ωdPROP . (5.25)

Different examples for resulting semi-dense depth maps can be seen in Figure 5.4.

The depth map estimation performs well on urban scenarios and even on highways.

Similarly to the monocular method, we are also able to refine the depth map

by updating the map with measurements over time. This increases robustness,

because the stereo search is performed on variable baselines, not only horizontally,

but also on baselines along the camera trajectory.

For the success of the instant stereo computation, the accuracy of the extrinsic

parameters of the camera are of utmost importance. As our cameras are attached

to a non-rigid body frame, the baseline of the stereo pairs may change during

flight. To overcome this, we estimate the camera extrinsics for every n-th key

frame by directly tracking the right frame to the left frame. If the new estimate

differs from the old, the baseline is updated with the new value. However, as the

KITTI and EuRoC dataset use rigid cameras, this is only done for the special case

on our MAV. For the public datasets we use the available offline calibration.

5.4.3 Global Mapping

So far, we presented an approach performing incremental visual odometry by di-

rectly tracking incoming stereo images in combination with semi-dense depth re-

construction.

The new pose estimate is updated with regards to the pose estimate of a previous

key frame and the estimate of the motion between both frames. Due to noise in

both estimates the trajectory drifts over time. With each new update the error of

previous estimates is propagated over times, as shown in Figure 2.5 of Section 2.4.
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5 Approach

To compensate for drift we use g2o (Kümmerle et al., 2011) for global pose-

graph optimization. The pose-graph contains the positions of the key frames as

vertices and their relative transformations as edges. Instead of optimizing sim(3)

constraints as in the monocular SLAM, we estimate constraints between key frames

as their SE(3) rigid-body motion. Once a key frame is replaced with a new

candidate, its pose is added to the key frame graph as node. Afterwards, we

search the existing nodes in the graph for additional constraints, that can refine

the pose graph. For this the closest n key frames, that have sufficient scene overlap,

are reciprocally tracked towards the key frame: we estimate the transformation

between both frames in both directions, by tracking the constraint candidate to

the key frame and vice versa. Only if the tracking succeeds for both directions and

the resulting transformations are similar, the resulting transformation is added as

additional constraint to the graph. All edge constraints eji define a cost function,

that is optimized using g2o:

E =
∑

e ji

∥
∥Ci − TejiCji

∥
∥
2
. (5.26)

Figure 5.5 shows how the map for an exemplary scene is built and more and

more SLAM constraints are added to the pose-graph. While key frames are colored

blue, in-between frames, that are tracked using LIBVISO2, are colored pink. The

constraints between key frames are visualized as lines connecting them. Edge

constraints with high error are colored red, while constraint with a lower error are

colored green. It can be seen, that constraints that connect distant key frames

generally show a higher error than those connecting nearby frames.

5.5 Semi-direct Tracking

Our idea is inspired by combining feature-based methods with direct methods

for taking advantage of the different strengths of both approaches. For efficient

and reliable state estimation we combine fast feature matching with precise image

alignment. The general pipeline of our approach is visualized in Figure 5.6.

At the beginning, we initialize the first key frame with the first pair of images

and a dense depth map computed by ELAS. Following frames are then tracked

towards the key frame using feature-based LIBVISO2. The relative pose of the

tracked frames are concatenated and form the relative pose of the camera to the

key frame

ξfeat = ξin ◦ ξin−1 ◦ · · · ◦ ξi0. (5.27)

The current absolute pose of the camera at step j and key frame i can be retrieved
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5.5 Semi-direct Tracking

by:

ξij = ξKF i ◦ ξij−1 (5.28)

We perform feature-based odometry as long as the motion is sufficient small. As

soon as the motion exceeds the motion threshold, we perform direct tracking again.

The motion threshold is computed using the estimated optical flow of LIBVISO2:

ϵMOTION =
1

n

n∑

i=1

√

(uc − up)2 + (vc − vp)2, (5.29)

where n is the number of matched feature points and (uc, vc) and (up, vp) are pixel

coordinates of corresponding matches between the current and previous image.

As soon as large or fast motions occur, the feature-based estimate ξfeat of the

camera motion is passed as initial estimate to the direct tracking of a new key

frame:

ξKF i+1 = ξKF i ◦ ξfeat (5.30)

This allows us to track larger motions faster and more robust. Once a new key

frame is tracked, we start feature-based matching again.

The depth map of a new key frame is initialized by instant stereo correspon-

dences and then fused with the previous depth map by propagation, as described

in Section 5.4.2.
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Figure 5.6: Overview of our combined semi-direct approach. While direct track-
ing is only performed on key frames, feature-based tracking is performed for frames
in between. The output of the feature-based odometry serves as prior for direct
tracking of key frames.
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For the evaluation of our semi-direct approach we perform experiments on three

challenging stereo datasets: the well-known KITTI-dataset (Geiger, Lenz, et al.,

2012), the EuRoC dataset1 and a dataset recorded with our high-performance

MAV presented in Section 2.1. The datasets differ in terms of frame rate, apparent

motion and stereo baseline. All experiments have been conducted on an Intel Core

i7-4702MQ running at 2.2GHz with 8GB RAM.

We compare the quality of our combined approach in terms of accuracy and run-

time to LSD-SLAM (Engel, Schöps, et al., 2014) and LIBVISO2 (Geiger, Ziegler,

et al., 2011), as well as to state-of-the-art methods like S-PTAM (Pire et al., 2015)

and ORB-SLAM (Mur-Artal et al., 2015). The execution of the referred methods

has been obtained using the provided default parameters.

