
Rheinische

Friedrich-Wilhelms-Universität Bonn

Bachelor Thesis

Road-Object Segmentation from Sequences of
Organized 3D-LIDAR Point Clouds

Author:

Moritz Müller

First Examiner:

Prof. Dr. Sven Behnke

Second Examiner:

Priv. Doz. Dr. Volker Steinhage

Supervisior:

Jan Quenzel

Department VI:

Autonomous Intelligent Systems

Date: January 19, 2019

Sworn statement according to BAPO
2011 §17 Abs. 7

I hereby declare that I am the sole author of this thesis and that none other than

the specified sources and aids have been used. Passages and figures quoted from

other works have been marked with appropriate mention of the source.

Place, Date Signature

Abstract

As autonomous intelligent systems play a more significant role in our society, 3D-

LIDAR point segmentation approaches for recognizing frequent objects in urban

environments have been noticeably improved over the last years. Recent works

provide Convolutional Neural Network (CNN) architectures which demonstrate

remarkable accuracy and runtime to address real-time applications such as au-

tonomous driving. However, most of these approaches do not exploit the orga-

nized structure of LIDAR data, and none of them consider the full field of view

(FoV) or temporal information to predict an object. One of the few exceptions

is SqueezeSeg, which utilizes the organized structure to handle the high sparsity

of 3D LIDAR point clouds. Inspired by rigid motion and optical flow algorithms,

this work aims at embedding information from scan sequences into SqueezeSeg and

extending it to the full FoV to examine the impact on segmentation results.

Contents

1 Introduction 1

2 Foundation 3

2.1 Operating Principle of LIDAR Scanner 3

2.2 LIDAR Scanner Advantages and Limitations 4

2.3 Calculating Organized Structured Point Cloud 5

2.4 Description of Image and LIDAR Motion 8

3 Related Work 11

3.1 LIDAR Segmentation . 11

3.2 Leveraging Temporal Information 12

3.3 SqueezeSeg . 13

3.3.1 Custom Convolutional Modules 13

3.3.2 CNN Architecture . 14

3.3.3 Limitations of SqueezeSeg 16

4 Overview of Methodology 17

4.1 Datasets . 17

4.1.1 The KITTI Vision Benchmark 18

4.1.2 A Dataset for Semantic Segmentation of Point Cloud Se-

quences . 21

4.1.3 Dataset Comparison . 22

4.2 Ground Truth Pose Retrieval from GPS and IMU Measurements . . 23

4.3 Experimental Approach . 25

4.3.1 Extension 1: Input Robustness through Feature Concatenation 26

4.3.2 Extension 2: Augmenting Present LIDAR Input Using Ego-

motion Estimates . 28

4.3.3 Extension 3: Combining Successive Activations 31

4.4 Training and Parameter Optimization 35

4.4.1 Loss Function . 35

4.4.2 Momentum Optimization . 36

4.4.3 Training Environment and Evaluation Metrics 38

4.4.4 Selection of the Hyperparameters 38

vii

Contents

4.5 Point Cloud Normalization . 40

5 Evaluation 41

5.1 Parameter and Runtime Analysis 41

5.2 Experimental Metric Results . 43

5.3 Experimental Results Anaysis . 47

5.3.1 Extension 1.1: Näıve Concatenation 47

5.3.2 Extension 1.2: Warping Concatenation 47

5.3.3 Extension 2: Augmenting Current LIDAR Input Using Ego-

motion Estimates . 48

5.3.4 Extension 3: Activation Combination and Activation Warping 48

6 Conclusion 51

viii

List of Figures

2.1 Structure and operating principle of a LIDAR scanner. 4

2.2 Process of point cloud transformation. 6

3.1 Structure of the FireModule from SqueezeNet. 14

3.2 Network architecture of SqueezeSeg. 14

3.3 Structure of a FireModule (left) and a FireDeconv (right). 15

4.1 Total number of object detections. 18

4.2 Total number of object instances. 18

4.3 Ground truth assignment by oriented bounding boxes. 20

4.4 Consecutive point clouds do not match well (left). The correct

transformation reduces the discrepancy between the objects (right). 25

4.5 Feature channel concatenation of prior OSPt−1 and current OSPt. . 27

4.6 Image warping: OSP t−1
t includes the 2D displacement between

time step t and t− 1 in contrast to OSPt−1. 28

4.7 Bird’s eye view after ARV with augmented points (purple). 30

4.8 Extension 3: Combining successive activations through Fuse Ac-

tivation modules. 32

4.9 Fuse Activation Module: Fuses prior and present activations. . . 33

5.1 Evaluated dataset comparison: Magnitude of applied parame-

ters for each extension. 42

5.2 Evaluated dataset comparison: Detection runtime for each ex-

tension. 43

5.3 Segmentation results: 360◦ FoV Dataset. 45

5.4 Segmentation results: 360◦ FoV Dataset using 16 vertical beams. 46

1

List of Tables

4.1 Label reassignment: Raw label of the 360◦ FoV dataset is as-

signed to our primary classes. 21

4.2 LIDAR datasets split in training, validation and test set. 22

4.3 Significant dataset differences at the pixel label distribution. 22

4.4 The ARV module exploits prior point clouds to complete empty

entries. 30

4.5 Overview of utilized hyperparameters. 39

4.6 Training comparison: Randomized batches exhibit significant

better IoU than ordered batches. 39

5.1 Segmentation results: KITTI’s 81◦ FoV Dataset. 44

5.2 Segmentation results: 360◦ FoV Dataset. 44

5.3 Segmentation results: 360◦ FoV Dataset using 16 vertical beams. 46

3

1 Introduction

Light detection and ranging (LIDAR) scanners constitute an indispensable part of

modern autonomous cars and micro aerial vehicles (MAV). This sensor technology

allows to perceive the environment in 3D which covers a sufficient FoV in real-time.

LIDAR is independent of ambient illumination and provides high-accuracy depth

measurements in contrast to cameras. Hence, there is a considerable benefit to de-

tect ordinary urban objects using efficient 3D LIDAR segmentation. Autonomous

vehicles utilize this point-wise information, inter alia, for accurate object iden-

tification, obstacle avoidance, and autonomous navigation to interact safely and

reliably in their environment.

The research field addressing LIDAR segmentation demonstrated significant en-

hancements during the last years and showed various strategies [7, 23, 29, 30].

A considerable number of recent work proposed the usage of CNNs which also

demonstrate state-of-the-art segmentation performance in similar fields [2]. How-

ever, these methods have some limitations:

One can observe that sparse LIDAR point clouds are usually insufficient since

some surfaces prevent the reflection of emitted beams. The major drawback of

recent LIDAR-based CNN approaches is that they are limiting to a näıve single

input mechanism, and none of them considers the temporal or prior information

between a sequential frame sequence to improve the robustness and consistency of

the outcome.

Another considerable weakness of recent work is that most of them using 3D LI-

DAR input representations such as point clouds which entail high input sparsity

and complexity as well as excessively high computational effort. As a result, most

of them do not comply with the requirements of limited hardware regarding au-

tonomous vehicles.

To the best of our knowledge, there does not exist a survey on how to embed

prior information into a LIDAR-based segmentation CNN that considers the FoV

and solely relies on range data. This thesis aims to close this gap by evaluating

different strategies:

First, we base our work on SqueezeSeg [30] which yields a superior efficiency and

exploits the organized image-like structure of the point cloud. Then, we developed

three main experiments to examine the impact of different prior representations

1

1 Introduction

on segmentation results regarding chronological frame sequences. In the first and

second experiments, we use prior LIDAR scans to augment the current input rep-

resentation of SqueezeSeg. Furthermore, we utilize the 6D rigid motion provided

by the GPS. This temporal information allows us to transform the pose of pre-

vious point clouds into the next frame. The last experiment aims to study the

influence of combining previous and present internal activation maps on Squeeze-

Seg. Moreover, this experiment considers the changed feature channel arrangement

by warping the previous activation map into the representation of the activation

frame.

Building upon these results, we hypothesize that the combination of rigid motion,

as well as prior frames, demonstrate an added value to the segmentation process

and hence we expect better segmentation results. We evaluated all experiments

on two separate LIDAR datasets [11, 3] and show the results as well as their cor-

responding interpretation at the end of this thesis. The point clouds stem from a

LIDAR scanner attached to a car with a vertical resolution of 64. However, LI-

DAR sensors suitable for MAVs have only 16 vertical beams. It is also essential to

evaluate the performance for all extensions on less environment information and

hence the last chapter additionally provides results based on point clouds with

reduced vertical resolution.

2

2 Foundation

This chapter describes the operating principle of an ordinary LIDAR scanner and

outlines their benefits as well as limitations. As the 3D point clouds tend to be

sparse, we afterward present a technique to acquire a more compact representation.

Finally, the last section highlights some techniques to describe the motion between

an adjacent pair of images or 3D point clouds, respectively.

2.1 Operating Principle of LIDAR Scanner

LIDAR is nowadays an essential technology for measuring distances precisely and

reliably. In general, LIDAR devices emit laser pulses with a specific wavelength

towards the environment. The receiving object absorbs a specific fraction of trans-

mitted energy depending on their material and surface structure before reflecting

the laser beam. If the reflection heads back towards the sensor, a photoelectric cell

made of silicon or gallium arsenide measures the received beam. This measurement

represents the reflection strength r of the laser beam and varies by distance as well

as inclination angle and material. In particular, it underlines that the reflectance

measurement is more relative than quantifiable. Considering the constant speed

of light vlight ≈ 300, 000 km/s as well as the time of flight ttof of a returning light

photon, we can determine the range between sensor and explored object as follows:

d =
1

2
· vlight · ttof . (2.1.1)

LIDAR scanners utilize oscillating mirrors to transmit laser pulses rapidly on

different elevation φ and azimuth θ level as illustrated in Figure 2.1(a). Moreover,

we can summarize the range d together with the corresponding θ and φ angle as a

point ppol = (φ, θ, d) ∈ R3 located in 3D polar coordinate system. One can observe

that the total number of reflected points differ by each scan because it depends

on the reflection behavior of each surrounding area. Figure 2.1(b) demonstrates

a visualized 3D point cloud. The resulting point cloud density depends on the

vertical and horizontal angular resolutions and varies by each scanner. Besides,

LIDAR scanner can explore the 360◦ FoV at a high frame rate of up to 20Hz

3

2 Foundation

which makes them suitable for applications like obstacle detection and navigation

for autonomous driving.

(a) Operating principle (b) Resulting 3D point cloud

Figure 2.1: Structure and operating principle of a LIDAR scanner.

Other applications, e.g. Airborne LIDAR scanning, utilize short wavelengths in

order to transmit beams with high energy and hence can detect distances with far

greater range. It should be noted that with a shorter wavelength of the LIDAR

beam the risk to cause damage to human eyes increases. However, the mounted

LIDAR scanner on autonomous vehicles such as the MAV and self-driving cars

commonly emit wavelengths between 900 and 1100 nm to cover the full environ-

ment up to a range of 100 meters. These wavelengths are imperceptible for human

eyes and also constitute a low-level risk of injury.

2.2 LIDAR Scanner Advantages and Limitations

One key advantage of laser scanners constitutes their ability to collect 360 degree

3D maps with outstanding distance accuracy in real-time. Another benefit is the

fact that all measurements are independent of ambient illumination. In poorly illu-

minated environments like total darkness or sunny weather, laser scanners provide

more valuable information about the surrounding area in contrast to photogram-

metric sensors. However, this system also has some serious drawbacks. Engineers

should take into account at any rate, that the reflectance measurement r is an un-

reliable property. The distribution of 3D LIDAR point clouds is generally sparse

as well as irregular. It also requires an appropriate method for analyzing such huge

4

2.3 Calculating Organized Structured Point Cloud

dataset efficiently. To overcome the high point sparsity issue, we will later compute

a dense, organized, structured grid representation as described in Section 2.3. A

photogrammetric setup of several cameras which includes the same FoV deals with

geometrical distortions and higher instability caused by the sensor synchronizing

process. Furthermore, such configurations deal with more involved post-processing

computations and hence are less recommendable for dedicated hardware setups re-

garding autonomous vehicles. Recently developed LIDAR scanners are unaffected

of such limitations and their market price has noticeably decreased within the

last years. In light of these facts, LIDAR scanners are an indispensable part of

autonomous cars and modern MAVs nowadays.

