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Abstract

In this thesis, we propose a novel learning approach for bipedal path plan-
ning using visual and non-visual observations. The planning can be ex-
ecuted online thanks to a learned latent dynamics model of the environ-
ment. In contrast to previous works, we do not restrict the observation
space only on color images, but we incorporate other non-visual observa-
tions such as angular accelerations from a gyroscope or detection outputs
from a computer-vision pipeline. Furthermore, we introduce a termina-
tion likelihood prediction, which facilitates the agents anticipation of suc-
cess and failure. Based on the fused observations, the agent, i.e. the
NimbRo-OP2X robot, is able to navigate a scene with static and dynamic
obstacles in order to reach a target position. The training of the model
is performed in simulation, but the resulting policy is successfully trans-
ferred to the real world by using abstract image observations as inputs
for the agent. In the evaluation, our model generates faster trajectories
than a exteroceptive A∗ controller. In addition, our approach outperforms
the Dreamer model on the simulated task, while it closely resembles the
performance of the well-tested NimbRo obstacle avoidance algorithm in
the real world.
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Zusammenfassung

In dieser Masterarbeit schlagen wir einen neuartigen Ansatz zum Er-
lernen der zweibeinigen Pfadplanung unter Nutzung von visuellen und
nicht-visuellen Beobachtungen vor. Die resultierende Strategie kann dank
eines gelernten latenten Dynamikmodells in Echtzeit ausgeführt werden.
Im Gegensatz zu vorherigen Arbeiten beschränken wir den Beobach-
tungsraum nicht ausschließlich auf Farbbilder, sondern beziehen auch
andere nicht-visuelle Beobachtungen mit ein. Diese beinhalten beispiel-
sweise Gyroskop-Messungen und Detektionen eines Computer-Vision Al-
gorithmus. Darüber hinaus wird die Terminierungswahrscheinlichkeit
approximiert, um dem Roboter zu ermöglichen die Erfolg und Misser-
folg zu antizipieren. Anhand der fusionierten Beobachtungen kann der
NimbRo-OP2X Roboter durch verschiedene Szenen navigieren, während
er sowohl statischen als auch dynamischen Hindernissen ausweicht um
einen Zielort zu erreichen. Das Modell wurde ausschließlich in Simula-
tionen trainiert, die resultierende Strategie wird jedoch mithilfe abstrak-
ter Bildbeobachtungen erfolgreich in die echte Welt übertragen. Im Ver-
lauf unserer Auswertung generiert unser Agent schnellere Trajektorien als
der exterozeptive A∗-Regler. Zudem übertrifft unser Ansatz das Dreamer
Modell in der Simulation und ähnelt in der echten Welt stark der be-
währten NimbRo Hindernisvermeidung.
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1. Introduction

The use of robotics in every-day applications is becoming more common, which
leads to harder tasks and environments the agent has to work in. This may man-
ifest in projected observations, such as images, which can be harder to interpret
than other, possibly exteroceptive measurements that are generally impossible to
retrieve from the real world. On the other hand, images summarize the environ-
ment state concisely and show the spatial relation between objects in the scene,
which is imperative for path planning tasks. Moreover, cameras are typically cheap
and are available in small form factors, making them favorable for application in
robotics.

Using traditional artificial intelligence methods like tree-search for planning on
image observations is either expensive, or impossible due poor approximations.
Thus, (deep-)learning based approaches are strongly on the advance, since they are
highly adaptive and fairly easy to transfer to different tasks. This has been proven
by many popular works, such as AlphaZero[1], D4PG[2], PlaNet[3] or Dreamer[4].
AlphaZero, a hybrid approach between a learned model and a tree-search method,
is able competitively play games like Chess or Shogi and was able beat a human
professional in the game of Go[1, 5, 6]. Additionally, D4PG is able to produce a
bipedal gait for navigation through a complex parcour based on image inputs and
was also applied on other complex tasks[2, 3]. PlaNet and Dreamer also utilize
image observations and are able to solve a high variety of tasks, including some
of the retro gaming platform Atari, while reducing the training effort drastically
compared to D4PG[3, 4].

These methods, however, typically require a large amount of training samples,
which is often impossible to acquire in real-world applications. Consequently, these
approaches are trained in simulators and a real-world transfer has to be done with
little or no re-training.

In general, all of the above methods have been applied on planning tasks, mean-
ing the agent tries to select an optimal action based on predictions of possible
futures. This procedure is reiterated, resulting in an agent that is able work on a
given task. Still, on continuous environments, the agents often only learn reactive
control policies, since they are trained without accounting for long-term planning
over different trajectories. This is different, however in works on discrete environ-
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Figure 1.1: Overview of the approach. The agent utilizes a grayscale image input ot
which is fused with non-visual observations zt, consisting of the robot ro-
tation Rt, the relative goal position Gt and the current gait velocity Vt.
Using this input, the agent constructs a meaningful latent representation st,
which is used to predict rewards r̃t, values ṽt and termination likelihood f̃t.
Furthermore, the actor can utilize the latent state st to predict an action
at for the next environment step, which consists of a change in gait velocity
∆Vt. The agent is trained to approach the target(red) as fast as possible,
while avoiding obstacles in the scene(blue).

ments, such as the game Go, where the state evolution follows simple rules and
the discrete structure can be used to apply decision tree-based methods.

In this thesis, we solve a visual control task, where the NimbRo-OP2X[7] robot
navigates a parcour of obstacles to reach a predefined target location. The agent
relies on both, image data to observe the objects in the scene and non-visual obser-
vations to infer gait stability, velocity and the relative target location. Addition-
ally, we propose a termination model, which predicts the probability of termination
for each environment state. This leads to a robust approach, which can be trained
with a comparably small amount of samples and exceeds the performance of our
baseline methods. An overall summary of our method is visualized in Fig. 1.1.

Since we investigate a continuous visual control task, we will first discuss pre-
vious works in this domain. In Chapter 3, we will review preliminary knowledge
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on which we will build upon in the subsequent chapter. Then, the experimental
results will be discussed, including both, simulated and real-world evaluation. In
the end, we will conclude with proposals for future work and a short summary.
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2. Related Work

In this thesis, we investigate visual control tasks, where the agent has to output
actions based on image observations. Depending on the complexity of the task, it
is possible to perform visual control using an analytical open-loop approach, as in
many previous works[8–10].

Becerra et al.[10] steer a mobile robot to reach a target location by minimizing
the error between a currently recorded image and an image from the target loca-
tion. By projecting the camera image through a cone-shaped mirror, the robot
acquires nearly a 360° view of the scene, which is then used to successfully con-
trol the robot, such that it reaches the target location. Nevertheless, since the
method strongly relies on the observation of the whole scene at every time-step,
the application in cluttered scenes or on different robotic platforms will not be
possible.

Xu et al.[9] combine image segmentation and a feature selection algorithm to
build a control policy for an arc welding robot. By fusing position and velocity
estimates with a captured image, the method proves to successfully track the
welding seam using a PID controller and thus solves the posed task. However, this
method will solely work on the welding application and requires hand-tuning the
gain matrices of the controller.

To address the shortcomings of the previous approaches, such as poor transfer-
ability, it is possible to utilize learning based methods. The broad field of Rein-
forcement Learning (RL) has been rapidly developing in the last years, where deep
neural network approaches have become more and more popular. By modeling the
environment as a function yielding an observation and a reward at each step given
an action, an agent can explore the environment with the goal to optimize the
expected reward. In order to work on a task, the agent can take actions from the
action space of the environment, influencing its state evolution.

Generally, finding a good approximation of the state-action value (Q-value) of
the environment is one of the main objectives in most RL algorithms. These types
of approaches are typically called Q-Learning and can even find optimal solutions
in sufficiently simple environments.

One of the most popular Q-Learning methods is the Deep Q-Network (DQN)
by Mnih et al.[11], where the Q-value is estimated using a deep neural network.
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At each step, the DQN agent selects the action that maximizes the accumulated
Q-value for a given horizon under the learned Q-model. Furthermore, it utilizes
experience replay, where the generated state trajectories are stored and used for
training at a later point. Since this drastically improves data efficiency, experience
replay is also popular in other present approaches.

A recent breakthrough in the field of RL is the defeat of a professional Go player
by an artificial intelligence agent, namely AlphaGo by Silver et al.[6]. Using deep
convolutional neural networks, the authors train policy and state-value networks,
which are initially based on data collected from human players on an online Go
Server. Using distributed Monte-Carlo Tree Search (MCTS), AlphaGo traverses
the game tree to optimize the action value with addition to an exploration term.
During training, the model plays matches against earlier versions of itself, thus
learning new strategies, which can exceed human performance[6]. Subsequently,
Silver et al.[6] increase the complexity of the task by removing the initial data
collected from human players, resulting in AlphaGoZero, which is able to learn
the game of Go from scratch by refining the learned policy network using MCTS
at each step[5]. AlphaZero has been proposed by Silver et al.[1] as a generalization
of AlphaGoZero. It removes some task-specific limitations of the model to apply
it to tasks such as chess and shogi. Despite the unquestionable success of these
approaches, they come with strong limitations for real-time tasks, as generally the
agent is given one minute to evaluate its next step[1]. Also, hardware requirements
and long training time can be restrictive for research and applications on a smaller
scale. Lastly, these tree-based methods require a discrete action space, which often
does not reflect the real world.

In addition to the above approaches, there is the popular family of Policy Gra-
dient(PG) methods, which updates a policy by performing gradient ascent on a
value function. In contrast to traditional PG methods which work under stochastic
policies, the Deterministic Policy Gradient (DPG) algorithm assumes determin-
istic actions[12]. This reduces the complexity of the value calculation, since it
is only necessary to iterate the state space instead of the state-action space[12].
Nevertheless, due to the strict nature of action selection, an additional sampling
step is required to ensure sufficient exploration. Deep DPG (DDPG), an extension
of the DPG algorithm was proposed by Lillicrap et al.[13] and combines the con-
cepts of DPG and DQN. In contrast to DQN, DDPG works on a continuous action
space and performs a soft update on the used networks. Furthermore, Distributed
Distributional DDPG (D4PG) further extends the DDPG approach to incorpo-
rate multi-step returns and a non-uniformly sampled replay buffer. Additionally,
the Q-value is modeled stochastically and multiple isolated actors are introduced.
Together, these actors update a joint target network. In general, D4PG is more
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robust than its predecessors and produces state-of-the-art performance on a series
of tasks such as bipedal gait generation for navigating a complex parcour[13] or
developing a quadruped gait[3, 4].