As ground truth for all sequences is available, we employ the evaluation met-

rics by Sturm et al. (2012) and measure the absolute trajectory error (ATE) by

computing the root mean squared error (RMSE) over the whole trajectory. In ad-

dition, we also provide the median error for better insight, because single outliers

can greatly affect the final result. The ATE is a popular measure for the evaluation

of visual SLAM systems, as it measures the Euclidean distance between ground

truth poses and estimated poses at corresponding timestamps, and thereby allows

to evaluate the global consistency of SLAM systems. In a first step the trajecto-

ries are aligned, because they come from different coordinate systems. Moreover,

a similarity alignment is performed for the monocular systems to estimate the ab-

solute scale of the estimated trajectory. For an intuitively accessible visualization,

trajectories are always shown in bird’s eye perspective. As we use the camera co-

ordinate system, this means that the height axis Y is omitted in the plots. In the

following sections we first present detailed results for each dataset, individually.

Moreover, we evaluate the performance of visual SLAM compared to pure visual

odometry and provide quantitative result. Afterwards, we shortly summarize the

obtained average results for accuracy and runtime and conclude with qualitative

results of our 3D reconstruction.

1http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
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6 Evaluation

KITTI Absolute Trajectory Error RMSE (Median) in m
Sequence Ours LIBVISO2 ORB-SLAM S-PTAM

00 5.79 (4.54) 29.71 (18.49) 8.30 (6.04) 7.83 (6.30)
01 61.55 (54.57) 66.54 (60.46) 335.52 (303.79) 204.65 (157.10)
02 18.99 (14.38) 34.26 (27.36) 18.66 (15.03) 20.78 (17.28)
03 0.63 (0.52) 1.67 (1.54) 11.91 (9.19) 10.53 (10.41)
04 0.67 (0.46) 0.80 (0.66) 2.15 (1.73) 0.98 (0.88)
05 5.47 (4.14) 22.14 (19.07) 4.93 (4.73) 2.80 (2.24)
06 2.06 (1.80) 11.54 (10.26) 16.01 (15.56) 4.00 (4.01)
07 2.34 (1.67) 4.41 (4.37) 4.30 (3.65) 1.80 (1.53)
08 8.42 (7.04) 47.67 (34.84) 38.80 (18.12) 5.13 (4.26)
09 5.46 (3.33) 89.83 (77.57) 7.46 (6.91) 7.27 (4.61)
10 1.68 (1.37) 49.35 (36.00) 8.35 (7.55) 2.08 (1.70)

mean 10.28 (8.53) 32.54 (26.42) 41.49 (35.66) 25.74 (20.26)
mean w/o S 01 5.15 (3.93) 29.14 (23.02) 12.09 (8.85) 7.85 (6.57)

Table 6.1: ATE Results on KITTI Dataset.

6.1 KITTI

The KITTI dataset (Geiger, Lenz, et al., 2012) is a very popular dataset for the

evaluation of visual and laser-based odometry or SLAM methods. It contains 22

stereo sequences accompanied by laser scans, and ground truth from a localization

unit consisting of a GPS and an IMU. The stereo camera rig and the laser scanner

are mounted on top of a standard station wagon—the autonomous driving platform

Annieway (Kammel et al., 2008). The stereo rig has a baseline of approximately

54 cm.

Rectified images are provided with 10Hz and with a resolution of 1240 × 376

pixels. The sequences are recorded in real-world driving situations along urban,

residual and countryside roads. The distance traveled ranges from a few 100 meters

up to 5 kilometers with driving speeds up to 80 km/h.

The dataset is very challenging, because the low frame rate in combination with

fast driving speed leads to large inter-frame motions up to 2.8m per frame. This

greatly limits the amount of possible feature correspondences. Moreover, dynamic

motions from passing vehicles, bicycles or pedestrians, that have great impact on

the performance of visual odometry systems, are included frequently.

We compare the performance of our semi-direct method with four state-of-the-

art methods for visual odometry and SLAM.

We selected LIBVISO2 and LSD-SLAM for reference, as our method is built

upon them. Moreover, we chose two recent feature-based SLAM algorithms, that

presented promising results: ORB-SLAM as a monocular and S-PTAM as a stereo

method. All processing is done on the original image resolution of the rectified
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6.1 KITTI

Figure 6.1: Results for KITTI Sequence 00. Comparison of our method to LIB-
VISO2 (top row), ORB-SLAM and S-PTAM (bottom row). Our methods achieves
the lowest ATE (5.79m

images of 1240× 376.

Both error measures—RMSE and Median—for the training sequences 00 to 10

of the KITTI dataset are listed in Table 6.1.

Unfortunately, LSD-SLAM fails on all sequences of the KITTI dataset. This

is probably caused by too large inter-frame motion for a pure monocular direct

method, as sufficient scene overlap is important for successful tracking. Moreover,

it can be seen, that all SLAM methods lack performance on sequence 01, resulting

in a a very high ATE. Sequence 01 contains images from driving on a highway,

thus it is hard to find re-occurring feature points in subsequent frames.

Overall our method is equally good and in seven of eleven cases even better

than state-of-the-art methods. Especially sequences 03 and 04 show very accu-

rate results below 1m. In three of the cases S-PTAM and in one case (sequence

02) ORB-SLAM performs better. As LIBVISO2 is a pure odometry method, it
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Figure 6.2: Results for KITTI Sequence 03. Comparison of our method to LIB-
VISO2 (top row), ORB-SLAM and S-PTAM (bottom row). Our method and
LIBVISO2 show accurate trajectories.

performs significantly worse than the SLAM methods on all datasets.