2.3 Calculating Organized Structured Point Cloud

Usual 3D LIDAR point clouds have inherent problems like high sparsity and ir-

regularity. For our following experiments, we utilize an organized, structured grid

(OSP) to handle these limitations. LIDAR points are typically characterized in

polar coordinates as mentioned above. However, the provided dataset of Geiger

et al. [10] and Behley et al. [3] provide point clouds in the 3D cartesian space

exclusively. We explicitly exploit the cartesian representation to retrieve spherical

coordinates when calculating the OSP . Hence, Equation 2.3.1 describes the re-

lation between the cartesian representation p = (x, y, z)ᵀ of received LIDAR and

the corresponding polar coordinate ppol = (φ, θ, d)ᵀ:

x = d sinφ cos θ,

y = d sinφ cos θ,

z = d cosφ.

(2.3.1)

Besides, each point p belongs to a specific label class l. This approach focuses

on the primary ground truth classes car, pedestrian, cyclist and considers other

objects as the category don’t care. In Section 4.1 that follows, we primarily explain

the individual essential characteristic of used datasets and their label distribution.

Before proceeding to examine the mechanism of the OSP , it is necessary to define

our used convention.

A LIDAR point plid = (x, y, z, r, d, l)ᵀ ∈ R6 summarizes all related features and

corresponds to an unambiguous LIDAR point cloud Lt which denotes a set of

points taken at time t from a Velodyne HDL-64E scanner.

r denotes the reflectance strength of the beam and d the distance to the explored

object as we already outlined in Section 2.1. The organized structured point cloud

5

2 Foundation

(OSP) consists of a 2D plane of height h ∈ N and width w ∈ N, where each pixel

stores a 6D feature channel. This channel is accessible by an explicit index tuple

(i, j) ∈ H ×W :=
{

0, ..., h − 1
}
× {0, ..., w − 1

}
. Especially, index i defines the

vertical and j the horizontal position of a specific channel C(i, j) ∈ R6 stored in

the OSP .

The unstructured sparse point cloud is illustrated in Figure 2.2(a) before the trans-

formation where we subsequently transform each point by

ξ
(
ψ(p)

)
= (i, j) to an unambiguous index tuple (i, j) and accordingly storing its

features in the corresponding 6D channel C(i, j). This mapping procedure enables

us to retrieve a dense structured point cloud as visualized in Figure 2.2(b) where

the normalized depth information d is shown.

(a) Sparse unstructured 3D point cloud (b) Dense structured point cloud

Figure 2.2: Process of point cloud transformation.

Our primary objective is to map each plid ∈ Lt to a spherical tuple (φ, θ) ∈ Φ×Θ ⊂
R2 and afterward project such angles to an unambiguous index tuple (i, j). As a re-

sult, we can initialize the channel C(i, j) with the features of plid = (x, y, z, d, r, l)ᵀ.

In the following, we will go into more detail regarding this projection and describe

this mechanism in several steps:

First, the algorithm calculates for each plid ∈ Lt the corresponding zenith angle φ

and azimuth angle θ by ψ defined as:

ψ : R3 → Φ×Θ

ψ(p) =
(

arctan2 (y, x), arcsin
(z√

x2 + y2 + z2

))
.

(2.3.2)

This 2D spherical projection only consults the cartesian vector (x, y, z)ᵀ ∈ R3 of

each plid ∈ Lt to encode the spatial information in our OSP . Second, we utilize

ξ defined in Equation 2.3.3 and Algorithm 1 to map the angle tuple (φ, θ) to an

6

2.3 Calculating Organized Structured Point Cloud

explicit index position (i, j):

ξ : Φ×Θ→ H ×W. (2.3.3)

Algorithm 1: ξ(φ, θ)

Data: (φ, θ) ∈ Φ×Θ
Result: (i, j) ∈ H ×W
begin

sort Φ in ascending order

create a partition Φ̃|H| ←
⋃|H|
k=1 Φk, with |H| disjoint subsets Φk ⊂ Φ

sort Θ in ascending order

create a partition Θ̃|W | ←
⋃|W |
l=1 Θl, with |W | disjoint subsets Θl ⊂ Θ

resi ← ∅
resj ← ∅
for Φk ∈ Φ̃|H| do

if φ ∈ Φk then
resi = k

for Θl ∈ Θ̃|W | do
if θ ∈ Θl then

resj = l

return (resi, resj)

This allows us afterward to perform an assignment of plid at the pixel location

C(i, j). ξ is a surjective function and hence comes with the complication that in

some cases our OSP algorithm projects the small subset

Ltij :=

{
p ∈ Lt

∣∣ξ(ψ(p)
)

= (i, j)

}
(2.3.4)

to one position (i, j) where |Ltij | > 1. However, this raises the difficulty that

each pixel location C(i, j) is limited to store exactly one point pij ∈ Ltij with

its corresponding features. Hence, we proceed the channel assignment extremely

cautious to ensure that our grid includes as many low-frequency labels as possible

and prefer points closer to the sensor setup.

In the first step, our algorithm collects all affected sets Ltij where |Ltij | > 1. Next,

it analyzes each occurring ground truth label l of pij ∈ Ltij . Depending on l, the

algorithm prioritizes to initialize the cell C(i, j) to any LIDAR point pij when l is

7

2 Foundation

unequal to the category don’t care. If its the case that all points pij merely relate

to the don’t care category, the algorithm assigns C(i, j) to features from a specific

point pmin(d) ∈ Ltij which represents the lowest distance to the sensor setup. The

set of index tuples containing an empty channel for a current point cloud Lt after

the calculation of the OSP is defined as:

Itempty :=
{

(i, j) ∈ H ×W
∣∣∀p ∈ Lt ξ(ψ(p)

)
6= (i, j)

}
. (2.3.5)

The principle |Itempty | ≥ 1 applies for every calculated frame and hence underlines

the limitations of the OSP representation. However, this grid yields a more com-

pact and dense representation compared to the sparse point cloud.

2.4 Description of Image and LIDAR Motion

A popular method to describe dynamic changes between adjacent frames is to

calculate optical flow. This area is well explored for images, and there is a large

number of innovative approaches for determining optical flow [5, 8, 17]. In this

section, we focus primarily on the linearised definition to describe the main aspects

of this motion. One can observe that the intensity value of a specific pixel location

(u, v) regarding an ordered image sequence changes over time. The corresponding

intensity values at (u, v) at image It−1 taken at t − 1, moved their position with

the translation vector g = (e, f) = (∂u
∂t
, ∂v
∂t

) to

I(u, v, t− 1) = I(u+ e, v + f, t− 1 + ∆t) (2.4.1)

at present time t. Optical flow methods try to estimate such translation vector

g in order to describe the overall motion from It−1 and It by considering the

time duration ∆t. Difficulties arise, however, when calculating the non-linearised

displacement field as reported by Brox et al. [5].

This specific motion is only valid under linear displacement changes and relies on

the assumption of constant gray values for temporal correspondences as shown by

Horn and Schunck [15]:
∂I

∂u
e+

∂I

∂v
f +

∂I

∂t
= 0. (2.4.2)

This brightness constancy assumption is invalid in most scenarios since the object

surface brightness varies as a function of time. Based on the principle of opti-

cal flow, Scene-flow [14, 22] characterizes the translation in 3D space. Another

approach to depict the 3D movement is rigid motion [13], which assumes that ad-

8

2.4 Description of Image and LIDAR Motion

jacent point clouds change uniformly. More precisely, this criterion is rooted in the

premise that the relative distance, as well as the position between points, remain

unaltered in contrast to Scene- or optical flow. The methodology Section 4.2 de-

scribes the mechanism to retrieve this motion from the inertial measurement unit

(IMU) and GPS measurements. In our experiment, we exploit the 3D motion in

the point cloud in order to obtain the 2D translation vector in our OSP frame.

This temporal information allows us to warp previous activation maps of the CNN

and OSP frames to the current representation.

This chapter began by describing the principle of conventional LIDAR scanner and

outlined the limitations as well as the advantages. Moreover, it argued that the

usage of OSP representations offers benefits like compactness and applicability

of standard image-based CNN approaches. Finally, we took a closer look at the

description of motion in images and LIDAR scans.

9

3 Related Work

The purpose of this chapter is to review the literature on recent works related to

LIDAR Segmentation as well as approaches considering motion in between input

frames. It begins by introducing different methodologies for preprocessing LIDAR

data and segmenting such representation. We already presented various motion

descriptions for image and LIDAR scan pairs in Section 2.4. Furthermore, we

present existing approaches which exploit such time depending features in the

similar field of LIDAR segmentation. We then proceed with a specific LIDAR

Segmentation CNN called SqueezeSeg [30] and describe its main characteristics in

detail. Building upon these results, we outline the limitations of this architecture

and afterward introduce the reader to our method.

3.1 LIDAR Segmentation

To date, various approaches address 3D LIDAR point cloud segmentation using

different strategies in data preprocessing and pipeline design. Moosmann, Pink,

and Stiller [23] utilize the 3D point cloud representation in conjunction with a lo-

cal convexity measure in a graph-based optimization. This method achieves good

segmentation results even in non-flat areas. In contrast Hackel et al. [12] present a

3D-CNN architecture which consults five different transformed voxel resolutions for

each scan, in order to output the class conditional probabilities of urban objects.

The main limitation of voxel representations, however, is that LIDAR scans are

highly sparse and irregularly shaped in general. Furthermore, the transformation

into a cube representation leads to a high number of empty voxels which causes

an excessive computational cost compared to 2D based networks. To handle such

drawbacks, recent works [30, 7, 29] propose to precalculate dense grid representa-

tions which are then segmented by 2D based pipelines. The CNN SqueezeSeg by

Wu et al. [30] utilizes additionally efficient custom architecture modules to address

real-time segmentation for LIDAR point clouds. This approach becomes a central

focus in the following Section 3.3.

Instead, PointSeg by Wang et al. [29] based their work on [30] and apply sev-

eral ideas of RGB semantic segmentation methods into the CNN structure. A

11

3 Related Work

slightly different, but well-researched area is LIDAR-based object detection. Its

primary aim is to predict object-oriented bounding boxes in point clouds. This

area has noticeably improved during the last years. Recent approaches [20, 19]

demonstrate remarkable performance, proposing to exploit LIDAR scans as well as

corresponding RGB images to benefit from extended input features. Simon et al.

[25] outperform previous approaches in the KITTI Bird’s Eye View Benchmark

[10] by utilizing LIDAR inputs solely in a fully connected network.

3.2 Leveraging Temporal Information

The extraction and exploitation of short-time information related to LIDAR scans

is scarcely investigated at this moment. One of the few exceptions is presented

by Vaquero, Sanfeliu, and Moreno-Noguer [27], which only consults range data to

detect the motion vector of dynamic moving vehicles, by embedding additional in-

formation such as motion and semantic prior based on LIDAR inputs. Currently,

there is no ground truth available for the optical flow equivalent on LIDAR scans.

Hence, they propose a learned LIDAR-based approach called lidar flow where cor-

respondences are obtained from optical flow via projection of point clouds. A

different approach was taken by Dewan, Oliveira, and Burgard [7]. Similar to

SqueezeSeg, they propose a mechanism for projecting each LIDAR beam into a

2D spherical plane where each channel yields three features. From this, a CNN

estimates a point-wise objectness score to distinguish between movable and im-

movable points. A Bayes filter combines the objectness score with a dynamicity

score of their previous approach [6].

Related research fields like image segmentation (IS) and visual odometry (VO)

show well-suited approaches for taking advantage in extracting motion according

to a chronological frame sequence, in contrast to LIDAR-based segmentation. Re-

cent work on image segmentation by Gadde, Jampani, and Gehler [9] introduce a

warping of the previous image activation with the assistance of optical flow. More-

over, they exploit this transformed representation to combine it with the current

image feature activation map. Their evaluation shows a noticeable improvement

by marginal runtime increase in comparison with the single frame based frame

methodology. Instead, Ma et al. [21] enforce multiview consistency. They recom-

mend warping CNN feature maps and semantic predictions of multiple views into

a reference view given known image poses. Results show that exploiting multiple

views outperforms single view predictions. Another work by Ummenhofer et al.

