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Abstract
In robotics, real-time dense 3D scene reconstruction is an important task for a
variety of applications, such as autonomous driving, grasping, or Augmented Re-
ality (AR). An efficient and reliable representation of the environment enables us
to implement these tasks.

RGB-D cameras have successfully been utilized to reconstruct indoor environ-
ments, using the dense Truncated Signed Distance Function (TSDF) to represent
the scene. With LiDAR sensors becoming more affordable and gaining in popular-
ity in autonomous driving and drones, 3D scene reconstruction using LiDAR data
becomes a more important task. There exist few attempts to fuse LiDAR data
into the TSDF in real-time.

In this thesis, I analyze the problem and present novel approaches for fusing Li-
DAR scans into the volumetric TSDF representation. The methods are evaluated
on real-world datasets and compared to the related work.
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1 Introduction
In robotics, an important task is to be able to perceive the environment, in order
to interact with it. Ultrasonic sensors, radar, LiDAR sensors, and RGB-D cameras
have been frequently used to perceive the environment in the field of robotics. Var-
ious concepts on how to represent a 3D environment have been proposed, such as
point clouds, surfels, or volumetric representations, in particular, the voxel-based
Truncated Signed Distance Function (TSDF). The voxel-based TSDF representa-
tion is a discretization of the 3D space into a regular grid of so-called voxels, where
each voxel stores the distance to the closest surface of an object. It has gained
popularity since the introduction of KinectFusion [20], the first real-time capable
TSDF tracking and mapping method. This is mainly due to the availability of
affordable sensors, such as the Microsoft Kinect and later the Intel RealSense.

A 3D representation of the environment can be useful for a variety of tasks, such
as localization, Augmented Reality (AR), or interaction with the environment. The
TSDF can be used for all these tasks, as it allows for direct wire mesh generation,
scene rendering, and ICP localization.

Most applications that fuse data into a dense volumetric scene, however, are
limited to the use of depth images as input, such as KinectFusion [20] or Infini-
TAM [16]. These approaches are often designed to map smaller indoor scenes.
LiDAR sensors, on the other hand, are more suited for outdoor scenes, as they
have greater accuracy, a 360-degree horizontal view angle, and a significantly
higher range. Autonomous driving and other robotics applications, such as simul-
taneous localization and mapping (SLAM), or planning often require large-scale
3D scene reconstruction. Employing LiDAR sensors to obtain measurements of
the environment is suitable for such large-scale mapping.

There are multiple approaches to scene reconstruction using LiDAR data, the
simplest being the accumulation of point clouds. However, the accumulation of
point clouds scales linearly with the number of scans, which makes further process-
ing inefficient. Other methods use surfels [26] or the TSDF to aggregate multiple
input points and jointly represent parts of the environment.

A major task of dense scene reconstruction using the TSDF is to fuse a given
stream of input scans into a dense representation. There are only a few approaches,
that fuse LiDAR data into the TSDF representation. The sparsity of the LiDAR
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1 Introduction

data, as compared to depth images from RGB-D sensors, makes it challenging to
fuse the points into the TSDF: the representation will end up incomplete, which
makes mesh extraction or tracking difficult.

In this thesis, I will present three novel approaches to fuse LiDAR-data into the
TSDF and will compare them to existing approaches. In particular, I will present
approaches that fuse point clouds, that are generated by a rotating LiDAR sensor,
into the TSDF. The first approach will be based on casting a ray from the sensor to
each detected point of the recorded LiDAR scan. The second approach will make
use of the approximated local surface normals. Finally, an approach is proposed
that employs an intermediate step, in which the LiDAR data is converted into
a surfel map. This surfel map is used to reconstruct the scene in the TSDF
representation.
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2 Related Work
The first approaches for dense 3D scene reconstruction fusing depth images into
the TSDF were proposed by Curless et al. [5]. The approaches by Curless et al.
[5], Hilton et al. [14], and Wheeler et al. [29] convert depth maps into signed
distance fields, which are then averaged into a voxel grid.

More recently, with Microsofts’ KinectFusion [20], dense 3D scene reconstruction
has had a breakthrough. Using a general purpose GPU (GPGPU), to parallelize
tracking and mapping operations, a real-time dense 3D scene reconstruction, that
makes use of a voxel-based TSDF representation, has emerged. However, Kinect-
Fusion employs a regular voxel grid, resulting in large memory consumption, as
both empty space and surface are represented densely [21]. Therefore larger scenes
cannot be represented.

This problem is addressed by Keller et al. [17] using a point-based represen-
tation. Roth [25] and Whelan et al. [30] stream voxels out of the GPU based
on camera motion. Furthermore, Whelan et al. propose a dense mesh-based ap-
proach, Kintinuous [31], that extends the KinectFusion approach so that larger
environments can be reconstructed. This is achieved by allowing the space used
for mapping to vary dynamically, extracting dense point clouds where the volume
is left, and incrementally adding the resulting points to the triangular mesh [31].

Nießner et al. [21] propose an approach of voxel hashing, thus only storing data
densely in cells where measurements have been made. Data is integrated into the
TSDF by using Raycasting, as proposed in [28].

Based on the work of Neißner et al. [21], InfiniTAM [16] provides an optimization
of [21] and [20], resulting in a real-time 3D scene reconstruction that works on
mobile devices. Furthermore, Dryanovski et al. [9] propose an approach for real-
time indoor 3D scene reconstruction on mobile devices. However, [16], [20], [9],
and [21] only consider depth images as input.

In recent years LiDAR sensors have become more popular, as they are frequently
used in disciplines such as autonomous driving. Caminal et al. [3] provide an initial
approach for fusing LiDAR data into the TSDF by converting the LiDAR data into
a depth image and using interpolation to obtain a dense representation. Based on
Nießner et al. [21], Kühner et al. [18] project the data of a rotating 360-degree-
LiDAR sensor onto a cylindrical depth image, which is used to fuse LiDAR data
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into the TSDF.
A different approach is proposed by Roldão et al. [24] who make use of primitive

local surfaces, that approximate the scene. Even though this approach achieves
good results, it does not run in real-time.

A method to render a mesh from a 3D dense scene reconstruction using a voxel-
based TSDF representation is the Marching Cubes Algorithm [19], which is pro-
vided in the implementation of [16]. Further, the TSDF is used by many SLAM
systems, such as [16], [20] or [18], as its properties for localization may be used to
track the sensor.
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3 Fundamentals

3.1 LiDAR
LiDAR (Light Detection and Ranging or Light imaging, Detection and Ranging)
is a method to collect depth data from a 3-dimensional scene. It is often used for
autonomous driving and drones (UAV and MAV). There are two main types of
methods to collect LiDAR data from a scene. (i) The Pulse-Based LiDAR and (ii)
The Phase-Based LiDAR.

The functionality of a Pulse-Based LiDAR system is usually based on the Time
of Flight (ToF) of laser impulses, that are emitted onto an object (Fig. 3.1(a)).
Using the time the laser takes to arrive back at the sensor, the distance to the
detected point in space can be calculated relative to the sensor

d =
ct

2
, (3.1)

where d is the distance between the detected object and the sensor, t is ToF and
c is the speed of light [15].

The Phase-Based LiDAR makes use of a continuous laser signal and modifies the
amplitude of the laser signal [15], as shown in Fig. 3.1(b). The difference between
the transmitted and received signal can be calculated by

∆ϕ = 2πft = 2πf

(
2r

c

)
, (3.2)

where f is the frequency. The distance to the measured point can therefore be
calculated as

∆ϕc

4πf
(3.3)

However, the phase difference lies between 0 and 2π, causing ambiguity of the
measured distance. Therefore multiple frequencies are employed: A higher fre-
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3 Fundamentals

quency to increase the ranging and a lower frequency to increase maximum unam-
biguity distance [2].

(a)

(b)

Figure 3.1: (a) Visualization of the Pulse-Based LiDAR procedure [32] and (b) visual-
ization of the Phase-Based LiDAR procedure [27].

In recent years more affordable LiDAR technology has emerged, encouraging
the use of LiDAR for various tasks.

LiDAR scanners used for autonomous driving and drones often consist of several
sensors (Fig. 3.2(a)) and are rotating around an axis. This creates a point cloud,
composed of several so-called scanlines or channels. Each scanline is created by a
sensor that emits a laser onto the surface of the scene with a given angle relative
to the heading of the sensor. The resulting scene can then be represented as a
point cloud (Fig. 3.2(b)).