Since agents are more frequently required to work in human environments, im-
age observations are typically imperative to achieve a reliable performance. Thus,
it is crucial to enable agents to process images, which is one of the most impor-
tant sources of information for human planning. Both DQN and D4PG have been
applied to visual control tasks and the latter is able to produce competitive perfor-
mance. However, training the D4PG algorithm on images requires large amount
of data and training time. This can be explained by the absence of a learned world
model, which could encode state evolution in a concise manner. Instead, the agent
needs to work on a small view of previous images and extract all information
from scratch. This lack of memory can be seen as one of the largest drawbacks of
model-free approaches.

Model-based methods on the other hand are typically more sample efficient,
since they model the state evolution explicitly. This ensures that the information
of previous steps can be reused and even be refined over multiple iterations. Addi-
tionally, the state evolution model can be used to predict the state multiple steps
into the future, enabling the employment of traditional planning algorithms[3].
However, these models are generally harder to train, as their performance strongly
depends on the extracted features and the accuracy of their potentially complex
dynamics.

A prominent example of model-based Reinforcement Learning is World Models
by Ha & Schmidhuber[14]. The authors utilize a Variational Autoencoder (VAE) to
gather the image input in a lower dimensional latent state, whose evolution over
time is parameterized by a Recurrent Neural Network (RNN)[14]. Using both,
the RNN memory state and the compressed observation, an action is chosen by a
linear single-layer feed-forward network, which maximizes the aggregated expected
reward. This way, Ha & Schmidhuber[14] are able to solve complex visual control
tasks, such as subtasks in the computer game Doom.

Considering the task of path planning from visual inputs, many works suggest
that the extraction of depth information is crucial[15–17]. Xie et al.[15] propose a
depth prediction network which, based on the monocular RGB input, predicts the
corresponding depth field. Using these depth approximations, a Q-value function
is predicted and an action is chosen correspondingly. The model is successfully
applied in simulation and on a real robot. The authors underline that the depth
predictions are very inaccurate, but seem to be sufficient for solving the task[15].

A different approach by Schaub et al.[18] utilizes optical flow to predict the
movement of objects in the scene. More precisely, the authors extract key points
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from the calculated optical flow, which are clustered to resemble a specific ob-
ject with individual dynamics. Subsequently, the trajectories of these clusters
are predicted and checked for collision with the approximated trajectory of the
robot. Consequently, the agent chooses the actions, that are most likely to avoid
collisions, while moving towards a specific goal. Note that this approach is fully
analytical and does not require any training. Nevertheless, manual tuning of hy-
perparameters may be required and the performance highly depends on the quality
of the calculated optical flow. Furthermore, the algorithm only produces a reactive
control policy and does not explicitly plan into the future.

Finally, Lobos-Tsunekawa et al.[19] investigate visual navigation on a biped plat-
form, similarly to this thesis. The authors utilize DDPG, which is applied directly
on low-resolution segmented images. Since it requires only the semantic segmen-
tation of the images, simulation and real-world input have high similarity, which
facilitates a sim-to-real transfer. This has been proven by successful application
on the NAO V5 platform without any re-training or parameter tuning[19].

Hafner et al. introduce the approaches PlaNet and Dreamer, which work very
similar to the World Models method[3, 4]. Both models will be discussed in the
course of the next chapter, as they form the foundation of the model used in this
thesis.

8



3. Background

3.1. Model-Based Visual Control
In this chapter, we discuss two recent approaches by Hafner et al., who designed
an agent that learns to solve different tasks with visual input.

Both methods are formulated as Reinforcement Learning (RL) approaches. Typ-
ically, an RL problem is modeled as a Markov Decision Process (MDP) and is de-
noted as a tuple E = (S,A, P,R). This tuple consists of environment states S, an
action space A, state transition probabilities P and a reward function R. The en-
vironment state at time t can be sensed through the observation ot. Additionally,
the agent receives the reward rt according to the reward function R. In order to
alter the environment state, the agent can take an action at ∈ A, which determines
the state according to the state evolution P . Note that the underlying MDP is
unknown to the agent. Consequently, the agent needs to learn how the rewards are
generated in order to produce actions that seek to maximize the expected reward.

The first approach, PlaNet[3], utilizes a Variational Autoencoder (VAE) E to
compress the input images ot and a Recurrent Neural Network (RNN) D to build
a dynamics model on the latent state st, similar to World Models[14]. In contrast to
the work by Ha & Schmidhuber[14], Hafner et al.[3] not only consider a stochastic
state representation ŝt, but also allow for deterministic paths ĥt in the latent state
space. This results in the Recurrent State Space Model (RSSM), which significantly
improves performance and is one of the main contributions of the PlaNet model[3].
For sake of simplicity we will always refer to the tuple (ŝt, ĥt) as st, since ĥt can
be described as a random variable with zero variance.

A schematic of the PlaNet model is depicted in Fig. 3.1. Generally, the model
utilizes a VAE E to encode the input image ot to the latent state representation
st at time-step t. The VAE can also be used to decode st to an estimated image
õt during training. Based on the latent state, the reward rt can be predicted by
use of the reward model R. Additionally, the latent state st can be propagated to
the next time-step by using the latent state dynamics D, which is modelled as a
Gated Recurrent Unit (GRU)[3].

Using this dynamics model D, it is possible to predict subsequent states st+1

to st+T from a single starting state st and thus the model can be considered as a
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st st+1 st+2

rt rt+1 rt+2

ot ot+1 ot+2

at+1 at+2

E

D

R

õt õt+1 õt+2

Figure 3.1: A schematic of the PlaNet model. At each time step t, the model utilizes a
VAE E to encode an image ot into the latent state st. This latent represen-
tation is used to predict the reward rt using the reward model R and can be
decoded to predict the corresponding image observation õt during training.
Additionally, given an action at+1, which is selected using MPC, and a pre-
vious state st, the dynamics model D can predict the next latent state st+1.
This way, it is possible to use the model as a simulator that reproduces all
necessary information of the environment.
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3.1. Model-Based Visual Control

simulator resembling the evolution of core variables for the given task. Altogether,
given an action at, the model can be described as

s̃t+1 ∼ D(s̃t+1|st, at+1) (3.1)
st+1 ∼ E(st+1 |s̃t+1,ot+1) (3.2)
rt ∼ R(rt |st, at) . (3.3)

Note that the prediction in Eq. (3.1) yields a state prior s̃t+1 , which is then filtered
to a state posterior st+1 in Eq. (3.2). Thus, the dynamics model can be seen as
a non-linear Kalman filter in conjunction with the observation model [3]. Note
also, that it is possible to recursively apply Eq. (3.1) to produce prior trajectories
without filtering with images, enabling for fast generation of trajectories if st is of
sufficiently low dimension. Furthermore, the state priors s̃t can be used to predict
the corresponding reward estimates r̃t. This way, it is possible to employ tradi-
tional planning algorithms like Model Predictive Control (MPC), which samples
trajectories (st . . . st+H) to optimize the accumulated reward

∑t0+H
t=t0

rt for a given
planning horizon H.

To account for model errors and environment noise, the network predictions are
modeled stochastically. Generally, all predictions are given as Gaussian distribu-
tions, where the mean is parameterized by the corresponding prediction networks.
In addition, the standard deviation of the latent state st and the action at is also
given by the model, whereas the reward prediction always has unit variance[3].

In contrast to PlaNet, its successor Dreamer does not rely on additional plan-
ning algorithms such as MPC, but employs an Actor-Critic model to learn the
actions directly. The corresponding schematic of the Dreamer model can be seen
in Fig. 3.2. Similar to PlaNet, the latent state dynamics is given by D and the re-
ward is predicted by the network R. Additionally, the value network V is trained
on the predicted return calculated via R. More precisely, it approximates the
Bellman return

vt0...T =

t0+T∑
t=t0

γ(t−t0)rt (3.4)

for a discount factor γ < 1. This way, vt0...T efficiently summarizes the return,
i.e. the accumulated reward in the time interval from t0 to T , while utilizing γ

to weigh more recent rewards higher than rewards in far future. Furthermore, the
model can utilize the reward model R to predict rewards from latent states similar
to Eq. (3.4)

ṽt0...T =

t0+T∑
t=t0

γ(t−t0)R(st) , (3.5)
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Figure 3.2: A schematic of the Dreamer model. Similar to PlaNet, Dreamer utilizes a
VAE E to generate a latent state st from the observations ot, which can be
used to predict the reward rt using R. In contrast to PlaNet, this model
introduces a value model V to predict the state value vt. This value estimate
can be used to train the actor A, which directly generates the next action
at+1. Thus, no additional planning algorithm (e.g. MPC) is required.

and thus does not require an actual observation, which enables for an extrapolated
return ṽ. Consequently, we can define the value model as

ṽt0...T ∼ V (ṽt0...T |st) . (3.6)

The value network V is trained using the predictions from R and without any
actually observed reward. However, it is important to underline that R is fitted
on the observed environment rewards and thus will reconstruct the reward rt as
well as possible. More precisely, the value model V optimizes the negative log
likelihood

LV = −E

(
T∑

t=t0

lnV (ṽt...T |st)

)
. (3.7)

With a trained value model V , it is possible to define an actor network

at ∼ A (at|st−1) , (3.8)

that maximizes the predicted state values. Thus, A will learn to choose actions
that lead to states with high values, consequently yielding an overall high reward.
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3.1. Model-Based Visual Control

Algorithm 1 Dreamer
1: Initialize E ,D,R,V ,A
2: E ← {}

3: Generate environment scenes
4: e0 ← Collect initial episodes using a random agent
5: E ← E ∪ e0

6: while training do
7: Draw random subset Ê from E
8: Fit E ,D,R on Ê (see loss in Eq. (3.14))

9: Ê+ ← Extrapolate each state in Ê using A and D
10: r̃+ ← Predict rewards in Ê+ using R
11: v+ ← Calculate returns from r̃+ (see Eq. (3.5))
12: ṽ+ ← Predict value using V

13: Fit V on v+ (see loss in Eq. (3.7))
14: Maximize A with respect to ṽ+ (see loss in Eq. (3.9))

15: Generate environment scenes
16: e← Generate episodes from policy
17: E ← E ∪ e

This resembles the well-known Actor-Critic concept, where the actor A selects
the actions, whereas its performance is graded by a critic V . Consequently, we
formulate the loss term as

LA = −E

(
T∑

t=t0

V (ṽt...T |st)

)
. (3.9)

Observe that the actor loss LA depends on the performance of V , whereas the
value loss LV depends on the performance of A, since it is trained on trajectories
that are generated using the trained actor model. This can be particularly chal-
lenging for training the networks, since the different models can hinder each others
optimization.