[26] facilitate unconstrained pairs of images to compute depth and the correspond-

ing camera motion.

12

3.3 SqueezeSeg

Historically the camera ego-motion within image sequences (VO) has been tackled

with hand-crafted algorithms. A currently very active research topic is learning

VO. One example stems from Wang et al. [28] whom concatenate two-time cor-

related images and extract geometrical features through a CNN before feeding

them through a recurrent neural network (RNN). In particular, they employ a

long short-term memory recurrent unit to learn sequential patterns.

3.3 SqueezeSeg

We base our approach on the CNN called SqueezeSeg developed by Wu et al. [30],

which takes as input a compact OSP representation of a 3D LIDAR point cloud

as illustrated in Section 2.3. This architecture outputs a point-wise label map of

common urban objects to address real-time applications such as autonomous driv-

ing. Besides, a Conditional Random Field (CRF) [31] reformulated as a recurrent

unit further refines the probability output of the CNN. Moreover, this architec-

ture yields its superior efficiency to the fact, that the implementation contains

a derivation of SqueezeNet (CNN) presented by Iandola et al. [16]. This special

CNN reaches with fifty times fewer trainable parameters the same accuracy as

the widely used AlexNet developed by Krizhevsky, Sutskever, and Hinton [18]. In

the next section, we analyze the efficient modules of SqueezeNet and outline the

differences according to SqueezeSeg.

3.3.1 Custom Convolutional Modules

The FireModule concept was introduced for the first time in SqueezeNet. A vital

characteristic of this layer is to extract large activation maps with fewer param-

eters and hence smaller computational cost compared to components included in

AlexNet. Overall, the FireModule is structured into 2 sub-units as illustrated in

Figure 3.1. The first module called squeeze layer, consists of a convolutional layer

which utilizes a 1 × 1 filter yielding nine times fewer parameters compared to a

standard 3× 3 filter. s1 denotes the number of utilized 1× 1 filters of the squeeze

layer.

Afterward, the output channels are fed into an expand module. This unit is struc-

tured into two convolutional layers. The first convolutional layer consists of e1

times 1 × 1 filters, while the latter comprises e3 times 3 × 3 filters. In general,

the number of parameters of a convolutional layer depends on the input channels,

number of filters as well as the kernel size. The authors propose to downsample

included layers as late as possible to keep feature maps at high resolution to obtain

highly accurate predictions.

13

3 Related Work

Figure 3.1: Structure of the FireModule from SqueezeNet.

Furthermore, this model allows to select the number of filters s1 in the squeeze and

of expand layer (e1 + e3) empirically or trained as hyperparameters. The authors

strongly recommend choosing s1 < (e1 + e3) in order to keep the number of input

channels of expand layers low and hence reduce the overall amount of parameters

by a considerable factor.

3.3.2 CNN Architecture

The network structure of SqueezeSeg is shown in Figure 3.2. The layers Conv1a

to Fire9 are adopted from SqueezeNet. At the beginning the pipeline is fed with

an OSP of dimension h · w · c into the first layer Conv1a.

Figure 3.2: Network architecture of SqueezeSeg.

Afterward, several convolution and max-pooling operations downsample this input

in order to reduce input dimension. While SqueezeNet downsamples in vertical

and horizontal dimension, Wu et al. decided to reduce only the horizontal shape,

keeping the original height in the entire segmentation process since the width of

14

3.3 SqueezeSeg

an OSP is much larger than its height. In view of efficient feature map extraction,

they embed eight custom FireModules as illustrated in Figure 3.3.

Figure 3.3: Structure of a FireModule (left) and a FireDeconv (right).

These modules take as input a tensor of size h · w · c and output the same

dimension size. In particular, the squeeze layer minimizes the number of input

channels by limiting the number of filters to s1 = c
4
. Considering subsequently

the expand layer, they decided to set the number of the 1 × 1 as well as the

3 × 3 convolutional filters to e1 = e3 = c
2
. The FireModule concatenates the

internal expand layer output channels which result in the original input tensor size

h · w · c. In comparison, a conventional 3 × 3 convolutional filter will require 9c2

parameters combined with its computational cost of 9hwc2. The FireModule needs

only 3
2
c2 weights and is limited to 3

2
hwc2 computations. In this case, it means that

the FireModule uses six times fewer parameters and computations in contrast to a

conventional layer yielding a 3×3 filter. To obtain a full resolution probability map,

the authors utilize a custom designed FireDeconv to upsample the width dimension

of the activation maps by an additional factor of 2. The structure of the FireDeconv

is similar to the FireModule and owns an additional deconvolutional layer between

the squeeze and expand unit. In view of the output resolution of h·2w·c, these layers

employ 7
4
c2 parameters and need 7

4
hwc2 computations. It should be noted that a

standard 1× 4 deconvolutional layer contains 4c2 parameters and requires 4hwc2

computational steps. Instead, the FireDeconv needs 2 times less parameters which

is an outstanding efficiency. As the network causes spatial information loss during

max-pooling operations, it exploits additional skip connections to add upsampled

feature maps to lower-level feature maps of the same shape. The layer from Conv1a

to FireDeconv13 employ the rectified linear unit (ReLU) activation function. It

outputs zero if the input is less than zero and otherwise returns the raw input.

At the end, Conv14 utilizes the softmax activation to output the full resolution

15

3 Related Work

probability map. This class-wise label output tends to have blurry boundaries

caused by downsampling operations of the max-pooling layer. Wu et al. decided

to refine the generated probability output of Conv14 by a CRF, reformulated as a

RNN unit. This recurrent unit belongs to the class of statistical modeling methods.

Applications like pattern recognition and machine learning usually utilize this kind

of model. A central principle of the CRF module constitutes that it considers

neighboring LIDAR features in order to assign a specific point to a probability

class. It is quite likely when several neighboring points share similar features that

they belong to the same class label. We refer the readers to [30, 31], for a detailed

description of this module, since our primary objective in this thesis is to develop

extensions related to the CNN whereas the CRF is out of the scope.

3.3.3 Limitations of SqueezeSeg

There are two main reasons, why this segmentation pipeline of SqueezeSeg demon-

strates specific limitations:

One major drawback of this approach is that the architecture uses single frame

inputs to predict the class probability map of the current point cloud and does not

exploit the contextual information between several adjacent scans. For instance,

Geiger, Lenz, and Urtasun [11] and Behley et al. [3] provide global ego-motion

estimates which allow us to retrieve the point-wise rigid motion between time

correlated point clouds. As mentioned earlier, researchers [9, 21, 27, 7] already

showed that leveraging semantic and motion priors in similar fields have the poten-

tial to improve results. SqueezeSeg is limited to a horizontal 81◦ degree FoV which

is insufficient for the estimation for a potential 360◦ point cloud. Applications

such as autonomous driving or MAV explorations demand efficient algorithms for

segmenting the entire FoV. Thanks to recent work by Behley et al. [3], there is

the opportunity to evaluate SqueezeSeg on complete point-wise labeled 3D LIDAR

scans.

These drawbacks raise the question of how to extend SqueezeSeg to handle the

mentioned limitations. The following chapter covers different aspects of this topic.

16

4 Overview of Methodology

The purpose of this section is to introduce the reader to our three different strate-

gies, trying to handle the limitations of SqueezeSeg outlined in Section 3.3.3. Be-

fore proceeding to examine these mechanisms, it is necessary to introduce the main

principals of used datasets and their linked preprocessing to enable our subsequent

extensions. Furthermore, we take a close look at the two employed datasets and

highlight their main characteristics as well as the label distribution.

4.1 Datasets

The KITTI Vision Benchmark Suite published by Geiger et al. [10] provides a vast

data collection which consists of LIDAR scans, gray-scale and color images as well

as the corresponding GPS\IMU sensor values. These recordings include various

scenes of city traffic, residential and campus areas. However, in this thesis, we

confine ourselves to the LIDAR input and corresponding GPS\IMU measurements.

The LIDAR raw data collection stems from a Velodyne HDL-64E laser scanner,

which explores the full horizontal FoV with 64 vertical beams. Besides, the KITTI

recording setup limited the frequency of this LIDAR scanner to 10 Hz to ensure

robustness for the sensor synchronization process. The LIDAR data is prepocessed

and provided as a 3D point cloud with cartesian coordinates plid = (x, y, z)ᵀ ∈
R3. In order to retrieve the OSP representation, we utilize the chained function

ξ(ψ(plid)) as described in Equation 2.3.3, to determine the corresponding position.

The range value d is obtained as the euclidean distance:

d =
√
x2 + y2 + z2. (4.1.1)

We employ two different point cloud annotations in total which base on the KITTI

measurement as highlighted above. Geiger et al. [10] provide the object oriented

bounding boxes (OBB) for each point cloud to retrieve the ground truth anno-

tation. Unfortunately, these solely depend on the section that overlaps with the

front camera’s FoV and hence include unnatural truncated ground truth informa-

tion due to the horizontal image edges.

Theses annotations offer in our experience only for a frontal opening angle of 81◦

17

4 Overview of Methodology

reliable ground truth information. Hence, we restrict the width of our OSP frames

accordingly. The OBB may contain other points that do not belong to the object

itself. Instead, a very recent work by Behley et al. [3] provides the point-wise

annotations in the full FoV. This allows us to evaluate all extensions also on the

full 360◦.

Our preprocessing is nearly identical for both annotated datasets. In the next sec-

tions, we take a close look at the properties of both datasets. This section closes

with the mechanism to retrieve the 6D rigid transformations.

4.1.1 The KITTI Vision Benchmark

Label Distribution

C
ar

Van

Tru
ck

Ped
es

tr
ia
n

C
yc

lis
t

M
isc

Tra
m

Si
tt
in

g
Per

so
n

103

104

39,925

1,738

5,408
2,340

1,550 1,115
500

234

A
b

so
lu

te
F

re
q
u

en
cy

Figure 4.1: Total number of object detections.

C
ar

Van

Tru
ck

Ped
es

tr
ia
n

C
yc

lis
t

M
isc

Tra
m

Si
tt
in

g
Per

so
n

101

102

103
932

22

96 84
43 33

9
16

A
b

so
lu

te
F

re
q
u

en
cy

Figure 4.2: Total number of object instances.

The label collection of the KITTI Vision Benchmark consists of ordinary urban

18

4.1 Datasets

objects like pedestrian, cyclist, sitting person, car, van, truck, tram, or misc. We

only consider scene sequences where the corresponding OBB is available. Each ob-

ject belongs to an unambiguous 3D oriented bounding box which is unfortunately

limited to 81◦ FoV. However, this dataset does not cover every object in the point

cloud, especially in cases when such classes are in the background. Consequently,

there are some points interpreted as the don’t care category according to our OSP ,

even though they are part of a specific object. Furthermore, the number of objects

per class is unevenly distributed as visualized in Figure 4.1. Obviously, each ob-

ject may occur multiple times in subsequent scans. Figure 4.2 shows the number

of unique instances per class and demonstrates a similar unequal distribution. In

general, the amount of reflected points on cars or vans is much higher compared

to thin objects like cyclist or pedestrian. In the scope of this thesis, we focus

on the primary ground truth classes car, pedestrian, and cyclist and decided to

include trucks and vans to the label car. Besides the fact that we distinguish be-

tween cyclist and pedestrian, it is less reasonable to denote sitting persons to one

of the three-aspected labels either. The classes of tram, misc and sitting person

also demonstrate the lowest frequency of occurrence and rarely share geometrical

features as well as behavior patterns in comparison to our primary classes. Subse-

quently, we assign all points which do not belong to any of the ground truth labels

as don’t care.

Determination of Ground Truth Utilizing Oriented Bounding Boxes

The determination of the point-wise ground truth takes two intermediate steps,

since the OBBs are given in the camera frame.

