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Abstract

Video semantic segmentation is a common task in image processing and computer
vision, which can be used to better understand the content of an image sequence
and act accordingly, which is important for example for autonomous robots. The
main challenges of video semantic segmentation are to overcome visibility chal-
lenges in images like lighting, noise, and occlusion, classification challenges like
intra-class variance, and to keep the predicted semantic segmentations temporal
coherent to avoid flickering. Many approaches to video semantic segmentation
utilize default, strided or dilated convolutional layer to extract features in an
encoder-decoder-based architecture. These often include opportunities to rein-
tegrate spatial information and information from previous frames through skip
connections, recurrent connections, and CRF- or MRF-based approaches. Short-
comings of these models are, that they don’t produce humanly interpretable results
and their accuracy can decrease drastically when inputs change, since their inter-
mediate representations are unstructured. Hence, these models aren’t robust to
changes in the image. Because of this it is hard to understand why a model fails
when it does. Furthermore, these models don’t have an explicit way to deal with
camera transformations between frames, which degrades the usefulness of their
past knowledge in scenarios like autonomous driving.

To deal with this problem we create the Recurrent Structured Filter, which is
part of a modular model with an encoder-decoder-based architecture. It is com-
posed of one module that predicts the ego-camera transformation, one module
that predicts the depth and warps the hidden state to account for the camera
transformation given the predicted depth map, and one module that predicts the
residual optical flow of moving objects in the image. To train and evaluate our
model, we create a dataset containing RGB images, depth maps, camera trans-
formations, semantic segmentation labels, and optical flow of autonomous driving
scenes using the CARLA simulation and train and evaluate our model on it. In our
experiments, we show that our model outperforms our two baselines on our dataset
with a mIoU of 0.2928 and an accuracy of 73.60%, while computing interpretable
internal representations.
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1. Introduction

Semantic segmentation is a common task in image processing and computer vision.
The semantic segmentation can be used to better understand the content of an
image and act accordingly. This is important for example for autonomous robots,
who need to make sense of their surroundings and react to them. The task of
semantic segmentation can be extended to video semantic segmentation, where we
have an image sequence and can use the temporal order of the images.

Semantic segmentation can be formally defined as the task of assigning semantic
or class labels c to each pixel of an image x. This makes it harder than predicting
a single label for the whole image. The main challenges of semantic segmenta-
tion are common visibility problems of images, like lighting, noise, and occlusion.
Additional typical problems of semantic segmentation are low inter-class variance
and high intra-class variance. If those did not exist a simple pattern matching
approach would be sufficient.

Common approaches to solving the task of semantic segmentation are different
variants of convolutional models. This includes fully convolutional networks, con-
volutional models using graphical models, and dilated convolutional models. In
addition to that a variety of architectures have been used for semantic segmen-
tation, including Encoder-Decoder-based models, Recurrent neural network-based
models, and Multi-scale and pyramid network-based models(Minaee et al. 2022).
Many models face the problem that their intermediate representations are not hu-
manly interpretable. This especially becomes a problem when the model performs
poorly. In this case the intermediate states of those models offer no way to explain
the problem since they are not humanly interpretable, but just learned. Further-
more, many models are vulnerable to small purposeful changes, which alter the
visual appearance only slightly but lead models to predict completely wrong re-
sults. This can also lead to loss of temporal coherence. Additionally, these models
can’t handle camera transformations between frames directly, because they often
don’t have a concept of camera transformations.

In this thesis, we take a look at video semantic segmentation and try to improve
the results using a modular model. Our model is made up of the ego-motion filter,
which predicts the camera transformation from the image features, the feature
filter, which predicts a depth map for the current image and uses it and the
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1. Introduction

predicted camera transformation to warp the current image state, which is used to
grasp the scenes contents. This state and the current image features are then used
to predict semantic segmentation labels and residual optical flow for the current
image. Our work is based on Wagner et al. 2018.

For our approach, we generate a synthetic dataset for autonomous driving using
the CARLA simulator(Dosovitskiy et al. 2017). Our dataset includes RGB images,
depth maps, camera transformations, semantic segmentation labels, and optical
flow.

In our experiments we outperforms our baselines in both mean Intersection over
Union (mIoU) and accuracy. Additionally, we compare semantic segmentation
labels for our model, the two baselines, and the ground truth. Furthermore, we
analyze predictions of depth maps in comparison with the ground truth and show-
case fail cases.

Our main contributions are:

• We propose an encoder-decoder-based modular model, with one module to
predict the ego-camera transformation, one module to predict the depth and
warp the hidden state to account for the camera transformation given the
predicted depth map, and one module to predict the residual optical flow of
moving objects in the image.

• We create a synthetic dataset based on the CARLA simulator(Dosovitskiy
et al. 2017) for our purposes.

• Our model outperforms both of our baselines in case of mIoU and accuracy
on our dataset, while having interpretable representations.

The structure of this thesis is the following.

Chapter 2: Here we explain the fundamentals of convolutional and recurrent networks,
which are commonly used for machine learning and are core aspects of our
model. Furthermore, we explain the popular encoder-decoder architecture
used for many models, including ours. At last, we define optical flow in
general.

Chapter 3: In this chapter we talk about the related work of this thesis. This includes
approaches to semantic segmentation in general, and DeeplabV3(Chen, Pa-
pandreou, Schroff, et al. 2017), DeeplabV3+(Chen, Y. Zhu, et al. 2018) and
modular interpretable models(Wagner et al. 2018) in depth as they inspired
this thesis.
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Chapter 4: We describe our dataset in this chapter. This includes the motivation to
make a new dataset and the process of data generation and preprocessing.

Chapter 5: In this chapter we explain our model in detail. This includes how the different
modules work and why we assembled them this way. Furthermore, we explain
our training strategy and give implementation details

Chapter 6: This chapter contains the evaluation. First, we define the metrics by which
we access the performance of our model on the dataset. Then we introduce
the baselines in detail. After that we show qualitative and quantitative
results and analyze them.

Chapter 7: The last chapter contains our conclusion to this thesis and ideas for future
work.
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2. Fundamentals

This chapter explains the deep learning fundamental concepts used in this thesis.

2.1. Convolutional Networks
Convolutional layers are a common approach in neural networks. The reason for
this is the reduced number of weights and hence increased training speed compared
to fully connected layers. The weight sharing is particularly advantageous for tasks
like for example for feature extraction, since these tasks are location independent,
which means they can be computed in the same way no matter where they appear
in the input. Therefore convolutional layers can focus on improving the extraction
of these features while fully connected layers need to train and store a huge number
of duplicate weights. Normally several convolutional layers are stacked to extract
features of features, which translates to higher level features, and to increase the
receptive field of the kernels. Additionally, several parallel kernels are trained
to extract different features. The convolutional layers are then followed up by
an activation or pooling layer. Activation layers run the features through a non-
linear function, like tanh or ReLu. This increases the capability of the model since
otherwise, the output would boil down to a linear product of the inputs regardless
of the depth of the model. Pooling layers take several often adjacent feature values
to compute the output. Well-known pooling methods are max-pooling, where only
the maximum of the values is propagated, and mean-pooling, where the mean of
the values is propagated.

2.1.1. Discrete Convolution
A discrete convolution in this context has a kernel k with a fixed size m × n

and calculates the output y from the input x using k, like Equation (2.1) states.
Fig. 2.1 shows an exemplary calculation of a convolution with a 3× 3 input and a
2× 2 kernel.

y[i, j] =
m∑

u=0

n∑
v=0

x[i− u, j − v] · k[u, v] (2.1)
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2. Fundamentals

(a) first step (b) last step

Figure 2.1: This shows an exemplary discrete 2D convolution. The colored cells in the
input and kernel are used to calculate the colored output cell.

2.1.2. Strided Convolution

Strided convolution is a variant of discrete convolution, which is used to reduce
the output size. This type of convolution has a stride s, which determines the
number of cells in the input between adjacent cells in the output. Therefore, given
an input x, a kernel k of size m × n, and a stride s the output y is calculated as
Equation (2.2) states it. Hence, a stride of 1 is equivalent to discrete convolution
and strided convolution can be seen as a natural extension to discrete convolution.
The effect of different strides can be seen in Fig. 2.2.

y[i, j] =
m∑

u=0

n∑
v=0

x[i · s− u, j · s− v] · k[u, v] (2.2)

(a) stride of 1
(b) stride of 2

Figure 2.2: This shows an exemplary strided convolution with different strides.
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2.2. Recurrent Networks

2.1.3. Atrous Convolution
Atrous convolution is a special kind of convolution used to increase the receptive
field of convolution without reducing the size of the output and therefore without
loss of spatial resolution. Atrous convolutional layers have a kernel k of size m×n

and an atrous rate r and compute their output y at position i, j using the input
x like Equation (2.3) states. The atrous rate r determines how far the input
positions for any output are apart. An atrous rate r of 1 is equivalent to discrete
convolution and atrous convolution can be seen as a natural extension of discrete
convolution(Chen, Papandreou, Schroff, et al. 2017). A visual representation of
atrous convolutions can be seen in Fig. 2.3, which contains 3x3 atrous convolutions
with atrous rates of 2,4,8 and 16, respectively.

y[i, j] =
m∑

u=0

n∑
v=0

x[i− r · u, j − r · v] · k[u, v] (2.3)

Figure 2.3: 3x3 atrous convolutions with atrous rates of 2,4,8 and 16 (Chen, Papandreou,
Schroff, et al. 2017)

2.2. Recurrent Networks
Recurrent networks are feedforward network with added connections to the current
or previous layers. The recurrent edges and the feedforward edges form cycles,
which lead to the network having a state instead. Furthermore, this network state
introduces a notion of time into the computation. The input to recurrent models is
an input sequence x = (x0, x1, ..., xT ). The input to nodes with incoming recurrent
edges at time step t consists of the current data xt and the output from the previous
network state ht−1. The output yt at time step t is calculated from the hidden
node values h(t) at time step t. Previous input xt−1 can influence the output yt
through the recurrent edges(Lipton, Berkowitz, and Elkan 2015). The structure
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2. Fundamentals

of a simple recurrent network can be seen in Fig. 2.4. One common problem of
recurrent neural networks is the problem of vanishing or exploding gradients. This
is because of the repeated integration of weights and because of the possibly long
computation paths if connected inputs are far apart in the sequence. There are
some variants of neural networks to tackle this problem.

Figure 2.4: A simple recurrent neural network from Lipton, Berkowitz, and Elkan 2015.

2.2.1. Long Short-Term Memory (LSTM)

LSTM models(Hochreiter and Schmidhuber 1997) are neural network, which con-
tain LSTM memory cells. LSTM memory cells are a handcrafted structure and
can be seen in Fig. 2.5a. They were designed to combat the problem of exploding
or vanishing gradients, and model long-range dependencies.