The full training procedure is summarized in Alg. 1. Note that V and A are
solely trained on an extrapolated set of states. These states begin with sampled
recorded states Ê, which are used to produce a set of trajectories Ê+ through
recursive open-loop application of A and D(see Eq. (3.8), Eq. (3.1)) - a process,
which Hafner et al.[4] refer to as “imagination”[4]. Also note that the extrapolated
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3. Background

Ê+ include significantly more states than the original Ê, since each state in Ê is
the starting point of a whole trajectory in Ê+.

To limit the amount of information that is transferred to the latent state, the
approach utilizes the information bottleneck objective by Tishby et al.[20]. Intu-
itively, this objective ensures, that enough information is able to pass to the latent
state, while discouraging the use of extra information. In general, the information
bottleneck objective

L [p (x̃|x)] = I(X̃;X)− βI(X̃;Y ) (3.10)

is based on the mutual information I of X̃, X and Y . X̃ is a compressed repre-
sentation of X, whereas Y is a target distribution which X̃ is supposed to capture
as well as possible[20]. This objective formulates a trade-off between keeping state
information X and reconstructing target information Y . Note that this general
objective can be applied to our application by setting X to the observation model,
X̃ to the compressed latent state st and Y to the true data distribution. Conse-
quently, the loss of the prediction model can be formulated as

L [p (o1:T , r1:T |s1:T , a1:T )] = I (s1:T ; (o1:T , r1:T ) |a1:T )− βI (s1:T ; i1:T |a1:T ) , (3.11)

for a scaling factor β > 0 and the auxiliary dataset indices i1:T , defining the
observations through a one-hot encoding, analogously to the approach by Alemi et
al.[21]. Altogether, using the optimal probability distribution p under the recorded
data, we can derive the loss for the prediction model as follows:

I (s1:T ; (o1:T , r1:T ) |a1:T )

= Ep(o1:T ,r1:T ,s1:T ,a1:T )

[∑
t

ln p (o1:T , r1:T |s1:T , a1:T )− ln p (o1:T , r1:T |a1:T )

]
const
= E

[∑
t

ln p (o1:T , r1:T |s1:T , a1:T )

]

≥ E

[∑
t

ln p (o1:T , r1:T |s1:T , a1:T )

]

−KL

[
p (o1:T , r1:T |s1:T , a1:T ) ||

∏
t

E (ot|st)R (rt|st)

]

= E

[∑
t

ln E (ot|st) + lnR (rt|st)

]
(3.12)

14



3.1. Model-Based Visual Control

I (s1:T ; i1:T |a1:T )

= Ep(o1:T ,r1:T ,s1:T ,a1:T ,i1:T )

[∑
t

ln p (st|st−1, at−1, it)− ln p (st|st−1, at−1)

]

= E

[∑
t

ln p (st|st−1, at−1, ot)− ln p (st|st−1, at−1)

]

= E

[∑
t

ln E (st|D (s̃t|st−1, at−1) , ot)− lnD (st|st−1, at−1)

]

= E

[∑
t

KL [E (st|D (s̃t|st−1, at−1) , ot) ||D (st|st−1, at−1)]

]
(3.13)

As a consequence, we can conclude with the information bottleneck objective

I (s1:T ; (o1:T , r1:T ))− βI (s1:T ; i1:T |a1:T )

≥ E

[∑
t

ln E (ot|st) + lnR (rt|st)

]

− β E

[∑
t

KL [E (st|D (s̃t|st−1, at−1) , ot) ||D (st|st−1, at−1)]

]

= E

[∑
t

ln E (ot|st) + lnR (rt|st)

− βKL [E (st|D (s̃t|st−1, at−1) , ot) ||D (st|st−1, at−1)]

]
= − LE,R,D .

(3.14)

This loss term formulates a joint objective of the encoder E and the reward model
R, which are trained using the negative log likelihood. Furthermore, it utilizes
the Kullback-Leibler divergence, which can be seen as a distance measure between
two probability distributions. Moreover, since p (st|st−1, at−1, ot) resembles the
posterior state, which has been filtered on the observation ot, the Kullback-Leibler
divergence term ensures, that the dynamics model D mimics the filtering process
of the encoder E without having access to the actual observation ot. Thus, the
last term enables the model to produce open-loop predictions that resemble the
original data distribution as well as possible.
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4.1. Problem Formulation

Whenever an agent has to navigate a scene with obstacles, path planning is nec-
essary. For instance, if a bipedal soccer robot should reach the ball on a field with
opponents, it is required to plan a trajectory around those opponents to avoid a
collision. Similarly, our task is based on the NimbRo-OP2X [7] robot, which is
supposed to reach a target position while avoiding obstacles in the scene. The data
is generated using the simulator Multi-Joint dynamics with Contact (MuJoCo)1,
but we also anticipate a real-world application.

The simulation utilizes the NimbRo-ROS framework[7], which includes a reliable
bipedal gait engine. Additionally, the computer-vision pipeline is used to retrieve
the ball position in the world application, resembling the target.

However, the use of the NimbRo-ROS framework required the implementation of
a bridge between MuJoCo and ROS. Features such as offsceen-rendering, dynamic
object placement and semantic segmentation are implemented in this bridge. Fur-
thermore, a gym environment[22] is created. It communicates with the MuJoCo-
ROS bridge by sending information such as sampled obstacle poses, and retrieving
data such as the global pose of the robot. Note that the gym environment handles
all sampling processes, whereas the MuJoCo-ROS bridge is only responsible for
physics and rendering, which keeps the framework general.

Since the environment updates at discrete steps, it is required to set a step
frequency that controls how many agent-environment interactions per second are
allowed. This step frequency typically varies strongly between different tasks, as
joint control tasks for instance may require frequencies over 100Hz, whereas our
task will be evaluated with a frequency of 4Hz. As we are working with a gait,
which generally reacts significantly slower to actions than the joints themselves,
the comparably low frequency is justified. Furthermore, reducing the frequency
results in covering the same amount of time in less steps, which will lead to a
smaller amount of planning steps.

1http://www.mujoco.org/
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PT,min
PT,max

pblock ?

Pρ,1

Pρ,0

PT
Pρ,min

Pρ,max

dρ,0

dρ,1

Figure 4.1: The environment sampling mechanism with two obstacles. First, the target
position PT is sampled and the direct path of the robot to the target is
blocked with probability pblock. Then, a number nρ of obstacles is drawn
and corresponding random sizes dρ,i are assigned. Subsequently, the objects
are placed in the scene with random pose Pρ,i. The target, as well as the
obstacles, respect the individual minimum and maximum allowed distances
Pmin, Pmax to the origin.

Scene Generation

Since the diversity of the simulation governs the diversity of the training data, the
constructed scenes should be as general as possible. We address this by generating
each environment scene pseudo-randomly. An illustration of the sampling process
is shown in Fig. 4.1.

The target location PT ∈ R2 is sampled uniformly at random from a disk of
radius PT,max around the initial pose of the robot, while excluding an inner disk
of radius PT,min to ensure a minimum distance to the starting point. The target
is represented as a cylinder of fixed diameter dT perpendicular to floor plane.
Furthermore, the target is of infinite height, thus only the x- and y-position are
randomized.

Additionally, we sample a number of objects nρ ∈ [0, nρ,max] that shall be placed
in the simulation, as well as their pose Pρ,i ∈ R6 for i ∈ {0 . . . nρ} uniformly at
random. The corresponding object positions are sampled uniformly at random,
similar to PT , where we allow objects to be inside a disk of radius Pρ,max ∈ R, with a
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4.1. Problem Formulation

minimum distance Pρ,min ∈ R to the origin. Furthermore, we allow object shapes
of cylinders and boxes, whose dimensions dρ,i ∈ [dρ,min,dρ,max] ⊂ R2×3 are also
sampled uniformly at random. Additionally, we introduce a blocking probability
pblock, which controls an enforced blocking of the direct path between the robot
and the target to increase the mean difficulty of the scenes. With probability pblock

an obstacle is placed in the direct path.

Finally, we allow for texture and color mask randomization of the objects, as
well as of the ground floor. This can facilitate a real world transfer of models which
are trained on RGB data, by increasing the visual complexity of the simulator to
match the real world more closely.

Note that the robot can be placed at the origin of the simulation w.l.o.g., since
its position and rotation relative to the randomized objects in the scene can be
considered random.

Action Space

A substantial part of the environment is the action space, which defines the way
how the agent can influence the environment state. To control the robot movement
on the ground plane, we specify the target gait velocities Vt ∈ R3 at time t ∈ R+,
which we will refer to as gait commanded velocity (GCV). This GCV

Vt = [vt;x, vt;y, vt;θ] (4.1)

can be split into two translational velocities vt;x, vt;y ∈ R and one rotational velocity
vt;θ ∈ R around the Z axis of the robot (see Fig. 4.2d).

These velocities are used by a gait engine to produce dynamic leg motions,
which originate from a central pattern generator. Altogether, this results in a
dynamically stable gait, which is able to recover from small disturbances without
any actions[7, 23]. Additionally, the gait incorporates reactive actions, which
enables closed-loop control of the limbs, correcting the estimated trunk orientation
of the robot to match the nominal rotations. These corrective actions include
movement of the arms and tilting of the feet[23].

However, to learn the direct control of the absolute target gait velocity has
several difficulties for an agent. More precisely, it might result in oscillating action
outputs which will lead to a fall of the robot. To address this issue, we propose
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incremental control actions:

∆Vt = [∆vt;x,∆vt;y,∆vt;θ] (4.2)
Vt = Vt−1 +∆Vt−1 (4.3)
V0 = [0, 0, 0] . (4.4)

In this manner, we conclude with an action space representation which is generally
less vulnerable to unstable inferred agent outputs.