First, we apply T lidcam ∈ R4×4 to every point plid of a specific point cloud Lt taken at

time t. This step allows us to move plid from LIDAR coordinates into the camera

coordinate system. The matrix T lidcam is also provided by Geiger et al. [10] and the

operation results in a new point cloud:

Ltcam :=

{
T lidcam plid

∣∣plid ∈ Lt and T lidcam ∈ R4x4

}
. (4.1.2)

The corners of an OBB are denoted by p1 to p8 ∈ R3 as illustrated in Fig-

ure 4.3(a). The three essential directions a,b and c ∈ R3 are pairwise perpendic-

ular edges of the rectangular box and we determine them with Equation 4.1.3:

19

4 Overview of Methodology

a = p1 − p2,

b = p1 − p4,

c = p1 − p5.

(4.1.3)

The transformed LIDAR point pcam ∈ Ltcam lies within the OBB if and only if,

each scalar product between the point pcam and the corresponding direction fulfills

following criterion: (
〈p1, a〉 < 〈pcam, a〉 < 〈p2, a〉

)
∧(

〈p1,b〉 < 〈pcam,b〉 < 〈p4,b〉
)
∧(

〈p1, c〉 < 〈pcam, c〉 < 〈p5, c〉
)
.

(4.1.4)

As a result, we can retrieve the point-wise label information for each point as

depicted in Figure 4.3.

(a) Representation of a standard oriented bounding box.

(b) Car OBB (c) Cyclist OBB (d) Pedestrian OBB

Figure 4.3: Ground truth assignment by oriented bounding boxes.

The major drawback of obtaining ground truth information by utilizing the OBB

constitutes that it covers also some points which do not actually belong to the real

object. For instance, the OBBs in Figure 4.3(c) and 4.3(d) include the ground

20

4.1 Datasets

plane which does not represent a real part of a pedestrian or cyclist either. This

characteristic might distort main features of these objects and could lead to a

situation where SqueezeSeg might learn misinterpreted patterns. In the following,

we present another dataset which closes this gap.

4.1.2 A Dataset for Semantic Segmentation of Point Cloud

Sequences

The recent work from Behley et al. [3] provides accurate point-wise annotations

covering 22 different classes for the KITTI VO [11]. They developed an efficient

labeling tool for annotation of point clouds based on simultaneous localization and

mapping (SLAM) poses. Moreover, their labeling procedure demonstrates more

precise annotations and considers even complex structures of various objects. This

approach does not possess the problems of the OBB method outlined above.

Category Class Car Pedestrian Cyclist Don’t care

road X
sidewalk X
parking Xground
other ground X

building X
structure

other structure X

car X
truck X
bicycle X
motorcycle X

vehicle

other vehicle X

vegetation X
trunk Xnature
terrain X

person X
motorcyclist Xhuman
bicyclist X

fence X
pole X
traffic sign Xobject
other objects X

outlier X

Table 4.1: Label reassignment: Raw label of the 360◦ FoV dataset is assigned
to our primary classes.

21

4 Overview of Methodology

However, we proceed some class reassignment operations on the 360◦ FoV dataset,

since this thesis restricts to the primary classes car, cyclist and pedestrian as illus-

trated in Table 4.1. We decided to map the label truck to the label car. Further-

more, we do not distinguish between moving and stationary objects. The category

motorcyclist denotes a person riding the vehicle or standing nearby the vehicle

and share nearly identical feature patterns as a bicyclist. The label remapping

procedure assigns bicycle, bicyclist, motorcycle and motorcyclist to our main class

cyclist, since we do not differentiate between a bicyclist and a bicyclist riding the

bike.

4.1.3 Dataset Comparison

The previous chapters already outline the main characteristics of our utilized

dataset. Table 4.2 highlights our selection of the training, validation and testing

set for each utilized dataset. For the following extensions, SqueezeSeg optimize its

parameter on the training set and simultaneously evaluate on a small validation

set the intermediate metric results. Section 5 presents the segmentation results for

all implemented extensions which base on the testing set. This chapter also illus-

trates the utilized metrics and computational differences between both datasets.

Dataset
Number of Scans

OSP Resolution
Training Set Validation Set Testing Set Total Set

81◦ FoV 64 · 384 9732 315 2791 12838
360◦ FoV 64 · 1920 19130 4071 20351 43552

Table 4.2: LIDAR datasets split in training, validation and test set.

In total, the 360◦ FoV dataset yields roughly 16 times more annotation informa-

tion compared to the limited FoV KITTI dataset because of resolution and frame

quantity. Table 4.3 shows how likely it is that an arbitrary pixel belongs to one of

the following categories.

Dataset Don’t care Empty Car Pedestrian Cyclist

81◦ FoV 77.6% 20.2% 3.0% 0.0045% 0.0048%

360◦ FoV 55.6% 41.5% 2.8% 0.002662% 0.0066%

Table 4.3: Significant dataset differences at the pixel label distribution.

One remarkable difference is that the OSP frames in the limited FoV consist of

more pixels which belong to one of our primary classes. Notably, the category

empty represents the probability that a randomly chosen frame index holds an

22

4.2 Ground Truth Pose Retrieval from GPS and IMU Measurements

empty entry. The generated OSP of the complete FoV dataset yields in average

the lowest valuable pixel density due to its high empty channel proportion.

4.2 Ground Truth Pose Retrieval from GPS and

IMU Measurements

In this section, we examine the rigid motion between two LIDAR scans Lt−1 and

Lt taken at successive times t − 1 as well as t, respectively. The proper rigid

transformation describes the orientation and translation movement from a specific

origin. Our primary objective is to retrieve such transformation to determine the

LIDAR’s ego-motion from Lt−1 to Lt during the time differences ∆t. In our case

Rt−1
t ∈ R3x3 specifies the change of orientation, whereas l = (u, v, w)ᵀ ∈ R3 denotes

the translation from origin Lt−1 to Lt. First, we focus on the orientation Rt−1
t .

This sensor setup provides at a given time t the orientation through the roll γ,

pitch δ and yaw angle ε. The value of γ describes orientation around the x axis

whereas δ relates to y axis and γ to the z axis. Let us assume that we want to

transform the global pose from time t = 0 to the current pose at time t. In order

to accomplish that, we create in the beginning the three rotation matrices for each

corresponding axis as follows:

Rxt =

1 0 0

0 cos(γ) − sin(γ)

0 sin(γ) cos(γ)

 , (4.2.1)

Ryt =

 cos(δ) 0 sin(δ)

0 1 0

− sin(δ) 0 cos(δ)

 , (4.2.2)

Rzt =

cos(ε) − sin(ε) 0

sin(ε) cos(ε) 0

0 0 1

 . (4.2.3)

In the next step, we want to combine above rotation matrices into one compact

rotation matrix. Since matrix multiplication is not commutative, we follow the

ZXY convention:

R0
t = Rxt ·Ryt ·Rzt . (4.2.4)

Subsequently, we can also analogously determine the rotation matrix R0
t−1 of time

t− 1.

In order to obtain the translation l from the origin at time t, the latitude α and

23

4 Overview of Methodology

longitude β are provided by the GPS\IMU system. These measurements describe

together the absolute position on earth. In particular, both values are represented

as angles and describe coordinates in a spherical space. Let pearth = (α, β) denote

an arbitrary point on Earth’s surface. In this case α ∈ [−90◦, 90◦] defines the

angle between equatorial plane and the normal to the surface at pearth. The

equator (α = 0◦) constitutes the center, which separates South Pole (−90◦) as

well as North Pole (α = 90◦). A meridian leads from South Pole and North Pole

and represent the half of an imaginary great circle on the Earth’s surface. The

longitude β ∈ [−180◦, 180◦] specifies the angle between prime meridian (β = 0)

and the meridian crossing the point pearth. To obtain the euclidean representation

(u, v) of α and β, we apply a cylindrical projection, called Mercator Projection on

these coordinates:

u = s · r ·
(
π · β
180

)
, (4.2.5)

v = s · r · log

(
tan

(
π(90 · α)

360

))
. (4.2.6)

The variable r ≈ 6.378.137 m is an approximation of the earth radius and

s = cos
(
αo·π
180

)
denotes the Mercator scale as illustrated in [10]. w describes the

altitude measure which is independent of this projection and we apply it directly

to l = (u, v, w)ᵀ. Furthermore, the resulting pose with orientation R0
t and origin l

is obtained as:

D0
t =

(
R0
t l

0 1

)
∈ R4x4. (4.2.7)

We finally acquire the transformation from t− 1 to t:

Dt−1
t = D0

t ·
(
D0
t−1
)−1

= D0
t ·Dt−1

0 . (4.2.8)

The group of rigid transformations also includes reflections which would transform

an object from the left side into the right side. In our case Dt−1
t is called a proper

rigid transformation since det(R) = 1 and hence it does not perform any reflection

transformation. We can now apply every rigid transformation Dt−1
t to every point

in set Lt−1 to acquire at time step t the transformed point set

Lt−1t :=

{
Dt−1
t p

∣∣p ∈ Lt−1}. (4.2.9)

The difference between Lt−1 and Lt is apparently visible in Figure 4.4(a). In

24

4.3 Experimental Approach

contrast, the transformed representation Lt−1t matches well with Lt as illustrated

in Figure 4.4(b). The background is filtered for improved visibility.

(a) Lt−1(purple), Lt (black) (b) Lt−1t (purple), Lt(black)

Figure 4.4: Consecutive point clouds do not match well (left). The correct transforma-
tion reduces the discrepancy between the objects (right).

Ground Truth Pose Retrieval from SLAM

The main principle of SLAM is to build maps of the surrounding area and to

determine the location of the sensor setup simultaneously. The dataset from Behley

et al. [3] also provide the ground truth pose D̃0
t which base on a SLAM procedure.

The motion is obtained in the camera frame using a Surfel-based Mapping (SuMa)

approach by Behley and Stachniss [4]. Hence, we apply the transformation T camlid ∈
R4×4 from [11] to the pose D̃0

t . This step allows us to retrieve the corresponding

pose for the LIDAR point clouds:

D0
t = T camlid D̃0

t . (4.2.10)

We apply analogously the Equation 4.2.8 to determine the ground truth rigid

transformation Dt−1
t .

4.3 Experimental Approach

Recorded LIDAR data yields an unpredictable amount of reflected points since

some surface structures in the surrounding area deflect reflections of transmitted

beams as we illustrated in Section 2.2. As a result, most point clouds are incom-

plete and hence the corresponding OSP representations contain frequently empty

feature channels. It is most likely that SqueezeSeg performs on partial point clouds

not as good as on input representation which includes more information about the

25

4 Overview of Methodology

environment. Hence, this thesis aims to evaluate different methods which utilize

prior information to compensate incomplete single frames.

In total, we implemented three groups of strategies where each strategy employs

a different range of prior knowledge as well as an unique methodology to embed

them additionally in the network pipeline of SqueezeSeg. In our first extension, we

extend the input channels by concatenating the feature of the previous OSP frame

additionally. The second extension aims to transform prior point clouds into a ref-

erence view given the sensors ego-motion, and subsequently to complete empty

cells of the current input frame. Moreover, the third method combines internal

activation representations of the previous and the current segmentation pass. In

the next section, we primarily focus on the motivation and implementation of each

strategy. The following Section 5 presents the evaluation results and analyzes the

impact on segmentation performance.

4.3.1 Extension 1: Input Robustness through Feature

Concatenation

In general, one can observe that the spatial environment may not change dramat-

ically much between adjacent LIDAR frames. It depends mainly on the recording

frequency, the velocity of the sensor setup as well as on the dynamically moving

objects in the environment. In our case, the LIDAR dataset was recorded with a

low frame rate of 10 Hz on a moving vehicle. Even though, the environment does

not exhibit significant changes in most situations. The concatenation of two adja-

cent frame features taken at successive times t− 1 and t, is a widely used method

to extract geometric features and learning sequential patterns with the assistance

of a RCNN unit [28]. A prior OSPt−1 frame might include valuable features at

a specific index location (i, j) which are missing in the current frame. Hence,

we believe that a simple concatenation operation of adjacent frames might close

this gap and produce a more robust input representation in contrast to the single

frame approach. The following subsections introduce two different variations of

this strategy.

Extension 1.1: Näıve Concatenation

Instead of passing single LIDAR inputs through SqueezeSeg, we double the number

of input channels for the current input by concatenating the previous and current

LIDAR scan. This operation results in an input with a size of h·w ·10 as illustrated

in Figure 4.5. We call this approach the näıve concatenation because it ignores

the motion included 2D displacement between the two OSPs.