(a)
(b)

Figure 3.2: (a) LiDAR scanner with n channels, (b) resulting point cloud, taken from
the PandaSet [1].
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3.2 The TSDF representation

3.2 The TSDF representation
A Signed Distance Function (SDF) is an implicit function, often used in the context
of scene reconstruction or the representation of isosurfaces. The SDF has positive
values on the exterior of a surface and negative values on the interior of the object,
as illustrated in Fig. 3.3(a). For a scene S ⊂ R3, with Euclidean metric, the SDF
can be defined formally as follows:

Considering a subset O ⊂ S, O being the combination of the volume of all
objects in the scene, the SDF-value, F (x), for a point x ∈ R3, is defined by

F (x) =

{
d(x, ∂O), x ∈ Oc

−d(x, ∂O), x ∈ O
, (3.4)

where ∂O denotes the boundary of O and d(x, ∂O) := infy∈∂O d(x, y). d(x, y) :=

∥x − y∥2 is the Euclidian distance between x and y. The SDF-value, therefore,
defines the minimum distance from a point x ∈ R3 to a surface of the nearest
object in the scene. The SDF is often combined with a voxel-based representation
in order to discretize the continuous scene S.

The Truncated Signed Distance Function (TSDF) is a signed distance func-
tion that only considers the areas in a given truncation band around the surface,
represented by the black arrow in Fig. 3.3(b).

(a) (b)

Figure 3.3: (a) Voxel-based SDF representation of a scene, where the red line represents
the surface of an object, the red voxels the inside of an object, and the blue
voxels the outside of an object (b) Voxel-based TSDF representation, where
the black arrow denotes the size of the truncation band.

This representation has the advantage, that the required memory only grows
proportional to the surface area of O, rather than to the volume of the entire
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3 Fundamentals

scene. As usually in scene reconstruction only the isosurface is required, the TSDF
representation, therefore, is a more effective representation than the SDF in terms
of memory consumption.

The SDF-value or distance value in the TSDF, F (x), is normalized with respect
to the truncation size, so that F (x) ∈ [−1, 1] for all x. Likewise, the TSDF is
often used in combination with a voxel representation of the scene, as shown in
Fig. 3.3(b).

Furthermore, when using the TSDF representation it is common to allocate the
SDF-value, F (v) and corresponding weight, W (v), to each voxel, v, that is used,
as proposed in [5]. The SDF-value indicates the distance to the nearest surface,
the weight indicates the likelihood that the SDF-value of the voxel is correct.

In scene reconstruction, a sequence of input data is read into the reconstruction
system. Therefore it is necessary when using a voxel-based TSDF representation
to update the voxels. As proposed by [5] and used in [20], [21] and [16], a common
approach is to cumulatively average the SDF-value and the weight in each updated
voxel.

F (v)i =
W (v)i−1F (v)i−1 +W (v)F (v)

W (v)i−1 +W (v)
(3.5)

W (v)i = W (v)i−1 +W (v) (3.6)

We denote F (v)i−1 as the current TSDF-value and W (v)i−1 as the current weight
for a voxel, v. F (v)i and W (v)i denote the SDF-value and the weight of the new
data for v respectively.

In recent years, with parallelized GPU computation, the TSDF representation
has often been used for real-time 3D scene reconstruction from depth images, as
it can be used well for localization and mapping, [20],[21], [16].

Further [21] and [16] employ an additional technique, voxel block hashing, to
further reduce memory consumption. InfiniTAM’s [16] approach on voxel block
hashing will be employed in this thesis and will be discussed in more detail in
section 5.1.1.

3.3 Principal Component Analysis
Principal Component Analysis (PCA) is a data-driven procedure, that is com-
monly used to simplify a given set of correlated data by finding a set of orthogonal
principal components, {u1, . . . , uk}. For a point cloud of n data points in the Rn,
the PCA procedure can be summarized, as elaborated in [11], as follows:
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3.4 Surfel

We are first given a set of m data points, xi ∈ Rn. This can be organized in a
n×m-matrix, X. In a pre-processing step, the mean for each data component is
calculated.

x̄j =
1

m

n∑
i=1

Xij (3.7)

The given data points will be centered using the mean.

zj = xj − x̄j (3.8)

The centered data is used to compute the centered data matrix.

Z = [z1 . . . zm] (3.9)

The covariance matrix, C, can then be calculated as follows:

C = ZZT (3.10)

The first principal component, u1 is given by:

u1 = arg max
∥u1∥=1

uT
1ZZ

Tu1, (3.11)

which is the eigenvector of C, which corresponds to the largest eigenvalue. The
other principal components can be computed, by finding the eigenvectors of the
matrix C and sorting them according to the magnitude of their eigenvalues. The
eigenvectors with larger eigenvalues will portray data with larger variance. 3-
dimensional PCA is often used to compute surfels from point clouds.

3.4 Surfel
In the scope of this thesis a surfel (surface element) is defined by an ellipsoid, s,
with a center cs = (cs1 , cs2 , cs3) ∈ R3, and three direction vectors, ds1 , ds2 , ds3 ∈
R3 indicating the orientation of the surfel, as shown in Fig. 3.4(a). Fig. 3.4(b)
visualizes a reconstructed scene using a surfel map.
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3 Fundamentals

A surfel is generated by combining all input points pi of a given point cloud, P ,
that lie in a coherent subset V ⊂ R3. This is done by applying a 3-dimensional
PCA to the points pi ∈ V , thus computing three orthogonal directions of maximum
variance, which are defined by the three eigenvectors ds1 , ds2 , ds3 of the covariance
matrix [8]. The direction of the smallest variance is used as the normal of the
surfel. Sufels are commonly used for rendering the surface of volumetric data and
for 3D scene reconstruction.

(a) (b)

Figure 3.4: (a) Visualization of a surfel, which is composed of the three eigenvectors of
a resulting PCA and (b) reconstructed scene using surfels [8].

3.5 MRSMaps
The MRSMap (Multi-Resolution Surfel Map) proposed by Droeschel et al. [8] is
a 3D map, consisting of surfels, which are generated from a point cloud, P . The
point cloud is divided into different levels. These levels increase with increasing
distance to the sensor origin. Each level consists of voxels, whose size increases
with increasing level, as shown in Fig. 3.5, thus creating a multi-resolution voxel
grid. In order to generate surfels, PCA is applied to all points within each voxel.
Thus resulting in larger surfels farther away from the sensor and smaller surfels
closer to the sensor.
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3.5 MRSMaps

Figure 3.5: Visualization of the multiresolution grid on a point cloud[8].
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4 Approaches for Fusing LiDAR into
TSDF

4.1 Interpolation - Caminal et al.
One of the first approaches fusing LiDAR data into the TSDF representation was
proposed by Caminal et al. [3]. The 3D-LiDAR data is first projected into a given
camera, where it is converted into the PNG format. The respective depth values
of each pixel are then calculated. Caminal et al. [3] consider two approaches to
fuse LiDAR into the TSDF.

The first approach uses Kintinous [31], a successor of KinectFusion [20]. The
converted LiDAR data is scaled by a factor of 0.05 as the maximum range of the
LiDAR is theoretically 120m. Thus, the side length of the model that can be
represented by Kintinous is set to 6m. The resulting depth images are then fused
into the reconstruction pipeline of Kintinuous [31].

The second approach uses an RTAB-Map (Real-Time Appearance-Based Map-
ping) approach.

As the LiDAR data is sparse, Caminal et al. propose a post-processing step,
where the ”holes” in the depth image are inpainted by using the 8- connectivity
version of a morphological interpolation technique [4], thus creating infrared data,
that is similar to a dense raster image. The morphological interpolation tech-
nique preserves the original infrared values of the projected points, as shown in
Fig. 4.1(a). This approach, however, often results in an incomplete representation
of the scene, as shown in Fig. 4.1(b).
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(a) (b)

Figure 4.1: Visualization of (a) the conversion of LiDAR data (top) to a depth image
(bottom) and (b) the resulting TSDF on the KITTI dataset [13].

4.2 Cylindrical Projection - Kühner et al.
Similar to the work of Caminal et al. [3], Kühner et al. [18] propose a method
that converts the LiDAR data into a depth image format and then fuses the depth
images into the TSDF. Furthermore, their work considers aspects when dealing
with a rotating LiDAR sensor, as they are commonly found on vehicles.

For each timestep a new point cloud Pi = {p1, . . . , pp}i of LiDAR data is deter-
mined and converted into a depth image using a projection on a cylindrical depth
image. This idea resembles the rotation of the LiDAR sensor. The plane of the
depth image is wrapped around the rotation axis of the LiDAR sensor. For each
point p = [x, y, z]T ∈ P in the sensor coordinates, a pair of pixel coordinates,
u = [u, v] is computed as follows.

First the center of projection, c, is placed to the point on the rotation axis of the
LiDAR sensor, which minimizes the squared distances to all rays, thus simulating
the viewpoint. The offset from the center of the sensor to the center of projection
is denoted by cz. cu and cv denote the horizontal and vertical center of the depth
image respectively. Now the pixel positions are calculated [18]:

π(x) =

[
cu − nu(1−

φ

2π
), cv −

(z − cz)fr
ρ

]T
(4.1)

ρ =
√

x2 + y2 (4.2)
φ = arctan 2(y, x), φ ∈ [0, 2π), (4.3)

Here, ρ is the projection of the point onto the xy-plane, φ is the angle of the point
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4.2 Cylindrical Projection - Kühner et al.

on the xy-plane, and nu is the number of columns of the depth image. The number
of columns is the same as the horizontal resolution of the LiDAR sensor so that
all points in the point cloud Pi approximately project into the horizontal center
of a pixel. The number of rows is chosen according to the number of columns, in
such a way that the pixels are approximately square [18].