The internal state sc is the recurrent part of the memory cell and is the reason for
its name. sc is a node with linear activation and incoming self-recurrent connection,
which gives it a state. In this way, the internal state stores its information from
one time step to the next.

Since the model needs to react to the input there are several ways to change
the internal state sc. To achieve this gates are used. Gates are designed to filter
which information is used and which information is ignored. The functionality of
a gate consists of an activation function, like tanh, and a pointwise multiplication.
Equation (2.4) shows the computation of a gate G with two inputs a and b. a

is fed through tanh and b is multiplied pointwise with the output. This leads to
the result, that a is used to decide which parts of b are kept and which parts are
ignored and to which extent.

G (a, b) = tanh(a) ◦ b (2.4)
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2.2. Recurrent Networks

The functionality of gates is used in different ways to shape the internal state
sc and the output of a LSTM memory cell. First of all, we have the nodes gc and
ic, where c is used to index the LSTM memory cells. Both nodes receive the input
of the current time step x(t) and the output of the hidden layer from the last time
step h(t−1). Typically these are summed and fed through an activation function
like tanh. The original names for those nodes are input node for gc and input gate
for ic. Both nodes are used to form a gate, which uses x(t) and h(t−1) for both gate
input a and b and whose output is added elementwise to the internal state sc. In
this way, the gate decides what part of the new input can influence the internal
state sc.

The second way to influence the internal state sc is the forget gate fc. This gate
receives x(t) and h(t−1) as input a for the gate and sc as input b for the gate. This
means, that the forget gate decides which part of the internal state sc is forgotten
from the last time step using the current input to decide.

Combining all of the previous components gives us the full calculation for the
internal state s

(t)
c at a given time step t, which can be seen in Equation (2.5).

s(t)c = G
(
i(t)c , g(t)c

)
+G

(
f (t)
c , s(t−1)

c

)
(2.5)

The last part is the output gate oc, which is a node that also receives x(t) and
h(t−1) and is used as input a for a gate. The internal state s

(t)
c is then used as

input b to compute the memory cell’s output v(t)c at time step t like Equation (2.6)
states(Lipton, Berkowitz, and Elkan 2015).

v(t)c = G
(
o(t)c , s(t)c

)
(2.6)

2.2.2. Gated Recurrent Unit (GRU)

GRUs is another attempt to solve the problem of vanishing or exploding gradients
for recurrent neural networks. They are similar in their approach to LSTMs as
they have a self-recurrent connection to retain a network state, which is modified
using gates. Fig. 2.5b shows the structure of a GRU cell. The first apparent
difference is that there is no independent output. For GRU cell, the output ht is
also the cells’ state ht at time step t.

A GRU cell has two inputs, the current input xt and the previous output of
the GRU cell ht−1. These are multiplied with their respective weight W and U ,
added, and then fed through a sigmoid function like Equations (2.7) and (2.8)
state for the computation of zt and rt. It should be noted, that those calculations
use different weights.
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2. Fundamentals

zt = σ
(
W (z)xt + U (z)ht−1

)
(2.7)

rt = σ
(
W (r)xt + U (r)ht−1

)
(2.8)

rt is used for the reset gate, which uses a gate function like Equation (2.4)
to reset parts of the state ht−1 to calculate the intermediate result h̃t like Equa-
tion (2.9) states. zt in contrast is used for the update gate, which is used in the
final computation of the current output and state ht. Equation (2.10) shows us
the calculation, where zt is used as a factor to blend the previous state ht−1 and
the current intermediate state h̃t together.

h̃t = tanh (Wxt + rt ◦ Uht−1) (2.9)
ht = zt ◦ ht−1 + (1− zt) ◦ h̃t (2.10)

(a) LSTM memory cell with a forget gate from
Lipton, Berkowitz, and Elkan 2015. The
blue circles represent nodes and the white
circles represent element-wise multiplica-
tion.

(b) structure of a GRU cell(Zhao et al. 2018)

Figure 2.5: structure of specific recurrent neural networks

2.3. Encoder-Decoder Architecture
The encoder-decoder-architecture is a common neural network architecture con-
sisting of an encoder and a decoder. The basic idea of the encoder-decoder-
architecture is shown in Fig. 2.6. The encoder is usually made up of convolu-
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2.3. Encoder-Decoder Architecture

tion and pooling layers, which reduce the size, but increase the dimension of the
representation. We see, that the input is processed by the encoder to extract a
representation of the input, which is contained in the hidden state of the model.
This high-dimensional, but small representation is then fed into the decoder. The
decoder often consists of upsampling and convolution layers, which increase the
shape, but decrease the channel dimension until the output has the same spatial
dimension as the input. In this architecture, the state serves as a bottleneck to
force the encoder-decoder model to reduce the input into a succinct representation,
which is then used to generate the desired output.

Figure 2.6: basic encoder-decoder structure

The general encoder-decoder-architecture is often improved by using skip con-
nections between layers with output of the same shape. The output of these
encoder layers is concatenated to the input of the decoder layers to make spa-
tial information, which gets lost easily in the downsampling encoder operations,
available to the decoder. An example of this architecture is U-net(Ronneberger,
Fischer, and Brox 2015), whose structure can be seen in Fig. 2.7.

Figure 2.7: Architecture of U-Net(Ronneberger, Fischer, and Brox 2015), where the
encoder-decoder-architecture utilizing skip-connections can be clearly seen.
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2. Fundamentals

2.4. Optical Flow
The Optical flow between two images H and I is a 2D vector field in the shape
of the images describing the movement of pixels. There is the forward optical
flow, which describes the movement from one frame to the next, and the backward
optical flow, which describes the movement from the current frame to the previous
frame. Let’s assume, that H and I are consecutive frames in an image sequence
and H is the frame before I. If the pixel H(x, y) in the current frame moves to
I(x+u, y+v) in the second frame the forward optical flow of position (x, y) would
be (u, v) like the following equation states

−→
O (x, y) = (u, v). In comparison the

backwards optical flow of (x+u, y+v) would be (−u,−v) like this equation shows←−
O (x+ u, y + v) = (−u,−v). Fig. 2.8 shows the optical flow from the view of a
rotating observer to help the general understanding of what optical flow represents.

From here on we will focus on the forward optical flow, since we use it in this
thesis. In the following equations, we derive the calculation of the forward optical
flow by generalizing from this specific offset, as a derivative of the image by time.

−→
O = I(x+ u, y + v)−H(x, y)

≈ I(x, y) +
∂I

∂x
· u+

∂I

∂y
· v −H(x, y)

= (I(x, y)−H(x, y)) +
∂I

∂x
· u+

∂I

∂y
· v

≈ ∂I

∂t
+

∂I

∂x
· u+

∂I

∂y
· v

≈ ∂I

∂t
+∇I · [u, v]

Figure 2.8: Optical flow from the view of a rotating observer(Huston and Krapp 2008)
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In this chapter we describe methods, which are related to this thesis.

3.1. Semantic Segmentation
Semantic segmentation describes the process of assigning a class label to each pixel
of an image. It is often used to help make sense of an image and to act accordingly.
The common approach for semantic segmentation is to use a deep convolutional
model and train it using class labels to output the semantic segmentation directly.

There are several different models, that can be used to predict semantic seg-
mentation. The most common approaches to solving the task of semantic seg-
mentation utilize different variants of convolutional models. The simplest version
is fully convolutional networks. Fig. 3.1a shows the structure from Long, Shel-
hamer, and Darrell 2015, which uses a fully convolutional network for semantic
segmentation. We see, that the model is made up of consecutive convolutional
layers and pooling or activation layers, which decrease their size and increase their
dimension. In the end, the output is upsampled to the desired shape and dimen-
sion. In addition to that dilated convolutional models are commonly used, which
are convolutional models, that partly contain dilated convolution layers instead of
default convolution layers. An example of this is DeeplabV3, whose structure can
be seen in Fig. 3.3(Chen, Y. Zhu, et al. 2018). There are also less popular variants
of convolutional models, like convolutional models using graphical models, like
Conditional Random Fields (CRFs) or Markov Random Fields (MRFs), and con-
volutional models with active contour models. Fig. 3.1b shows the structure of an
exemplary model of this type. Chen, Papandreou, Kokkinos, et al. 2016 presents a
convolutional model for semantic segmentation, which works like the fully convo-
lutional model for the first part. In the end, it uses a CRF to improve the precision
of the final semantic segmentation. This is necessary since the location invariance
of convolutional layers and the low output size of the later convolutional layers
lead to a loss of precise location information helpful for exact segmentation. The
CRF retains this information and therefore improves the result. The MRF and
contour-based models employ a similar approach.

13
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Additionally, a variety of architectures have been used for semantic segmenta-
tion, including Encoder-Decoder-based models, which follow the general structure
shown in Fig. 2.6. SegNet(Badrinarayanan, Kendall, and Cipolla 2017) is an ex-
ample of an encoder-decoder-based model for semantic segmentation, whose ar-
chitecture can be seen in Fig. 3.1c. It consists of 5 blocks of several convolutional
layers followed by a pooling layer, which downsamples the shape and increases
the dimension of the current features. These blocks have the task of extracting
features from the image. After those there are 5 blocks consisting of an upsam-
pling layer, which increases the shape, followed by several convolutional layers.
These should bring the output to the correct size while retaining and refining the
feature information at their respective positions. The last layer is a softmax layer
to generate class labels. Furthermore, recurrent neural network-based models like
ReSeg(Visin et al. 2016), whose structure is shown in Fig. 3.1d, are also used for
semantic segmentation. ReSeg consists of 4 different recurrent neural networks,
which are indicated by the colored arrows. The input is preprocessed by a back-
bone mode and then fed in turns through sets 2 recurrent neural networks. In
the end, the features are upsampled by an upsampling layer and fed through a
softmax layer.

Multi-scale and pyramid network-based models, like DMNet(J. He, Z. Deng,
and Qiao 2019), are intended to combat the problem of scale variants of objects in
scenes. To achieve that the image is processed at several different scales. Finally,
there are also less common approaches like Generative models with adversarial
training, where one model tries to predict semantic segmentation labels and an
adversarial model tries to distinguish between ground truth and predicted semantic
segmentations(Luc et al. 2016). At last there are also Attention-based models, that
weights the features that multi-scale approaches produce(Chen, Yang, et al. 2016).

We are mainly going to use the DeeplabV3 and DeeplabV3+ models as our
basis for the encoder and decoder. Hence, those are going to be explained in the
following subsections.

3.1.1. DeeplabV3
One popular model structure is DeeplabV3(Chen, Papandreou, Schroff, et al.
2017), which is based on the idea of using atrous convolutions.