When averaging over the eleven training sequences our method ranks first, fol-

lowed by S-PTAM, ORB-SLAM and LIBVISO2. However, the bad results from

sequence 01 greatly affect the final average computation, as all methods bring in

very high ATEs from sequence 01. One could argue, that such high ATE values

count as outlier or failure. Therefore, we also show resulting means when omit-

ting sequence 01 for all methods. It follows, that these results show distinct lower

ATEs. When omitting sequence 01 our method achieves a mean (median) ATE of

5.15m (3.99m) compared to the S-PTAM result of 7.85m (6.57m).

For a better visualization exemplary trajectories are shown in birds-eye perspec-

tive for the sequences 00, 03, 09 and 10.

Sequence 00 is shown in Figure 6.1. It can be seen, that our approach performs

best, followed by ORB-SLAM, S-PTAM and LIBVISO2. Moreover, limitations

of the approaches become visible: as LIBVISO2 is a pure odometry method, it
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6.1 KITTI

Figure 6.3: Results for KITTI Sequence 09. Comparison of our method to LIB-
VISO2 (top row), ORB-SLAM and S-PTAM (bottom row). While ORB-SLAM
looses track and LIBVISO2 accumulates drift, S-PTAM and our method stay close
to the ground truth.

accumulates more drift over time, and as ORB-SLAM is a monocular method,

scale is not always estimated correctly. Rotations are challenging for all methods.

In this sequence S-PTAM fails to track rotations frequently and exhibits drift for

the last part of the trajectory.

Figure 6.2 shows the results for sequence 03, a trajectory without full loop-

closure. We choose this sequence to compare the drift over time, when no full loop

can be closed. All estimated trajectories are close to the ground truth. However,

our method is—with 0.63m ATE—distinctively more accurate than ORB-SLAM

(11.91m) and S-PTAM (10.53m). Additionally, LIBVISO2 also shows accurate

results with an ATE of 1.67m and does not accumulate much drift for this trajec-

tory.

In sequence 09 a full loop closure appears at the very end of the trajectory, that

is not always detected from the SLAM methods before the sequence ends. This
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Figure 6.4: Results for KITTI Sequence 10. Comparison of our method to LIB-
VISO2 (top row), ORB-SLAM and S-PTAM (bottom row) on a longer trajectory
without loop closures.

behavior is shown in Figure 6.3. Again, LIBVISO2 suffers from drift over time,

while the results from our Semi-Direct SLAM (5.46m) are more accurate than

the results from S-PTAM (7.27m). Moreover, it can be seen, that ORB-SLAM

lost track at some point and failed to relocalize. Thus, more than a half of the

trajectory remains uncovered. This is not visible in the error measure, because

the ATE is only computed over existing measurements.

Sequence 10 is similar to sequence 03, as it contains no full loop, but it covers a

longer path and performs more rotations. Results for this sequence are visualized

in Figure 6.4. They show, that our method performs well, even if the path of

LIBVISO2 drifts over time. ORB-SLAM fails to initialize right from the beginning,

but later on retrieves a trajectory consistent with the ground truth, but with little

offset. S-PTAM again shows similar results to Semi-Direct SLAM, though Semi-

Direct SLAM performs slightly better (1.68m to 2.08m respectively).

Unfortunately, to our knowledge there is no other publicly available direct
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method other than LSD-SLAM to compare with. However, as LSD-SLAM fails

on the KITTI sequences, we compare our semi-direct approach to its fully di-

rect version without feature-based initial estimates. In particular, we compare the

combined semi-direct approach to its building blocks—LIBVISO2 and direct stereo

tracking—separately. As LIBVISO2 is a pure odometry method, we evaluate it

against results from our semi-direct odometry without closing loops.

In Figure 6.5 the results from three different datasets (00, 02 and 06) are shown

in birds-eye perspective. The left column shows the resulting path LIBVISO2

computed and the right column the path from the semi-direct odometry. It can be

seen, that LIBVISO2 drifts more over time than the semi-direct approach, while

the semi-direct approach stays closer to the ground truth trajectory. However,

both methods tend to drift over time as they are pure odometry methods, but the

semi-direct approach shows much less drift.

When comparing our semi-direct approach to its fully direct version without

feature-based odometry as initial estimate, we noticed that a fully direct ver-

sion has problems with strong turns in the dataset. Moreover, the dataset is

very challenging to a fully direct method as it contains large inter-frame motions

and difficult lighting changes. Large inter-frame motions are challenging to direct

methods, because direct methods assume small pixel displacements (Irani and

Anandan, 2000). Without a good initial estimate they often fail to retrieve large

displacements. Difficult lighting changes, induced by auto-exposure and chang-

ing sunlight, are challenging, as they violate the brightness constancy assumption.

Thereby, it can be seen in Figure 6.6 that the fully direct odometry accumulates

more drift over time than our semi-direct version. Again, while the semi-direct

approach is shown in the right column, the fully direct approach is visualized in

the left column for dataset 00 and 06. Fully direct tracking tends to fail especially

at strong turns and at street crossings where lighting changes increase, because

the car leaves shadowed street canyons. In contrast, our approach is more robust

to strong rotations and lighting changes.

The semi-direct method performs better than its isolated building blocks. The

direct tracking is in principle more accurate, but has problems with large motions.

However, when a good initial estimate is available, as in our case from LIBVISO2,

direct tracking succeeds even at large motions and with a low frame rate.