Fig. 4.2(a) illustrates the process of projecting the point cloud onto a cylindrical
image.

This method, however, leaves most pixels empty. Therefore the measurements
of the filled pixels are assigned to the empty neighboring pixels in the same column
within a certain range, which approximately corresponds to half of the gap between
two neighboring projected scanlines, as shown in Fig. 4.2(b).

(a) (b)

Figure 4.2: Visualization of (a) the projection of a point cloud onto a cylindrical image
and (b) the filling of neighboring pixels.

Kühner et al. [18] utilize voxel hashing from [21] for efficient memory consump-
tion and parallel GPU implementation for a fast fusion of data.

To avoid missing voxels at a greater distance, all voxels within the viewing
frustum and the truncation band of each pixel are allocated in the hash table.

The SDF-value and the weight of each allocated voxel in the hash table are
computed to update the voxels in the TSDF. Here, he calculation of the weight,
W (x), for an allocated voxel follows the principles of [12], hence the weight is
decreasing if the voxel is farther away from the sensor. All allocated voxels are
then updated using the update rule (3.5) and (3.6), proposed by [6].

The approach proposed by Kühner et al. [18] shows good results, as it recon-
structs the scene well and runs in real-time. However, a preprocessing step is
needed to convert the LiDAR data into a cylindrical depth image. Furthermore,
the vertical intersection of each point in a pixel of the depth image is not centeres
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4 Approaches for Fusing LiDAR into TSDF

due to rounding. This may lead to problems in the TSDF and is discussed in more
detail in section 7.6.

4.3 Probablistic Scene Reconstrucion - Roldao et al.
A completely different approach was proposed by Roldão et al. [24]. Unlike the
work of [3] and [18], Roldão et al. uses primitive local surfaces to approximate
complex environments.

A voxel representation, with voxel size α is used to efficiently update the rep-
resentation of the point cloud P → {V 1, V 2, . . . , V n}. Each voxel, V , stores the
number of points, |V |, lying inside the voxel, the mean, Vµ and the covariance Vσ.
Local planar surfaces are then computed from the LiDAR data.

To overcome the heterogeneous density of LiDAR data, an adaptive neighbor-
hood is used, which both increases the statistical robustness and counterbalances
the lack of local data due to low density or occlusion [24]. The adaptive neighbor-
hood is defined as a multi-scale neighborhood at the location of vertices between
voxels. For a vertex v the first neighborhood level is composed of the 8 neigh-
boring voxels of the vertex and is denoted by H1(v). The second level, H2(v), is
composed of the neighbors of the first level. One can now obtain the cardinal,
|H|, the statistical mean, Hµ, and the covariance, Hσ inside the neighborhood.
To further obtain an estimation of a local plane of the voxels H, the covariance
Hσ in combination with Principal Component Analysis (PCA) is used, if a given
number of LiDAR points are present:

|H| ≥ Nmin, (4.4)

where Nmin is a hyperparameter [24].
The plane is calculated using the resulting eigenvectors, (−→e1 ,−→e2 ,−→e3 ), and eigen-

values, (λ1, λ2, λ3), with λ1 ≥ λ2 ≥ λ3. As e3 is the least dominant eigenvector, it
is used to define the unoriented normal of the plane. The direction towards the
sensor, sp, will be used as orientation of the normal, −→n :

−→n =

{ −→e3 if −→e3 · (sp −Hµ) > 0

−−→e3 else
(4.5)

The resulting local plane is defined by the normal and the statistical mean: Π =

(−→n ,Hµ).
In order to reconstruct the global continuous surface, the TSDF is computed for

each vertex v ∈ V . Hereby an optimal neighborhood is computed and the TSDF
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value is estimated for each vertex. This is done by calculating the projection, wk,
of the vertex, v, onto the local plane, Πk(v), and evaluating the likelihood of this
projection belonging to the Gaussian, N k, where N k is the 2D planar-Gaussian of
the statistical distribution of Hk projected onto Πk [24].

The optimal neighborhood-level k∗ is defined as the smallest level for which the
projection of v onto Πk has a probability of belonging to the Gaussian N k greater
than a hyperparameter, τ [24]. Formally it is the smallest integer for which the
probability density function NPDF satisfies 4.6.

N k
PDF (w

k | Hk
µ,Σ) ≥ τ, Σ =

[
λ1 0

0 λ2

]
(4.6)

The calculation is done iteratively, starting with level one and stopping when 4.6
is satisfied. Furthermore, the level size is bounded by kmax to avoid exponential
computation time. The TSDF value is computed as follows:

TSDF (v) =
−→
nk′(v −Hk′

µ ), (4.7)

where
−→
nk′ is the approximated normal and Hk′

µ is the statistical mean [24].
This approach gives good results in terms of accuracy, however, it is not able to

perform in real-time.
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5 Methodology
In this thesis, I will be making use of the software provided by InfiniTAM [16] to
fuse LiDAR data into the TSDF. This software will serve as the framework for my
implementation.

5.1 InfiniTAM as Framework
InfiniTAM [16] is a SLAM system, that fuses depth images into the TSDF rep-
resentation. It is based on the KinectFusion [20] approach to fuse data into the
TSDF. However, the InfiniTAM system employs the concept of voxel block hash-
ing, similar to [21], thus making the data structure and memory allocation more
efficient. Overall, the InfiniTAM framework is composed of three major steps:
tracking, fusion, and rendering, as shown in Fig. 5.1.

Figure 5.1: Processing steps of InfiniTAM [16].

In this thesis, I will only consider the fusion and use the rendering to visualize
my results. The poses of the sensor will be provided by the used datasets. In order
to fuse new data into the TSDF, I will use the software provided by InfiniTAM
[16]. The main concepts of [16], that are employed in my work are the voxel block
hashing and the rendering.

5.1.1 Voxel Block Hashing
The hashing operates using voxel blocks, that are composed of blocks of 8× 8× 8

voxels. These voxel blocks have a certain position, (bx, by, bz), that is used to
calculate the corresponding hash index as follows:
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h = ((bx)× P1)⊕ (by × P2)⊕ (bz × P3)) mod K, (5.1)

where mod and ⊕ are the modulo and the logical XOR operators respectively. In
this case (P1, P2, P3) are the prime numbers (73856093, 19349669, 83492791) and
K is the number of buckets in the hash table, h [16]. The concept of closed hashing
is employed to deal with resulting hash collisions. A so-called chained table with
list head cells is employed.

The operations InfiniTAM employs on the hash table when new depth images
are integrated into the TSDF are (i) the retrieval of needed voxel blocks, (ii) the
allocation and insertion of new voxels blocks, and (iii) the deletion of hash table
entries.

The retrieval returns the desired voxel block by computing the hash index, h,
and iterating through its list until the voxel block is found. Therefore, the hash
table lookup usually takes constant time.

When fusing a new depth image into the TSDF, the hash value of all voxel
blocks, that lie on the camera’s line of sight within the depths d − µ and d + µ,
is computed. Here, d is the depth of the pixel and µ is the truncation size of the
TSDF. The hash table is updated to incorporate these voxel blocks. Thus new
hash entries are allocated for each voxel block, where new data has been detected.

The allocation is implemented in parallel on a given number of threads. If
multiple threads require an update in the same hash bucket, InfiniTAM chooses
one at random for the update.

If there is no need to store parts of the data in the hash table, deletion of hash
table entries can be used to swap out data, into long-term storage.

5.1.2 Fusion
New data of depth images is integrated in four steps: (i) Allocation, (ii) Visible
list update, (iii) Camera data integration, and (iv) optionally swapping out data.
An overview of the fusion-pipeline is given in Fig. 5.2.

Figure 5.2: Overview of the fusion process [16].

In the allocation step, new hash and voxel block entries are created from the
integrated data.
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5.2 LiDAR in InfiniTAM

The visible list is used to keep track of all visible voxel blocks from the camera.
This enables us to consider only the relevant parts of the scene in the hash table
for data integration.

The camera data integration operates by transforming the location of each voxel
into the camera coordinate system Xd = RdX + td, using the rotation matrix
Rd ∈ R3×3 and the translation td ∈ R3 of the camera pose. The projection of
the camera coordinates into a depth image, Id, is computed by using its intrinsic
parameters Kd ∈ R3×3

η = Id(π(KdXd))−X
(z)
d . (5.2)

Here, π determines the inhomogeneous 2D coordinates from the homogeneous
ones and the superscript (z) selects the Z-component of Xd [16]. If η ≥ −µ, the
SDF-value is updated as

F (x)←−
w(X)F (x) + min(1, η

µ
)

w(X) + 1
, (5.3)

where w is a field counting the number of observations in the running average
[16]. Therefore, F (x) holds an average of all fused points inside a voxel.

Optionally one can swap out data into long-term storage, in order to speed up
the retrieval operation in the hash table. If this data is required in later fusion
steps it can simply be swapped back in.