Normally a convolutional model consists of a sequence of convolution and pool-
ing layers. If the stride of the convolutional layers is larger than 1 then the size of
the output is reduced. The same is true for most pooling layers. This is fine for a
small reduction of the features in comparison to the input but leads to problems
if the spatial dimension of the features is reduced too much through deep convo-
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3.1. Semantic Segmentation

(a) FCN(Long, Shelhamer, and Darrell 2015)
(b) CRF-based convolutional model(Chen, Pa-

pandreou, Kokkinos, et al. 2016)

(c) SegNet(Badrinarayanan, Kendall, and
Cipolla 2017)

(d) ReSeg(Visin et al. 2016)

Figure 3.1: architectures for semantic segmentation

lutional models. A common approach to fix this is to add upsampling layers and
pass information from earlier features of this size through skip connections to help
the upsampling process.[Ronneberger, Fischer, and Brox 2015] Instead DeeplabV3
uses a few convolutional and pooling layers to reduce the input to the intended
feature size and then follows up with atrous convolutional layers with increasing
atrous rate. The reason for this approach is that the key advantage of subsequent
convolutional layers is an increase in the receptive field of the later layers. This
effect is also achieved with the subsequent atrous layers with increasing atrous rate
r, without loss of spatial resolution. This comparison can be seen in Fig. 3.2. The
output stride mentioned in the figure is the factor of the input and output sizes
and is equivalent to the total stride from the input to the respective step.

Figure 3.2: Comparison between a standard deep convolutional model and a deep atrous
convolutional model like DeeplabV3(Chen, Papandreou, Schroff, et al. 2017)
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3.1.2. DeeplabV3+

DeeplabV3+(Chen, Y. Zhu, et al. 2018) tries to improve on DeeplabV3 by in-
corporating skip connections and a decoder as well as a spatial pyramid pooling
module. This can be seen in Fig. 3.3. The DeeplabV3+ model downsamples
the image 4 times to half its current size through the use of strided convolution.
Additionally, there are skip connections with 1 × 1 strided convolution from the
beginning to the end of each of these blocks. Then a spatial pyramid pooling
layer follows. Spatial pyramid pooling is a method where atrous convolutions with
different atrous rates are computed at the last step and their output is concate-
nated. This tries to capture multi-scale information. In DeeplabV3 the output
of this is directly upsampled by a factor of 8 to the original size, which makes it
hard for the predictions to line up with the object contours, because of the loss
of spatial information through the use of convolution and the huge size difference.
Therefore, DeeplabV3+ upsamples the dense features first by a factor of 4 and
combines them with earlier features of the same size from a skip connection in
the semantic decoder. The earlier features have lost less spatial information and
can be used to match the object contours, while the upsampled dense features
contain information about the correct semantic segmentation. The output of the
semantic decoder is then upsampled by 4 again to reach the original input size.
This two-step process loses less spatial precision and can benefit from the spatial
information in earlier features.

Figure 3.3: architecture comparison between DeeplabV3 (a), a typical Encoder-Decoder-
model using spatial pyramid pooling (b) and DeeplabV3+ (c) (Chen, Y. Zhu,
et al. 2018)

16



3.2. Video Semantic Segmentation

3.2. Video Semantic Segmentation
Video semantic segmentation is semantic segmentation on image sequences. A
natural first approach for this is to use models trained for single-image semantic
segmentation and apply them to every image in the sequence. The drawback of
this strategy is that the temporal coherence of subsequent image frames is not
utilized. Therefore many models try to incorporate temporal coherence.

This can be done in several ways. One common idea is to pass a feature represen-
tation of the images from one frame to the next(Jin et al. 2017). Alternatively some
form of postprocessing, like for example CRF-based spatiotemporal reasoning, can
be used to refine the image-wise semantic segmentations(Chandra, Couprie, and
Kokkinos 2018). Another popular refinement strategy is to use optical flow to
project features forward to the next frame(Gadde, Jampani, and Gehler 2017).

Also, additional information can be used to estimate the changes from one image
to the next to improve the results of the model. One previous approach used depth
and the 6D camera transformation to warp the images accordingly(Wagner et al.
2018).

A different attempt at video semantic segmentation is to improve inference time
at the cost of accuracy, which can be important for real-time tasks or scenar-
ios where computational resources are limited. These attempts often reduce the
computational cost by forgoing the imagewise semantic segmentation for each im-
age and instead predict the semantic segmentation for a fixed or variable set of
keyframes and try to cheaply predict the semantic segmentation of non-keyframes
from the result of keyframes(W. Wang et al. 2021). Predicting the optical flow
and using it to compute the next frames’ semantic segmentation is a classic way
to generate results for non-keyframes(X. Zhu et al. 2017). Other efforts are to use
a shallow neural network to forecast the semantic segmentation from keyframes to
non-keyframes(Jain, X. Wang, and Gonzalez 2019).

This thesis tries to grasp the temporal coherence of successive image frames us-
ing a hidden state representation to improve the semantic segmentation compared
to the imagewise semantic segmentation. We will use predicted depth and cam-
era transformations to warp the image and optical flow to correct the remaining
difference.

3.2.1. Modular and Interpretable Models

All models rely on a good intermediate representation to generate high-quality
output, but the previous models have set no limitations to their representations
and offer no interpretability of the intermediate representations, which could be
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helpful when the model does not perform well or when trying to recover from badly
corrupted images. This problem is addressed by the functionally modularized
representation filter by using a recurrent design, which enables the model to use
previous frames of an image sequence of single frames that go missing or are badly
corrupted. To allow recurrent calculations the model has a hidden state H, that
can be split into a high-dimensional hidden state r̂ to explain the scene features
and a low-dimensional hidden state h to explain the scene dynamics. Additionally,
the model is split into multiple modules, which handle separate tasks important
for information transfer in image sequences and produce humanly interpretable
intermediate results, that are known to be important for the task and are used in
the prediction.

Figure 3.4: This shows one prediction step of the functionally modularized representation
filter from Wagner et al. 2018, which is the architectural basis of this thesis.

First, the input frame x̃t is processed by the backbone to generate the image
features r̃t for each time step t.

The first module is the motion filter, which gets the current and last image
features r̃t and r̃t−1 and the last low dimensional recurrent hidden state hm

t−1 as
input. The camera motion filter then combines the current and past features using
a motion encoder fmot and fusion model ffus with the current acceleration ãtt−1 as
additional input into camera motion estimate m̃t

t−1. The low-dimensional hidden
state hm

t−1 is then processed by a prediction model fpred before the output and the
motion estimate are then merged by an update gate model f c

upd. The output of
the camera motion filter is a 6D translation and rotation of the camera to the next
frame τ̂ tt−1 and the new low-dimensional hidden state hm

t .
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The second module is the feature filter module, which receives the previous high
dimensional hidden state r̂t−1 and the camera motion τ̂ tt−1 of the camera motion
filter. The high dimensional hidden state r̂t−1 is used by a depth decoder model
fdep to predict the current depth map d̂t−1. The predicted depth map d̂t−1 and
the camera motion are τ̂ tt−1 used to warp the high dimensional hidden state using
a projection fproj. This warped high dimensional hidden state r̄t is combined
with the current image features r̃t using an update gate f s

upd to compute the new
high-dimensional hidden state r̂t, which is the output of the feature filter module.

The current high dimensional hidden state r̂t is fed into a semantic decoder fsem
to predict semantic segmentations ŝt.

However, the functionally modularized representation filter was only trained on
relatively simple data, where its performance is harder to grasp. Furthermore,
the model takes care of the ego-motion, but ignores the motion of the individual
objects in the scene. Instead it just hopes, that the semantic decoder can fix
that using the current image features. We plan to overcome these limitations, by
introducing a new module, the object motion module, which predicts the residual
optical flow for each frame. Additionally, we train and evaluate our model on our
dataset, which should be much more challenging.
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In machine learning high-quality data is needed to train models. Since we use
multiple intermediate results to increase robustness and interpretability, we also
need to train our model to output these intermediate results. Therefore, we need
a dataset, which includes synchronized ground truth data for depth, semantic seg-
mentation, camera transformation, and optical flow, matching the corresponding
RGB images. Due to the lack of large-scale real datasets fulfilling these require-
ments, we decided to use synthetic data, which can be generated to contain all
of this information. In Addition to this synthetic data contains no noise from
the capturing process of ground truth data. This entails that the transfer of this
method to real-world data is more difficult and could face bigger hurdles. Still, it
enables much easier testing and development of methods given perfect data.

In future work, this method could be transferred to a real-world dataset, which
lacks some of the ground truth data, by either replacing the missing ground truth
with pseudo labels generated from a powerful foundation model like ”Segment
Anything”(Kirillov et al. 2023) or by learning the required representations in a
self-supervised manner like SfM-Net(Vijayanarasimhan et al. 2017).

4.1. Data Generation

We generate our dataset using the CARLA simulation. CARLA(Dosovitskiy et al.
2017) is an open-source autonomous driving simulator created to make it easier to
train and test autonomous driving simulations, perception algorithms and driving
agents. The simulator contains several helpful features to ease data generation.
First, it already includes many assets for maps, vehicles, and pedestrians. Ad-
ditionally, the project can display different weather conditions and times of day.
Another helpful feature is the traffic manager, which can control all vehicles and
let them move around the map realistically and autonomously. Then it also im-
plements sensors to capture and save RGB images, depth, semantic segmentation,
and optical flow. The absolute camera pose can easily be captured as well to
enable the calculation of the ground truth camera transformation.
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To generate our dataset, we captured 12000 sequences of 20 frames each with a
capturing frequency of 6.6 fps. For each time step, we compute an RGB image,
a depth map, semantic segmentation labels with 23 classes similar to Cityscapes,
forward optical flow for the image, and the 6D camera position. The sequences are
generated using the maps ”Town01”, ”Town02”, ”Town03”, ”Town04”, ”Town05”,
”Town06”, ”Town07” and ”Town10” from Carla. The sequences from ”Town02”
and ”Town10” are used as the validation set and the sequences from the remaining
maps are used as the training set. In each map, a handpicked number of random
vehicles including cars, bikes, buses, and trucks are spawned and moved around the
map using Carla’s traffic manager. Additionally, a fixed car is spawned from which
the data will be captured. This car will be called the ego-vehicle. The ego-vehicle
also moves around autonomously by using the traffic manager. Since the focus
of this work is on data with a moving camera all sequences where the ego-vehicle
didn’t move at least 3 meters in the whole sequence were rejected. Fig. 4.1a shows
RGB images, depth maps, semantic segmentation labels, and optical flow maps
from a sequence. Additional example data can be seen in Appendix A.