Generally speaking, a combined semi-direct odometry performs better than

both—feature-based and direct—odometries alone. Overall, our approach shows

promising results on the KITTI dataset when compared to other state-of-the-art

methods.
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Figure 6.5: Comparison of the results from LIBVISO2 (left) to our semi-direct
odometry (right). Top Row: KITTI Sequence 00, Middle Row: KITTI Sequence
02, Bottom Row: KITTI Sequence 06. In direct comparison to LIBVISO2 our
method accumulates less drift.
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Figure 6.6: Comparison of the results from direct odometry (left) to our semi-
direct odometry (right). Top Row: KITTI Sequence 00, Bottom Row: KITTI
Sequence 08. In direct comparison to the direct visual odometry our method is
clearly more robust to fast rotations and to large motions.
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6.2 EuRoC

In addition to the evaluation on the KITTI dataset, we perform further experi-

ments on the recently presented visual-inertial EuRoC MAV dataset, that contains

stereo images and synchronized IMU reading from the on-board computer of an

Asctec Firefly hex-rotor helicopter. We choose six trajectories with different diffi-

culties from the two Vicon datasets V0 and V1. The data has been collected from

flights in a room, that is stocked with a Vicon motion capture system, offering 6D

ground truth poses.

The MAV is equipped with a visual-inertial sensor (Nikolic et al., 2014), that

captures stereo images of WVGA resolution with 20Hz and synchronized IMU

measurements with 200Hz.

Each dataset contains three trajectories with increasing difficulty named as:

easy ( 01), medium ( 02) and difficult ( 03). The easy trajectories have good

illumination, are feature rich and show no motion blur and only low optical flow

and low varying scene depth. They capture a static scene. The difficulty increases

in the medium trajectories by adding challenging lighting conditions, high optical

flow and medium varying scene depth. However, they still show a static scene

and a feature rich environment without motion blur. In contrast, the difficult

scene contains areas with only few visual features and more repetitive structures.

Moreover, they add motion blur and challenging lighting conditions. The MAV

performs very aggressive flight maneuvers resulting in high optical flow and highly

varying scene depth in a non-static scene.

The dataset is known to have different issues, that make a reliable state-estimation

more challenging: for example, the stereo images were captured using an automatic

exposure control that is independent for both cameras. Therefore, shutter times

are different, which results in different image brightnesses, making stereo match-

EuRoC Absolute Trajectory Error RMSE (Median) in m
Dataset Ours Libviso2 LSD-SLAM ORB-SLAM S-PTAM

V1 01 0.12 (0.11) 0.31 (0.31) 0.19 (0.10) 0.79 (0.62) 0.28 (0.19)
V1 02 0.11 (0.10) 0.29 (0.27) 0.98 (0.92) 0.98 (0.87) 0.50 (0.35)
V1 03 0.75 (0.45) 0.87 (0.64) X 2.12 (1.38) 1.36 (1.09)
V2 01 0.18 (0.12) 0.40 (0.31) 0.45 (0.41) 0.50 (0.42) 2.38 (1.78)
V2 02 0.27 (0.22) 1.29 (1.08) 0.51 (0.48) 1.76 (1.39) 4.58 (4.18)
V2 03 0.87 (0.66) 1.99 (1.66) X X X

mean 0.38 (0.28) 0.85 (0.71) 0.53 (0.48) 1.23 (0.94) 1.82 (1.52)

Table 6.2: ATE Results on EuRoC Dataset.
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Figure 6.7: Comparison of the results from LIBVISO2 (left) to our semi-direct
odometry (right) on datasets V2 01 and V2 02 with ground truth from a Vicon
motion capture system. Again our method is much closer to the ground truth even
without SLAM.

ing and feature tracking more challenging. This is especially important, as direct

methods minimize the photometric error.

Moreover, as the ground truth is recorded from a different physical device than

the images, the accuracy depends on the synchronization scheme used (Lab, 2015).

The resulting ATE values are listed in Table 6.2. As the difficult datasets V1 03

and V2 03 contain very dynamic movements and fast rotations with an MAV, LSD-

SLAM often loses track after a few seconds and is then unable to re-localize for

the rest of the trajectory. In Table 6.2 this is denoted as failure (X). Similarly, S-

PTAM and ORB-SLAM lose track for the difficult trajectory V2 03. This dataset

shows very challenging conditions with strong motion blur and fast aggressive

maneuvers. Moreover, the absence of sufficient visual features makes it hard for

the feature-based method to succeed.
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6 Evaluation

Figure 6.8: Comparison of the results from LSD-SLAM (left) to our semi-direct
SLAM (right) on dataset V2 01 with ground truth from a Vicon motion capture
system. While LSD-SLAM shows an ATE of 0.45m our methods performs better
with an ATE of 0.18m

Table 6.2 also shows, that our approach outperforms the other methods and

reliably recovers the motion for all test sequences. Additionally, it can be seen,

that the results of LIBVISO2 are improved on every trajectory.

On average semi-direct SLAM achieves a higher accuracy, with 0.38m ATE, than

LSD-SLAM, with 0.53m, and ORB-SLAM, with 1.23m ATE, and S-PTAM with

1.82m ATE. LSD-SLAM, ORB-SLAM and S-PTAM often suffer at fast motions

in combinations with rotations, and then tend to lose track temporarily.

Additionally, we again directly compare results from Semi-Direct Visual Odom-

etry to LIBVISO2 and to Direct Odometry from LSD-SLAM. Figure 6.7 shows the

resulting trajectories for datasets V2 01 and V2 02 of LIBVISO2 and Semi-Direct

Visual Odometry. Both methods were performed without loop-closures, and thus

drift over time by accumulating small errors in the estimates. It can clearly be

seen, that the Semi-Direct Odometry is closer to the ground truth from the Vi-

con system than LIBVISO2. Even though the datasets contain fast rotations, our

method stays close to the ground truth path.