5.2 LiDAR in InfiniTAM
As I will focus on fusing 360-degree-LiDAR data into the TSDF using known
poses, some adaptation has to the InfiniTAM software has to be made, as it only
supports depth images as input.

Considering a sequence of point clouds Pi, that was retrieved from a LiDAR
sensor, I will present three approaches of fusing LiDAR data into the TSDF:

1. A Raycasting approach.

2. An approach that locally approximates the surface normal at each point in
the point cloud by making use of an organized point cloud.

3. An approach that incorporates an intermediate step, in which the points of
the point cloud are combined to surfels.
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In the approaches that I present in this work, the retrieval of voxel blocks and
the computation of the hash index is analog to [16]. However, if multiple points
of the point cloud require an update of the same voxel, due to dense regions in
the point cloud, InfiniTAM only uses one point to update the voxel [16]. I will
combine the computed values of all points by computing the weighted average of
all updates. Furthermore, InfiniTAM employs a weighted running average of the
SDF-value for each voxel, based on the distance to the sensor [12]. I will adapt the
computation of the weight depending on the method used, in order to determine
the confidence of a computed SDF-value more precisely.

Similar to [16], there are three main steps when fusing LiDAR data into the
TSDF. First, the LiDAR data, consisting of a point cloud and a pose, is read by
the CPU. The data is then copied into the GPU and the host is updated. All
needed voxel blocks are computed and new entries in the hash table are allocated
by applying the hash function. Finally, the registered voxel blocks are updated in
two steps. First, all threads of the parallel implementation on GPU will update
all registered voxel blocks. This is done by finding the necessary voxels in each
voxel block and updating them according to (3.5) and (3.6). Second, the updates
are combined in order to obtain a single update for each updated voxel block.

Figure 5.3: Processing steps of LiDAR fusion in InfiniTAM.

The resulting TSDF can be visualized using the rendering component of Infini-
TAM [16].

5.3 Raycasting
A naive approach to fuse LiDAR data into a voxel-based TSDF representation
is by casting a ray, r, from the sensor pose to each point and calculating the
respective TSDF-values for all voxels, that lie on this ray. In order to represent
the TSDF realistically, only voxels that are within the truncation band and that
the ray passes through should be allocated in the hash table.

Considering a point, pij of the point cloud, Pi = {pi1, . . . , pini
}, a cube ,K,

around pij, of size (2∗µ
κ
)3, can be defined. Hereby µ is the truncation band size and
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5.3 Raycasting

κ is the voxel size. All voxels inside K, that r intersects, have to be considered
and, therefore, all voxel blocks in which one of these voxels lie are allocated.

Whether a voxel is intersected by the ray can be calculated as follows. Given
the sensor origin, o and a point, pij, the ray from o to pij is defined by r(t) =

o+ t(pij − o), where t is a variable.
The distance from a point, p, to a line, L, with L = r(t) = Q+ t−→u is given by

d(p, L) =
|
−→
pQ×−→u |
| −→u |

, (5.4)

where × denotes the cross-product. The distance from a voxel center v to the
ray, r, is therefore given by

dist(vw, r) =
| (o− vw)× (pij − o) |

| (pij − o) |
, (5.5)

where vw denotes the world coordinates of the voxel center, v. A voxel lies on the
ray from the sensor to the point, pij if√

3
(κ
2

)2

> dist(vw, r). (5.6)

√
3(κ

2
)2 is the maximum distance of a point in the voxel to its center. Therefore,

all voxels that the ray passes through will be considered for allocation.
The calculation of the SDF-value for an allocated voxel is done by calculating

the distance between the center of the given voxel, v, to the detected point, pij.

FRC(v) = ∥vw − pij∥ (5.7)

The computation of the weight is chosen to decrease with increasing distance of
pij to the sensor origin, o, as points that are detected farther away from the sensor
are more likely to be less precise. The weight is computed by

WRC(v) = min
(
1,

1

d(o, pij)

)
, (5.8)

where d(·, ·) is the Euclidean distance.
This approach gives promising results, as shown in Fig. 5.4(b). However, the

areas, in which the laser touches the surface with a very shallow angle may cause
some issues with representation, such as holes or a noisy representation of the
isosurface. As the sensor moves, allocated voxels may be overridden as the negative
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(a) (b)

Figure 5.4: Visualization of (a) a combined point cloud of multiple LiDAR scans from
PandaSet[1], (b) the rendering of the resulting TSDF of the PandaSet[1].

part of the previous LiDAR frame may be in the same location as the positive part
of the current frame. This drawback will be discussed in section Section 7.3 in
more detail.

To overcome this problem the normal of the local surface can be evaluated and
the TSDF will be created using the approximation of the normal rather than using
the ray from the sensor to the detected points.

5.4 Fusing into the TSDF using Local Surface
Normals

As stated above the approach using Raycasting to compute the TSDF may cause
some issues if the angle between the ray from the sensor to the detected point and
the surface is very small. By computing the local normal at each point, one can
utilize the voxels along the normal rather than those on the ray from the sensor to
the detected point. This may lead to a more realistic representation of the TSDF,
as can be seen in Fig. 5.5, where a model of the resulting voxel-based TSDF of the
two approaches is visualized.

Fig. 5.5(a) represents the resulting TSDF when a raycast is used. Blue voxels
denote voxels with positive SDF-values and red voxels the ones with negative SDF-
values. In some cases, this may lead to an incorrect TSDF representation. Using
the local surface normal, denoted as the blue arrow in Fig 5.5(b) may result in a
more realistic representation of the TSDF, as shown in Fig 5.5(b).
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(a) (b)

Figure 5.5: (a) Resulting TSDF when using Raycasting and (b) when using local surface
normals.

5.4.1 Approximation of Local Surface Normals

A method to approximate the normal for each point in a point cloud is proposed by
Holz [7]. The organized point cloud, P , is traversed, in order to build a quad mesh
by connecting every point, p = P(u, v), to its neighbours, P(u, v+1), P(u+1, v),
and P(u+1, v+1), where P (u, v) is the v-th point in the u-th scanline [7]. A new
quad is only added to the mesh if the point P (u, v) and its neighbors are valid and
if the connecting edges between the neighboring points are not occluded [7]. After
construction, the mesh is simplified by removing all vertices that are not used in
any quad. To overcome the fact that one can often not deduce whether an edge
is occluding due to sparsity of the point cloud, the validity depends on the length
of the edge:

valid = (di,j ≤ ϵ2d), (5.9)
with di,j = ∥pi − pj∥2, (5.10)

where pi and pj are neighboring points in the quad mesh. The threshold ϵd is
adapted to

ϵd(di) =

{ √
2ditan∆θ between the scan lines√
2ditan∆ϕ within the scan lines

. (5.11)

Here, ∆ϕ is the difference in angle in the horizontal axis and ∆θ is the difference
in the vertical axis. Having calculated the quad mesh, the normal for each point
can be determined by calculating the mean of all normals of the adjacent quads:
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ni =

∑NT

j=0(pj,a − pj,b)× ((pj,a − pj,c))

∥
∑NT

j=0(pj,a − pj,b)× ((pj,a − pj,c))∥
, (5.12)

with face vertecies pj,a, pj,b, pj,c and neighborhood NT .

5.4.2 Computation of Normal for the TSDF Fusion
Instead of computing a meshlike structure, I will consider the 4-Neighborhood of
each point pi ∈ P in an organized point cloud. I will use the adjacent triangles,
shown in Fig. 5.6(a), to compute the normals, as shown in Fig. 5.6(b). The 4-
Neighborhood for a point pi = P (u, v) is given by

NT := {p1 = P(u− 1, v), p2 = P(u+ 1, v), p3 = P(u, v − 1), p4 = P(u, v + 1)}

In order to compute the normal of pi ∈ P , we first have to check whether pi is
valid. pi is valid if pi and all four of its neighbours have been detected by the
sensor. For each of the adjacent triangles of pi the normal is computed, hence
nij = (pij − pi)× (pij+1

− pi), where nij is the normal of the j-th adjacent triangle
of pi, pij is the j-th neighbor of pi and pij+1

is the next neighbor of pi in clockwise
direction. The normals are then normalized to obtain n1, n2, n3, and n4.

(a)
(b)

Figure 5.6: (a) Resulting triangles on neighboring points of the neighboring scanlines on
which (b) the normals are computed.

Having computed the normals n1, n2, n3, and n4, it has to be checked whether
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the overall normal of the point makes sense.
If the angle between the normals of the adjacent triangles differs a lot, there is

likely some sort of corner or edge present or the neighboring points of pi belong
to different objects. Therefore, one would only consider similar normals, as taking
the average over all four normals could result in an unprecise approximation of the
overall normal, leading to an inaccurate TSDF.

To avoid an unprecise approximation of the normal, the angle, ni ·nj, between all
pairs (ni, nj) of normals are computed and it is checked whether these are similar.
This is done by employing a threshold on ni ·nj. Tests have shown that 0.8, which
allows approximately 36° of difference between two normals, is a suitable threshold
for the difference in angle.