(a) RGB images

(b) depth maps

(c) semantic segmentation labels

(d) optical flow from moving objects

Figure 4.1: Generated sequence from our Carla dataset
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4.2. Augmentations
Since we use synthetic data our images don’t suffer from some problems, that real-
world images and real-world scenarios have to account for. To make the model
more robust to difficult conditions and increases the amount of available data we
apply different augmentations to the images. These augmentations include the
following.

The images and all ground truth data of a sequence are mirrored along the ver-
tical axis with a fixed chance. This is done to increase the amount of available
data. Since we only do semantic segmentation we don’t have to consider problems
of left and right lanes changing and can do this augmentation without problems.
This does hinder building a bias of vehicle placement based on expected driving
behavior. Another augmentation is Gaussian noise that is added to the images,
which can be seen in Fig. 4.2a and is supposed to simulate typical image noise. In
the next augmentation, a grey clutter is added to the images, which is shown in
Fig. 4.2b. We draw red circles around the clutter in the first frame of the sequence
to make the clutter augmentation easier to recognize. This should simulate slight
occlusions of the image, which could for example be caused by dirt on the cam-
era lens. The last augmentation is illumination changes that are applied to the
images. These can be severe and cause the images to be almost completely dark
or completely white, which can be seen in Fig. 4.2c. These intense illumination
changes can be caused by big changes in brightness in the captured scene or by
over- or underexposing the camera to light.

(a) Noise

(b) Clutter

(c) Illumination

Figure 4.2: Generated image sequences with different augmentations applied to them.
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4.3. Residual Optical Flow

Section 2.4 explains the general optical flow. Our image sequences are made from
a moving observer’s viewpoint with other moving objects in the scene. However,
the biggest influence for the total optical flow o is the optical flow caused by the
movement of the camera itself õ, which we will call the ego-optical flow because
it is caused by the movement of the ego-perspective. Since the camera moves,
everything around it, for example, the ground and static objects, seem to have
moved from one frame to the next. The second, smaller part of the optical flow is
the optical flow caused by the movement of other moving objects ō, like vehicles
or pedestrians, what we will call the residual optical flow since it is the remaining
optical flow of the scene. We assume that the total optical flow o is the sum of
those two types of optical flow, like Equation (4.1) states.

o = õ+ ō (4.1)
ō = o− õ (4.2)

For our model, it is important to separate the ego-optical flow õ and the residual
optical flow ō because we need only the residual optical flow ō for our training.
The CARLA simulator however only captures the total optical flow ot at time step
t. Since we have the depth dt and camera transformation τ̃ t+1

t we can calculate
the ego-optical flow õt. From there on we can calculate the residual optical flow ōt
how Equation (4.2) states.

To calculate the ego-optical flow õt at time step t we take the depth map dt of
shape N×M and covert it to a 3-dimensional point cloud d3dt using backprojection.
After that we apply the camera transformation τ̃ t+1

t to the 3 dimensional point
cloud d3dt to get an ego-warped point cloud d̄3dt+1. For this, we converted the point
cloud d3dt to homogeneous coordinates and reshaped them to shape N ·M × 4. We
then project this point cloud d̄3dt+1 back into the image using the camera intrinsics
c and the point clouds depth d̄3dt+1[d] and end up with an ego-warping map w̄t+1

t ,
which contains for every pixel from time step t the coordinate this pixel will be
in time step t+ 1. When we calculate the difference between this and an identity
warping map, we receive the ego-optical flow õt. Equations (4.4), (4.5), (4.6)
and (4.7) show the calculations explained here, with A_B being the concatenation
of A and B and � being the Hadamard division. Furthermore I(n,m) is a 3-
dimensional array of shape n × m × 2, where each position contains the current
coordinates, which is explained by the Equation (4.3). Fig. 4.3 shows the results
for an example, where Subfig a contains the total optical flow, Subfig b contains
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the ego-optical flow, and Subfig c contains the residual optical flow. We see in
the total optical flow in Fig. 4.3a, that everything moves towards us and to our
sides. This is because the ego-vehicle is moving in this sequence. One remarkable
exception is the car in front of us, which does not have any optical flow. This
is because the car moves with the same speed as we do and therefore effectively
does not move in the image. Additionally, the pedestrians to the left and the
left-turning car further in the front are more pronounced in the total optical flow,
this is because their movement adds to their total optical flow instead of negating
it. To check our observations we have a look at Fig. 4.3b, where we see the ego-
optical flow. As expected this does explain much of the total optical flow. Here
we can see, that the car in front of us should move because of our movement, and
the other car and the pedestrian blur with their background. When looking at
Fig. 4.3c we see the moving objects. We can easily make out the two cars and the
pedestrian. The only other visible residual optical flow is in the bottom left, which
is probably road markings. We should note, that the ego-vehicles hood does not
have any optical flow in the Fig. 4.3. This is because we mask the ego-vehicles
hood since it always stays the same place and can therefore be masked to avoid
confusing the model.

I(n,m)[x, y] = (x, y) (4.3)
d3dt = I(N,M)_dt (4.4)
d̄3dt+1 = τ̃ t+1

t · d3dt (4.5)
w̄t+1

t = c · d̄3dt+1 � d̄3dt+1[d] (4.6)
õt = w̄t+1

t − I(N,M) (4.7)

(a) total (b) ego (c) residual

Figure 4.3: total optical flow and its’ components
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Label Class Label Class Label Class
0 Unlabeled 8 Sidewalk 16 Rail track
1 Building 9 Vegetation 17 Guard Rail
2 Fence 10 Vehicles 18 Traffic Light
3 Other 11 Wall 19 Static
4 Pedestrian 12 Traffic Sign 20 Dynamic
5 Pole 13 Sky 21 Water
6 Road Line 14 Ground 22 Terrain
7 Road 15 Bridge

Table 4.1: all class labels for the semantic segmentation and the corresponding
classes

4.4. Class Distribution
We have 23 different classes for the semantic segmentation labels. For each class
label the corresponding class is stated in Table 4.1. However, not all classes appear
with the same frequency. This imbalance is shown in Fig. 4.4, which is split into
training data in Subfig a and validation data in Subfig b.

The most common classes are ”Building”, ”Road” and ”Sky” because they are
common in the image and take a large number of pixels in each image. The im-
portant class ”vehicles” appear commonly, which is good. Pedestrians are another
important class, but they appear much less frequently. This is on the one hand,
because each pedestrian takes a smaller number of pixels, when they appear in the
image, because of their smaller size. On the other hand is the CARLA simulator
designed for car traffic and the CARLA maps allowed only a very limited number
of 13 pedestrians to spawn, while some maps contain up to 200 vehicles. We see,
that the class ”unlabeled” is rare in the dataset, which is expected for a synthetic
dataset. The class distributions of training and validation data seem very similar
with one notable exception. The validation data contains almost no bridges, while
the training data possesses an adequate amount of bridge pixels. This difference
comes down to the fact, that training and validation data is captured on different
maps and the maps for validation seemingly contain no or almost no bridges.
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4.4. Class Distribution

(a) Training Set (b) Validation Set

Figure 4.4: histograms for the number of pixels each class occurs in the data

27





5. Model

Many models face two problems, which we want to address in this thesis. The
first one is that small purposeful changes, which alter the visual appearance only
slightly, can lead models to predict completely wrong results. This can also lead to
loss of temporal coherence. The second problem plays into this. When problems
occur the intermediate states of those models offer no way to explain the problem,
since they are not humanly interpretable, but just learned.

We use a model made up of modules, which each handle a separate part of the
pipeline and produce humanly interpretable intermediate results. This has the
additional advantage of making the pipeline more robust since we know that the
humanly interpretable intermediate results are important for the task and avoid
situations where a small change in the input can mess up the result, although the
input seems unchanged. Our model follows an encoder-decoder-based design with
the Recurrent Structured Filter as a recurrent neural network, which can be seen
in Fig. 5.1. The structure of the Recurrent Structured Filter can seen in Fig. 5.2
and is explained in detail in the following section. The general overview is the
following. The backbone B encodes the images x̃t into image features r̃t. The
previous and current image features and the low-dimensional hidden state ht−1

are then used by the ego-motion filter C to predict the camera transformation
τ̂ tt−1 from the last to the current frame. Meanwhile, the feature filter F predicts
the past images’ depth d̂t−1 from the previous high-dimensional hidden state r̂t−1.
The predicted depth and camera transformation are used to ego-warp the previous
high-dimensional hidden state r̂t−1. This result r̄t is then used together with the
current image features r̃t to predict the residual optical flow ôt in the object motion
filter and to calculate the current high-dimensional hidden state r̂t, which is then
used by the semantic decoder to predict the semantic segmentation labels ŝt.

5.1. Modules
Here we break down each module of our pipeline. First, we have a backbone model
B, which computes features r̃t for the RGB image x̃t at time step t, which will be
used by multiple modules in our pipeline.
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Figure 5.1: Overview of our model: The Encoder B computes the image features r̃t from
the images x̃t for time step t. These are then fed into the Recurrent Struc-
tured Filter, which also receives the previous hidden state Ht−1 and outputs
the current hidden state Ht−1 for the next step and the high-dimensional
hidden state r̂t for the decoder D. Then the semantic decoder predicts the
current semantic segmentations ŝt.

The pipeline has a low dimensional hidden state h to grasp the motion of the
ego-vehicle and a high dimensional hidden state r̂ to explain the scene features,
which are used to transfer information from one frame to the next.