Observations

While navigating through the environment, the agent relies on the observations it
receives. Since cameras are cheap and available in small form factors, they are a
often used on mobile platforms. Consequently, we propose to utilize image obser-
vations ot, which consist of low-resolution RGB images (64×64 in our experiments)
and are typically the primary source of information. These images are taken from
the ego perspective of the robot, more precisely from a camera at the right eye.
Note that the image observations are processed by a segmentation algorithm ζ

before they are used by the agent (see Fig. 4.2a).
In contrast to traditional visual-control environments, we do not limit the obser-

vation space to only visual input, but also provide a non-visual observation source
called direct observation. These direct observations are formulated as a stacked
vector

zt =
[
Vt,Gt,Rt;(R,P )

]
, (4.5)

containing gait velocities Vt ∈ R3 (see Fig. 4.2b), relative target position Gt ∈ R2

(see Fig. 4.2c) and robot roll and pitch rotation Rt;(R,P ) ∈ R2 (see Fig. 4.2b). To
make the learning process easier, the relative target position

Gt = [dt, φt] = [||Pt − xt||2, arctan2(Pt − xt)− θt;Yaw] (4.6)

is given in 2-dimensional polar coordinates using the target position Pt ∈ R2, the
current 2-D robot position xt ∈ R2 and the robot yaw rotation θt;Yaw ∈ R. Seeing
that the robot and the target are located on the same plane, we only consider the
polar coordinate representation in 2-D. Encoding the target information in polar
coordinates makes the learning process for the agent more intuitive, as we will
expect the robot to turn towards the target and keep a forward motion for most of
the episode. More precisely, φt will directly indicate whether the robot has turned
towards the target, whereas the forward motion depends on the distance encoded
in dt.
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ζ

ōt

ot

(a)

vt;x
vt;y

vt;θ

θt;Roll

θt;Pitch

(b)

dt
φt

(c)

∆vt;x∆vt;y

∆vt;θ

(d)

Figure 4.2: A visualization of the observation and action space. In (a), the image seg-
mentation ζ is shown, transforming a captured RGB image ōt into a grayscale
image, where only the obstacles are visible. The individual components of
direct observation zt are displayed in (b) and (c). It consists of the robot
center of mass rotations Rt;P and Rt;R, the current gait velocities vt;x, vt;y,
vt;θ and the relative target position in polar coordinates (dt, φt). In (d), the
action-space is shown, displaying the target gait velocity increments ∆vt;x,
∆vt;y, ∆vt;θ.

The last part of the direct observation incorporates the Euler rotations

Rt;(R,P ) = [θt;Roll, θt;Pitch] (4.7)

around the respective x- and y-axis of the robot. Including the orientation enables
the bipedal robot to anticipate falling by monitoring the pitch and roll. Note that
we explicitly do not incorporate the yaw angle θt;Yaw into the direct observation,
as it can be harder to track in the real world, complicating the real-world transfer.
More precisely, the robot is expected to have an upright position during walking,
resulting in zero-mean gyroscope measurements for the roll and pitch axes. In
contrast to this, the yaw orientation can change significantly during walking, which
results in the accumulation of errors and ultimately facilitates in a strong drift in
the rotation estimate.

Furthermore, observe that the strict exclusion of θt;Yaw requires the measurability
of Gt = [dt, φt], as the calculation of φt in Eq. (4.6) would involve θt;Yaw. However,
this is no issue in most applications as computer vision systems typically output
detections in the robot coordinate frame, rendering the global yaw orientation
θt;Yaw unnecessary for the relative target calculation.
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Figure 4.3: Termination signals. To enable for a better prediction of the termination
states, a termination likelihood signal is generated. The vertical axes display
the modeled probability of termination relative to the termination criteria
on the corresponding horizontal axes. Both curves resemble an exponential
decay, which is clipped at the value of 1 to match the notion of a probability.
As soon as any Fi = 1, the environment terminates the episode.

Termination Criteria

Many real-world problems include a notion of termination, for instance through
success or failure. We consider an episodic task, where an episode can be termi-
nated in three different ways. The first option terminates the episode if the robot
falls, i.e. the trunk rotations exceed the limits

|θt;Roll|+ |θt;Pitch| >
π

3
, (4.8)

resulting in the termination signal FF = 1. This limit corresponds to a rotational
orientation from which the robot cannot recover by itself. Consequently, if the
limit is exceeded, the robot will inevitably fall. Since the robot can not proceed
further towards the target after falling, data efficiency justifies the use of this
criterion.

Additionally, successful termination FS = 1 is achieved when the robot position
is close enough to the target, such that

dt < 0.4m . (4.9)

Finally, a timer of T = 60 seconds will lead to a timeout if no other terminal
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states are reached, leading to FT = 1.

Traditionally, the termination signals are set Fi = 0 for all remaining steps.
However, to enable the use of continuous termination signals, we propose the
smooth termination likelihood

FF (θt;Roll, θt;Pitch) = clip
[
expνF

(
|θt;Roll|+|θt;Pitch|−π

3

)
; 0, 1

]
(4.10)

FS (dt) = clip
[
expνS(dt−0.4); 0, 1

]
(4.11)

for the failure and success termination states FF , FS, given the corresponding
decay factors νF , νS > 0. A plot of the termination likelihoods can be seen in
Fig. 4.3. Naturally, it is possible to incorporate an additional likelihood FT , which
handles the termination through timeout. In this implementation, modeling FT

has been omitted, since the approximation of FT requires increased effort from
the agent, harming other parts of the network. Additionally, if the current time t
is not an input to the model, the approximation of FT can not be inferred when
training the model on sampled sequences of equal length L, since the first step ti
of each sequence can be at an ambiguous step of the episodes. This makes the
tracking of the time unfeasible, since the memory of the agent can be trained on
a maximum of L steps. However, if we consider time as an input to the agent, the
approximation of FT will be a trivial task. Since the maximum length T of the
episodes may be exceeded in real-world applications, we propose to exclude the
time t from the state representation, allowing a more general application of the
model.

Mathematically, these continuous termination signals mimic the parameteriza-
tion of a Bernoulli distribution for each time step t. Moreover, the Bernoulli distri-
bution captures the event of termination with probability pt, whereas the episode
continues with probability 1 − pt. Consequently, we parameterize the process by
utilizing the termination signal Fi;t =: pt.

Note that, for the considered task, the success and failure termination states
serve mostly for the purpose of data-efficiency. Optimizing only the given reward
structure can already be sufficient to solve the task. However, this would imply
unnecessarily recorded steps at the target location or even of an incapacitated
fallen robot. Therefore, we strongly suggest the use of terminal states. To balance
for the potential lost reward in case of termination, we introduce two solutions:
First, specific terminal subrewards rS;t and rF ;t, and second, the optimization
of the model with respect to the new smooth termination likelihood Fi. The
former will be introduced in the next paragraphs and the latter will be discussed
in Chapter 4.2.
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Reward Structure

To assess its performance on the given task, the agent is supplied with a reward
function. By maximizing this reward, the agent can update its policy to solve the
task.

For our environment, the reward function is defined as a weighted sum of subre-
wards ri;t ∈ R which are chosen from a finite index-set I ⊂ N and weighted using
a set of λi ∈ R.

rt =
∑
i∈I

λiri;t (4.12)

Note that, by setting λi = 0, it is possible to disable a specific subreward with
index i ∈ I.

First, we define the target subrewards

rTD;t = 1− dt
d0
∈ (−∞, 1] (4.13)

rTR;t =
φt

π
∈ [−1, 1] (4.14)

by normalizing the distance to the target at time t by the distance at the start of
the episode, and by normalizing the rotation. Intuitively, these are the subrewards
which will encourage the agent to walk towards the target and thus can be seen
as the most essential subrewards of the environment.

Additionally, we introduce a velocity regularization reward

rV ;t = 1− 1

e−25(||Vt||2−0.65)
∈ [−1, 0] , (4.15)

penalizing high target gait velocities Vt using a logistic function. In general, this
subreward will enforce velocities to be below a threshold, ensuring that the chosen
velocities of an agent will be safe to use on a real robot. An illustration of the
GCV penalty can be seen in Fig. 4.4.

Furthermore, we want to utilize the obstacle positions O to penalize obstacle
contacts using the subrewards

rOC;t =

{
−1 if contact between robot and obstacle
0 otherwise

∈ [−1, 0] (4.16)

rOD;t = −(1−min({∀Oi ∈ O : ||Oi − xt||} ∪ {1})) ∈ [−1, 0] , (4.17)

where rOD;t gives a linearly interpolated penalization for stepping closer than a pre-
defined distance (1m in our experiments) towards an obstacle, and rOC;t sparsely
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Figure 4.4: A visualization of the gait velocity penalization. When the norm of the GCV
values above ||Vt||2 > 0.6, the agent gets strongly penalized.

penalizes registered contacts of the robot body with an obstacle. Generally, these
subrewards encourage the agent to avoid collisions and keep a safe distance to
obstacles in the scene.

Finally, we consider success and failure rewards

rF ;t =

{
−(T − t) if robot has fallen
0 otherwise

∈ [−T, 0] (4.18)

rS;t =

{
(T − t) if robot has reached the target
0 otherwise

∈ [0, T ] , (4.19)

which will return either the positive or the negative number of remaining steps.
This can be used to produce a subreward structure which can anticipate fast
solutions and avoid early failure by setting

λS = λF =
∑

i∈I\{S,F}

λi . (4.20)

Note that this subreward encapsules all future rewards that would be lost when
terminating the episode at a specific time.

4.2. World Model

In this section, we will discuss the model for online path planning based on latent
dynamics proposed in this thesis. The model utilizes Dreamer as a backbone,
which has already been covered in the previous chapter. Our implementation
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Figure 4.5: A schematic of our model. For sake of simplicity, the decoder parts
←−
Eo,
←−
Ez of

the input model have been omitted. On the bottom, the segmented image
input ot and direct observation zt are shown, as well as the selected action
at for each step. Both inputs are encoded into the latent state st, which
in turn can be used to predict the reward rt, a state value vt and a set of
termination probabilities ft. Furthermore, using the learned dynamics model
D, it is possible to predict latent states into the future, given an action at.

builds upon the released version by Danijar Hafner2, but the official Google release3

has also been assessed[4].
An overview of our model can be seen in Fig. 4.5. Similarly to Dreamer, we

utilize an observation model to construct a latent state st, which can be used
to generate actions at, predict rewards rt, values vt and the future step st+1.
However, we also propose to predict the terminal likelihood ft, which indicates
the termination probability of the environment. Additionally, the model not only
utilizes image input ot, but also processes the direct observation zt, which encodes
concise target information, as well as sensor measurements.

Observation Model

Intuitively, the model encodes the observations into a learned state representa-
tion, which is used for further computation. To construct this state space, an
observation model capable of extracting all necessary information is required.

2 https://github.com/danijar/dreamer/
3 https://github.com/google-research/dreamer/
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To reduce the visual complexity of the observed image, our approach applies a
semantic segmentation on the input images similar to [19]. Thus, an observation
ot can be described as

ot = ζ(ōt) , (4.21)

for a segmentation algorithm ζ and the original image observation ōt. Note that
ζ can be directly performed by a simulator, whereas a pre-trained segmentation
model can be used in the real world. This not only makes the approach more
general, as ζ can be changed to adapt the agent to different environments, but
also facilitates an easier real-world transfer compared to using the raw images.
The segmented images from the real world are significantly more similar to the
segmented simulation images, while being substantially less complex compared
to the original images, due to their lack of texture. This reduces the necessary
model capacity of the Variational Autoencoder (VAE), since irrelevant data has
already been removed through the segmentation and thus it does not need to
be reconstructed. Consequently, the latent state st does not need to contain the
information that was already filtered through the segmentation, which results in
a more stable and generally smaller model.