The subset of normals NS, for which the angle between the pair of normals
fulfills this criterion is used to calculate the overall normal of pi. If none of the
normals fulfill this criterion, the pi is omitted.

−→n :=
∑
j∈NS

nj

∥nj∥
(5.13)

5.4.3 Allocation and Fusion of Points to the TSDF
Having computed the normals to each valid point, all voxels within the truncation
band, whose distance to the normal is smaller than

√
3
4
κ2 should be considered

for fusion. Thus, a voxel v ∈ R3 has to fulfill the two conditions

|(pi − vw)×−→n |
|−→n |

≤
√

3

4
κ2 (5.14)

|pi − vw| · −→n
|−→n |

< µ (5.15)

to be updated. Here, vw denotes the center of the voxel in world coordinates.
The SDF-value of a voxel, v is computed by finding the distance of the voxel

to the plane, defined by the normal, −→n and scaling it according to the size of the
truncation band, µ

FOP (v) =
|(pi − v) · −→n |
|−→n |µ

(5.16)

The computation of the weight of each voxel, v, depends on how certain one is
when allocating v. Therefore, I propose, that the weight depends on the difference
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in angle between the computed normals, nj ∈ NS, the distance of the detected
point, pi, to the sensor origin, and the angle at which the point is detected.

Unlike the method proposed in [7] the weight will not depend on the distance
between the neighboring points, as this may result in the loss of information when
the scanlines are farther apart. This for instance occurs when the street is detected
when obtaining LiDAR data from a car.

For the first part of the weight the complement of the sum of the scaled angles
between the normalized normals, nj, and the overall normal, −→n is computed.

wθ := 1−
∑
j∈NS


∣∣∣arccos( nij

∥nij
∥ ·

−→n
∥−→n ∥

)∣∣∣
π

 , (5.17)

Here, NS is the set of all valid neighbors of the detected point.
As the increasing distance to the sensor origin, o, of a detected point, p, increases

the probability of p having a larger error, the normalized complementary distance
is taken as another factor of the weight, similar to [12].

wo := 1− ∥p− o∥
χ

, (5.18)

Here, χ is the maximum range of the LiDAR sensor.
Furthermore, pi is more likely to have been detected with less error if the angle

between the normal, −→n and the ray from p to o is small. In terms of weighting,
the normalized complementary angle is taken

wθ−→n := 1−
2
∣∣∣arccos

(
(o−p)·−→n

∥o−p∥∥−→n ∥

)∣∣∣
π

, (5.19)

as the angle between the normal and the ray will be in [0, π
2
]. In total, we obtain

a weighting for each voxel

WOP := wθwowθ−→n (5.20)

This approach gives good results. However, especially in regions, where edges
or other boundaries are present, the reconstruction of the scene shows some limi-
tations. These limitations will be discussed in section 7.4.
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5.5 Surfel Approach

As described in section 3.4, a surfel, S, is generated by accumulating points of
a point cloud, P , in a local neighborhood. The surfel is composed of a normal,
nS, and two other direction vectors, dS,1, dS,2, defining the plane, with a maximum
variance of the points. The three direction vectors are the eigenvectors result-
ing from a 3-dimensional PCA and the corresponding eigenvalues determine the
length of the corresponding eigenvector. The following approach will make use of
MRSMaps, as described in section 3.5 as a preprocessing step.

Once the MRSMap is computed from a given point cloud, one can obtain the
TSDF, by allocating values to the voxels around each surfel of the MRSMap.

5.5.1 Using a Cylinder

One approach to allocating values to the TSDF using a surfel map is to consider
the voxels, that are located inside an imaginary cylinder around each surfel, Si.
The radius of the cylinder is chosen as the size of the vector pointing into the
direction of maximum variance, dS,1. The center of the cylinder is chosen as the
center of the surfel, as shown in Fig. 5.7(a). When values are allocated to the
TSDF, one only needs to consider voxels that are within the truncation band.
The cylinder’s height is, therefore, 2µ, where µ is the size of the truncation band
of the TSDF (Fig. 5.7). To generate a realistic representation, the direction, in
which the cylinder is tilted, is the same as the direction of the normal of the
surfel (Fig. 5.7). Hence, the allocated voxels are aligned with the surfel’s normal,
representing the local surface normal of the scene.

A voxel, v, is updated if v lies within the cylinder of the surfel Si. This means
that the distance to the normal of the surfel has to be smaller than the radius of
the cylinder and the distance to the plane, defined by the surfel is smaller than
the truncation size.

(ci − vw)× ni

∥ni∥
≤ r (5.21)

(ci − vw) · ni

∥ni∥
≤ µ, (5.22)

For each voxel, v, for which the conditions (5.21) and (5.22) hold, the corre-
sponding distance to the surfel, dist(v, Si), can be calculated by projecting the
centerpoint, ci, of the voxel onto the normal, ni, of the surfel. The result then has
to be normalized in order to obtain the SDF-value, FSurfel(v).
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(a) (b)

Figure 5.7: (a) Visualization of a generated cylinder around a surfel, (b) and the distance
from a voxel to the surface of the surfel.

dist(vw, Si) =
⟨c− vw, ni⟩
∥ni∥

(5.23)

FSurfel(v) =
dist(vw, Si)

µ
(5.24)

Here, vw again denotes the voxel center in world coordinates and ni denotes the
normal of surfel Si in the MRSMap.

In order to obtain a suitable weight for each allocated voxel, one has to find
a measure of how certain one is that a voxel is that the SDF-value of a voxel is
correct. The error of the SDF-value is probably smallest close to the surfece of the
surfel and gets larger if the voxel is farther away from the surfel. Therefore, the
weight can be calculated by computing the inverse Euclidean distance from vw to
the surfel center, ci.

wµ(v) :=
1

1 + ∥vw−ci∥
µ

, (5.25)

so that wµ(v) ∈ (1
2
, 1].

Furthermore, if surfels are generated by points that are farther away from the
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sensor, it is more likely that the surfel will be less accurate, as the points used
to generate the surfel are less accurate. Analog to (5.18) we define a weight
component based on the distance from the surfel center to the sensor origin, o.

woSurfel
(v) := 1− ∥o− ci∥

χ
(5.26)

Here, χ denotes the maximum range of the sensor and ci denotes the center of
the surfel. The weight components combined result in the overall weighting for a
voxel, v.

WSurfel(v) := woSurfel
(v)wµSurfel

(v) (5.27)

This approach does not give promising results, as there are many limitations
when using surfels as intermediate step when fusing LiDAR data into the TSDF.
The limitations and drawbacks of the use of surfels will be discussed in section 7.5
in more detail. As can be seen in Fig. 5.8, the scene is not reconstructed well by
this approach. Only the rough structure of the scene is reconstructed. The detail
in the reconstructed scene, however, is completely lost.

(a) (b)
(c)

Figure 5.8: Visualization of the scene reconstruction using the surfel approach of (a) a
small part of the scene and (b) the entire scene and (c) a comparison when
using the Raycasting approach.
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5.6 Cylindrical Projection
As mentioned in section 4.2, Kühner et al. [18] propose an approach, that projects
the LiDAR data onto a cylindrical depth image. However, their software is not
provided. Therefore I will reimplement this approach into the software provided
by InfiniTAM [16] for evaluation reasons only.

5.6.1 Generating a Depth Image from a Point Cloud
As this approach requires the use of depth images, a given point cloud, P , in
sensor coordinates, is first transferred into a depth image, of size (vr, hr) in a
preprocessing step. hr is the width and vr is the height of the image. The with of
the depth image will be chosen to match the horizontal resolution of the LiDAR
sensor. This is done so that the projection of the points onto the image falls onto
the horizontal center of each pixel. The height of the image is chosen, so that the
pixels are approximately square [18].

The pixel coordinates, [u, v], of a point p = [x, y, z]T ∈ P , can be computed
using the maximum possible elevation angle of the sensor, θ1, and the minimum
possible elevation angle of the sensor, θ2, as follows

u =
φ

360
∗ w (5.28)

v =

{
δ1(1− z

ρ∗tan(θ1)), z ≥ 0

δ1 +
δ2z

ρ∗tan(θ2) , z < 0
, (5.29)

where δ1 =
[

tan θ1−tan θ2
tan θ1

∗ vr
]

and δ2 =
[

tan θ1−tan θ2
tan θ2

∗ vr
]

is used to map the the
points, pi ∈ P , so that the points with maximal angle are close to the top of the
depth image and the points with minimal angle are close to the bottom of the
depth image. The depth of each pixel is computed by computing the distance of
the point, that is projected on the xy-plane, ρ =

√
x² + y². φ denotes the azimuth

with range (0, 2π):

φ =

{
atan2(x, y), atan2(x, y) ≥ 0

atan2(x, y),+2π atan2(x, y) ≤ 0
(5.30)

5.6.2 Fusing a Depth Image into the TSDF
Having obtained the depth images, they can be integrated into the TSDF. In
each fusion step the (x, y, z)-coordinate of each depth value is computed in world
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coordinates.

 x′

y′

z′

 =

 cos
(
u2π
hr

)
d

sin
(
u2π
hr

)
d

tan
(
v2π
vr

)
d

 , (5.31)

Here, u is the horizontal index of the depth image, v is the vertical index of the
depth image, and d is the depth value. The computed points x′ = [x′, y′, z′]T ∈ R³
are, however, only the points in sensor coordinates and have to be transformed
into world coordinates. This is done by applying

x =World MSensorx
′, (5.32)

where WorldMSensor is the affine transformation from the sensor coordinate sys-
tem to the world coordinate system.