5.1.1. Ego-Motion Filter

The first module is the Ego-Motion Filter C, which gets the current and last image
features r̃t and r̃t−1 and the last low dimensional hidden state ht−1 as input. The
camera motion filter then combines the current and past features using a motion
encoder fmot and camera encoder fce into a camera motion estimate m̃t

t−1. The
reason to have two subsequent models is that the motion encoder might be shared
between modules. The low-dimensional hidden state ht−1 and the motion estimate
are then merged by an shallow fully connected neural network f c

upd. The output
of the camera motion filter is a 6D translation and rotation of the camera to the
next frame τ̂ tt−1 and the new low-dimensional hidden state ht. These calculations
are clarified in Equations (5.1) and (5.2).
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Figure 5.2: Proposed structured recurrent filter: In the top left are the low- and high-
dimensional recurrent hidden states, which serve as input for all modules.
In the center top is the feature filter module. In the center bottom is the
ego-motion filter module and in the bottom right is the object motion filter
module. In the top right is the update gate, which produces the next recur-
rent hidden state. This is also used by the semantic decoder to predict the
semantic segmentation.

m̃t
t−1 = fce (fmot (r̃t−1, r̃t)) (5.1)

τ̂ tt−1, ht = f c
upd

(
m̃t

t−1, ht−1

)
(5.2)

5.1.2. Feature Filter
The second module is the Feature Filter module F , which receives the previous
high dimensional hidden state r̂t−1 and the camera motion τ̂ tt−1 of the camera
motion filter C. The high dimensional hidden state r̂t−1 is used by a depth decoder
model fdep to predict the current depth map d̂t−1. The predicted depth map d̂t−1

and the camera motion are τ̂ tt−1 used to warp the high dimensional hidden state
using a projection fd

proj. We do this since we will be using the high-dimensional
hidden state to predict the semantic segmentation. And since we predicted a
camera transformation and depth map, we can calculate how our surroundings
should change if no other object moves. Incorporating this information into the
high-dimensional hidden state makes it a much more accurate representation of
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the scene content. The calculation of fd
proj is explained below in the subsection

about ego-warping. This ego-warped high dimensional hidden state r̄t is combined
with the current image features r̃t using an update gate f s

upd, which is explained
below, to compute the new high-dimensional hidden state r̂t, which is the output
of the feature filter module. These calculations are stated in Equations (5.3), (5.4)
and (5.5).

d̂t−1 = fdep (r̂t−1) (5.3)

r̄t = fd
proj

(
r̂t−1, d̂t−1, τ̂

t
t−1

)
(5.4)

r̂t = f s
upd (r̄t, r̃t) (5.5)

Ego-Warping

To calculate fd
proj at time step t we take the current predicted depth map d̂t−1 of

shape N×M and covert it to a 3 dimensional point cloud d̂3dt−1. After that we apply
the predicted camera transformation τ̂ tt−1 to the 3 dimensional point cloud d̂3dt−1 to
get an ego-warped point cloud d̂3dt . For this, we converted the point cloud d̂3dt−1 to
homogeneous coordinates and reshaped them to shape N ·M×4. We then project
the ego-warped point cloud d̂3dt back into the image using the camera intrinsics
c and the point clouds depth d̂3dt [d] and ends up with an ego-warping map wt+1

t ,
which contains for every pixel from time step t − 1 the coordinate this pixel will
be in time step t. The ego-warping map wt

t−1 is then applied on the previous high-
dimensional hidden state r̂t−1 to receive an ego-warped high-dimensional hidden
state r̄t. Equations (5.6), (5.7), (5.8) and (5.9) show the calculation of fd

proj with
A_B being the concatenation of A and B and � being the Hadamard division.
Furthermore I(n,m) is a 3-dimensional array of shape n × m × 2, where each
position contains the current coordinates, which is explained by the Equation (4.3).

d̂3dt−1 = I(N,M)_d̂t−1 (5.6)
d̂3dt = τ̂ tt−1 · d̂3dt−1 (5.7)

wt
t−1 = c · d̂3dt � d̂3dt [d] (5.8)

r̄t = wt
t−1 (r̂t−1) = fd

proj

(
r̂t−1, d̂t−1, τ̂

t
t−1

)
(5.9)
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Update Gate

The update gate f s
upd is similar to the gates in Subsection 2.2.1 based on Equa-

tion (2.4). However, our update gate f s
upd is more inspired by Equation (2.10). We

add a convolutional layer fp
c for the ego-warped high dimensional hidden state r̄t,

another convolutional layer f c
c for current image features r̃t, and a bias bu. These

are then summed, fed through an elementwise sigmoid function sig, and used as
weight matrix gt. The weight matrix gt contains values in the range [0, 1], that de-
cide what should be kept from the high-dimensional hidden state and what should
be replaced by values from the current image features r̃t. The Equations (5.10)
and (5.11) show the computation of our update gate, where ◦ is the Hadamard
product.

gt = sig (fp
c (r̄t) + f c

c (r̃t) + bu) (5.10)
f s
upd (r̄t, r̃t) = gt ◦ r̃t + (1− gt) ◦ r̄t (5.11)

5.1.3. Object Motion Filter
The third module is the Object Motion FilterM, which gets the ego-warped high
dimensional hidden state r̄t from the feature filter module and the current features
r̃t. Since the feature filter already ego-warped the high dimensional hidden state
it already includes all movement caused by the ego-movement. Therefore, the flow
decoder fflow only needs to predict the residual optical flow ôt because the cause
for the ego-optical flow is already removed. This step is shown in Equation (5.12).

ôt = fflow (r̄t, r̃t) (5.12)

5.1.4. Semantic Decoder
The current high dimensional hidden state r̂t is fed into an sematic decoder D to
predict semantic segmentations ŝt, like Equation (5.13) states.

ŝt = D (r̂t) (5.13)

5.1.5. Summary
Therefore, the whole pipeline of our method is shown in Equations (5.14), (5.15),
(5.16) and (5.13). In addition to that Equation (5.17) shows the parallel calculation
of the object motion filter.
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r̃t = B (x̃t) (5.14)
τ̂ tt−1, ht = C (r̃t−1, r̃t) (5.15)

r̂t = F
(
r̂t−1, τ̂

t
t−1, r̃t

)
(5.16)

ôt =M (r̄, r̃t) (5.17)

5.2. Training Strategy
The modular nature of our model and the number of meaningful intermediate
results allows us to employ a more sophisticated training strategy to ease the
training process and enforce our model to learn interpretable representations.

5.2.1. Loss Functions

Since we have multiple intermediate results as well as semantic segmentation, we
also utilize several different losses to force our model to learn all the representa-
tions.

We use Cross-Entropy (CE) loss LS between predicted ŝ and ground truth se-
mantic segmentations s̄ to train the semantic segmentation. This is shown in
Equation (5.18) for C classes and with ground truth semantic segmentations of
shape N and predicted semantic segmentations of shape N × C.

CE (ŝ, s̄) = − 1

N

N∑
n=1

log

(
exp (ŝn,s̄n)∑C
c=1 exp (ŝn,c)

)
(5.18)

The loss for the 6D camera position is split into rotation loss LR and translation
loss LR. The translation loss LT is the L1 norm between the predicted t̂ and
ground truth translation t̄. The rotation loss LR is the L1 norm between the Euler
angles of the predict ê and ground truth rotation ē. These losses are also stated
in Equations (5.20) and (5.19).

LR (ê, ē) = |ê− ē| (5.19)
LT

(
t̂, t̄
)
=
∣∣t̂− t̄

∣∣ (5.20)

We use the L1 norm between predicted d̂ and ground truth depth d̄ as loss LD

to train the depth like Equation (5.21) indicates.
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LD

(
d̂, d̄
)
=
∣∣∣d̂− d̄

∣∣∣ (5.21)

For the training of the optical flow, we use a loss LO inspired by RAFT(Teed and
J. Deng 2020). We predict N iteration of the optical flow for each time step with
ôt being the t-th iteration of the current prediction. Then we calculate the mean
L1 norm between each iteration of the predicted and ground truth optical flow ō.
These norms are then exponentially decayed by a factor γ. γ is a hyperparameter,
which can be set arbitrarily, but we keep it at the recommended value of 0.8 in all
of our training. It should be noted here, that the loss decays from the last to the
first iteration and not the other way around. The intention behind this is, that the
model should focus on predicting the correct optical flow at the end since this is
the one that we will use. The earlier iterations are just trained as an intermediate
step for the last iteration and therefore their weight is decayed. Equation (5.22)
states the calculation of LO.

LO (ô, ō) =
N∑

n=1

γN−n|ôn − ō| (5.22)

5.2.2. Training Stages
We train the pipeline in multiple individual steps each focusing on a specific part
of the pipeline to make training easier and iterate faster on training approaches.

Multitask Pretraining

The first step is a general multitask pretraining. The architecture is shown in
Fig. 5.3. For this training step, we only train on single images or image pairs where
necessary. Additionally, we only use mirroring and normalization augmentation
for the data in this training step. We start with this simplified training stage to
get the core parts of each module to accomplish moderate results. In this first
training step, all modules will start from random initialization and therefore will
perform poorly in the beginning. The only exception is the backbone, which is
pretrained on ImageNet(J. Deng et al. 2009). If we trained the whole pipeline at
once from random initialization each module would have to train to predict the
correct output, but they would also train to compensate for the poor intermediate
results of the other modules. The same can be said inside each module, where
each part of the module not only needs to learn to predict the correct result but
also to adjust for the poor results of prior parts. This could lead to vanishing
or exploding gradients and would lead to a continuous readjustment between the
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modules, which slows the training down. Therefore, we start with the minimal
possible number of dependent models, while still training as much of our model
as possible. For the same reason, we don’t start with training whole modules, but
just key parts of each module.

Figure 5.3: Training procedure for the multitask pretraining

The camera predictor is trained relatively close to the full pipeline. We feed
two consecutive images into the Motion Encoder fmot. The result is then used by
the camera encoder fce to predict a camera motion estimate m̃t

t−1. Since we don’t
train with a longer image sequence we don’t have a hidden state H. Therefore, we
omit f c

upd and predict the 6D translation and rotation of the camera to the next
frame τ̂ tt−1 directly. This training is based on Equations (5.1) and (5.2).

For the feature filter only the depth decoder fdep is trained. This submodel
would normally receive the previous high-dimensional hidden state r̂t−1 as input.
As we explained before we don’t have the hidden state and for the same reason
we are going to substitute it with the image features r̃t. We base this training on
Equation (5.3).

We modified the training of the semantic segmentation decoder just like the
training of the depth decoder. The only difference in the pipeline is that the depth
decoder receives the previous high-dimensional hidden state and the semantic de-
coder receives the current high-dimensional hidden state. But since we work on
single images only there is no difference and we can use the same image features
for both. The training is modified from Equation (5.13).

The optical flow decoder is not trained in this step, because it depends too much
on other modules for the previous ego-warped high-dimensional hidden state ht.
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Ego-Motion Training

After the multitask pretraining the ego-motion filter is trained on its own just like
the whole pipeline in Fig. 5.2 suggests. The low-dimensional hidden state h0 is
initialized randomly and then learned. From there on the whole ego-motion filter
module is trained on image sequences using the rotation LR and translation loss
LT . This training is done using only the mirroring and normalization augmentation
for the data and can be run in parallel to the feature filter training and the object
motion training. We set up the training in this way to train the whole ego-
motion filter and hence also the update gate f c

upd, which until now was not trained.
Additionally, we now train on image sequences and therefore enable the module
to learn to use the low-dimensional hidden state to retain information from one
frame to the next.