26

4.3 Experimental Approach

Figure 4.5: Feature channel concatenation of prior OSPt−1 and current OSPt.

More precisely, the previous feature channels Ct−1(i, j) change the index location

to Ct(
′i,′ j) = Ct−1(i+ e, j + f) through the 2D displacement vector (e, f). Hence,

stacking the input channels assumes a direct relationship between the overlapping

OSP cells. We resolve this limitation in the next section.

Extension 1.2: Warping Concatenation

The second extension aims to establish a closer relationship between both con-

catenated inputs by exploiting the rigid transformation. In particular, this imple-

mentation maps each point p from the previous LIDAR point cloud Lt−1 to the

current 3D LIDAR coordinate system. This operation results in Lt−1t as shown in

Equation 4.2.9.

In the following step, we consider the changed feature channel arrangement by

warping OSPt−1 through recalculation of the OSP from the transformed point

cloud Ltt−1 as described in Section 2.3. The resulting OSP t−1
t also includes all

2D displacements simultaneously, and removes the need to determine the exact

displacement (e, f). Subsequently, the pipeline concatenates the feature channels

of the current OSPt together with the OSP t
t−1 of the corresponding point cloud

Lt−1t . This extension results in a small increase in computational cost in com-

parison to our first extension 1.1. In our opinion, it offers more valuable input

information since the transformed OSP t−1
t and OSPt represents a stronger pair-

wise feature correlation. Figure 4.6(a) and Figure 4.6(b) illustrate the unwarped

distance channels of the first extension. One can realize by this illustration that

the parking cars in the present frame OSPt seem closer to the sensor setup com-

27

4 Overview of Methodology

pared to the prior OSPt−1.

(a) OSPt−1 (b) OSPt

(c) OSP t−1
t (d) OSPt

Figure 4.6: Image warping: OSP t−1
t includes the 2D displacement between time step

t and t− 1 in contrast to OSPt−1.

The first implementation ignores this movement during the time duration of 100

ms. Instead, the extension 1.2 considers the 2D displacement and transforms the

prior frame into a new representation as illustrated in Figure 4.6(c), where each dis-

tance channel represents a stronger pairwise feature correlation regarding present

frame Figure 4.6(d). Now, one can observe that the parking cars in Figure 4.6(c)

and (d) are equally far away from the sensor. In particular, there are no significant

2D displacements visible.

4.3.2 Extension 2: Augmenting Present LIDAR Input Using

Ego-motion Estimates

The strategies of extension 1 consider previous inputs by doubling the number of

feature channels. As a result, the channel input complexity and the associated

computational effort increases in comparison to a single frame mechanism. In the

following evaluation Section 5, we analyze the parameter as well as the runtime

differences more precisely. The concatenated feature maps of previous extensions

exhibit at several indices positions nearly identical input. In this section, we

present a data preprocessing module called Augmented Reference View (ARV)

and preconnected this unit to SqueezeSeg. The basic principle of this strategy

is to complete the empty channels of the current scan OSPt and avoid increased

28

4.3 Experimental Approach

complexity of the input. First, this module transforms a specific number n of prior

point clouds with the assistance of ego-motion estimates in a reference view set

V n
t :=

n⋃
i=1

Lt−it . (4.3.1)

The reference view set V t
n contains all n previous point clouds transformed to

the current pose of Lt. In the following, we aim to determine the corresponding

index positions of the whole reference view set. Hence, we reapply the spherical

projection ψ and index mapping ξ to each point p of the reference view V n
t , in

order to retrieve the corresponding pixel location set

Int :=
{
ξ
(
ψ(p)

)∣∣p ∈ V n
t

}
. (4.3.2)

This index set represents all feasible candidates to complete the present OSPt.

Furthermore, we determine all empty pixel locations Itempty of our current OSPt
frame as defined in Equation 2.3.5. Next, the cut set Icut = Itempty ∩ Int filters

all final index tuple candidates which can be later utilized for completing empty

entries of the OSPt. Finally, the algorithm assigns each channel Ct(i, j) = p to

the corresponding point where p ∈ V n
t and ξ

(
ψ(p)

)
= (i, j) ∈ Icut. As it is the

case with our OSP projection in Section 2.3, the ARV module always prefers the

nearest point from the sensor setup to augment a specific channel. Empty cells

represent a distance d =∞ for the channel assignment.

In summary, the ARV module is a data preprocessing module which completes

empty entries of the present OSPt. The augmented OSPt yields more input in-

formation in contrast to one standard frame. As a result, SqueezeSeg receives

a more robust input representation, and hence we expect a better segmentation

performance in comparison to the standard frame input. The images on the left

side in Table 4.4 demonstrate the standard input before the ARV operation. Sub-

sequently, this unit transforms points of prior point clouds into the current frame

as highlighted on the right side in Table 4.4. The augmented entries in the ground

truth image are highlighted in purple for better visibility. The ARV operation

allows bridging gaps as shown in the corresponding point cloud in Figure 4.7.

29

4 Overview of Methodology

Image Original After ARV

range
channel

ground
truth

Table 4.4: The ARV module exploits prior point clouds to complete empty entries.

Figure 4.7: Bird’s eye view after ARV with augmented points (purple).

30

4.3 Experimental Approach

4.3.3 Extension 3: Combining Successive Activations

As illustrated before, SqueezeSeg utilizes an additional CRF unit to refine the

probability output of the CNN. However, this CRF unit has the limitation that

the internal activation representations of SqueezeSeg are inaccessible for further

refinements. For instance, the first downsampling layer extracts small activation

maps and might include essential features. The approach of Gadde, Jampani, and

Gehler [9] mentioned earlier proposed a method for warping previous image acti-

vations with the assistance of transformed optical flow and combine it with the

current activation map to increase IS results. Inspired by this approach, we believe

that consulting the current and previous activation maps of several specific layers

might provide further improvements to SqueezeSeg. According to previous strate-

gies, the present input representation shows several empty entries. All resulting

activation feature maps depend on this input. The combination of two successive

activations offers the benefit that the architecture considers different feature maps

for the segmentation of the current OSP . We hypothesize that this additional

information will have a positive impact on the perception result. As an additional

technical clarification, we denote an activation map akt as the output of the k-th

layer from SqueezeSeg which takes an OSPt at time t. Our primary objective in

this extension is to extend SqueezeSeg in such a way that it is capable to fuse the

prior activation akt−1 with the current akt activation. In particular, we aim to apply

this operation to three different k-th layer as illustrated in Figure 4.8. We define

in the next subsection a baseline which includes the fundamental fuse operation

and subsequently show a method which warps successive activation maps.

Extension 3.1: Linear Activation Combination

The network architecture of SqueezeSeg consists of several individual modules

which output activation maps on different scales. Especially, the outputs of the

max-pooling layers represent more high-level semantics in comparison to the Fire-

Modules Fire5, . . . ,Fire8. The skip connections combine DeconvModules low-level

output with more high-level features by adding both maps together. Inspired by

this network structure, we want to incorporate prior and present feature maps of

three specific layers, where each module yields a different level of semantic infor-

mation. In order to accomplish that, we choose for our baseline the activation

maps of the Fire3 a3t , Fire8 a8t and FireDeconv11 a11t modules. Our developed

FuseModule, illustrated in Figure 4.9, fuses accordingly the prior activation maps

akt−1 and akt by performing a weighted addition:

f(akt−1, a
k
t) = wk1a

k
t−1 + wk2a

k
t . (4.3.3)

31

4 Overview of Methodology

Figure 4.8: Extension 3: Combining successive activations through Fuse Activation
modules.

The weight vectors wk1 and wk2 are of equal length as the corresponding feature

channel size of the activation map. This method should ensure that SqueezeSeg

combines and learns only essential features. Furthermore, we update the weights

in every training iteration through backpropagation, since this implementation is

fully differentiable.

Extension 3.2: Activation Warping Using Ego-Motion Estimates

The primary purpose of this section is to introduce a method to extract 2D dis-

placements in our OSP by transformation given an ego-motion estimate. Our

following extension utilizes this information for warping activation sequences.

32

4.3 Experimental Approach

Figure 4.9: Fuse Activation Module: Fuses prior and present activations.

Extraction of 2D Displacement Maps

One arguable weakness of optical flow for this specific application is that this

brightness constancy assumption is inapplicable for LIDAR data since the re-

flectance measurement r demonstrates an unreliable feature as mentioned in Sec-

tion 2.2. Besides, the authors of [5] also report that the linear optical flow assump-

tion is not valid in most cases and especially not for large displacements. With

this in mind, this linear criterion is not fulfilled by LIDAR scans obtained with a

frequency of 10 Hz onboard a moving vehicle. As a result, we utilize the 6D rigid

transformation for extraction of displacement indices between an OSPt−1 taken at

time t − 1 and the following OSPt recorded at moment t, with two intermediate

steps:

First, we map each point p ∈ Lt−1 by Dt−1
t to obtain the point cloud representa-

tion Lt−1t at the current time step using Equation 4.2.9. This rigid transformation

includes the translation as well as orientation change in 3D space between Lt and

Lt−1. Afterward, we consider additionally the changed index arrangement between

OSPt and OSP t−1
t by projecting point cloud Lt−1t to the OSP t−1

t representation.

Next, we compare the previous point index location (i, j) = ξ
(
ψ(p)

)
,p ∈ Lt−1 with

the index location (i′, j′) = ξ
(
ψ(Dt−1

t p)
)

of corresponding point Dt−1
t p ∈ Lt−1t in

order to retrieve the index displacement (̃i, j̃) = (i, j)−(i′, j′) between our OSPt−1
and OSPt. Next, we aggregate the index displacements between both frames

through a displacement field St−1 where each cell sij stores the displacement (̃i, j̃).

In contrast to optical flow, our displacement field St−1 only considers the spatial

change of the moving vehicle and thus does not contain the individual movement

of dynamic objects in the surrounding area. Upon closer observation of the KITTI

dataset, we experienced that in average the amount of dynamic moving objects

33

4 Overview of Methodology

is considerably low compared to the number of static objects like parking cars or

standing pedestrians. The following section describes explicitly the mechanism

to exploit this 2D motion according to prior OSPt−1 to warp the corresponding

activation map in to the present representation.

Activation Warping Using 2D Displacement Maps

In our point of view, the previous extension 3.1 does not perform a fully appropriate

feature mapping operation, since it ignores the changed feature-pixel arrangement

caused by the time duration between t − 1 to time t. In this section, we close

this gap by warping the prior activation into the current representation. Gadde,

Jampani, and Gehler [9] proposed to map the pixel location (x, y) of a prior image

activation to the corresponding index (x′, y′) at the present time by considering

the corresponding optical flow (ẽ, f̃). This motion form is unsuitable for the OSP

frames as we outlined in the section before. As a result, we calculate for prior

OSPt−1 a 2D displacement field St−1 with the assistance of an ego-motion estimate

as described in Section 4.3.3. (̃i, j̃) stored in channel sij at St−1 denotes the

displacement difference between the channel C(i, j) of prior OSPt−1 at position

(i, j) to its corresponding location (i′, j′) = (i+ ĩ, j + j̃) at current time step t.

We then aim to warp a specific input channel C(i, j) of prior input OSPt−1 to the

corresponding position at the current time step t. The warp mechanism allows

us to use the displacement vector sij = (̃i, j̃) to map the feature channels C(i, j)

to C(i + ĩ, j + j̃). Furthermore, we exploit this logic to warp akt−1 to the next

representation âkt . However, each activation map consists of different resolution

sizes compared to our displacement map St caused by the downsampling operation

of the max-pooling layer. For this reason, we have to squeeze individually St to

the same width dimension for each activation map. Let wak denote the time

independent width of the activation map ak and the width of St−1 as ws. In this

extension, we decided to choose every ∆w = ws
w
ak

column of St−1 and collected

them in a smaller displacement map Skt−1 with a horizontal size of wak . Besides,

the warping algorithm normalizes the horizontal displacement of Sk. Let ĩmax be

the the maximum displacement vector in Skt . Then, we retrieve the normalized

S̃kt−1 =
{(

ĩ
ws
· ĩmax, j̃

)
|(̃i, j̃

)
∈ Skt−1)

}
. Finally, we warp akt−1 to its corresponding

representation to

âkt−1(i, j) = akt−1(i+ ĩ, j + j̃) (4.3.4)

at the current time step t. In contrast to our baseline, we perform now a linear

operation between warped âkt−1 and the present activation map akt as demonstrated

below:

f(âkt−1, a
k
t) = âkt · wk1 + akt · wk2 . (4.3.5)

34

4.4 Training and Parameter Optimization

This approach has the advantage that it considers the changed feature arrange-

ment and hence the transformed map âkt−1 should be more similar to the present

activation map akt .