Similar to the Single Ray approach, voxels in the TSDF representation, that lie
on the ray from the sensor to the detected point and are within the truncation
band, are regarded for allocation. Therefore, given a point pi = [x, y, z]T , all
voxels, v, with

∥vw − pi∥ ≤ µ (5.33)

|(o− vw)× (pi − o)|
|pi − o|

<

√
3
(κ
2

)2

, (5.34)

where o is the sensor origin and vw is the voxel center in world coordinates, are
considered for fusion. The SDF-value and weight of each of these voxels can be
computed analog to (5.7) and (5.8).
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6 Implementation details
The implementation of all four approaches is based on the software provided by
InfiniTAM [16], using voxel hashing for efficient memory consumption, as described
in section 5.1.1. Both the allocation and fusion of new data entities is done by
traversing a cube of voxels for each element in the data entity. The cube size
depends on the method used and the size of the element in allocation and fusion. In
order to obtain an efficient time, parallel implementation is employed, by executing
256 CUDA kernels in parallel.

6.1 Raycasting
As the approach employing Raycasting computes new values for voxels that lie on
the ray between the sensor origin and each detected point in the point cloud, a
cube of voxels of size⌈

2

√
3

4
κ² + µ²

⌉
×

⌈
2

√
3

4
κ² + µ²

⌉
× 2

⌈√
3

4
κ² + µ²

⌉

around the detected point, is traversed. The size of the cube of voxels is chosen,
as it is just large enough to guarantee that all needed voxels lie within the block,
regardless of the direction of the ray to the sensor. For each voxel within the cube of
voxels, for which the condition (5.6) holds, memory is allocated and the respective
signed distance value and weight is computed with (5.7) and (5.8) respectively.

6.2 Approximated Local Normals
Similar to the Raycasting approach a cube of voxels of size⌈
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around the detected point is traversed and each voxel in the block is updated, if
the conditions (5.14) and (5.15) hold. The size of the cube of voxels ensures that
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all needed voxels, regardless of the direction of the normal, lie within it. The SDF-
value and the weight of each voxel is updated by (5.16) and (5.20) respectively.

6.3 Surfel Approach
The surfel approach makes use of Multi-Resolution surfel Maps (MRSMaps), as
proposed in [8]. In each iteration of the fusion, all surfels of the MRSMap are used
to fuse the data into the TSDF. For each surfel a cube of voxels of size 2λ1×2λ1×
2λ1 around the center of the surfel is traversed, where λ1 denotes the length of
the first principal component. For each voxel in the cube of voxels for which the
conditions (5.21) and (5.22) hold, memory will be allocated and a corresponding
SDF-value and weight is calculated using (5.24) and (5.27) respectively.

6.4 Cylindrical Projection
Having computed the points in world coordinates, the necessary space has to be
allocated and SDF-values have to be computed for all voxels, for which 5.33 and
5.34 hold. Similar to the single ray approach for each detected point x ∈ R³ a
cube of voxels with size⌈
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and center x is traversed and voxels are allocated if the conditions hold. The
SDF-value and weight of each allocated voxel are computed in the same way as is
done in the Raycasting approach with (5.7) and (5.8) respectively.
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7.1 Datasets
The evaluation of the proposed methods will be done on the 32nd sequence of the
PandaSet [1] and on the first 600 scans of the DRZ Living Lab data [10]. The used
voxel size is 5cm and the size of the truncation band is 20cm. Testing showed that
these parameters are a good tradeoff between memory consumption and accuracy
of a reconstructed scene of this size.

7.1.1 PandaSet
The PandaSet uses Hensai’s LiDAR sensors and Scale AI’s data annotation. The
scenes used in the Pandaset are generated from two routes in Silicon Valley using
a car: San Francisco and El Camino Real from Palo Alto to San Mateo [1]. Re-
garding the LiDAR setup, the Pandaset incorporates a forward-facing image-like
LiDAR sensor (PandarGT) and a mechanical spinning LiDAR (Pandar64) [1].

In this thesis, I will only be making use of the data obtained by the mechanical
spinning LiDAR sensor. This sensor has 64 channels, a range of 200m with 10%
reflectivity and a 360° horizontal Field Of View (FOV) and a 40° vertical FOV,
with range −25° to 15° [1]. Its horizontal angular resolution is 0.2°, with 10 Hz
capture frequency and a vertical angular resolution of 0.167° [1].

The LiDAR-data in the original dataset is given in world coordinates. However,
it does not incorporate data on the used laser-Id, the elevation angle, or the angle
on the xy-plane, which is needed for the approach that approximates local surface
normals.

Therefore, I will be using the raw data provided by [33] for the approach using
the local approximation of the surface normals. Moreover, the PandaSet [1] only
provides the vehicle pose, WorldMCar in world coordinates for the LiDAR data. In
order to be able to use the raw data, the pose of the sensor is needed. The offset
between the sensor pose and the vehicle pose is obtained by applying the ICP-
algorithm on the point cloud in vehicle coordinates and the point cloud, generated
by the raw data, resulting in a transformation, CarMSensor. To obtain the world
coordinates from the raw data, one can apply the following transformations to
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each point, praw = [x, y, z]T in the raw point cloud:

pworld =
World MCar ·Car MSensor · praw (7.1)

7.1.2 DRZ Living Lab

This dataset includes the first 600 LiDAR scans of the DRZ (Deutschen Ret-
tungsrobotik Zentrum) Living Lab [10]. The LiDAR scans have been collected
using an Ouster OS-0 with 128 channels at 10 Hz attached to a DJI M210 v2.
A Motion Capture (MoCAp) system is employed to generate ground truth poses
[23]. The Ouster OS-0 has a range of 50m, a horizontal resolution of 1024 points
per scanline, and a vertical resolution of 0.7°. The 128 channels are uniformly
distributed so that we obtain a vertical Field Of View of -45° to +45° [22]. The
poses of each scan are obtained by the method proposed in [23] and are used as
given poses for the mapping into the TSDF.

7.1.3 Generating a Ground Truth

The given data of the PandaSet is composed of point clouds, Pi that are aligned in
world coordinates. These can be combined to obtain a point cloud, that represents
the entire scene, Pall. This point cloud will be used as ground truth. Having fused
the data of one sequence of the PandaSet into the TSDF representation, a mesh,
MTSDF can be generated using the Marching Cubes Algorithm [19], which will be
used to determine the error of each proposed method. The mesh is converted into a
point cloud PMTSDF

, in order to compute the Hausdorff Distance and the Average
Distance (section 7.2) between PMTSDF

and Pall. This is done using open3d’s
sample points Poisson disk method, which is based on [34].

Similarly, the point clouds of the DRZ dataset will be accumulated to form a
combined point cloud Pall. This is done by transforming each point cloud with
respect to the given pose. We will only consider every tenth scan, as Pall would
otherwise be too large to work with. PMTSDF

will be obtained from Pall in the
same way as for the PandaSet.
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7.2 Metrics for Evaluation

7.2.1 Hausdorff Distance
The Hausdorff Distance computes the maximal distance between two nearest
neighbors of two point clouds and is defined by

dH(X,Y ) := max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
y∈X

d(x, y)}, (7.2)

where X and Y are point clouds. In the scope of the evaluation, only the one-sided
Hausdorff distance, with the ground truth as reference is used. This is because
using the point cloud, generated by the mesh, as reference will cause misleading
results, as the PMTSDF

is much smaller than Pall. We therefore only compute

dH(X,GT ) := sup
x∈X

inf
y∈GT

d(x, y), (7.3)

where X denotes the point cloud generated by the mesh and GT denotes the
ground truth point cloud. The Hausdorff Distance is good for determining outliers
of the error.

7.2.2 Average Distance
Furthermore, the Average Distance will be employed, thus including all points into
the error. The Average Distance for a point cloud, P , is defined by

1

|P|
∑
a∈P

min
b∈GT

|a− b|, (7.4)

where GT is the ground truth.

7.3 Raycasting
Casting a ray from the sensor origin onto a registered point is a simple approach
that shows promising results. However, only the parts of the TSDF, where the
angle between the tangent of the local surface and the ray is large enough are
represented realistically. In this case, the allocated voxels in the TSDF are ap-
proximately aligned to the direction of the local surface normal. When the angle
between the observed surface and the ray from the sensor is small, however, the
allocated voxels in the TSDF do not point towards the local normal of the surface.
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Fig 7.1(a) demonstrates the detection of two points, one of which has a small
angle between the surface and the ray (with angle α), and the other with a large
angle between the surface and the ray (with angle β). In Fig 7.1(a) only the ray
with angle β allocates voxels that are approximately aligned to the local surface
normal, thus generating a realistic TSDF. Fig. 7.1(b) shows the fusion of two
consecutive scans. Points, that are detected by the LiDAR sensor in different
scans and are close to each other may delete the resulting TSDF of one another if
the angle between ray and surface is small, hence resulting in a TSDF with holes.