Feature Filter Training

The feature filter is trained in an additional step after the multitask pretraining.
The training procedure is inspired by the training in the functionally modularized
representation filter(Wagner et al. 2018). For each image sequence a single image
is copied 4 times and a strong noise is applied to 2 quadrants of each image with
each quadrant being chosen two times. This can be seen in Fig. 5.4. Before this,
the mirroring and normalization augmentation is applied to the image. The model
for this training consists of the complete feature filter as it is described in Fig. 5.2
and the semantic decoder. We do this training stage in this way to train the whole
feature filter module and the update gate f s

upd, which has been untrained until
now. Furthermore, the module and hence the depth decoder are working on the
high-dimensional hidden state r̂, which enables the module to retain information
from one frame to the next. This is necessary since we now train the module on
image sequences. Therefore, this training aims to force the model to remember
big parts of the output in the form of the high-dimensional hidden state r̂, since
this is an important part of this module’s functionality. For this reason, there is
no movement in the sequence since the images are all the same apart from the
noise and for the same reason is the noise so strong that the image is lost in the
corresponding quadrants. Additionally, we fine-tune the backbone B to adjust to
the now changed input. Here we use the depth L1 loss LD and the CE LS to train
this stage. This training can be done in parallel to the ego-motion filter training
and the object motion training.
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Figure 5.4: Here is a sequence of input images used for feature filter training. As the
reader can see each frame has a strong noise applied to it.

Object Motion Training

The object motion filter is trained without the remaining models in a simplified
manner with just image pairs and using only the mirroring and normalization
augmentation for the data. The ground truth optical flow is calculated as Equa-
tions (4.1) and (4.2) state it. To predict the optical flow ô the complete object
motion module from Fig. 5.2 is used. Instead of the current high-dimensional hid-
den state r̂t at time step t we use the past image features r̃t−1, which are then
ego-warped using the ground truth depth d̄t−1 and camera transformation τ̄ tt−1

similar to Equation (5.4), and the current image features r̃t as input. The object
motion loss LO stated in Equation (5.22) is used for the training.

End-to-End Fine-Tuning

The end-to-end fine-tuning is accumulating all trained modules from the ego-
motion filter training, the feature filter training, and the object motion training
and trains the whole pipeline on image sequences to adjust individual parts to
each other. All previously explained losses are used for this training. To make
the data more challenging and the model more robust we introduce the Gaussian
noise, cluttering, and illumination augmentations for this last training step.

5.3. Implementation Details
We train on images of size 512 × 1024. In training a random subset of each
image sequence from the training data is used, while in validation for a required
sequence length of N , the first N frames of the validation data are used. The
high-dimensional hidden state is of size (512× 64× 128) and the low-dimensional
hidden state is of size 128.

Our backbone is based on ResNet18(K. He et al. 2015) and we use the pretrained
weight from torchvision. But we set the atrous rate for the second to last layer to
2 and the atrous rate for the last layer to 4, which is inspired by DeeplabV3(Chen,
Papandreou, Schroff, et al. 2017). The hidden dimension of our backbone’s output
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is 512. Our motion encoder consists of 3 blocks, which are made up of a convolu-
tional layer with a 3× 3 kernel, followed by a batch normalization layer, followed
by a ReLu layer. The hidden dimension of all of the blocks is 512. The camera
encoder also consists of 3 blocks, which are made up of a convolutional layer with
a 3× 3 kernel, followed by a batch normalization layer, followed by a ReLu layer.
The hidden dimension of the first block is 512, for the second block it is 256 and
for the third block, it is 128. Our depth predictor consists of 3 blocks each consist-
ing of a convolutional layer, a batch normalization layer, and a ReLu layer. The
hidden dimension of these blocks is 384 for the first and second blocks and 1 for
the third block. Furthermore, the kernel size for the first block is 3× 3 and 1× 1

for the second and third block. Our flow decoder is based on the small RAFT
model(Teed and J. Deng 2020). We use both the context and the feature encoder
and run the RAFT model for 12 iterations, of which we take the last as output.
The semantic decoder receives features from the backbone using skip connections.
The hidden dimension of these skip features is 64, but they are still modified by
the warping of the feature filter module. These skip features are fed through a
block of 1× 1 convolutional layer, a batch normalization layer, and a ReLu layer
with a hidden dimension of 48. Then the current high-dimensional hidden state is
upsampled and concatenated. These combined features are then fed through two
blocks of convolution, batch normalization, and ReLu. The kernel sizes are 3× 3

and the hidden dimensions are 256. After this follows a dropout layer and a last
convolution layer with a hidden dimension of 23, which is the number of classes of
our dataset.

The Table 5.1 contains the loss, learning rate, and the number of trained epochs
for each of our training stages in our final training.

Training Stage Loss LR Epochs
Multitask Pretraining LS + LT + LR + LD 3 · 10−4 60
Ego-Motion Training LT + LR 3 · 10−4 90

Feature Filter Training LD 3 · 10−4 45
Object Motion Training LO 10−5 100
End-to-End Fine-Tuning LS + LT + LR + LD + LO 5 · 10−5 60

Table 5.1: Training parameters used by our training stages
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We evaluate our models and the baseline performance on a set of common metrics.
All models will be evaluated on image sequences of 20 frames.

6.1. Metrics
The first metric we use is mIoU, which is a standard metric for semantic segmen-
tation. Equation (6.1) shows the calculation of mIoU given predicted semantic
segmentation labels ŝ and ground truth semantic segmentation labels s̄ consisting
of one class per pixel. Additionally, we have C classes, δij is the Kronecker-delta
of i and j, sn is the n-th value of the semantic label s, and N is the total number
of element our semantic label posses. In mIoU each class is weighted the same in
the final averaging. But since the classes ”unlabeled”, ”bridge”, and ”water” are
very rare we are going to omit them in the calculation of mIoU. In addition to
that we omit the class ”other”, because of its unspecific nature.

mIoU (ŝ, s̄) =

C∑
c=1

∑N
n=1 δŝnc · δs̄nc∑N

n=1 δŝnc + δs̄nc − δŝnc · δs̄nc
(6.1)

The last metric that we are going to use is accuracy. Accuracy is the percentage
of image labels, that were predicted correctly. Equation (6.2) shows the calculation
of the accuracy for predicted ŝ and ground truth semantic labels s̄, which both
have a size of N and both give a single class for each pixel.

accuracy (ŝ, s̄) =

∑N
n=1 δŝn,s̄n
N

(6.2)

6.2. Baselines
We also evaluate different baselines in contrast to our model. The first baseline
predicts the semantic segmentation imagewise for the whole sequence. This base-
line will be called ”imagewise baseline” and its structure can be seen in Fig. 6.1.
We use the DeeplabV3+ encoder as the backbone and the decoder as the semantic

41



6. Evaluation

decoder. The reasoning behind this baseline is that we want to measure the effect
our recurrent structured filter has. When we contrast this baseline with our model
in Fig. 5.1, we see that this baseline is like our model, but without the recurrent
structured filter. Hence this baseline knows nothing about past frames and works
on every frame as an individual image. This baseline does not incorporate tempo-
ral coherence in any way. The advantage of this baseline is its simple structure,
which makes training especially easy and fast.

Figure 6.1: This showcases the architecture of the imagewise baseline.

The second baseline is based on convolutional LSTMs. The architecture can be
seen in Fig. 6.2. Convolutional LSTMs are LSTM models, which use convolution
as an activation function to integrate their inputs before they enter the LSTM
memory cell, which is described in Subsection 2.2.1. Our convolutional LSTM
baseline has two layers. The intention behind this baseline is to compare how our
model performs in contrast to a more general approach to incorporate temporal
coherence. The advantage of this baseline is, that it can use past information
to improve its prediction in contrast to the imagewise baseline. But this makes
more training necessary and this baseline has no inherent structure that guides its
predictions.

Figure 6.2: This showcases the architecture of the convolutional LSTM baseline.

6.3. Results
In this section we have a look at the qualitative and quantitative results of our
model and the baselines.
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6.3.1. Qualitative Results

Here we take a look at the qualitative results of this thesis. The two baselines
receive RGB images and predict only semantic segmentation labels. Hence, we
can only compare the predicted and ground truth semantic segmentation. Our
model also returns the predicted depth, which we can also compare to the ground
truth.

We have a closer look at semantic segmentation results from Fig. 6.3. Our
example is an image sequence of 4 frames. We see that augmentation was applied
to the image sequence. This is especially clear from the heavy illumination change
in the third frame. We also see the clutter augmentation, although the placement
for this is in the middle of the sky should cause no problems for any model. The first
and second frames are relatively similar. Hence we first take a look at these. All
models can detect the turning car in front of us, but while the convolutional LSTM
baseline only detects a very rough outline of the car, is the imagewise baseline
able to match the contour more closely and our model produces an almost ideal
outline. The large building in the background and the left part of the background
are predicted moderately good by our model. In contrast, the imagewise baseline
only detects parts of the large building and the left background while making up
trees in the background where there are none. The convolutional LSTM baseline
predicts both poorly and only guesses rough shapes of the background.

The third frame differs from the second and first frame because of its strong
illumination. Our model can make use of its hidden state and predict the turning
vehicle and the vehicles in the center with great accuracy particularly given the in-
put. The imagewise baseline also predicts the turning vehicle with great accuracy
but loses the center vehicles almost completely. In comparison the convolutional
LSTM baseline detects the turning and center vehicles with comparable accuracy
to the last frame, which gives it a better result for the center vehicles than the
imagewise baseline, but a worse outline of the turning vehicle than both other
models. The background prediction quality also stays the same for the convolu-
tional LSTM baseline, which could be explained by the recurrent LSTM memory
cells in the baseline, but given its poor prior performance, this still leaves it with
a bad result. In contrast, the imagewise baseline cannot benefit from past knowl-
edge and hence achieves bad classifications in the rest of the frame. However, our
model can effectively use its hidden state to fill gaps in the image features and
predict the remaining image adequately.

The fourth frame is similar to the third frame in that it is overexposed to light.
The results in this frame are therefore similar to the results from the frame before.
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Figure 6.3: RGB images, semantic segmentation predictions for our model and both
baselines and ground truth semantic segmentation labels

Furthermore, we take a look at another qualitative result for semantic segmen-
tation. Fig. 6.4 is structured in the same way like Fig. 6.3. We see, that the first,
second, and fourth frames are dark but visible, the third frame however is almost
completely black.

In the first frame, all models detect the car in front of the ego-vehicle with good
accuracy. Furthermore, they also detect the remaining image pretty well except
for the right background, which is too dark.

The second frame looks similar to the first and is detected equally well.
The third frame is completely dark, which can be handled easily by our model.