In comparison to LSD-SLAM our approach is more robust to fast rotations in

the trajectory, as can be seen in Figure 6.8. While LSD-SLAM computes wrong

estimates at strong turns, our method follows the path more precisely.

In addition to the official datasets we performed one manual flight in the Vi-

con room—named Vicon m—where we evaluated the mapping abilities of our ap-

proach. As an example sequence for our mapping abilities Figure 6.9 shows a

sequence captured on the manual flight: the MAV captures a corner of the Vicon

room and is able to reconstruct a semi-dense 3D representation of the recorded
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6.3 MAV

Figure 6.9: Exemplary results of flight Vicon m: While the left image shows a
capture of the recorded scene, the right image shows the retrieved camera trajec-
tory and reconstructed semi-dense depth. Key frames are shown in blue, while
feature-based tracked frames are shown in pink.

scene. As can be seen, details of the scaffold are retrieved as well as the ground

plane and drawings on the blackboard. The recovered camera trajectory is shown,

too. Key frames are colored in blue, while frames that were tracked feature-based

with LIBVISO2 are shown in pink.

In total, we showed that our method is more robust to dynamic motions than

the other evaluated methods and achieves a lower ATE on all evaluated datasets.

6.3 MAV

In the previous chapters we outlined, that our semi-direct approach is capa-

ble of accurate pose estimation with standard stereo cameras. As our MAV is

equipped with fish eye lenses and a wide baseline, we assess our method using

different datasets, that have been acquired with our MAV. We use laser-based

SLAM (Droeschel et al., 2015) as ground truth and again compare the results to

state-of-the-art SLAM methods. In total we captured four flights in a decommis-

sioned car service station with challenging lighting conditions. While on the first

two flights, named rect1 and rect2, the MAV covers a rectangular path without

many loop closures, the other two flights, loop1 and loop2, include three to four

full loops.

A general prerequisite for stereo computation is to rectify the images. As de-

scribed in Chapter 4 there exist different methods for camera calibration and

rectification. To allow different models for calibration we build a general rectifi-

cation nodelet in ROS, that rectifies the images given respective look-up tables

as input. The look-up tables can be either calculated offline beforehand or on-
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Figure 6.10: Results for MAV loop 1. Comparison of our method to LIBVISO2
(top row), LSD-SLAM and ORB-SLAM (bottom row) on a challenging dataset
that contains large loop closures. As can be seen the monocular methods per-
form best, while LIBVISO2 heavily accumulates drift. Still, our method is able
to reconstruct the trajectory with an ATE of 0.63m, while other S-PTAM fails
completely.

line using, e.g., , the computer vision library OpenCV. The rectification nodelet

publishes rectified images together with camera info messages, that contain the

necessary calibration parameters from intrinsic and extrinsic calibration. More-

over, we added functionality to down-sample the rectified images by a factor c for

further run time enhancement. The images are captured with full resolution of

1280 × 1024 in 16 bit-encoding and are down-sampled to half the resolution and

8 bit in the rectification step.

The rectification of the images runs in parallel for all six cameras and takes 1ms

for a single image, when down-sampling to half the original resolution. For an

even smaller resolution of 320× 256 the rectification takes 0.7ms and for the full
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6.3 MAV

Figure 6.11: Comparison of LIBVISO2 (left) and our method (right) on the MAV
dataset rect1. Even though, the dataset contains no loop closure, our method
shows accurate results.

resolution 4ms.

Experiments on the four flights show, that retrieving the correct camera motion

is more challenging than on the previous datasets. Especially, the stereo methods

suffer at these datasets. S-PTAM fails to initialize correspondences on all datasets

and thus can not be taken into account for comparison.

Exemplary results are shown for a trajectory with repeating loop closures in

Figure 6.10. It can be seen, that the stereo methods Semi-Direct SLAM and

LIBVISO2 show a higher offset to the ground truth trajectories than the monocular

methods. Especially LIBVISO2 accumulates high errors at this circular trajectory

and the result is not as accurate as before, thereby limiting the output of the

semi-direct approach. As LIBVISO2 performs no loop closure detection, errors in

the absolute trajectory can not be resolved, which leads to a globally inconsistent

trajectory. Semi-Direct SLAM uses only the relative motion estimates of LIBVISO

with regards to the current key frame. Thereby, Semi-Direct SLAM is still able to

reconstruct a path close to the ground truth with an ATE of 0.63m. Contrarily,

LSD-SLAM and ORB-SLAM achieve an ATE below 0.31m.

The fact, that monocular methods seem to perform better than stereo methods,

suggests that the underlying projection model for the stereo calibration might be

inaccurate. Additionally, the non-rigid attachment of the stereo cameras intro-

duces difficult conditions for stereo correspondence search along horizontal lines.