Moreover, most robot platforms are equipped with an array of sensors, which
can supply the agent with rich information such as gyroscope data or force mea-
surements. In addition, it can be advantageous to provide explicit internal states
of the robot, such as target gait velocities. This way, it is possible to encourage
the model to include this specific internal state into its world model, which can aid
the learning process. Whereas traditional visual-control methods discard these ad-
ditional inputs, we introduce a non-visual input zt called direct observation. This
additional input space enriches the latent state, as the model will learn to fuse the
different sensor data.

Since multiple inputs ot, zt are considered, the input model has to be extended,
resulting in two encoders

st;[ot] ∼
−→
Eo(st;[ot] |s̃t, ot) (4.22)

st;[ot,zt] ∼
−→
Ez(st;[ot,zt]|st;[ot],zt) , (4.23)

where the second subscript of st indicates which information source the posterior
has been filtered on. Furthermore, we denote the corresponding decoder part of
each VAE as

õt ∼
←−
Eo(õt|st;[ot,zt]) (4.24)

z̃t ∼
←−
Ez(z̃t|st;[ot,zt]) , (4.25)
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for image predictions õt and direct observation prediction z̃t. In addition, we define
the reward, value and actor model as

r̃t ∼ R(r̃t|st;[ot,zt]) (4.26)
ṽt ∼ V(ṽt |st;[ot,zt]) (4.27)
ãt ∼ A(ãt|st;[ot,zt]) , (4.28)

In contrast to previous approaches, we do not only filter the data once, but
we build the full state posterior over two separate filtering steps. Since zt does
not consist of image data, we utilize a shallow dense encoder

−→
Ez instead of the

convolutional encoder
−→
Eo . Furthermore, if zt is of sufficiently low dimension, it can

be passed directly to the latent state st, omitting the encoder
−→
Ez completely. An

overview of the convolutional VAE Eo can be seen in Fig. 4.6, which essentially
mimics the VAE of the Dreamer approach. Note that, since our approach utilizes
semantic segmentation with a single label, the corresponding input image ot only
consists of a single grayscale channel. In our task, the corresponding label resem-
bles the obstacles in the scene. Still, our model technically supports any number
of labels, allowing the application on potentially more complex tasks.

Generally, the VAE utilizes convolutional layers with kernel size 4× 4 to encode
the input image to a feature vector of length 1024. The state vector, on the other
hand, can be decoded into the shape of ot using convolution transpose layers of
size 5 × 5 and 6 × 6. This enables the model to utilize the information from the
image input, which can be enforced by applying a loss between õt and ot. More
precisely, we formulate the loss similarly to Eq. (3.14) by defining

− L←−Eo,←−Ez ,R,D

= I (s1:T ; (o1:T , z1:T , r1:T ))− βI (s1:T ; i1:T |a1:T )

= E

[∑
t

ln
←−
Eo (ot|st) + ln

←−
Ez (zt|st) + lnR (rt|st)

− βKL
[
−→
Ez
(
st;[ot,zt]

∣∣∣−→Eo (st;[ot]∣∣D (s̃t|st−1, at−1) , ot
)
, zt

) ∣∣∣∣∣∣∣∣D (st|st−1, at−1)
]]

,

(4.29)

which can be derived analogously to Eq. (3.12) and Eq. (3.13) by extending the
observation space by the direct observation zt. The Kullback-Leibler divergence
regularizes the difference between the filtered posterior state and the unfiltered
prior state distribution to ensure a proper dynamics model.
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Figure 4.6: The network architecture of the variational autoencoder Eo. On the top, the
encoder

−→
Eo is displayed, which utilizes convolutional layers with kernel size

4 × 4 to encode the image ot to a feature vector. The lower architecture
displays the decoder

←−
Eo, which passes the state feature vector st through

multiple convolution-transpose layers with kernel sizes 5 × 5 and 6 × 6, to
produce õt with the original image shape. Note that the higher dimension of
the encoder output is reduced by the RNN to produce the lower dimensional
st.
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Figure 4.7: Prediction network architectures. Each network has the same number of hid-
den units hi = 400 per layer, whereas the number of layers may vary between
the networks. Based on the latent state representation st, predictions for zt,
at, ft, rt and vt can be made using the presented models.

Termination Model

Many applications are episodic, i.e. there exists a criterion to terminate the task
upon success or failure. Examples for an autonomous vehicle may include the
arrival at a destination for a successful termination and a collision with an object
or person as a failed terminal state. Additionally, there can be supplementary
terminal states, such as timeouts, which terminate the episode after a specific
amount of time. The meaning to these terminal states are typically given through
terminal rewards that are handed out as soon as the corresponding terminal state
is reached. However, these terminal rewards can be hard to predict, as they only
occur at a single state of the episode and thus lead to a discontinuous reward struc-
ture. To address this issue, we propose a dense network F , which approximates
the probabilities ft of reaching the separate terminal states, i.e.

ft ∼ F (ft|st) . (4.30)

An overview over all prediction models is shown in Fig. 4.7.
The termination network models each individual ft;i as beta (β) distributed.

The β-distribution is defined by its probability density function

Pα,β : [0, 1]→ R+

x 7→ xα−1(1− x)β−1 Γ(α + β)

Γ(α)Γ(β)
,

(4.31)

which, due to its domain of [0, 1], is well suited for approximating probabilities.
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Figure 4.8: Probability density functions of different parameterized β-distributions. Us-
ing Eq. (4.32), we can interpolate between the target probability esti-
mate, which corresponds to the colors of the curves. The mean µβ of the
β-distributions corresponding to red curves are closer to the probability of
x = 1, whereas the blue curves approach a mean probability of x = 0.

Moreover, the β-distribution is parameterized through two values α, β ∈ R, which
essentially resemble a weighing between the two domain borders 0 and 1. To make
the approximation easier, we define the parameters as a function of a single scalar
ψ ∈ [−1, 1], such that

α =clip [(ψmax − ψmin)ψ + ψmax;ψmin, ψmax]

β =clip [− (ψmax − ψmin)ψ + ψmax;ψmin, ψmax] .
(4.32)

Consequently, it is possible to smoothly interpolate between estimating a mean
probability of µβ ≈ 0 with a corresponding ψ = −1 to µβ ≈ 1 with ψ = 1.
A visualization of multiple differently parameterized β-distributions can be seen
in Fig. 4.8, where the color corresponds to ψ and thus to the estimated mean
probability µβ. Note that the β-distribution only addresses the uncertainty about
the parameterization of the underlying Bernoulli distribution of termination.

Furthermore, to train F , we employ the negative log-likelihood loss, which is
incorporated into the total loss of the prediction model, resulting in the loss

LEo,Ez ,R,D,F

=− E

[∑
t

ln
←−
Eo (ot|st) + ln

←−
Ez (zt|st) + lnR (rt|st) + lnF (ft|st)

− βKL
[
−→
Ez
(
st;[ot,zt]

∣∣∣−→Eo (st;[ot]∣∣D (s̃t|st−1, at−1) , ot
)
, zt

) ∣∣∣∣∣∣∣∣D (st|st−1, at−1)
]]

.

(4.33)
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4. Approach

Observe how the first distribution in the KL-divergence consists of the full filtered
posterior of the one-step prediction using D, whereas the second distribution is
solely given through D. Intuitively, this means we encourage the dynamics model
D to mimic the filtering process as well as possible, leading to a more accurate
state prediction. For the complete derivation of the loss, please follow Appendix A.

If the target probabilities of the environment are given as continuous signals,
F will be able to predict the likelihood of reaching the specific terminal states.
Consequently, we can utilize the termination model F to train the actor A, such
that

LA = −E

(
T∑

t=t0

V (ṽt...T |st) +
∑
i

λFi
F (Fi;t|st)

)
, (4.34)

for termination importance factors λFi
∈ R. Note that a negative importance

factor signalizes a failed termination as LA is minimized, and a positive importance
factor implies a successful termination.
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5. Evaluation

In this chapter, we will assess the overall performance of our model. First we will
discuss the evaluation setup, followed by qualitative results. Later, we will show
the contribution of specific model components and finalize with an assessment of
the quantitative performance, which will also be compared to different baseline
methods. In the end, we will prove the applicability of our learned model to the
real world.

5.1. Experimental Setup
We evaluate different versions of our model and compare them to the baseline
approach Dreamer and to A∗-search combined with a closed-loop controller. Ad-
ditionally, we perform real-world experiments, comparing our approach to the
well-tested NimbRo obstacle avoidance algorithm, which has been used in the
yearly RoboCup humanoid soccer competitions[24].

The exteroceptive closed-loop controller is following a path calculated by the
A∗-algorithm using a top-view image of the scene. Note that the observations are
unrealistic in most applications, as a top-view image can generally not be provided,
especially in unstructured environments. Moreover, the exact inference of a global
pose requires a stable localization, which is often not available, e.g. due to sensor
drifts.

In contrast to the baseline controller, the basic Dreamer model will be trained
using only visual RGB inputs. These images include the obstacles, as well as the
red target marker, which is not visible in the segmented observations. Additionally,
the ground floor and the obstacles are visualized with randomized textures to
mimic the visual complexity of the real world more closely.

In the end, the evaluation of our approach is based on the models trained using
the hyperparameters found in Appendix B. We assess three different parameter-
izations and denote the resulting models with the letters A to C. The A-model
utilizes direct observations and termination likelihood prediction, but does not
incorporate the termination signal into the actor loss. In addition, the B-model
applies the termination loss with a small weight. Furthermore, the the weight of
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5. Evaluation

the termination loss is significantly increased in the C-model. Moreover, we also
assess the performance after different steps during training. This way, we can
observe the convergence behavior of the individual models.

The C-Model that has been trained for 2 million steps will be denoted as C-2.0M
and is used in the evaluation if not stated otherwise. Our model represents the tar-
get position in local polar coordinates and utilizes segmented image observations,
as well as gait velocities and the measured trunk orientation. All observations
reflect the sensor capabilities of the real robot, facilitating the real-world transfer.

The C-2.0M model is trained for 2 million simulation steps, resulting in a total
training time of around 2 days on a computer with an Intel i9-9990K CPU, 64GB
of RAM and an nVidia GeForce 2080 Ti with 12GB of VRAM. This model is
already able to solve simple scenes after 200.000 steps, resulting in less than five
hours of training. The Dreamer model is trained for 3 million steps, after which the
approach typically converges[4]. On the same computer, this results in a training
time of approximately 3 days for the Dreamer model.

For the evaluation, we generate a set of 100 random scenes using the same
sampling procedure as during training. Additionally, the qualitative assessment
will be conducted on hand-crafted scenes, showing the behavior of the agent in
difficult situations.