(a) (b)

Figure 7.1: (a) Blue denotes the positive parts of the TSDF, red the negative parts,
black the occupied space, and white the empty space. (b) Two consecutive
LiDAR scans, with the resulting fusion of the to the TSDF. Green denotes
the voxels with positive SDF-values in the first LiDAR scan, orange the
voxels with negative SDF-values, blue and purple for the second LiDAR
scan respectively.

This sort of error mostly occurs when the LiDAR sensor is far away from the
detected points, for instance when scanning the distant street using a sensor on a
car. Here the angle between the street and the ray is very small. However, using a
weighting that gives smaller weights to points with a larger distance to the sensor,
partially resolves this problem. When approaching such areas with the sensor, the
TSDF is overridden by the detected points there, as their weight is larger. Fig 7.2
illustrates the TSDF in the PandaSet [1] when the sensor is far away from the
detected points on the left and when the detected points are close to the sensor
on the right. As can be seen in Fig. 7.2(c) the areas in which the TSDF had holes
in Fig. 7.2(a) and Fig. 7.2(b) are mostly smooth surfaces now.

40



7.4 Approximation of Local Surface Normal

(a) (b) (c)

Figure 7.2: (a) Detected points are approximately 100m away from the sensor, (b) de-
tected points are approximately 50m away from the sensor, and (c) detected
points are approximately 25m away from the sensor.

7.4 Approximation of Local Surface Normal

The approach using approximated local surface normals, which are computed by
the local neighborhood of each point in the organized point cloud shows promising
results. However, there are two main drawbacks when employing this approach.
The first one being, that a large amount of data will be omitted, as one only
considers the points, where the point itself and all of its four neighbors have been
detected.

Furthermore, points, in which the normals of the adjacent triangles vary too
much will be omitted as well. This especially happens at detected edges or at
boundaries between objects, thus resulting in an incomplete or noisy TSDF in
these regions. Fig. 7.3(a) illustrates the resulting incomplete edges in the TSDF
when using the approach employing the approximated local surface normals. In
contrast, Fig. 7.3 (b) visualizes the same part of the scene when using the Raycast-
ing approach. It can clearly be seen that the edges in Fig. 7.3(a) are less complete
and more noisy than in Fig. 7.3(b).

The second drawback of the approach using approximated local surface nor-
mals is the strong dependence on the correct sensor pose. In extreme cases, the
computed normal rather reflects the negative surface normal, than the desired ap-
proximation of the surface normal. This for instance is observed when the sensor
is positioned directly on the surface.

In the DRZ Living Lab data [10] this occurs in the first few LiDAR scans.
Here the drone and the sensor are positioned on the floor of the lab before take-
off. Fig.7.4(a) illustrates how the TSDF after only a few amount of fusion steps,
where the LiDAR sensor is very close to the floor. It can clearly be seen that the
approximated normal is pointing in the opposite direction as one would want it
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(a) (b)

Figure 7.3: Visualization of the resulting TSDF on part of the DRZ Living Lab data [10]
when (a) using the approach that approximates the local surface normals and
(b) using the Raycasting approach.

to. When more scans are fused into the TSDF this problem, however, is resolved,
as more correct data is added to these areas.

(a) (b)

Figure 7.4: Visualization of the TSDF on a part of the DRZ data [10] after (a) 40 fusion
steps (b) 100 fusion steps.

Another drawback when using this approach is the fact that one depends not
only on the sensor pose and the positions of the points in the point cloud. Infor-
mation on what laser-Id is used to detect each point is also required to form an
organized point cloud. Even though this information is usually provided by the
sensor, some datasets lack this information, for instance, the PandaSet [1].

Overall this approach still reconstructs the scene well, as can be seen in Fig.7.4(b).
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7.5 Surfel approach
Having tested the surfel approach on the PandaSet [1] and the DRZ Living Lab
[10] some limitations of the surfel approach using a voxel-based surfel generation
such as MRSMaps has become clear, especially when approximating the normal
of a surfel.

When computing a normal, n, in 3D using the plane of the surfel some ambiguity
arises, as −n is a valid normal for this plane as well. In order to choose the correct
normal, one checks whether the angle between the normal and the ray from the
surfel’s center point to the sensor origin is larger than 90°. If this is the case then
the normal is flipped (n = −n).

However, in some cases, this does not make any sense. Considering a downward
slope of a street for example this computation results in the wrong choice of normal,
as illustrated in Fig 7.5. The yellow arrow denotes the correct normal and the red
arrow denotes the computed normal. If in two different surfel maps, surfels with
normals pointing in opposite directions and in similar positions can be found, they
may cancel each other out. In practice this occurs very often, resulting in a TSDF
with holes in problematic areas, as shown in Fig. 7.6(a).

Figure 7.5: Visualization of the drawback of computing the normal using surfels.

A workaround to this specific problem is flip the normals of the surfels that
are incorrect: First we rotate the surfels into the sensor coordinates. If the z-
coordinate of the surfel center is smaller than 0 and the z-value of the normal is
negative, the normal, n is flipped (n = −n).

This works well on the PandaSet [1], however, this method only considers regions
below the sensor and is very limited to datasets where the data is obtained by a
sensor on a car. Fig. 7.6 illustrates the resulting TSDF on the PandaSet when the
normals are not flipped (Fig. 7.6(a)) and when using the proposed workaround
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(Fig. 7.6(b)).

(a) (b)

Figure 7.6: Rendering of the TSDF when (a) the incorrect normals of the surfels are not
flipped and (b) the incorrect normals are flipped if needed.

Another drawback of the computation of the normals using a voxel-based surfel
generation is that in many cases the normal of a surfel is computed incorrectly.
As stated in section 3.5 the surfels in the MRSMap are generated by combining
all detected points within a predefined voxel to a surfel using PCA. The incorrect
normal approximation occurs when for instance a voxel includes detected points
of only one scanline. Applying PCA to these points in order to generate a surfel
often results in an incorrect approximation of the local surface normals, as shown
in Fig. 7.7. Here, the distribution of points lying on a single scanline does not
reflect on the distribution of the entirety of the points.

Having tested on the PandaSet, it has become clear, that this phenomenon often
occurs in areas, where the scanlines are farther apart. Consequently, this leads to
a TSDF, that does not represent the scene well, as shown in Fig. 7.7(c). The
PandaSet incorporates larger angles for the first few and last few channels, thus
resulting in scanlines that are far apart, as shown in Fig 7.7(a). This makes it
likely that there are a lot of voxels that only include points of a single scanline.

Furthermore, the use of surfels limits the amount of detail that can be achieved
by the scene reconstruction. Primarily this is due to the fact that all points within
a voxel are combined to obtain a local surface. In addition, voxels that have too
few points will not generate a surfel, thus resulting in holes in the TSDF. Fig. 7.8
compares the surfel approach on the left with the raycasting approach on the
right on the DRZ Living Lab dataset. It can clearly be observed, that the surfel
approach exhibits less detail.
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(a) (b) (c)

Figure 7.7: (a) Visualization of a point cloud and a voxel (cayan box) for surfel gener-
ation (b) cylinder around the generated surfel with normal (red arrow) (c)
visualization of the resulting TSDF.

(a) (b)

Figure 7.8: Rendering of the TSDF using the DRZ data when (a) using the surfel ap-
proach and (b) using the Raycasting approach.

7.6 Cylindrical Projection
The method proposed by Kühner et al. [18] works very well, however, there are
some drawbacks to their method, as they discretize the given data when converting
LiDAR scans into depth images.

In the preprocessing step, where the LiDAR data is converted into depth images,
the pixel coordinates [u, v] are computed according to section 5.6.1. In general, the
horizontal value, u, of the computed depth image is aligned to the original LiDAR
data, as the size of the depth image is chosen to reflect the number of points that
are recorded in a scanline. Therefore, the ray that is cast through each pixel to
the detected point will go through the center of the pixel in horizontal direction.

The ray, however, will not necessarily intersect the pixel center in vertical direc-
tion. Still, when fusing the depth image into the TSDF, it will be assumed, that
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the detected points are represented by the center of each pixel. This is especially
problematic in areas where edges or boundaries between objects occur in the scene.

(a)

Figure 7.9: Projection of a LiDAR point onto a pixel of the depth image.

Fig. 7.9 demonstrates how a pixel of the depth image is assigned to a detected
point, and how the position of the detected point varies through the rounding
error, shown in Fig. 7.10(a). The points in the LiDAR data are therefore shifted
slightly downward or upward in the each pixel of the depth image.