We assume, that the wide non-rigid baseline of 53.37 cm in combination with the

perspective rectification onto a plane, raise difficulties at the stereo correspondence

search. It would generally be more appropriate to model the fish eye lenses as a

rectification onto a sphere. As described in Section 5.4.2, we use an additional
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MAV Absolute Trajectory Error RMSE (Median) in m
Dataset Ours Libviso2 LSD-SLAM ORB-SLAM
rect1 0.13 (0.11) 1.24 (0.49) 0.30 (0.29) 0.98 (0.24)
rect2 0.84 (0.81) 1.61 (1.59) 0.38 (0.37) 0.59 (0.25)
loop1 0.63 (0.57) 1.66 (0.99) 0.31 (0.28) 0.25 (0.21)
loop2 1.58 (0.71) 2.61 (1.90) 0.54 (0.42) 1.19 (0.78)
mean 0.80 (0.55) 1.78 (1.24) 0.38 (0.34) 0.75 (0.37)

Table 6.3: ATE Results on MAV Dataset.

weighting scheme, that down-weights the influence of inaccurate depth measure-

ments close to the image borders, to cope with strong distortions. Moreover, we

repeatedly estimate the extrinsic transformation of the cameras online to cope

with the non-rigidity. Therefore, we are able to retrieve stereo correspondences

and estimate the trajectory on this challenging dataset, in contrast to S-PTAM,

which fails to initialize any correspondences.

Figure 6.11 shows trajectories for the sequence rect1 computed by LIBVISO2

and Semi-Direct SLAM. The output of LIBVISO2 shows very noisy estimates

and leads to a comparable high ATE of 1.24m. In contrast Semi-Direct SLAM

produces a smoother trajectory with an ATE of 0.13m. However, in general we

achieve a higher ATE than the monocular methods. Table 6.3 summarizes the

resulting ATE on all datasets.

In terms of accuracy the monocular methods perform better than all stereo

methods. This time S-PTAM is unable to track features on all datasets and fails

in recovering any motion. It is remarkable, that monocular methods perform

better than stereo methods on these datasets, which leads to the assumption that

the rectification of the fish eye images onto a plane in combination with non-rigid

stereo cameras is very challenging for stereo computations. Moreover, the wide

baseline is demanding as the image overlap between both stereo images is reduced.

On average, we achieve an ATE of 0.8m, while LSD-SLAM achieves an average

ATE of 0.38m.

6.4 Odometry versus SLAM

In this section, we will compare the quantitative results of visual odometry to

visual SLAM. As visual odometry tends to drift over time, global optimization

methods such as bundle adjustment or pose-graph optimization help to reduce the

drift.
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6.4 Odometry versus SLAM

EuRoC Absolute Trajectory Error RMSE (Median) in m and Improvement in %
Dataset Our Semi-Direct VO (m) Our Semi-Direct SLAM (m) Improvement (%)
V1 01 0.26 (0.18) 0.12 (0.11) 53.85 (38.89)
V1 02 0.59 (0.59) 0.11 (0.10) 81.36 (83.05)
V1 03 0.81 (0.76) 0.75 (0.44) 7.41 (42.11)
V2 01 0.22 (0.13) 0.18 (0.12) 18.18 (7.69)
V2 02 0.31 (0.25) 0.27 (0.22) 12.90 (12.00)
V2 03 1.13 (0.97) 0.87 (0.66) 23.01 (31.96)
mean 0.55 (0.48) 0.38 (0.28) 30.72 (42.71)

Table 6.4: Odometry compared to SLAM on EuRoC.

In Semi-Direct SLAM loop-closures are detected between key frames and are

added as additional constraints to the global pose-graph (see Section 5.4.3).

The trajectories of the EuRoC dataset contain many possible loop-closures.

Therefore, we show comparative results between visual odometry and SLAM ex-

emplary on this dataset. Qualitative results are listed in Table 6.4. In addition to

the ATE as error measure, we also state the percentage improvement gained by

SLAM. We measure the improvement as

Improvement =
V O − SLAM

V O
. (6.1)

The average improvement for all seven trajectories lies at 30.72%, denoting an

absolute improvement of 0.17m on average. It can clearly be seen, that for each

trajectory the odometry result is further improved by SLAM. The improvements

range from 7.41% up to 81.36%. The maximum improvement reached an abso-

lute enhancement of 0.48m. As the trajectories V1 01 and V1 02 show distinct

improvements of 53.85% and 81.36% respectively, both results are visualized in

Figure 6.12. The advantages of SLAM are visible in both examples. In com-

parison to the pure odometry, SLAM retrieves trajectories closer to the ground

truth. The bottom row of Figure 6.12 highlights the improvement of 81.36% on

dataset V1 02. This dataset is of medium difficulty and contains very dynamic

translational and rotational movements. It can be seen, that the odometry might

be locally accurate, but exhibits accumulated drift. In the global graph SLAM the

drift is corrected by loop closures, resulting in a better aligned trajectory.

In contrast to the EuRoC dataset the KITTI dataset shows notably less loop

closure possibilities. However, when loop-closures are found the global consistency

of the map is re-established. Sequence 06 contains a distinct loop. While visual

odometry produces an ATE of 4.37m on Sequence 06, the result is corrected after

closing the loop and the ATE decreases to 2.06m, showing an improvement of
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Figure 6.12: Comparison of Semi-Direct Odometry (left) and Semi-Direct SLAM
(right) on the EuRoC dataset V1 01 and V1 02. With SLAM loop closures are
found and accumulated drift is corrected, yielding percentage improvements of
53.85% and 81.36% respectively

52.9%. Figure 6.13 visualizes this behavior: while the odometry drifts over time

and does not retrieve the circular path, the SLAM extension closes the loop and

continues the trajectory on the previous driven path.

Additionally, we also evaluate the performance of SLAM in comparison to pure

odometry on our MAV. Similarly to above results, loop closures greatly help to

reduce the drift on the datasets loop1 and loop2. While on dataset loop1 the

odometry yields an estimate with 1.1m ATE, the visual SLAM recovers the camera

motion with 0.63m. On dataset loop2 the odometry result improves from 2.16m to

1.58m, when performing SLAM. The percentage improvements on these datasets

are 42.7% and 26.9% respectively.
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6.5 Accuracy

Figure 6.13: Comparison of Semi-Direct Odometry (left) and Semi-Direct SLAM
(right) on KITTI Sequence 06. Example of a full loop closure found by our SLAM
method, while pure odometry drifts. SLAM achieves an improvement of 52.9%.