4.4 Training and Parameter Optimization

This section describes the loss function as well as the training and optimization

procedure of SqueezeSeg. Afterward, we present our utilized parameters.

4.4.1 Loss Function

The last Conv14 layer describes a function

F : Rn × Rh×w×c → Rh×w×|Cls|, (4.4.1)

which maps the n-th dimensional parameter vector of SqueezeSeg θt−1 ∈ Rn at

time t − 1 and the current input OSPt to an unscaled activation matrix A. This

representation consists of the same horizontal and vertical resolution as the original

OSPt input. The set

Cls = {0, 1, 2, 3} (4.4.2)

represents our primary classes don’t care, car, pedestrian and cyclist respectively.

Each scalar aijl in A represents the corresponding strength of convenience at po-

sition (i, j) that the original input channel C(i, j) belongs to the label l ∈ Cls.

However, these values show in most cases an unnormalized representation since

the sum for all activation scalars is unequal one with respect to an arbitrary scalar

aijl. This pipeline applies the following softmax function in order to retrieve the

normalized probability distribution of the point-wise activation:

σ : R|Cls| → [0, 1]|Cls|

σ(aijl) =
eaijl∑

z∈Cls e
aijz

.
(4.4.3)

The softmax function squashes all activation scalars aijl between zero and one.

gt(i, j) ∈ Cls denotes the corresponding ground truth label l of the input pixel

C(i, j). Afterward, the pipeline applies the cross-entropy function

35

4 Overview of Methodology

Jij : Cls × R|Cls| → R

Jij(gt(i, j), σ(aij)) = bmask(i, j) · wloss(i, j) ·
(
−
∑
l∈Cls

gt(i, j) log(σ(aijl))
) (4.4.4)

in order to determine the error rate J(gt(i, j), σ(aij)) for each estimated pixel

probability σ(aijl). The loss function scales the error through the multiplication

with a constant loss weight map wloss ∈ Rh×w. The purpose of this additional vari-

able is to balance incorrect classifications with respect to the label distribution.

As earlier mentioned, both datasets show unequal label distributions and hence

the weight wloss(i, j) scales the prediction errors by higher loss weights when the

corresponding ground truth value gt(i, j) belongs to a rare representing label like

cyclist or pedestrian. Instead, the corresponding loss weight of the car and espe-

cially of don’t care represents a much shorter penalty weight due to their higher

occurrence. Table 4.5 also summarizes all class weights used during training. The

boolean filter

bmask(i, j)

{
1, if channel C(i, j) is not empty

0, else
(4.4.5)

sets the error function Jij for a specific pixel (i, j) to zero, when the correspond-

ing input channel C(i, j) references to an empty channel. In this case, the whole

loss function Jij(gt(i, j), σ(ai,j)) drops to zero through the zero scalar multiplica-

tion. This allows us to restrict the loss function only on relevant input information.

Finally, the total loss used within parameter optimization is:

J(A) =

∑
i∈H
∑

j∈W Jij(gt(i, j), σ(aij))

κ ·
∑

i∈H
∑

j∈W bmask(i, j)
. (4.4.6)

The purpose of the division term is to determine the average error by considering

the total number of valid entries. Moreover, the constant κ ∈ R>0 scales the

denominator to avoid fast divergence of the loss function J .

4.4.2 Momentum Optimization

All extensions employ the momentum optimizer from tensorflow to optimize the

weights and bias parameters. This optimizer is a small modification on the com-

mon stochastic gradient descent (SGD). SGD modifies the weights gradually by

moving their values in the opposite gradient direction such that the overall loss

is minimized. However, the main limitation of the SGD optimizer is its oscillat-

36

4.4 Training and Parameter Optimization

ing behavior for poorly conditioned problems where the gradient is close to being

orthogonal to the shortest descend direction as illustrated in [24]. Instead, the mo-

mentum optimizer counteracts this problem by smoothing the descent directions.

The idea stems from the physical equivalence of a ball rolling down a hill. The

ball accelerates on steep slopes and its momentum increases. If the momentum is

large enough the ball will continue to go in a certain direction independent of small

hills in its way. As the gradient of the slope decreases, the ball becomes slower

and slower until it reaches its local deepest valley. This behavior is equivalent

according to the momentum parameter optimization:

vt = γvt−1 +∇J(F (θt−1, OSPt)),

θt = θt−1 − µt · vt.
(4.4.7)

The current accumulation vt ∈ R>0 at time t depends on the momentum γ ∈
R>0, the chain link of prior accumulations vt−1 and the direction of the gradient

∇J(F (θt−1, OSPt)). The momentum term decreases for the dimensions whose

gradient point in different directions and otherwise increase weight updates θt. As

a result, the momentum optimizer tends converges faster in contrast to standard

SGD optimizer. The momentum hyperparameter γ is intended to be set between

0 < γ < 1. In our case, we choose the initial value of γ = 0.9. Normally, the

momentum optimizer utilizes a specific number b ∈ N>1 of training examples for

the calculation of one weight-update. To accomplish that, it uses the mini batch

momentum optimization as follows:

vt = γvt−1 +
b∑
i=1

∇J(F (θt−1, OSPi)),

θt = θt−1 − µt · vt.

(4.4.8)

Besides, the pipeline reduces the learning rate of µt ∈ R>0 with an exponential

decay method to ensure a stable convergence:

µt = µt−ρ · λ
t
ρ . (4.4.9)

t ∈ N>0 describes the global training step, and ρ ∈ N>0 denotes a specific time

step where the learning rate decays. The scalar multiplication between the decay

factor λ
t
ρ and prior learning rate µt−ρ updates the present learning rate µt.

37

4 Overview of Methodology

4.4.3 Training Environment and Evaluation Metrics

We base our work on SqueezeSeg [30] and developed all further experimental ex-

tensions in the widespread open source framework [1] tensorflow. Furthermore,

we trained and evaluated all models on a Nvidia GeForce GTX Titan equipped

with 6GB graphics memory. To determine the segmentation performance for all

experiments, we utilize three different metrics: Precision (Pre), recall (Rec) and

intersection over union (IoU) as illustrated below:

Prel =
|Pl ∩Gl|
|Pl|

, (4.4.10)

Recl =
|Pl ∩Gl|
|Gl|

, (4.4.11)

IoUl =
|Pl ∩Gl|
|Pl ∪Gl|

. (4.4.12)

Pl ∈ {0, 1}h×w denotes the pixel-wise prediction of SqueezeSeg and Gl ∈ {0, 1}h×w
the corresponding ground truth belonging to one of our primary classes l. Prel
describes the ratio between the relevant instances among the predicted label set

Pl. This value yields a high number for a specific class l if the prediction set Pl
of SqueezeSeg includes many overlapping samples in the ground truth set |Gl| and

the amount of predicted labels is |Pl| > 1. Instead, the recall or otherwise known

as the sensitivity describes the fraction between |Pl ∩ Gl| and the cardinality of

ground truth set Gl. The intersection over union defines the ratio between the

number overlapping samples in |Pl ∩ Gl| among the union of the predicted label

set Pl and ground truth set Gl.

4.4.4 Selection of the Hyperparameters

The following Table 4.5 shows the initial hyperparameter configuration which we

determined empirically by several training procedures. In total, we used two dif-

ferent training strategies: The training using the concatenation extension as well

as the combination of activation representations, assume that the prior and the

current frame are successive. Hence, we deemed it necessary for the first training

method to organize the whole training batch in a sequential order which includes

at any time exactly one specific scene. However, the loss function made hesitantly

progress to the local minimum during the parameter optimization. Moreover, the

trained model overfitted quickly by considering only the frequent categories car

and don’t care. Simultaneously, the metric results of pedestrian and cyclist kept

on a constant zero value, even after 100000 training iterations.

38

4.4 Training and Parameter Optimization

Hyperparamaters Symbols Random Batch Ordered Batch

batch size b 10 10
learning rate µ 0.01 0.001
decay rate λ 0.75 0.75
decay steps ρ 10000 100000
momentum γ 0.9 0.9
loss coefficient κ 15 15

loss weight

wdon′t care 0.0067 0.0067
wcar 1 1
wcyc 10 12
wped 10 12

Table 4.5: Overview of utilized hyperparameters.

We increased the loss weights wcyc and wped, trying to compensate the overfitting

behavior on car. This measure did not constitute an aid because the IoU score of

the category car droped nearly to zero and the network tended to estimate most

of the pixels as cyclist and pedestrian. Building upon these results, we found it

less reasonable to perform further hyperparameter optimizations on the ordered

batch. Subsequently, we changed our training strategy and randomized the batch

by choosing frames from arbitrary scenes. As a result, the loss function for the

single frame mechanism made rapidly progress to the local minimum and the IoU

training results of the classes pedestrian, as well as cyclist, always kept far above

of the zero threshold.

Method Car Pedestrian Cyclist

ran-
domized
batch

ordered
batch

Table 4.6: Training comparison: Randomized batches exhibit significant better
IoU than ordered batches.

39

4 Overview of Methodology

In order to ensure that our extensions combined only successive frames and acti-

vations, we chose an arbitrary pair of two adjacent frames to create a randomized

batch of size 2b. The Table 4.6 illustrates the considerable impact of using a

randomized batch (upper row) in contrast to an ordered batch (lower row). The

vertical axis describes the IoU score and the horizontal axis denotes the corre-

sponding training iteration step. These IoU metric scores base on the training set

split as illustrated in Table 4.2.

4.5 Point Cloud Normalization

The LIDAR input data varies from one frame to another considerably. Unnor-

malized input vectors lead in general to over- and undercompensation for different

weight parameters and reduce the networks generalization capabilities. Further-

more, the employed loss function tends to diverge rapidly without any input nor-

malization. First, we determine the number of valid channels by

k =
∑
f∈F

∑
i∈H

∑
j∈W

bmask(i, j). (4.5.1)

The total number of input channels depends on the OSP frame set F with re-

spective to the utilized dataset, the height h and width resolution w, respectively.

Building upon these results, we calculate the mean for all valid entries

meanc =
1

k

∑
f∈F

∑
i∈H

∑
j∈W

Cf (i, j) · bmask(i, j) (4.5.2)

as well as the empirical standard deviation

stdc =
1

k

√∑
f∈F

∑
i∈H

∑
j∈W

(meanc − Cf (i, j))2 · bmask(i, j) (4.5.3)

for each feature vector considering all channels Cf (i, j) stored in a specific frame

f . The pipeline scales each input channel C(i, j) before the training process by

C (̃i, j̃) =
C(i, j)−meanc

stdc
. (4.5.4)

Subsequently, the mean of the input data is reduced to zero and the division by

the standard deviation scales the channels standard deviation to one.

40

5 Evaluation

The results of our experiments base on the evaluation of two separate datasets

which include different FoV annotations. In the case of the 81◦ FoV annotated

dataset from Geiger et al. [10], we retrieve the ground truth information by uti-

lizing the OBB in the corresponding image frames. In contrast, the dataset from

Behley et al. [3] consists of a point-wise full FoV annotation. Another significant

difference is that the resulting OSP frames from the 360◦ FoV include in aver-

age more empty entries. For a more detailed description of the employed dataset,

we refer the reader to the previous Section 4.1. In the following, we analyze the

total number of parameters and the corresponding runtime with respect to each

extension. Section 5.2 presents the segmentation results as well as some represen-

tative pixel-wise prediction plots. We hypothesized that each extension provides

a benefit to the standard single frame mechanism. Hence, the last Section 5.3

highlights the impact for each extension and outline if the experiments performed

as expected.

5.1 Parameter and Runtime Analysis

The purpose of this section is to analyze the total number of parameters and the

corresponding runtime of each method.