5.2. Experimental Results
Initially, we show qualitative results by presenting a random scenario our robot
is able to navigate successfully. This scene can be seen in Fig. 5.1 and will be
further denoted as R-11. Observe that the direct path to the target is blocked
by an obstacle, thus the agent is forced to choose a trajectory around it. The
resulting trajectory is shown in the right image, proving that the agent selects a
short path to reach the target. Note that the obstacle sizes in the right image
are increased by the use of the Minkowski sum (also known as dilation) with the
robot diameter. This ensures, that the unoccupied pixels are valid locations for the
agent. The same procedure is utilized for the calculation of an A∗ path. Observe
that the agent chooses a tight trajectory around the obstacle without collisions,
which is the main objective of our approach. In Fig. 5.2 screenshots of the episode
at different time steps are shown.

Moreover, we display the policy for one of the handcrafted scenes in Fig. 5.3,
where the agent has to navigate beside a line of obstacles to a target at the end of
it. Note that the objects are structurally aligned, which stands in contrast with the
random obstacles used during training. Therefore, we show a case where the agent

34



5.2. Experimental Results

Figure 5.1: Random sample scene R-11. On the left, a third-person-view image of a part
of the scene is shown, in the center we can see an excerpt of the scene from
the top. On the right, a segmented, full image from the top is shown, where
the obstacle size has been increased by use of the Minkowski sum with the
robot diameter. Furthermore, we mark the target location as red and the
starting position as blue. The walked path of our model is marked as a green
trajectory in the rightmost image.

0 s 10 s 20 s 30 s 40 s 47 s

Figure 5.2: Screenshots of the random episode R-11, where the robot navigates around
an obstacle.
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0 s 10 s 20 s 30 s 40 s 50 s

Figure 5.3: A sequence of images showing the path of the A-0.5M agent in a handcrafted
scene. The agent follows a line of obstacles until it reaches the target at the
end of the episode. Note that the direct path to the target is blocked by the
obstacles.

successfully generalizes to a specific human-made scenario. Other hand-crafted
and random episodes can be found in Appendix C, where we show simulation
screenshots together with the approximate trajectory of the robot.

However, when evaluating several different episodes, the agent has a small ten-
dency towards walking around only one obstacle. This can include instances where
the path is blocked after the first obstacle has been overcome. This can result in
the agent walking into the next obstacle and falling. Situations where two obsta-
cles are very close to each other, while also blocking the path to the target are very
unlikely to get sampled as training data. Therefore, these scenes were artificially
constructed. Allowing larger obstacles or small, connected groups of obstacles that
are explicitly sampled to block the way to the target, will lead to richer data and
thus to a better performance of the agent in such cases.

In most episodes, the agent first turns towards the target and then continues
walking with high forward velocity as seen in Fig. 5.4. This is the desired behavior
as it is encouraged by the target rotation reward rTR in conjunction with the target
distance reward rTD. In this manner, the agent chooses gait velocities (GCVs)
that keep the GCV penalty rV low. This behavior results in a stable but fast walk
towards the target. Note that the robot also utilizes diagonal steps towards the
end of the episode to correct for potential misalignment with the target.

Since the real world is only static in specific applications, we also evaluate the
A-0.5M agent performance on a scene with dynamic obstacles. A manually created
episode with dynamic obstacles can be seen in Fig. 5.5. Observe that the agent
anticipates the movement of the object towards the end of the episode, choosing
a particularly large trajectory around it. However, since the agent is not able
to control the head movement, it is possible that the robot is pushed over by
approaching obstacles that are outside of its field-of-view. We hypothesize that,
this issue can be addressed by incorporating the head control into the action space
of the agent. Even though the model did not encounter any dynamic objects
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Figure 5.4: Gait commanded velocity (GCV) vt in its components (top), together with
the GCV penalty (bottom). On the top, the dotted lines resemble the
predicted direct observations z0...2;t, which correspond to the GCV of the
timestep. The red line resembled the forward x velocity, the green line shows
the sideways y velocity, whereas the blue line displays the rotational z ve-
locity. Note that the agent first orientates using the rotational velocity and
then proceeds with a continual forward motion (top), while mostly respect-
ing the GCV limits set through the penalization (bottom). Observe that the
agent utilizes diagonal movement towards the end of the episode to correct
a misalignment to the target. These results are generated using our trained
C-2.0M model, executed on the scene R-11.
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0 s 10 s 20 s 30 s 40 s 50 s

Figure 5.5: A sequence of images from an episode with dynamic obstacles. In the upper
row a top-view of the scene is shown, whereas the lower row displays a
third-person view. The A-0.5M agent is able to solve this scene reliably.
Furthermore, the agent seems to anticipate the movement of the obstacles in
the last four images of the sequence, as it chooses a trajectory with a large
distance to the object.

during training, it is able to solve scenes with dynamic obstacles.

5.3. Model Accuracy
Since the performance of the agent strongly depends on the ability of the model to
process and replicate the individual parts of the environment, it is crucial to assess
its reconstruction. Generally, we evaluate the quality of approximation using the
mean absolute error

κx =
1

tmax

tmax∑
t=0

‖xt − x̃t‖1 , (5.1)

for a variable xt and its prediction x̃t over course of an episode of length tmax.
The GCV with their corresponding predictions of the C-2.0M model have already

been shown in Fig. 5.4, where the model is able to reconstruct the target gait
velocities up to a very small error. More precisely, the mean absolute errors of
each GCV component is below κV < 0.026 for the R-11 episode. Figures for all
individual components of the direct observation zt are shown in Appendix D.

Similar to the direct observations, the C-2.0M model is also able to predict the
reward accurately as seen in Fig. 5.6 with an accuracy of κr = 0.029. However,
the model fails to predict the terminal reward that is collected at the end of the
episode (not shown in the figure). Since the terminal rewards are discontinuous
signals that are activated at only one specific time-step, it is hard to learn their
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Figure 5.6: A sample of the true reward function rt (blue) without terminal reward
is shown together with the model 1-step prediction r̃t (red). The model
reconstructs the reward signal well, resulting in a mean absolute error of
0.029 for this sample. These graphs correspond to the performance of our
trained C-2.0M model on the scene R-11.

predictions. Intuitively, if the model is not certain about the exact time-step of
termination, the best way to minimize the reward reconstruction loss is to not try
to predict the terminal reward at all, since the prediction at a wrong step would
introduce a high loss. Consequently, these discontinuous subrewards will not be
included in the calculation of the value and thus the actor will not be optimized
with respect to them. This issue can be addressed by the introduction of a smooth
terminal reward or, more generally, through the use of the termination likelihood
as proposed in this thesis.

In contrast to the discontinuous terminal reward, the C-2.0M model is able
to predict the termination likelihood (success/failure) up to a systematic model
error as shown in Fig. 5.7. More precisely, the agent approximates the signals with
accuracy κf0 = 0.082 and κf1 = 0.072. This proves that the model can successfully
extract the notion of termination from the gathered experiences.

Finally, the image predictions are shown in Fig. 5.8. Note that the predicted
images are closely resembling the shapes seen in the ground truth. More precisely,
observe in the error images that the biggest errors occur around the edges of the
objects, as well as for smaller objects in the distance. Both are only of subordinate
importance for the task, as the rough shape of close objects is sufficient for obstacle
avoidance. However, this is different if we require more complex path planning with
longer planning horizons, since small objects in the distance may gain importance.
For all images in the sequence, we calculate a mean absolute error of κo = 0.025.
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Figure 5.7: The terminal success and failure likelihoods f0, f1 are displayed for a sample
episode. The true terminal likelihoods fi are depicted in blue, whereas the
1-step predictions are shown in red. Note that the model produces accurate
predictions resulting in a mean absolute error of 0.082 for the success like-
lihood f̃0 and 0.072 for the failure likelihood f̃1. It is important to note,
that the model can not reconstruct the signals precisely, since the beta dis-
tribution has been restricted to avoid singularities at probabilities of 0 and
1. Thus, the bottom graph mainly captures this systematic model error, as
the robot does not experience strong disturbances in this episode. The mea-
surements are taken from our trained C-2.0M model, executed on the scene
R-11.
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Figure 5.8: A comparison between the model image predictions and the ground truth.
The true observations ot (top row) are shown with the 1-step predictions õt
of the trained model (center row) for 10 different steps. Furthermore, the
prediction error is shown in the bottom row. The model is able to reliably
reconstruct the images from the significantly lower dimensional latent space.
Additionally, the largest errors occur for objects in far distance, whereas close
objects only suffer small errors around the edges. These observations corre-
spond to the experiment R-11, evaluated with our trained C-2.0M model.

5.4. Performance

We evaluate the performance of our approach using different hyperparameters and
total training times. An overview over the general performance of the model can
be seen in Fig. 5.9, where the individual learning curves are shown. The C-Model
converges the fastest and reaches a similar mean return to the A- and B-Model.
However, the C-Model generates shorter episodes as seen in the bottom figure. In
conjunction with the high return, this indicates that a successful termination is
reached faster.

In addition, we execute each model on the same 100 random scenes, where
each of the scenes is either executed once or 25 times, depending on the type
of evaluation. Since the extensive evaluation of every intermediate model would
require days of computation, we decide to assess some models only on 100 trials
in contrast to the 2500 experiments of the full evaluation.

In total, 10 trained versions of our network have been evaluated, together with
one evaluation of Dreamer and the A∗-controller. The results of our different
models can be seen in Table 5.1. Compared to our other models, the A-0.5M
model performs best over all criteria, except for the critical failure rate. Still, the
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Figure 5.9: The learning curves are depicted for the mean return and mean episode
length. The mean is generated by averaging the episodes in chunks of 10000
steps. Observe that the C-Model is the fastest to reach its maximum re-
turn, followed by the B- and A-Model. Furthermore, the C-Model generates
noticeably shorter episodes. Note that the mean episode length has to be ob-
served in conjunction with the mean return, as an episode can end in failure
and success.
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critical failure rate is only slightly above 1%, which is small enough to be neglected.

Model Return Ep. length Success Failure
A-0.5M X 247.11 149.26 98.7% 1.2%
A-1.5M 186.98 211.77 29.0% 0.0%
B-0.5M X 213.10 187.93 66.6% 0.7%
B-1.0M X 206.33 194.06 53.7% 0.8%
B-1.5M X 202.06 198.81 44.4% 0.0%
B-2.0M X 212.55 185.89 56.5% 0.0%
C-0.5M 204.00 187.67 66.0% 6.0%
C-1.0M 182.25 211.02 45.0% 8.0%
C-1.5M 236.47 157.75 92.0% 1.0%
C-2.0M X 216.20 167.79 80.3% 8.5%

Table 5.1: Three different models compared at different training times. The A-
model resembles a basic model with direct observations and termina-
tion likelihood approximation, but without a termination term in the
actor loss. Additionally, the B-model includes an actor termination loss
with low weight. In the C-model, the a higher value is chosen for the
termination loss. Furthermore, lines marked with an “X” have been
evaluated over 100 different scenes with 25 samples per scene, whereas
the other evaluations only use 1 sample per scene. The three best re-
sults in each category are marked with bold font. It is possible to see
that the A-0.5 model generally performs best, followed by C-1.5M and
C-2.0M.