Absolute Trajectory Error RMSE (Median) in m
Dataset Ours Libviso2 LSD-SLAM ORB-SLAM S-PTAM
KITTI 10.28 (8.53) 32.54 (26.42) X 41.49 (35.66) 25.74 (20.26)
EuRoC 0.38 (0.28) 0.85 (0.71) 0.53 (0.48) 1.23 (0.94) 1.82 (1.52)
MAV 0.80 (0.55) 1.78 (1.24) 0.38 (0.34) 0.75 (0.37) X

Table 6.5: Average ATE Results on the different evaluated datasets.

6.5 Accuracy

We have shown on different challenging datasets that in terms of accuracy we

achieve similar results as current state-of-the-art stereo methods. The mean results

for all datasets are summarized in Table 6.5. As can be seen in the table, our

method achieves a lower ATE than the other evaluated methods on the KITTI

and EuRoC datasets. On our MAV monocular methods outperform the stereo

methods. However, in comparison to the other stereo methods, our approach

performs better and more robust.

Moreover, we measure relative pose errors as proposed by Geiger, Lenz, et al.

RPE Ours (VO) Libviso2 Direct VO

Translation Error (%) 0.8061 0.8449 0.8168
Rotation Error (deg /m) 0.0051 0.0052 0.0053

Table 6.6: Relative pose errors of the odometry methods. Translational drift is
measured in percentage and rotational drift in deg /m.
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Dataset Method Tracking Mapping Constraint Optimization Total Total
Search (VO) (SLAM)

KITTI

Ours 26.5ms 36.6m 253.5m 564.6m 63.1m 881.2m
LSD-SLAM - - - - - -
ORB-SLAM 30.7ms 254.0ms 7.8ms 1315.6ms 284.6ms 1608.0ms
S-PTAM 71.1ms 5.7ms - 2036.9ms 77.4ms 2114.3ms
LIBVISO2 33.8ms - - - 33.8ms -

EuRoC

Ours 22.6ms 39.6m 153.5m 684.2m 62.2m 899.9m
LSD-SLAM 27.6ms 85.6ms 158.1ms 207.3ms 113.2ms 478.5ms
ORB-SLAM 17.9ms 159.2ms 3.7ms 535.6ms 177.1ms 716.4ms
S-PTAM 47.3ms 1.5ms - 976.9ms 48.8ms 1025.7ms
LIBVISO2 24.8ms - - - 24.8ms -

MAV

Ours 17.5ms 25.8ms 140.0ms 130.7ms 43.3ms 313.3ms
LSD-SLAM 28.7ms 67.3ms 314.0ms 637.3ms 79.0ms 951.3ms
ORB-SLAM 24.3ms 221.2ms 11.0ms 353.8ms 245.5ms 610.3ms
S-PTAM - - - - - -
LIBVISO2 25.3ms - - - 25.3ms -

Table 6.7: Average runtimes of all evaluated methods.

(2012) to measure the performance and drift of pure odometry over large-scale

sequences as in the KITTI dataset. Table 6.6 summarizes the results of our Semi-

Direct Odometry in comparison to LIBVISO2 and Direct Odometry. Translational

and rotational errors are measured separately. Results show, that our method

shows less translational and rotational drift over time. Moreover, as already seen

above in the exemplary trajectory plots, the fully direct odometry has a higher

rotational error than the other methods, as at large rotations direct alignment of

frames becomes harder.

In summary, our semi-direct approach shows accurate results for all datasets.

Even on challenging fish eye stereo the whole trajectory can be retrieved and loop

closures are found, while S-PTAM fails to find any correspondences.

6.6 Runtime

For state-estimation with visual odometry or SLAM real-time capabilities build

an important factor. We thereby measure the efficiency of our method in terms of

average runtime in ms.

We measure the average runtime as well as the runtime of the different blocks,

because often it is sufficient if tracking can be done with high frequency, as global

optimization usually does not run in real-time. The runtimes are broken down

to the individual blocks: tracking, mapping, constraint-search and pose-graph

optimization. Timings for all datasets are listed in Table 6.7. Missing values are

denoted with ’-’, e.g., S-PTAM does not perform a constraint search as the other

methods, and LIBVISO only does tracking. The table clearly highlights, that the

SLAM parts, consisting of the constraint search and pose-graph optimization are
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the bottleneck for all systems.

In general, it can be seen that our approach is able to track incoming frames with

30Hz. The mapping thread runs in parallel to tracking at approximately 30Hz,

too. However, global optimization is still very costly for all methods. Especially

in large-scale sequences the runtime rises.

6.7 Qualitative Results

A major advantage of our semi-direct approach is, that 3D point clouds are es-

timated at runtime, yielding an accurate semi-dense reconstruction of the envi-

ronment. Thus, we are not only able to estimate the current pose of the camera,

but also maintain a 3D map of the environment, which can be used for additional

tasks, like obstacle avoidance.

Qualitative results are shown for sequence 00 of the KITTI dataset exemplary.

As can be seen in Figure 6.14 an accurate and consistent 3D reconstruction is

achieved by Semi-Direct SLAM. For better comparison to feature-based SLAM

methods, the resulting sparse map built by ORB-SLAM is shown in Figure 6.15.