Figure 5.1 outlines that the total number of parameters is independent of the height

and width dimension of the OSP input. As we already described in Section 3.3,

the number of parameters depends on the number of filter fi times the dimension

of each kernel. Let denote kiw the kernel width and kih the kernel height to the

corresponding layeri located at the i-th position in the SqueezeSeg architecture.

Then, we calculate the total number of parameters as

Param =
n∑
i=0

(kiwkihc+ 1)fi, (5.1.1)

where we increase the product of the inner brackets by one, since the equation has

additionally to consider the bias value for each kernel ki. The extensions single

frame and augmentation demonstrate the lowest usage of employed parameters.

41

5 Evaluation

These methods use on both resolution sizes a constant input channel size of c = 5.

81◦ FoV 360◦ FoV

9.06 · 105

9.08 · 105

9.1 · 105

9.12 · 105

9.14 · 105

9.16 · 105

9.18 · 105

9.2 · 105
N

u
m

b
er

of
P

ar
am

et
er

s

Single Frame
Näıve Concatenation
Warping Concatenation
Augmentation
Activation Combination
Activation Warping

Figure 5.1: Evaluated dataset comparison: Magnitude of applied parameters for
each extension.

Moreover, the näıve- as well as the warp concatenation extensions employ twice as

many of input features c = 10. This method leads to a larger amount of parameters

regarding the parallel convolution layer Conv1a and Conv1b at the beginning of

the network structure. As a result, both methods take 3000 more parameters

compared to the single frame mechanism. Instead, the activation combination

and activation warping methods take advantage of additional 1536 channel weights

beside the total number of layer parameters. However, the resolution size has a

considerable impact on the runtime, since the number of kernel operations increases

by resolution sizes. Hence, our two different datasets show noticeable differences

concerning input complexity as well as runtime. Our calculated OSPs based on

the 81◦ FoV yield a resolution size of 64 · 384 · c. Instead, the frames using the full

FoV consist of size 64 · 1920 · c. Figure 5.2 demonstrates that in average the usage

of 81◦ FoV frames yields a significant lower runtime compared to the full FoV

frames. Higher input resolution also causes larger activation maps. However, this

has a crucial impact on the computational effort of the following layer operations.

The single frame approach yields on both resolutions the lowest runtime since it

uses the smallest amount of parameters and is independent of preprocessing tasks.

Processing of a full FoV frame takes approximately 3.4 ms and meets the runtime

demands of point cloud sequences of ∼ 30 Hz.

The näıve concatenation as well as the warp concatenation employs 3000 more

parameters compared to the single frame mechanism. Furthermore, the warp

concatenation increases the number of computations by warping the prior input

into the current representation. Both input concatenation approximately double

42

5.2 Experimental Metric Results

their runtime when increasing the FoV from 81◦ to 360◦.

81◦ FoV 360◦ FoV
0

20

40

60

80

100

120

10

34

23

4137

75

16

43

13

4039

115

D
et

ec
ti

on
R

u
n
ti

m
e

[m
s]

Single Frame
Näıve Concatenation
Warping Concatenation
Augmentation
Activation Combination
Activation Warping

Figure 5.2: Evaluated dataset comparison: Detection runtime for each extension.

The augmentation of LIDAR point clouds aims to complete empty OSP channels

by transforming n prior LIDAR clouds into the current representation through ego-

motion. This operation results for n = 1 in a small computational effort which

is characterized by additional 6 or 9 ms, respectively. Higher usage of n prior

point clouds also causes a linear increase in computational cost. In contrast, the

activation combination and activation warping fuse three specific activation maps

of the desired layer and both of them apply in overall additional 1536 channel

weights. The fuse operation consists of a linear combination of prior and current

activation as illustrated in Figure 4.9. Moreover, the activation warping method

demonstrates the highest number of computations. This extension retrieves the

2D index displacement between two adjacent frames and subsequently exploits this

information to warp the prior activation map into the representation of the current

activation. The warping concept needs large channel rearrangement operations,

and hence the usage of larger activation resolutions increase the computational

effort by a considerable factor.

5.2 Experimental Metric Results

The following Table 5.1 and Table 5.2 show the segmentation results for all ex-

periments considering the primary classes car, pedestrian and cyclist. Table 5.1

demonstrates the metric scores of the 81◦ FoV dataset, whereas Table 5.2 repre-

sents the results of the 360◦ LIDAR dataset. Our evaluation shows that SqueezeSeg

performs much better on the class car compared to pedestrian and cyclist. Upon

closer observation, there is an apparent correlation between the metric results and

43

5 Evaluation

the pixel-wise label distribution in Table 4.3. Pedestrians and cyclists reflect a

much smaller amount of LIDAR points and also share considerable more com-

plex geometrical features in comparison to a car. Moreover, there is also a strong

correlation between a pedestrian and a cyclist riding the bike with respect to the

geometrical features. Hence, it is more challenging to learn the distinction between

a cyclist and pedestrian than between a vehicle and a human.

Segmentation Results Using 64 Vertical Beams

Class Car Pedestrian Cyclist Avg.

Metric Prec. Rec. IoU Prec. Rec. IoU Prec. Rec. IoU IoU

Single Frame 0.591 0.950 0.573 0.087 0.132 0.055 0.151 0.342 0.117 0.248

Näıve Concatenation 0.555 0.942 0.537 0.089 0.258 0.071 0.071 0.389 0.064 0.224

Warp. Concatenation 0.374 0.863 0.353 0.018 0.130 0.016 0.004 0.016 0.03 0.133

Augmentation 0.577 0.889 0.538 0.063 0.195 0.050 0.077 0.499 0.070 0.219

Activation Comb. 0.321 0.900 0.309 0.025 0.056 0.018 0.008 0.053 0.007 0.113

Activation Warping 0.319 0.899 0.308 0.026 0.057 0.018 0.008 0.050 0.007 0.111

Table 5.1: Segmentation results: KITTI’s 81◦ FoV Dataset.

Class Car Pedestrian Cyclist Avg.

Metric Prec. Rec. IoU Prec. Rec. IoU Prec. Rec. IoU IoU

Single Frame 0.716 0.961 0.696 0.044 0.207 0.038 0.178 0.676 0.164 0.299

Näıve Concatenation 0.645 0.945 0.624 0.027 0.217 0.025 0.117 0.665 0.111 0.252

Warp. Concatenation 0.648 0.940 0.622 0.020 0.196 0.019 0.104 0.680 0.099 0.246

Augmentation 0.721 0.933 0.686 0.039 0.203 0.034 0.135 0.703 0.128 0.282

Activation Comb. 0.654 0.952 0.633 0.033 0.186 0.029 0.118 0.552 0.107 0.256

Activation Warping 0.654 0.954 0.634 0.034 0.190 0.030 0.118 0.551 0.108 0.257

Table 5.2: Segmentation results: 360◦ FoV Dataset.

The following results show that the experiments perform better on the full FoV

compared to the insufficient 81◦ FoV. A possible explanation is that the dataset

of Behley et al. [3] includes precise object annotations. Instead, the oriented

bounding boxes exhibit the problem that it also covers unnatural parts like ground

which are no part of the classes car, pedestrian or cyclist. The object annotations

do not represent in every frame constantly mislabeled objects as ground and hence

SqueezeSeg might learn misinterpreted patterns. The full FoV OSP representation

complete objects at the borders which is not the case with the truncated image.

The following Figure 5.3 illustrates the corresponding pixel-wise predictions of

each extension, using the 360◦ FoV dataset.

44

5.2 Experimental Metric Results

Range channel of the OSP

Ground truth image

Single frame

Näıve concatenation

Warping concatenation

Augmentation

Activation combination

Activation warping

Figure 5.3: Segmentation results: 360◦ FoV Dataset.

Micro Aerial Vehicle Simulation Using 16 Vertical Beams

Nowadays LIDAR sensors suitable for MAVs explores also the full FoV with the

restriction of 16 vertical beams. The provided 3D LIDAR point cloud of such a

sensor consists of four times less information about the environment in contrast

to a common 64 beam vertical LIDAR scanner. As we already mentioned before,

our utilized datasets base on the measurements of the Velodyne HDL-64E. In or-

der to simulate the performance on a 16 vertical sized point cloud, we take every

4−th vertical beam and store it in a new OSP frame. The following evaluation

restricts only on the single frame, näıve concatenation, augmentation and activa-

tion combination extensions, since we find it less reasonable to evaluate the warped

extensions which provide no real benefit on more valuable input representations.

45

5 Evaluation

The parameters which were optimized on an OSP with a vertical size of 64, per-

form on the OSP with 16 vertical beam scan poorly. Hence, we refined the model

parameters with resprect to each extension. The following segmentation results in

Table 5.3 base on the 360◦ FoV dataset from Behley et al. [3]:

Class Car Pedestrian Cyclist Avg.

Metric Prec. Rec. IoU Prec. Rec. IoU Prec. Rec. IoU IoU

Single Frame 0.493 0.919 0.472 0.016 0.160 0.014 0.044 0.511 0.042 0,176

Näıve Concatenation 0.393 0.922 0.380 0.008 0.155 0.007 0.053 0.190 0.043 0.143

Augmentation 0.511 0.941 0.495 0.015 0.209 0.014 0.009 0.044 0.008 0.172

Activation Comb. 0.550 0.944 0.532 0.026 0.095 0.021 0.039 0.342 0.036 0.196

Table 5.3: Segmentation results: 360◦ FoV Dataset using 16 vertical beams.

Range channel of the OSP

Ground truth image

Single frame

Näıve concatenation

Augmentation

Activation combination

Figure 5.4: Segmentation results: 360◦ FoV Dataset using 16 vertical beams.

46

5.3 Experimental Results Anaysis

5.3 Experimental Results Anaysis

This last section highlights the impact for each extension and outline if the exper-

iments performed as expected.

5.3.1 Extension 1.1: Näıve Concatenation

This extension aims to combine the raw data of two successive frames to pro-

vide SqueezeSeg with more input information. In particular, this method assumes

that the environment does not change considerably since it ignores the ego-motion

during the time differences t and t− 1. However, the corresponding results in Ta-

ble 5.1, Table 5.2 and Table 5.3 show that this extension underperforms in average

the single frame mechanism and hence demonstrate an unanticipated finding. This

result may be explained by the fact that concatenated raw input data represent in

most cases larger discrepancy as expected. This would have a considerable impact

on the feature extraction and hence explain the worse outcome. We can observe

a slight improvement in segmenting pedestrians according to Table 5.1. Besides,

this experiment increases also the number of parameters and the runtime in com-

parison to the single frame detection. Building upon these results, this extension

does not demonstrate in average a positive impact.

5.3.2 Extension 1.2: Warping Concatenation

In comparison to the näıve concatenation, the warping concatenation extension

demonstrates a better correlation between previous and current frame by utilizing

the ego-motion estimate. Hence, we expected that this extension shows additional

benefit according to the näıve concatenation. Contrary to expectations, the eval-

uation results do not pose a significant benefit to warp the previous OSP into the

current representation. The evaluation clearly outlines that this operation per-

forms in the average worse compared to the first extension. Urban environments

usually consist of individual dynamic moving objects. The discrepancy between

the näıve and warping concatenation could be attributed to the ego-motion esti-

mate since it yields the limitation that it only considers the movement of the sensor

and does not include the individual movement of objects in the surrounding area.

Another possible explanation is that the warped frame includes in the average

more empty entries in comparison to the standard frame since the warping opera-

tion sometimes moves several points from the prior frame to one position (i, j) in

the current representation. As a result, only one point can be stored at position

(i, j) and other areas of the image are empty. Despite its weaker performance, this

47

5 Evaluation

method also increases the runtime by 14 or 34 ms with respect to the dataset. In

summary, this extension demonstrates a negative impact in view of computational

effort as well as segmentation results.