The prediction of our model is like its prediction before, which makes for a good
prediction. The car in front of the ego-vehicle just loses its sharp contours. The
same is true for the convolutional LSTM baseline, which predicts are blurred ver-
sion of its previous prediction and therefore achieves a good result. The imagewise
baseline cannot use past knowledge and gives a pretty poor prediction. Most im-
portantly it detects only a small part of the vehicle in front of the ego-vehicle,
which could be interpreted as a vehicle, that is much farther away by a subsequent
autonomous driving agent. This false estimate could lead to a dangerous crash.
Additionally, the right half of the prediction of the imagewise baseline is bad. It
detects vehicles, that are not there, and misses a part of the sidewalk.
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The fourth frame is again similar to the second frame and all models return to
their previous prediction quality.

Figure 6.4: RGB images, semantic segmentation predictions for our model and both
baselines and ground truth semantic segmentation labels

More qualitative comparisons of the semantic segmentation labels between our
model and the two baselines can be seen in Appendix B.

Since our model also predicts depth maps, we have a look at the depth predic-
tions as well. In the Fig. 6.5 we see the RGB images, the predicted and ground
truth depth maps, and the weight matrix of the update gate f s

upd, which updates
the high-dimensional hidden state, which will be used for the depth prediction in
the next frame. For the update gate white means, that the current image features
are used for the output, and black means, that the ego-warped high-dimensional
hidden state is retained.

We see, that the depth prediction in the first frame is already good. This is
the cause because we omit the first depth prediction, which is done using only the
learned initialization of the high-dimensional hidden state without any input from
the image. Instead we shift the depth predictions by one step, which matches with
the way we trained this filter. Since the first hidden state is only learned it is not
surprising that the update gate almost exclusively takes the image features as the
new high-dimensional hidden state. The only exceptions are some parts, which
are sky or road in our image and are in places, that most often have those classes
in these positions. Hence, there is no necessity to change the state.
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The second predicted depth is very good. The update gate uses image features
especially in the position of the turning car since it moves on its own and its
movement cannot be explained by the ego-warping of the state.

The third image is barely visible. Nonetheless, the depth map looks just like
the depth maps before. This is because the update gate was able to filter the bad
visibility and the corresponding poor image features of the frame out. As we can
see the update gate takes almost only the ego-warped high-dimensional hidden
state since the image features are probably poor. A notable exception is again the
turning car.

The fourth frame is almost identical in its result to the second frame, although
its visibility is a bit worse. We notice, that the ego-vehicle hood is always using
the current image features, which is probably explained by strong biases making
the value in these positions useless because the hood is always going to be in this
position.

Figure 6.5: RGB images, predicted depth maps and weight matrix of the update gate
fs
upd from our model and ground truth depth maps

More qualitative comparisons of the depth maps and update gates predicted by
our model and the ground truth depth maps can be seen in Appendix B.

Fig. 6.6 contains results from our model. The figure shows the RGB image in
the top row, the weight matrix of the update gate f s

upd in the center row, and the
semantic segmentation in the bottom row. The weight matrix of the update gate
f s
upd indicates if the previous ego-warped high-dimensional hidden state r̄t or the

current image features r̃t is used for the next high-dimensional hidden state r̂t,
which es then used by the semantic decoder. This means, that the update gate
images indicate, which part of the current image influences the state, which is
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used for the predicted semantic segmentation in the same column. The darker the
image of the update gate is, the more of the state is kept and the brighter it is the
more of the image features are adopted.

We see, that in the first frame, the update gate is mostly very bright, which seems
intuitive, since we expect the model to use the image features almost exclusively
for the first frame since we haven’t integrated anything from the image yet. Only
a narrow part in the center of the frame is kept. This part contains mostly the
ego-vehicle hood and the road directly in front of the ego-vehicle. The reason for
this is, that the starting high-dimensional hidden state is learned and can therefore
incorporate biases.

The update gates in the second, third, and fourth frames are similar. We see that
the car in front of us, and the trees are mainly using the current image features.
For the car, this is because the current ego-warped high-dimensional hidden state
already includes our movement, but not the movement of the car. Therefore we
need the image features to account for that. In the case of the trees, the reason
for using the image feature is probably to gain sharper contour predictions, since
trees have a jagged outline and are harder to predict exactly. Another reason the
update gate uses the image features for the car and the trees is to fill disocclusion
points. The remaining parts of the image are mostly taken from the ego-warped
high-dimensional hidden state because it already contains the ego-warping and
explains the changes to static objects with sufficient precision.

Figure 6.6: This figure contains RGB images, weight matrix of the update gate fs
upd,

and semantic segmentations from our model. For the update gate black
means, that only the eqo-warped high-dimensional hidden state r̄t is kept,
and white means, that only the current image features r̃t are kept. The
brightness determines the blending between them.

Our dataset also contains image sequences, where our model fails to achieve good
results. Fig. 6.7 contains such a sequence. We see the RGB images in the top row,
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our models predicted semantic segmentations in the center row, and the ground
truth semantic segmentations in the bottom row. We see strong discrepancies
regarding the sidewalk and the trees in the background. Furthermore, the shape
of the vehicle in the front and to the left is rough. At last, the two vehicles to the
right in the back are missing. When looking at the image it reveals itself, that
this result is due to the poor visibility, because of the darkness. Taking this into
account makes the detection of the two vehicles and the detection of the traffic
light good. Additionally, there is no way to detect the trees or vehicles in the
background, since they are not visible. The sidewalk is also not visible and was
probably only detected, because of the bias in the trained high-dimensional hidden
state.

Figure 6.7: This figure contains a case where our model fails. In the top row are the RGB
images, in the center row are our model’s predictions, and in the bottom row
are the ground truth semantic segmentation labels.

6.3.2. Quantitative Results

In Table 6.1 we have a look at the quantitative results for our model as well as the
two baselines. We see, that our model performs slightly better than the imagewise
baseline and noticeably better than the convolutional LSTM baseline in mIoU.
For accuracy, we perform better than both baselines.

Model mIoU accuracy
imagewise baseline 0.2793 71.71%
conv. LSTM baseline 0.2452 70.38%
ours 0.2928 73.60%

Table 6.1: total metrics for our model and the two presented baselines
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In the next step, we take a closer look at the metrics throughout the sequence.
Fig. 6.8 shows the performance of our model and both baselines for each frame
independently. In Subfig a we can see, that the convolutional LSTM baseline
achieves a much lower mIoU than the other models. In the first frame, it has a
mIoU of 0.2337, which jumps to 0.2404 in the second frame and then improves
to 0.2494 in the 12th frame. After that, the mIoU slowly decreases to 0.2459. In
contrast to that the imagewise baseline reaches the best mIoU of 0.2817 at the
first frame and then slowly decreases to 0.2766 at the last frame. Our model starts
slightly below the imagewise baseline at 0.2789, improves strongly to 0.2893 in the
third frame, and then improves slowly to 0.2986 in the 13th frame. After that, it
decreases slowly to 0.2916 in the last frame.

When we look at the accuracy over time in Subfig b we see a similar trend.
The convolutional LSTM baseline starts the weakest with an accuracy of 68.54%
and then improves first rapidly, later moderately over the whole sequence until it
reaches an accuracy of 71.18% for the final frame. The imagewise baseline again
starts with the best first frame at 71.80% accuracy and then stagnates around this
value until it ends up with 71.86% accuracy for the last frame. Our model also
starts very slightly below the imagewise baseline with an accuracy of 71.73% and
then improves first quickly, after that slower until it reaches 73.93% at the 10th
frame. Then our model stagnates around this value and ends with an accuracy of
74.04% for the last frame.

The results match our expectations to some extent. It seems intuitive, that
the imagewise baseline achieves similar results for all frames, like in the accuracy
because it treats all frames the same no matter where they are in the sequence. The
convolutional LSTM baseline and our model both improve their results throughout
the sequences since they can retain information to help them with the semantic
segmentation of the next frame. This improvement decreases as the prediction
gets better until the performance stagnates. As we see in the accuracy our model
reaches this stagnation faster and at a higher value, which in our interpretation
means that our model is better fit to use its retained information for the next
frame than the convolutional LSTM baseline. But there are observations, which
are harder to explain. For some reason, all models receive a noticeable drop in
mIoU performance at the 11th or 12th frame. An explanation for the convolutional
LSTM model and our model could be that those models were only trained for
sequences of 10 frames and this leads to problems. But since the imagewise baseline
shows a similar drop it could be suspected that there is some underlying difficulty
in the data. Additionally, it could be suspected that our model stagnates to such
a strong degree after the 10th frame because of this training routine.
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(a) mIoU (b) Accuracy

Figure 6.8: This image shows how our model and the two presented baselines performed
on the metrics for each frame in a sequence.

Tables 6.2 and 6.3 show the mIoU and accuracy for each class for our model and
the two baselines. Our model outperforms both baselines for most classes. Fur-
thermore, we have a look at the most important class for an autonomous vehicle
scenario, namely pedestrians and vehicles. The pedestrians are best perceived by
our model in both the mIoU metric with 0.09471 and the accuracy with 10.39%.
In comparison to that the imagewise baseline achieves a mIoU of 0.07163 and an
accuracy of 7.67% and the convolutional LSTM baseline lacks behind with a mIoU
of 0.00284 and an accuracy of 0.29 %. However, the performance is lower than
one would wish for pedestrians since they are very important to recognize to avoid
fatal crashes. The lower performance is probably because of two reasons. First
pedestrians are smaller and more narrow than cars. This makes them harder to
spot especially when the image is downsampled by repeated convolutions. Addi-
tionally, the Carla simulation is more designed for cars. Even on the large maps
only at most 13 pedestrians were able to spawn and roam around, while some
maps are inhabited by 200 vehicles. This together with the smaller appearance
of pedestrians leads to a smaller number of pixels and fewer images containing
pedestrians as Fig. 4.4b indicates. Additionally, pedestrians, which are in frames
with poor visibility as shown in Fig. 6.7 are very hard to see because they are often
on the sidewalk, where the visibility is especially bad.

Another important class is the class of vehicles. All models achieve very good
results for this class. The imagewise model performs best with a mIoU of 0.8218
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followed by the convolutional LSTM baseline with 0.8121 and last our model with
0.8059. For accuracy the imagewise baseline also leads with 92.11%, followed by
the convolutional LSTM baseline with 91.64%, followed by our model with 91.58%.
All of these results are pretty close together and promising as the vehicles are a
key part of image sequences since they are the only class besides the pedestrian
that moves.