While the reconstruction of ORB-SLAM only contains sparse points, our recon-

struction allows detailed inference to existing objects in the scene. Most objects,

that are visible in the camera image, can be recovered in our semi-dense map. For

example, one can clearly distinguish between individual trees and cars. Contrarily,

in the sparse map of ORB-SLAM one can vaguely guess, where the street runs.

Figure 6.16 shows the estimated pose-graph of the camera trajectory and recon-

structed map of the medium difficult EuRoC dataset V1 02. The images prove,

that our estimated 3D reconstruction is globally consistent. The objects shown

in the exemplary given camera image can easily be retrieved in the reconstructed

map.

In conclusion, we state that our method builds globally consistent semi-dense

3D maps of the environment. It is well suited for large-scale sequences as in the

KITTI dataset, as well as for smaller indoor sequences as in the EuRoC dataset.

We believe, that the semi-dense 3D reconstruction serves a great advantage for

autonomous visual navigation.
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Figure 6.14: Semi-dense 3D Reconstruction of KITTI 00: The top image shows
the reconstructed scene as captured by the camera. Below the semi-dense 3D
reconstruction of this scene and the complete reconstruction of this dataset is
shown.
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Figure 6.15: Sparse feature-based 3D Reconstruction of KITTI 00 by ORB-
SLAM. The top view shows an exemplary scene, where ORB features are tracked.
The lower image shows the sparse map, that is obtained by tracking ORB features.
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Figure 6.16: Semi-dense 3D Reconstruction of the EuRoC Dataset V1 02 with
medium difficulty. Results show a globally consistent semi-dense map. The de-
picted key frame graph visualizes the trajectory. Key frames are shown in blue,
while edge-constraints are shown in green and red, depending on their confidence.
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7 Conclusion

In this thesis, we proposed a novel semi-direct stereo SLAM method which com-

bines direct image alignment with feature-based matching.

By combining direct image alignment and feature-based matching, our method

can track images with high frame rate in real-time. The feature-based matching

serves as initialization for direct tracking on key frames. Thereby, our approach

is robust to large motions and self-rotations, whereas pure direct methods tend to

fail.

The performance of the method has been evaluated quantitatively in terms of

accuracy and runtime. In experimental evaluation on challenging datasets, we

show that our approach is well-suited for autonomous indoor and outdoor navi-

gation. Moreover, the evaluation shows that in the majority of the experiments,

our approach achieves higher accuracy than state-of-the-art methods without for-

feiting performance. The method runs in real-time on the original resolution of

the KITTI dataset without the necessity to reduce the image resolution. By using

feature-based matching as prior for the direct alignment our method is computa-

tionally less expensive as convergence is obtained faster and thus well-suited for

the use on a MAV to estimate the egomotion in real-time. Experiments on the

EuRoC dataset show that our approach is robust to aggressive flight maneuvers

with strong rotations and motion blur. While other methods tend to lose track at

the highly dynamic movements of the MAV, our method recovers the full trajectory

and simultaneously builds a semi-dense map.

Experiments on flights captured from our MAV, that is equipped with non-rigid

fish eye stereo, show limitations of our approach. Strong distortions, induced by

the projective rectification onto a plane, and a non-rigid stereo camera rig lead to

inferior behavior than to datasets captured with a rigidly attached camera rig and

normal lenses. We cope with these problems by introducing a different weighting

scheme and by re-estimating the extrinsics of our camera system on the flight,

following that our method was able to recover the path with an average ATE below

0.8m, while other stereo methods completely fail or produce an ATE above 1m.

Aswhile on the KITTI dataset our method achieves a percentage improvement of

60% to the second best method, we achieve an improvement of 43% to the second

best on the EuRoC dataset.

75



7 Conclusion

Additionally, we compare the performance of full SLAM to the performance of

pure visual odometry. Although, our visual odometry shows an average relative

error below 1%, the accuracy of the absolute trajectory is improved up to 80% by

visual SLAM. We show that all estimates can be further improved by SLAM.

The qualitative evaluation of our approach shows that we are able to reconstruct

an accurate semi-dense 3D map of the world. In direct comparison to the sparse

map of ORB-SLAM, our reconstruction contains far more details and is well suited

for mapping obstacles.

Runtime evaluation shows that the constraint search and the global pose graph

optimization pose the bottleneck of the system. As tracking of new frames runs

in a separate thread with 30Hz, real-time constraints can be fulfilled.

Since our method works very well for datasets captured with a normal lens,

but is less accurate on datasets captured with fish eye lenses, we believe that the

rectification of spherical images onto a plane might not be optimal for fish eye

lenses. For a next step, we thereby suggest to employ a different camera model

that is better suited to model the spherical projection. However, as such models

are usually non-linear, this might lead to less efficient behavior.

To conclude, the semi-direct visual SLAM developed in this thesis shows ac-

curate behavior in complex scenarios while still operating in real-time on high-

resolutions. It is therefore well-suited for autonomous systems that need a reliable

and fast state estimation. Experiments show that in terms of robustness and accu-

racy, our approach outperforms state-of-the-art methods, which often lose track at

dynamic motions. For future work, integration of our 3D reconstruction to an Oc-

toMap would be possible to better map the occupancy of the surroundings. More-

over, our method is build very modular so that other feature-based approaches,

like ORB-SLAM or visual-inertial methods, instead of LIBVISO2, could be eval-

uated. Furthermore, extracted sparse points of the feature-based method, could

also be fused into the depth map. All in all, we developed a semi-dense semi-direct

visual SLAM method for stereo cameras, that achieves accurate results and builds

consistent 3D reconstructions of the environment.
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