However, when training the A-model for more steps, the performance decreases.
Since the terminal subreward can not be predicted due to the discontinuity it
introduces, it is not included in the value prediction. This results in the actor
being trained only on the other subrewards, while avoiding termination to achieve
as many high rewards near the target as possible. Thus, the overall performance
will decrease when the policy is refined. When considering the C-model on the
other hand, its evolution is more stable as the performance does not decrease
significantly at the end of training. Still, the overall performance does not match
the A-0.5M model, which means that the hyperparameters have to be tuned to
achieve a stable convergence. Overall, an adaptive learning rate for the actor model
may alleviate this problem, as the oscillating training behavior of the C-model can
indicate a high learning rate.

Furthermore, our approach outperforms the previous Dreamer method in most
criteria as seen in Table 5.2. This is most apparent in comparison to our best model
A-0.5M, which manages to solve 99% of the scenes, with a critical failure rate of
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A∗ controller Dreamer Ours (A-0.5M)
Return 178.42± 38.29 133.87± 118.53 247.11± 31.09

Episode length 192.70± 30.51 208.68± 52.62 149.26± 22.81
Mean reward (no term.) 0.510± 0.053 0.518± 0.356 0.593± 0.049

Success rate 75% 19% 99%
Critical failure rate 1% 13% 1%

Training steps − 3M 0.5M

Table 5.2: Overall performance comparison of our model with the original Dreamer
approach, as well as a exteroceptive A∗ controller. Note that our model
outperforms the other approaches in almost every aspect of the 100 test
episodes. However, our agent produces a more aggressive policy than
the A∗ controller, leading to a increase in failed episodes. Neverthe-
less, the A∗ controller depends on exteroceptive observations, which are
impossible to retrieve from the real world.

1%. More precisely, our model not only exceeds the performance of Dreamer,
but it also outperforms the exteroceptive A∗ controller, which has significantly
more information about the scene than our agent. Additionally, the mean reward
without the termination subrewards of the episodes generated with the A-0.5M
model exceed the mean reward collected by the Dreamer method. Therefore,
our policy not only accomplishes higher success rate through the incorporation of
termination signals, but also outperforms the Dreamer approach in the task of
reward maximization.

In addition, our models only require low computational power, executing in
2.9ms on a system with an Intel i7-3770K, 16GB of RAM and an nVidia GeForce
GTX 1070 with 8GB of VRAM. On a computer equipped with an Intel i9-9990K
CPU, 64GB of RAM and an nVidia GeForce RTX 2080Ti with 12GB of VRAM,
the inference model takes approximately 1.7ms. In conjunction with the low step
frequency τ = 4Hz of the environment, the overall computational load of our
model on the system performance is insignificant. Moreover, the execution time
only varies slightly across different models, rendering each of the models useful for
real-time control tasks. Additionally, the low computational effort and a VRAM
footprint of approximately 1GB allow the models to be executed on portable plat-
forms, such as robots or even mobile phones with GPUs.
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5.5. Real-World Transfer

5.5. Real-World Transfer
Since training a deep neural network typically requires a large amount of data,
training in the real world is unfeasible in most applications. Furthermore, exe-
cuting many experiments on a robot leads to wearing off the hardware, requiring
expensive part replacements.

Therefore, we strive to enable a real-world transfer without retraining the model.
Consequently, our proposed state representation mimics the sensor system of the
robot, while reducing the visual complexity of the camera images through semantic
segmentation. This allows a real world transfer with low additional effort and no
retraining.

In Fig. 5.10 you can see a sequence of real world pictures comparing the NimbRo
obstacle avoidance with our model. More precisely, the top row shows the well
tested NimbRo obstacle avoidance, which is able to maneuver around robots placed
in its way towards the soccer ball. Generally, this algorithm produces high gait
velocities when there are no obstacles, but strongly reduces the velocities when
approaching an obstacle. Furthermore, it tends to walk sideways to dodge the
obstacle, utilizing the rotational gait velocity only slightly.

In contrast to the NimbRo obstacle avoidance algorithm, our approach navigates
around a blue obstacle, blocking the path in the same way as the robots in the
previous experiment. Since our model requires a segmented observation, we filter
the camera image by a blue color-key in the HSV color space. Additionally, we
apply an erosion and dilation step on the image to fill possible false negative
pixels. This leads to a segmentation that includes only the obstacles, as we do
not allow blue objects in the scene for the real world evaluation. Note that this
simple segmentation technique is chosen as a proof of concept and can be easily
exchanged with more complex segmentation models.

Generally, our model utilizes the rotational component of the gait velocity sig-
nificantly stronger. The agent commands the robot to turn right to line up with
the corner of the obstacle and then proceeds to walk in a smooth curve around it.
During this experiment it was most apparent that the classical obstacle avoidance
algorithm leads to a GCV that varies strongly, whereas our model seems to pro-
duce a trajectory where the robot walks with a constant speed. In summary, both
approaches solve the scenes in approximately the same time, but show different
behaviors.

Fig. 5.11 displays a sequence of real world and simulation images of a more
challenging scene. Note that the two lines of obstacles overlap, leaving the robot
only a tight corridor to pass through. In simulation, as well as in the real world,
our C-2.0M model is able to solve this episode by navigating through the gap
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Figure 5.10: Image sequences from the real world. The top row shows the baseline
NimbRo obstacle avoidance for robots, whereas the center row displays our
C-2.0M model. Note that we use blue obstacle for simplifying the semantic
segmentation. Nevertheless, we block the same path in both sequences, as
the target is resembled by the soccer ball. Both approaches walk around the
shorter path of the obstacle and reach the target after approximately the
same time. In contrast to our method, the NimbRo algorithm moves slower
near the obstacle, which it compensates with high velocities whenever the
path is clear. On the bottom row, the same scene is displayed in simulation.
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Figure 5.11: Pictures of a challenging scene in simulation and the real world. The top row
shows the real robot navigating the scene by taking a right turn, followed
by rotating left to walk through the tight corridor between the obstacles.
In the end, the robot walks into the target by stepping laterally. The corre-
sponding grayscale image observations of the real experiment are depicted
in the center row. At the bottom, a recreated simulation scene is shown,
where the agent chooses a route similar to the real-world episode. Both
episodes have been generated using the C-2.0M model.

between the obstacles. In addition, the model manages to avoid contact with the
real obstacles completely.

Moreover, we evaluate the real-world transfer with a dynamic obstacle as seen
in Fig. 5.12. More precisely, the obstacle is resembled by a blue fabric, which
is carried with a slightly slower velocity than the robots gait. Observe that the
C-2.0M agent walks parallel to the obstacle, until it passes it towards the end
of the episode. Subsequently, the robot walks towards the target with diagonal
steps. In addition, we evaluate the exact same scene with the obstacle remaining
stationary. Note that the robot maneuvers around the obstacle and chooses a
short path towards the target. This proves that our approach is able to adapt
to dynamic obstacles in the real world transfer, even though the agent does not
encounter dynamic objects during training.

In the final experiment, we asses the capability of the C-2.0M model to plan
with a dynamic target. As seen in Fig. 5.13, we disable the terminal success state
and let the robot follow the target. Once the robot is close to the target, we
move it to a new location in the agents field of view. Observe that the robot is
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Figure 5.12: The C-2.0M agent is applied to a real-world scene with a dynamic obstacle.
Observe in the two top rows that the object is moved with a velocity slower
than the robot, requiring the agent to walk parallel to the obstacle. When
the object is removed, the robot directly walks to the target with diagonal
steps. In the two bottom rows, the same obstacle is kept static, allowing the
agent to shortly maneuver around it before it continuing to walk straight
towards the target. Below each real picture, the corresponding segmented
image observation is depicted.
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able to track the moving target and it successfully approaches the different target
locations, despite only experiencing static targets during training.

Generally, it is observed that the A-0.5M agent performs significantly worse in
the real world compared to the C-2.0M agent. This can be caused by the agent
taking actions that behave differently in the real world than in the simulation.
More precisely, the lateral velocities are far less responsive in the real world than
in simulation. In the end, our final model with termination likelihood loss leads
to a more robust model, which is easier to transfer to real world applications.

49



5. Evaluation

30 s

0 s 15 s 20 s

25 s 38 s

55 s47 s42 s

Figure 5.13: A sequence of images from the real-world transfer with a dynamic target
(from left to right, top to bottom). Whenever the C-2.0M agent approaches
the target closely, the ball is moved, resulting in a new target position. The
model successfully manages to track the moving target, approaching it at
different locations. Note that the images are taken from a single episode.
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6. Future Work

6.1. Task Adaption
In this thesis, we have applied all models to the simulation of a NimbRo-OP2X
robot and we evaluated the performance in the real world. The task consists of
obstacle avoidance while approaching a pre-defined target position. While this is
highly relevant for real-world application such as humanoid soccer, it can not fully
showcase the long-term planning capabilities of the models. To keep the necessary
effort in adaption of the simulation low, it is possible to utilize the same framework,
but sample the environment differently. Most importantly this may include the
construction of a closed maze, which the robot has to navigate in order to reach a
given target position. This way it would be possible to assess whether the model
is able to track its position over a longer horizon and revert choices that it has
previously made. In general, this task is significantly harder and would establish a
good base challenge for future investigation. Furthermore, this problem is highly
relevant for real-world applications, where an agent may need to navigate through
complex room structures to reach its target.

Moreover, by incorporating the control of the head into the action space, it is
possible to utilize the full capabilities of the robot. This will especially improve
the agents ability to avoid dynamic obstacles, as well as help to keep the target in
the agents field of view in the real world application. Furthermore, the data can
be trained to reconstruct depth data from the simulator, similar to Xie et al.[15].
In addition to an adaptive learning rate, these points can lead to a more robust
and versatile model.