Then we take a look at the classes ”Traffic Sign” and ”Traffic Light”, which are
also important for any driving scenario. Our model detects both the best with
a mIoU of 0.1037 for traffic signs and 0.3908 for traffic lights and an accuracy of
11.09% for traffic signs and 45.56% for traffic lights. As with the pedestrians, the
imagewise baseline performs worse with a mIoU of 0.1007 for traffic signs 0.3807
for traffic lights, and an accuracy of 10.46% for traffic signs and 43.67% for traffic
lights. At last, the convolutional LSTM perceives both classes much worse with
a mIoU of 0.0369 for traffic signs and 0.2441 for traffic lights and an accuracy of
3.86% for traffic signs and 27.23% for traffic lights. Traffic signs and lights both
are small and therefore don’t have many pixels in the data sets, which explains
the overall performance of all models on the traffic signs. In comparison to that
the traffic lights are perceived much better although they have a similar number
of pixels in the data sets, share a similar shape and size, and appear at similar
places in the images. This is probably due to the factor, that the ego-vehicle has
to stop in some sequences at a traffic light, which then leads to images with big
and easily spotable traffic lights, while this is much less common for traffic signs.

Some classes are perceived extremely poorly. This includes the classes ”Un-
labeled”, ”Bridge”, and ”Water”, which all have mIoUs between 3.046e-14 and
6.239e-11 and accuracies between 4.71e-12% and 1.38e-09% for all models. We
can explain this by looking at Fig. 4.4b, where we see, that all of those classes
possess a very low number of pixels, which causes that single detection or misses
has a huge impact on the performance. Additionally, when we look at Fig. 4.4a
we see, that the classes ”Unlabeled”, and ”Water” also have a very low number of
pixels in the training data, hence the model is rarely trained to detect them. This
seems intuitive for the class ”Unlabeled” since in our synthetic dataset unlabeled
pixels should rarely or never happen. Furthermore, water should also rarely occur
in a setting specifically designed for driving. When looking at the pixel numbers
for the class ”Bridge” we see, that this class is common for the training data set,
but rare for the validation dataset. This can be explained by the fact, that we use
different maps for training and validation datasets.

Another poorly performing class is ”Other” where our model receives a mIoU
of 8.474e-05 and accuracy of 8.48e-03%, hence marginally outperforming the im-
agewise baseline with a mIoU of 4.819e-05 and accuracy of 4.82e-03% and the
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convolutional LSTM baseline with a mIoU of 3.851e-06 and accuracy of 3.86e-
04%. The name of the class suggests, that this is a very unspecific catch-all class
for anything uncategorized. This indicates a very high intra-class variance making
it hard to accurately predict this class. In addition to that, Fig. 4.4a shows, that
this class is not that common in the training data, giving another reason for the
poor performance. On the other hand, since everything in this class did not receive
a class of its own we can assume, that they are not of any importance to the task
of driving, which is why these performances don’t matter.

Some classes like ”Building”, ”Road”, ”Sidewalk”, and ”Sky” have great results
for mIoU and accuracy. Our model achieves the highest mIoU for all of these classes
with 0.5756 for buildings, 0.8085 for roads, 0.5395 for sidewalks, and 0.6170 for the
sky. In comparison to that the imagewise baseline performs worse with a mIoU
of 0.5535 for buildings, 0.7804 for roads, and 0.5997 for the sky, while performing
worst of all models for sidewalks with mIoU of 0.4718. The convolutional LSTM
baseline has the worst mIoU for buildings with 0.5201 and the sky with 0.5941.
For roads with 0.7817, and sidewalks with 0.4862 it achieves the second-best re-
sult. When looking at the accuracy our model performs best for buildings with
68.54%, followed by the imagewise baseline with 65.83% and the convolutional
LSTM baseline with 60.86%. For sidewalks and the sky, our model has the high-
est accuracy of 65.82% and 89.59%. The second best results for these classes are
achieved by the convolutional LSTM with accuracies of 61.44% and 88.25% and
the imagewise baseline is last with 58.05% and 87.43% respectively. For roads, all
models have relatively similar results. The imagewise baseline achieves 92.11%,
the convolutional LSTM baseline 91.64%, and our model 91.58%. All of these
metrics are pretty high. This is on one hand since all of these classes have huge
amounts of pixels in the dataset, which leads to better results for the mIoU. On
the other hand, all of these classes have distinct places in the image, where they
are likely to show up and where there is a high likelihood of them showing up,
which can be incorporated into a strong bias making the prediction easier.
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6.3. Results

Class Label imagewise baseline conv. LSTM baseline ours
Unlabeled 5.928e-11 6.239e-11 6.239e-11
Building 0.5535 0.5201 0.5756
Fence 0.08601 0.05302 0.1110
Other 4.819e-05 3.851e-06 8.474e-05
Pedestrian 0.07163 0.00284 0.09471
Pole 0.1985 0.0996 0.1822
Road Line 0.3965 0.3191 0.3922
Road 0.7804 0.7817 0.8085
Sidewalk 0.4718 0.4862 0.5395
Vegetation 0.2487 0.2414 0.2686
Vehicles 0.8218 0.8121 0.8059
Wall 0.04117 0.03599 0.05165
Traffic Sign 0.1007 0.0369 0.1037
Sky 0.5997 0.5941 0.6170
Ground 0.008811 0.001474 0.004389
Bridge 3.558e-14 3.046e-14 4.157e-14
Rail Track 0.015205 0.006019 0.003788
Guardrail 0.2563 0.1998 0.3008
Traffic Light 0.3807 0.2441 0.3908
Static 0.1326 0.0848 0.1420
Dynamic 0.01378 0.008306 0.02383
Water 9.401e-13 9.416e-13 9.405e-13
Terrain 0.1282 0.1308 0.1478

Table 6.2: Classwise mIoU for our model and both baselines
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Class Label imagewise baseline conv. LSTM baseline ours
Unlabeled 2.64e-10% 2.58e-10% 2.58e-10%
Building 65.83% 60.86% 68.54%
Fence 12.04% 7.09% 16.99%
Other 4.82e-03% 3.86e-04% 8.48e-03%
Pedestrian 7.67% 0.29% 10.39%
Pole 31.97% 14.66% 29.86%
Road Line 43.65% 34.55% 42.41%
Road 92.11% 91.64% 91.58%
Sidewalk 58.05% 61.44% 65.82%
Vegetation 43.50% 47.60% 44.15%
Vehicles 90.91% 90.01% 92.77%
Wall 9.29% 8.12% 9.72%
Traffic Sign 10.46% 3.86% 11.09%
Sky 87.43% 88.25% 89.59%
Ground 1.05% 0.17% 0.49%
Bridge 1.38e-09% 1.30e-09% 1.30e-09%
Rail Track 2.92% 1.23% 0.83%
Guardrail 33.70% 27.84% 43.70%
Traffic Light 43.67% 27.23% 45.56%
Static 17.11% 10.80% 17.38%
Dynamic 1.47% 0.87% 2.53%
Water 4.96e-12% 4.71e-12% 4.71e-12%
Terrain 37.35% 33.33% 35.25%

Table 6.3: Classwise accuracy for our model and both baselines

54



7. Conclusion

In this thesis, we seek to modernize the Functionally Modularized Representation
Filter by Wagner et al. 2018 with a residual optical flow predictor to grasp ob-
ject motion to address challenging autonomous driving scenarios. Thus, we create
the Recurrent Structured Filter, which has an encoder-decoder-based structure
and contains an ego-motion filter to predict the camera transformation, a feature
filter to predict the depth and warp the current hidden state accordingly to the
predicted depth and camera transformation, and an object motion filter to pre-
dict the residual optical flow. Our model is suited to deal with image sequences
containing a moving camera and moving objects.

The advantage of our model is that it has a recurrent hidden state to retain
information from past frames. This can be used to integrate temporal coherence
into the model, but it additionally provides the model with means to produce
adequate predictions even if single images are missing. Additionally, the model
produces humanly interpretable, intermediate results, specifically the depth maps,
the camera transformation, and the residual optical flow. This helps us to un-
derstand the inner workings of the model, which is especially important if errors
occur. But even when errors don’t occur these intermediate results offer the ad-
vantage of making the model robust for example to faulty sensors or intentional
image compromising. That is the case because we know that the intermediate
results are important to generate the output and accordingly can our model still
produce adequate predictions as long as the intermediate results aren’t faulty as
well.

Furthermore, we generate a synthetic dataset for autonomous driving using the
CARLA simulator(Dosovitskiy et al. 2017). Our dataset contains RGB images,
depth maps, semantic segmentation labels, and optical flow maps. We generate
12000 sequences for our dataset using 8 different maps. This allows us to train our
model on a much more challenging dataset than what the architecture based on
the functionally modularized representation filter was trained on until now(Wagner
et al. 2018).

Our model outperforms both of our baselines with a total mIoU of 0.2928 and
an accuracy of 73.60%, while having interpretable representations.
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7. Conclusion

Future work could integrate the residual optical flow into another warping step
for the high-dimensional hidden state to enable the model to account for object
movement. Additionally, our model could be trained and evaluated on more pop-
ular datasets to compare it better with other models. Alternatively, it could be
trained and evaluated on a real-world dataset to see how well our method transfers
to real-world scenarios. For both cases, there would need to be a way to deal with
missing ground truth data. One possibility to handle this problem would be to re-
place the missing ground truth data with pseudo labels generated from a powerful
foundation model like ”Segment Anything”(Kirillov et al. 2023). Another possi-
bility would be to learn the required representations in a self-supervised manner
like SfM-Net(Vijayanarasimhan et al. 2017).
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LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

CRF Conditional Random Field

MRF Markov Random Field

mIoU mean Intersection over Union

CE Cross-Entropy
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A. Data Samples

Figure A.1: RGB images, depth maps, semantic segmentation labels and residual optical
flow maps

Figure A.2: RGB images, depth maps, semantic segmentation labels and residual optical
flow maps
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A. Data Samples

Figure A.3: RGB images, depth maps, semantic segmentation labels and residual optical
flow maps

Figure A.4: RGB images, depth maps, semantic segmentation labels and residual optical
flow maps
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Figure A.5: RGB images, depth maps, semantic segmentation labels and residual optical
flow maps
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B. Qualitative Results

Figure B.1: RGB images, semantic segmentation predictions for our model and both
baselines and ground truth semantic segmentation labels
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B. Qualitative Results

Figure B.2: RGB images, semantic segmentation predictions for our model and both
baselines and ground truth semantic segmentation labels

Figure B.3: RGB images, semantic segmentation predictions for our model and both
baselines and ground truth semantic segmentation labels

64



Figure B.4: RGB images, semantic segmentation predictions for our model and both
baselines and ground truth semantic segmentation labels

Figure B.5: RGB images, predicted depth maps and weight matrix of the update gate
fs
upd from our model and ground truth depth maps
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B. Qualitative Results

Figure B.6: RGB images, predicted depth maps and weight matrix of the update gate
fs
upd from our model and ground truth depth maps

Figure B.7: RGB images, predicted depth maps and weight matrix of the update gate
fs
upd from our model and ground truth depth maps
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