If in two different depth images two points in similar positions are detected and
one is shifted downwards and the other is shifted upwards they may cause an
overlap of different objects in the scene. Fig. 7.10(b) illustrates how two detected
points may be shifted downwards (red point) and upwards (blue point), thus over-
lapping. The red line indicates an edge that separates one object (red) from the
other (blue). The points may therefore have a different depth value, as they might
belong to different objects.

When fusing both points consecutively into the TSDF the voxels with positive
SDF-values, that corresponds to the rear point will be canceled out by the negative
SDF-values of the front point.
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(a) (b)

Figure 7.10: Rounding of the LiDAR data when obtaining the depth image in (a) a single
data point and (b) two similar data points in presence of an edge.

These rounding errors result in holes in areas of the TSDF where edges are
present. Fig. 7.11 shows how this affects the TSDF by comparing the Raycasting
approach with the approach using cylindrical projection. On the stairs, in Fig. 7.11
the impact of the rounding error can be observed clearly.

(a) (b)

Figure 7.11: Rendering of the TSDF on the PandaSet [1] (a) using the cylindrical pro-
jection approach (b) using the Raycasting approach.

7.7 Quantitative Evaluation

As stated in section 7.2 the Hausdorff Distance and the Average Distance will be
used on the PandaSet [1] and the DRZ Living Lab data [10] to evaluate how well
each method mapped the data into the TSDF. Furthermore, an analysis of the
time taken for one fusion step will be evaluated.
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7.7.1 Distance Metrics
Table 7.1 summarises the results of the Average Distance and corresponding stan-
dard deviation in meters. As expected, the approach using surfels has the largest
Average Distance of all methods with approximately 20cm for the PandaSet and
28cm for the DRZ data. The other approaches have similar errors at around 11cm
for the PandaSet and 15-16cm for the DRZ data.

Method Average Distance Standard deviation
PandaSet Raycasting 0.108 1.972

Cylindrical Projection 0.108 1.205
Approximated Normals 0.106 1.689

Surfel pproach 0.198 0.222
DRZ Raycasting 0.147 0.494

Cylindrical Projection 0.161 0.607
Approximated Normals 0.151 0.547

Surfel Approach 0.280 0.349

Table 7.1: Overall Average Distance and standard deviation.

Table 7.2 shows the resulting Hausdorff Distances of the proposed methods.

Method Hausdorff Distance
PandaSet Raycasting 4.761

Cylindrical Projection 4.478
Approximated Normals 5.329

Surfel Approach 4.572
DRZ Raycasting 5.06

Cylindrical Projection 5.16
Approximated Normals 4.67

Surfel Approach 5.98

Table 7.2: Overall Hausdorff Distance.

These results, however, do not accurately reflect the effectiveness of the ap-
proaches, as large errors can occur when subsampling points from the generated
mesh, PMTSDF

in sparse regions. This can have a large impact on the used metrics.
Fig. 7.12 illustrates how in regions where less data has been accumulated in the
TSDF, the generated mesh is less accurate than in regions where the sensor has
detected a variety of points.
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The distance of each point to its nearest neighbor in ground truth, Pall, is
visualized on the PandaSet (Fig. 7.12(a)) and the DRZ data (Fig. 7.12(b)).

(a) (b)

Figure 7.12: Visualization of the distance to the nearest neighbor of each point, subsam-
pled from the mesh in (a) the PandaSet and (b) the DRZ data.

In order to compare the proposed methods more accurately, the Average Dis-
tance and the Hausdorff Distance will be computed on the TSDF in regions, that
are more dense. Here, the generated mesh will represent the TSDF more ac-
curately and therefore the subsampled points will reflect better on the resulting
TSDF for each approach. Tables 7.3 and 7.4 summarise the average distance and
the Hausdorff distance on regions that are densely mapped in the TSDF. It can
clearly be seen that the values have improved. Especially, as pointed out by the
standard deviation, there is not as much variation in the distance from one point
to another.

Method Average Distance Standard deviation
PandaSet Raycasting 0.0537 0.0791

Cylindrical Projection 0.0709 0.0965
Approximated Normals 0.0655 0.0879

Surfel Approach 0.135 0.180
DRZ Raycasting 0.108 0.165

Cylindrical Projection 0.120 0.172
Approximated Normals 0.113 0.155

Surfel Approach 0.236 0.127

Table 7.3: Average Distance and standard deviation of a dense region.
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Method Hausdorff Distance
PandaSet Raycasting 1.833

Cylindrical Projection 1.689
Approximated Normals 1.813

Surfel Approach 1.508
DRZ Raycasting 1.221

Cylindrical Projection 1.589
Approximated Normals 1.321

Surfel Approach 1.537

Table 7.4: Hausdorff Distance of dense region.

As the Hausdorff Distance is strongly affected by outliers, the average distance,
including its standard deviation provides a better insight into how well an ap-
proach has mapped the LiDAR data into the TSDF. Regarding the computations
of tables 7.4 and 7.3 one can see that the Raycasting approach gives the best re-
sults. However, the approach using cylindrical projection and the approach using
an approximation of the normals also work well. The approach employing surfels
is as expected the least favorable approach.

7.7.2 Runtime
In order to evaluate the time taken to fuse a single LiDAR scan into the TSDF,
the runtime analysis is divided into two parts: (i) the time taken to process a
single LiDAR scan i.e. to allocate the necessary space in the hash table and to
assign the SDF-value and weight to each voxel and (ii) the time taken to read the
data into the CPU and transfer it to the GPU. All data on the time taken has
been obtained by evaluating on an NVIDIA GeForce RTX 3090 and an Intel Core
i7-8700K.

Fig. 7.13 shows the respective times taken to allocate space and compute the
SDF-values and weights for the voxels (Fig. 7.13(a)) and the time taken to load the
LiDAR data into the CPU (Fig. 7.13(b)). Here, CP denotes the method employing
cylindrical projection, OP denotes the method using approximated local normals,
RC denotes the Raycasting approach, and S denotes the surfel approach.

It can clearly be seen that the approach using surfels takes the longest time to
both fuse the data to the TSDF on the GPU and to load the data to the CPU.
This is due to the fact that the surfel approach applies PCA in a preprocessing
step when loading the data into the CPU. Furthermore, in the allocation and
computation step, a lot more voxels have to be traversed for a surfel than for a
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single point, as stated in section 6.3. Therefore the surfel approach can not be
considered as a real-time application, taking up to a total of 1.9 seconds for a
single fusion step.

The other approaches however can be considered to run in real-time with a
possible rate of 18-35 fusion steps per second.

The approach using cylindrical projection, however, is a little slower than the
other approaches with approximately 18-20 fusion steps per second, as often more
pixels are present in the depth image than points in the LiDAR point cloud.

The approach using the approximated local normals also requires more time
to load the data into the CPU, as all four neighbors of each point have to be
considered as well. With an approximate fusion rate of 20-25 fusion steps per
second, it still performs well.

The Raycasting approach with a fusion rate of 27-35 fusion steps per second
performs best in the overall runtime.

(a) (b)

Figure 7.13: Visualization of the average time taken to (a) allocate space and compute
SDF-values and weights for all needed voxels and (b) to load the LiDAR
data into the CPU for a single LiDAR scan on the DRZ Living Lab data
[10] and the PandaSet [1].
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Conclusion
In this work I have presented three novel approaches to fuse LiDAR data into the
TSDF for large-scale outdoor and indoor 3D scene reconstruction: (i) a Raycasting
approach, (ii) an approach using approximated local surface normals and (iii) an
approach using surfels that are generated in a preprocessing step.

The approaches (i) and (ii) fulfill the requirements of real-time dense 3D scene
reconstruction in terms of accuracy and time taken for each fusion step. Unlike
the approach proposed by Caminal et al. [3] all approaches work well on data that
is obtained by obtaining LiDAR data from a rotating 360-degree-LiDAR sensor.

An advantage over the approach proposed by Kühner et al. [18] is that in
approaches (i) and (ii) there is no need for converting the original LiDAR data
into a depth image in a preprocessing step. This makes them easier to implement,
while at the same time fusing data accurately into the TSDF. Furthermore, the
runtime of both the Raycasting approach and the approach using approximated
local normals is better suited for real-time applications than the approach proposed
by Kühner et al. [18].

Approach (iii), however, is not suited for real-time scene reconstruction as it
neither runs in real-time nor does it reconstruct the scene accurately.

In conclusion, both the Raycasting approach and the approach using approxi-
mated local normals provide a slight improvement to the state-of-the-art approach
([18]) when fusing LiDAR data into the TSDF in real-time. Still, the Raycasting
approach should be the preferred option, as it incorporates all data, is easiest to
implement, only relies on the sensor pose and the recorded LiDAR data, and has
the fewest drawbacks when enough data of the scene is given.

In future work, the presented mapping approaches can be combined with track-
ing, in order to build a Simultaneous Localization and Mapping (SLAM) system.
Here, it may be interesting to see how the TSDF ICP tracking performs on the
LiDAR data, as it performs well on depth images from RGB-D cameras.
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