6.2. Hierarchical Model
Since our basic model does not address long-term planning directly, this short-
coming may be discussed in future work. Due to the inherent inaccuracy of image
predictions over longer horizons, we propose to split the model into two parts as
seen in Fig. 6.1: A lower model which includes the image processing and a higher
model, which processes the direct observations. More precisely, the lower model
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6. Future Work

has a similar shape to our current model, where it consists of a latent state st
that is constructed using an image observation ot. Furthermore, it can utilize
the L-dynamics L to predict the following step given an action at+1. However,
this action is not only generated using the lower latent state, but also utilizes a
high-level action kt+1 which is chosen based on the high-level state representation
ht. Additionally, it is possible to use the high-level representation to generate the
reward and value prediction, along with the termination likelihood if desired. To
pass low-level state information to the higher level state, an Autoencoder is trained
between st and ht, thus ht handles the lower level state similar to an observation.

Note that the high-level action kt+1 is completely latent, as a specific kt+1 only
has a distinct meaning to the environment in context with the low-level actor.
This makes training the model more challenging, as the model can not utilize
experience replay for training the H network. Since kt+1 is interpreted by the
low-level actor, the meaning may change over the course of training, leading to
other observations and thus to other actions that will be taken for the rest of
the episode. Still, the model can be trained online or utilize only a portion of
previous episodes as experience replay. The last training option would be to train
the high-level model solely on extrapolated states from the lower model, similar
to how the value function is trained in the original approach. As this solution
is the most straight-forward of the mentioned options, we have already trained
a first model. However, training H only in imagination means that the direct
observation zt would need to be part of the lower model, and consequently the
accuracy of the higher level model would be limited by the accuracy of the lower
level model. Thus, it is advised to assess the other options for training the higher
level.

Furthermore, as kt is completely latent, it is necessary to choose its shape. In our
first experiments we use a relaxed one-hot encoding of the actions, which allows
to build a tree over trajectories of different sequences of actions. To enforce that
kt has an actual effect on the latent state, we propose a regularization using the
latent states ht in the constructed tree of trajectories. Intuitively, by calculating
the difference between these ht, e.g. by using a generalization of the Jensen-
Shannon divergence, it is possible to regularize different kt to result in different ht,
thus forcing kt to have an actual effect on the state.

In summary, we propose a hierarchical model with a completely latent action
component as an interesting subject for further research.
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6.2. Hierarchical Model
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Figure 6.1: A preview of the hierarchical model. Similarly to the original approach,
the images are encoded to a state representation st, which is then used to
construct a second latent state ht. This higher-level representation also in-
corporates the high-level observation zt and outputs a fully latent high-level
action kt+1. This kt+1 is utilized by the low-level actor to produce an output
action at+1. Furthermore, the high-level state can be used to predict rewards
rt or values vt.
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7. Conclusion

In this thesis, we have demonstrated a learned approach that utilizes a latent
dynamics model to solve a navigation problem in scenes with obstacles. Further-
more, this latent representation is constructed by combining segmented images
with the non-visual observations, which supply the agent with rich information
about the environment. Additionally, our model anticipates its success and failure
by approximating the termination likelihood. This leads to a fast model with high
performance.

Our model exceeds the performance of the Dreamer approach and outperforms
the exteroceptive A∗ controller. Therefore, we have shown that our model pro-
duces a competitive policy, utilizing only the available sensors of the real robot.
Subsequently, by taking advantage of an abstract image representation, we suc-
cessfully apply our model to the real world. More precisely, we deploy our agent to
the “NimbRo-OP2X” robot, resulting in a similar performance to the hand crafted
obstacle avoidance method, which is regularly used in the annual RoboCup hu-
manoid soccer competitions. Finally, we have shown that our model generalizes
to dynamic obstacles and is able to track and follow a dynamic target in the
simulation, as well as the real world.
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A. Loss Derivation

Similar to [4], we will rely on the information bottleneck objective

L [p (o1:T , r1:T |s1:T , a1:T )] = I (s1:T ; (o1:T , r1:T ) |a1:T )− βI (s1:T ; i1:T |a1:T ) , (A.1)

which has already been covered in Chapter 3. For sake of brevity, we write
st;[ot,zt] =: st whenever the filtering is not of direct interest in the following deriva-
tion.

We derive the first mutual information as follows by discarding the constant
data likelihood, followed by the subtraction of the non-negative KL divergence.
Using the definition of the KL divergence in the last step, we find the final lower
bound for the first term:

I (s1:T ; (o1:T , z1:T , r1:T , f1:T ) |a1:T )
= Ep(o1:T ,z1:T ,r1:T ,f1:T ,s1:T ,a1:T )[∑

t

ln p (o1:T , z1:T , r1:T , f1:T |s1:T , a1:T )− ln p (o1:T , z1:T , r1:T , f1:T |a1:T )

]
const
= E

[∑
t

ln p (o1:T , z1:T , r1:T , f1:T |s1:T , a1:T )

]

≥ E

[∑
t

ln p (o1:T , z1:T , r1:T , f1:T |s1:T , a1:T )

]

−KL

[
p (o1:T , z1:T , r1:T , f1:T |s1:T , a1:T ) ||

∏
t

←−
Eo (ot|st)

←−
Ez (zt|st)R (rt|st)F (ft|st)

]

= E

[∑
t

ln
←−
Eo (ot|st) + ln

←−
Ez (zt|st) + lnR (rt|st) + lnF (ft|st)

]
.

(A.2)

The second term of the mutual information is derived through substitution of
the true data distribution with our models. This can be done w.l.o.g., since the
latent state st is solely defined through our models. Thus, we can substitute the
true distribution p with those models that process the given data that defines p.
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A. Loss Derivation

By applying the definition of the KL divergence in the last step, we can conclude
with a representation for the second mutual information:

I (s1:T ; i1:T |a1:T )
= Ep(o1:T ,z1:T ,r1:T ,f1:T ,s1:T ,a1:T ,i1:T )[∑

t

ln p (st|st−1, at−1, it)− ln p (st|st−1, at−1)

]

= E

[∑
t

ln p (st|st−1, at−1, ot, zt)− ln p (st|st−1, at−1)

]

= E

[∑
t

ln
−→
Ez
(
st;[ot,zt]

∣∣∣−→Eo (st;[ot]∣∣D (s̃t|st−1, at−1) , ot
)
, zt

)
− lnD (st|st−1, at−1)

]

= E

[∑
t

KL
[−→
Ez
(
st;[ot,zt]

∣∣∣−→Eo (st;[ot]∣∣D (s̃t|st−1, at−1) , ot
)
, zt

) ∣∣∣∣∣∣D (st|st−1, at−1)
]]

.

(A.3)

Therefore, we can formulate the information bottleneck objective

I (s1:T ; (o1:T , r1:T ))− βI (s1:T ; i1:T |a1:T )

≥ E

[∑
t

ln E (ot|st) + lnR (rt|st)

]

− β E

[∑
t

KL
[−→
Ez
(
st;[ot,zt]

∣∣∣−→Eo (st;[ot]∣∣D (s̃t|st−1, at−1) , ot
)
, zt

)
||D (st|st−1, at−1)

]]

= E

[∑
t

ln
←−
Eo (ot|st) + ln

←−
Ez (zt|st) + lnR (rt|st) + lnF (ft|st)

− βKL
[−→
Ez
(
st;[ot,zt]

∣∣∣−→Eo (st;[ot]∣∣D (s̃t|st−1, at−1) , ot
)
, zt

)
||D (st|st−1, at−1)

] ]
= − LEo,Ez ,R,F ,D .

(A.4)
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B. Hyperparameters

This appendix summarizes the hyperparameters used to train our different models.
For model A, all parameters will be listed, whereas for the other agents, we will
only display changes. Furthermore a model denoted as “Y-xM” uses the model
parameters Y and has been trained for x · 106 steps. Follow the code if more
information is required.

Model A:
precision: float16 RSSM deterministic size: 200 units
direct observation size: 7 RSSM stochastic size: 2× 30 units
image shape: (64, 64, 1) dense layer activation: ELU
parallel environments: 8 CNN layer activation: ReLU
test environments: 1 CNN channel multiplier: 32

parallelization: Threads direct observation loss scale: 512

action repeat: no termination loss scale: 10

random dataset prefill: 5000 steps KL loss scale: 1

batch size: 50 minimum nats in KL loss: 3.0

batch length: 50 observation model LR: 6e−4
train at every: 1000 recorded steps value model LR: 8e−5
training iterations: 100 actor model LR: 8e−5
imagination horizon: 15 steps initial action std: 5

termination dimension: 2 clip gradient to: 100

term. signal threshold: 0.98 bellman discount: 0.95

exploration noise: additive gaussian random number generator seed: 42

exploration scale: 0.3 termination scale in A-loss: [0, 0]

minimum exploration: 0

exploration decay: no

Model B:

termination scale in A-loss: [−200, 125]

Model C:

termination scale in A-loss: [−1000, 1000]
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B. Hyperparameters

Environment Parameters:
maximum number of obstacles nρ,max: 12

image resolution: 64× 64

image channels: grayscale (showing obstacles)
step frequency τ : 4Hz
action space: [−0.025, 0.025]3
sample number of obstacles: yes
dynamic obstacles: no
blocking probability pblock: 0.2

blocking minimum path overlap: 10 cm
resample blocking: no
curriculum/learning stages: no
multidimensional termination: yes (success, failure, timeout)
randomize textures: no (yes for Dreamer evaluation)
randomize colors: no (yes for Dreamer evaluation)

λTD: 1.0

λTO: 0.2

λV : 0.35

λOD: 0.25

λS: 1.75

λF : 0.85

PT,min: 4m
PT,max: 10m
Pρ,min: 4m
Pρ,max: 15m
dρ,min: [0.2m, 0.2m, 0.2m]

dρ,max: [2m, 2m, 2m]
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C. Policy in Different Scenes

Figure C.1: The C-2.0M policy is shown in multiple scenes. The environments include
hand-crafted situations (top and center row), as well as randomly generated
scenes (bottom row). The arrows mark the approximate path of the robot.
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D. Direct Observation Predictions
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Figure D.1: The predictions of the GCV part in the direct observation (red) and the
ground truth (blue). Furthermore, z(0;t) corresponds to the x velocity, z(1;t)
shows the y velocity and the rotational z velocity is resembled by z(2;t).
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D. Direct Observation Predictions

0 5 10 15 20 25 30 35 40

t [s]

2

4

6

8

z (
3
;t
)

truth
model

0 5 10 15 20 25 30 35 40

t [s]

−0.50

−0.25

0.00

z (
4
;t
)

truth
model

0 5 10 15 20 25 30 35 40

t [s]

−0.05

0.00

0.05

z (
5
;t
)

truth
model

0 5 10 15 20 25 30 35 40

t [s]

−0.1

0.0

0.1

z (
6
;t
) truth

model

Figure D.2: The predictions of the relative target location z(3;t), z(4;t) and the robot roll
and pitch rotations z(5;t), z(6;t) are shown in red. The blue curves display
the corresponding ground truths.
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