5.3.3 Extension 2: Augmenting Current LIDAR Input Using

Ego-motion Estimates

The primary motivation of this extension is to reuse LIDAR features of prior frames

to increase the input density of the current OSP . This extension transforms n

point clouds with the ego-motion estimate in a reference view and subsequently

complete as many entries as possible in the current input. A higher preset of n

causes a linear increase of 6 or 9 ms respectively and does not provide a better

segmentation result. A possible explanation is that two successive point clouds

are strongly correlated. It is quite likely that n > 1 previous point clouds contain

objects which are partially occluded in the current OSPt frame. Hence, the ARV

module transforms more points of objects currently hidden in the reference view

since this method always prefers points which are closest to the sensor. However,

the module completes with only one prior point cloud on average 16.29 % of the

empty entries in current input OSPt. In particular, the estimated cars (blue)

on the left side in Figure 5.3, demonstrate that this method provides pixel-wise

predictions of objects which represent much less empty entries compared to the

other extensions. The metric results in Table 5.2 and Table 5.3 show that this

extension provides a slight benefit in cases of cars when using 16 instead of 64

vertical beams. The reason for this is not apparent, but we assume that an OSP

with four times less data gains more information about the environment from a

single completed entry. In comparison to the previous extensions, this method

does not increase the input complexity and hence shows lower detection runtime.

It should be noted that the augmentation is limited to the accuracy of the ego-

motion estimates and hence the segmentation results can vary by each dataset.

In conclusion, this strategy meets our expectations partially since it provides an

advantage for the full FoV and also just in cases of cars.

5.3.4 Extension 3: Activation Combination and Activation

Warping

Previous approaches like Gadde, Jampani, and Gehler [9] provide a strategy which

benefits from the re-usage of prior activations in IS tasks. The purpose of our ex-

tension is to combine prior and current activations of three different layers. How-

ever, we restrict this extension on the Fire3, Fire8 and FireDeconv11 layers which

48

5.3 Experimental Results Anaysis

output activation maps on different scales. In contrast to the concatenation ex-

periment, this method aims to exploit the prior activation and to combine it with

the current internal representation through a weighting function. The function

weights each activation channel with a trainable parameter of the successive rep-

resentations in order to restrict on significant features. According to Table 5.2,

this strategy underperforms the single frame mechanism and outperforms both

concatenation extensions when using 64 vertical beams. An implication of this is

the possibility that the weighting function is rather appropriate to combine prior

and current features than to concatenate raw input features. Fortunately, this

method outperforms in average the single frame with respect to the 16 vertical

sized OSP in cases of car and pedestrian as illustrated in Table 5.2. Further-

more, we also implemented an extension which utilizes the ego-motion estimate

additionally to perform the warping operation on the internal representations.

Surprisingly, there is no considerable difference with respect to the segmentation

results between the activation warping and activation combination. We assume

that this warping method suffers from the same disadvantages as highlighted in

the näıve concatenation. In view of computational efficiency, the warping concept

increases the runtime tremendously and hence does not provide any additional

positive impact.

49

6 Conclusion

The primary goal of this thesis was to examine the impact of exploiting ego-

motion estimates and previous LIDAR scans on LIDAR segmentation. However,

this thesis restricts to the organized point cloud representation and employs a con-

volutional neural network which aims primarily at computational efficiency.

Despite its exploratory nature, this work evaluated experiments on 81◦ and also

on the complete 360◦ field of view dataset annotations.

Experimental results show that the presented concatenation and warping methods

of prior frames or network activations underperform in contrast to common sin-

gle frame mechanisms. Instead, transforming previous input representations into

the current point cloud yields a considerable benefit to complete insufficient input

frames and demonstrates the feasibility to enhance segmentation results.

Another major finding was that the combination of internal activation represen-

tations through a weighting function demonstrates a strategy to improve results

when using LIDAR scans with smaller vertical resolution.

More broadly, research is also needed to investigate the influence of prior point

clouds depending on a large-scaled voxel representation which show more potential

to augment insufficient frames as well as studying 3D spatial complexes. Another

possible area of future research would be to examine warp methods which utilize

3D LIDAR-based Scene- or optical flow to consider the dynamic movement of the

surrounding area.

51

Bibliography

[1] Martın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael

Isard, et al. “Tensorflow: a system for large-scale machine learning.” In:

OSDI. Vol. 16. 2016, pp. 265–283.

[2] Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg,

Mahmudul Hasan, Brian C Van Esesn, Abdul A S Awwal, and Vijayan K

Asari. “The History Began from AlexNet: A Comprehensive Survey on Deep

Learning Approaches”. In: arXiv preprint arXiv:1803.01164 (2018).

[3] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke,

Cyrill Stachniss, and Jürgen Gall. “A Dataset for Semantic Segmentation of

Point Cloud Sequences”. In: submitted to CVPR. 2019.

[4] Jens Behley and Cyrill Stachniss. “Efficient Surfel-Based SLAM using 3D

Laser Range Data in Urban Environments”. In: Proc. of Robotics: Science

and Systems (RSS). 2018.

[5] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. “High

accuracy optical flow estimation based on a theory for warping”. In: European

conference on computer vision. Springer. 2004, pp. 25–36.

[6] Ayush Dewan, Tim Caselitz, Gian Diego Tipaldi, and Wolfram Burgard.

“Rigid scene flow for 3D LiDAR scans”. In: 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (2016), pp. 1765–1770.

[7] Ayush Dewan, Gabriel L Oliveira, and Wolfram Burgard. “Deep semantic

classification for 3d Lidar data”. In: Intelligent Robots and Systems (IROS),

2017 IEEE/RSJ International Conference on. IEEE. 2017, pp. 3544–3549.

[8] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazir-

bas, Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas

Brox. “Flownet: Learning optical flow with convolutional networks”. In: Pro-

ceedings of the IEEE International Conference on Computer Vision. 2015,

pp. 2758–2766.

53

Bibliography

[9] Raghudeep Gadde, Varun Jampani, and Peter V Gehler. “Semantic video

cnns through representation warping”. In: CoRR, abs/1708.03088 8 (2017),

p. 9.

[10] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. “Vision

meets Robotics: The KITTI Dataset”. In: International Journal of Robotics

Research (IJRR) (2013).

[11] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Au-

tonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference on

Computer Vision and Pattern Recognition (CVPR). 2012.

[12] Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan Dirk Wegner, Konrad

Schindler, and Marc Pollefeys. “Semantic3D.net: A new Large-scale Point

Cloud Classification Benchmark”. In: CoRR abs/1704.03847 (2017). arXiv:

1704.03847. url: http://arxiv.org/abs/1704.03847.

[13] David J Heeger and Allan D Jepson. “Subspace methods for recovering rigid

motion I: Algorithm and implementation”. In: International Journal of Com-

puter Vision 7.2 (1992), pp. 95–117.

[14] Evan Herbst, Xiaofeng Ren, and Dieter Fox. “Rgb-d flow: Dense 3-d motion

estimation using color and depth”. In: Robotics and Automation (ICRA),

2013 IEEE International Conference on. IEEE. 2013, pp. 2276–2282.

[15] Berthold KP Horn and Brian G Schunck. “Determining optical flow”. In:

Artificial intelligence 17.1-3 (1981), pp. 185–203.

[16] Forrest Iandola, Song Han, Matthew Moskewicz, Khalid Ashraf, William

Dally, and Kurt Keutzer. “Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and¡ 0.5 mb model size”. In: arXiv preprint arXiv:1602.07360

(2016).

[17] Joseph K Kearney, William B Thompson, and Daniel L Boley. “Optical flow

estimation: An error analysis of gradient-based methods with local optimiza-

tion”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

2 (1987), pp. 229–244.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-

fication with deep convolutional neural networks”. In: Advances in neural

information processing systems. 2012, pp. 1097–1105.

[19] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven Lake

Waslander. “Joint 3D Proposal Generation and Object Detection from View

Aggregation”. In: CoRR abs/1712.02294 (2017). arXiv: 1712.02294. url:

http://arxiv.org/abs/1712.02294.

54

http://arxiv.org/abs/1704.03847
http://arxiv.org/abs/1704.03847
http://arxiv.org/abs/1712.02294
http://arxiv.org/abs/1712.02294

Bibliography

[20] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. “Deep Con-

tinuous Fusion for Multi-Sensor 3D Object Detection”. In: ECCV. 2018.

[21] Lingni Ma, Jörg Stückler, Christian Kerl, and Daniel Cremers. “Multi-view

deep learning for consistent semantic mapping with rgb-d cameras”. In: In-

telligent Robots and Systems (IROS), 2017 IEEE/RSJ International Con-

ference on. IEEE. 2017, pp. 598–605.

[22] Moritz Menze and Andreas Geiger. “Object scene flow for autonomous ve-

hicles”. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. 2015, pp. 3061–3070.

[23] F. Moosmann, O. Pink, and C. Stiller. “Segmentation of 3D lidar data in non-

flat urban environments using a local convexity criterion”. In: 2009 IEEE

Intelligent Vehicles Symposium. 2009, pp. 215–220. doi: 10 . 1109 / IVS .

2009.5164280.

[24] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.

In: arXiv preprint arXiv:1609.04747 (2016).

[25] Martin Simon, Stefan Milz, Karl Amende, and Horst-Michael

Gross. “Complex-YOLO: Real-time 3D Object Detection on Point

Clouds”. In: CoRR abs/1803.06199 (2018). arXiv: 1803 . 06199. url:

http://arxiv.org/abs/1803.06199.

[26] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer, Eddy

Ilg, Alexey Dosovitskiy, and Thomas Brox. “Demon: Depth and motion net-

work for learning monocular stereo”. In: IEEE Conference on computer vi-

sion and pattern recognition (CVPR). Vol. 5. 2017, p. 6.

[27] Victor Vaquero, Alberto Sanfeliu, and Francesc Moreno-Noguer. “Deep li-

dar cnn to understand the dynamics of moving vehicles”. In: 2018 IEEE

International Conference on Robotics and Automation (ICRA). IEEE. 2018,

pp. 1–6.

[28] Sen Wang, Ronald Clark, Hongkai Wen, and Agathoniki Trigoni. “DeepVO:

Towards end-to-end visual odometry with deep Recurrent Convolutional

Neural Networks”. In: 2017 IEEE International Conference on Robotics and

Automation (ICRA) (2017), pp. 2043–2050.

[29] Yuan Wang, Tianyue Shi, Peng Yun, Lei Tai, and Ming Liu. “PointSeg: Real-

Time Semantic Segmentation Based on 3D LiDAR Point Cloud”. In: arXiv

preprint arXiv:1807.06288 (2018).

55

https://doi.org/10.1109/IVS.2009.5164280
https://doi.org/10.1109/IVS.2009.5164280
http://arxiv.org/abs/1803.06199
http://arxiv.org/abs/1803.06199

Bibliography

[30] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. “Squeezeseg: Con-

volutional neural nets with recurrent crf for real-time road-object segmenta-

tion from 3d lidar point cloud”. In: 2018 IEEE International Conference on

Robotics and Automation (ICRA). IEEE. 2018, pp. 1887–1893.

[31] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vi-

neet, Zhizhong Su, Dalong Du, Chang Huang, and Philip HS Torr. “Con-

ditional random fields as recurrent neural networks”. In: Proceedings of the

IEEE international conference on computer vision. 2015, pp. 1529–1537.

56

	Introduction
	Foundation
	Operating Principle of LIDAR Scanner
	LIDAR Scanner Advantages and Limitations
	Calculating Organized Structured Point Cloud
	Description of Image and LIDAR Motion

	Related Work
	LIDAR Segmentation
	Leveraging Temporal Information
	SqueezeSeg
	Custom Convolutional Modules
	CNN Architecture
	Limitations of SqueezeSeg

	Overview of Methodology
	Datasets
	The KITTI Vision Benchmark
	A Dataset for Semantic Segmentation of Point Cloud Sequences
	Dataset Comparison

	Ground Truth Pose Retrieval from GPS and IMU Measurements
	Experimental Approach
	Extension 1: Input Robustness through Feature Concatenation
	Extension 2: Augmenting Present LIDAR Input Using Ego-motion Estimates
	Extension 3: Combining Successive Activations

	Training and Parameter Optimization
	Loss Function
	Momentum Optimization
	Training Environment and Evaluation Metrics
	Selection of the Hyperparameters

	Point Cloud Normalization

	Evaluation
	Parameter and Runtime Analysis
	Experimental Metric Results
	Experimental Results Anaysis
	Extension 1.1: Naïve Concatenation
	Extension 1.2: Warping Concatenation
	Extension 2: Augmenting Current LIDAR Input Using Ego-motion Estimates
	Extension 3: Activation Combination and Activation Warping

	Conclusion

