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1 Introduction
Bin picking is a core problem in computer science and robotics that consists of
planning and performing a directed picking process of a single object from a
box of different objects with a robot end-effector. The scenario is highly rele-
vant, with applications ranging from warehouse control to robot assistants. Our
group participated in the Amazon Picking Challenges 2015 and 2016, as well
as the Amazon Robotics Challenge 2017 which had the goal to advance the
state-of-the-art in bin picking [1, 2]. The process of bin picking itself combines
several different disciplines, ranging from computer vision to grasp planning,
motion planning, and execution control [3]. The disciplines of grasp and motion
planning require a good model of the objects, agent, and world in order to allow
for successful manipulation of the scene. Notably, this includes a model of the
physical properties of the objects: Mass, surface friction, elasticity, moment-of-
inertia, and density distribution/center-of-mass can all play a crucial role and
- when guessed incorrectly - lead to failure cases. The goal of this thesis is to
explore ways to improve the knowledge of physical parameters of objects, to be
used in bin picking scenarios. One straightforward way to achieve this that we
investigated was the use of a physics engine that in itself is differentiable, which
allows for backpropagation through the engine, in order to update the physical
parameters of a simulation. In the end, we settled for a more flexible and effi-
cient approach, by developing a framework that uses a prediction module - e.g.
a neural network - to guess the physical parameters in a simulation iteratively
by comparing an observation to the simulation. Since this does not require
backpropagation through the engine itself, it lifts the need for differentiability
of the physics engine and instead relies on standard neural network and ma-
chine learning techniques. This simplification allows for the use of commercially
available physics engines that are already optimized for speed and efficiency but
not necessarily differentiable.

This thesis is structured as follows: In chapter 2, we describe the related
work of this project in more detail. Chapter 3 concerns itself with the simula-
tion or physics engine part of our new approach. We describe the used physics
engine and the scene that was used for subsequent testing. We also estimate the
achievable resolution. Chapter 4 is focussed on the prediction module of our ap-
proach. We compare different techniques, namely hyperparameter optimization
and a neural network, and evaluate their performance when used to iteratively
guess physics parameters. We furthermore investigate the role of second order
processes, multiple objects, multiple parameters and different object shapes. In
chapter 5, we provide a summary of the work and in chapter 6, we give a brief
outlook on future investigations and the path to three dimensional scenes.
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2 Related Work
Control system optimization plays a big role in bin picking scenarios, where
the success of a planned operation is critically dependent on how well a robotic
agent can be controlled. Oftentimes, controllers are optimised in simulated en-
vironments with reinforcement learning, particle swarms or genetic algorithms,
completely free of any derivatives [4, 5, 6]. As a consequence, the robot is of-
ten treated as black box, which prevents efficient gradient-based deep learning
methods. Physics engines like MuJoCo [7] allow for the evaluation of gradients
between states and actions through a robot, however, they do not allow back-
propagation to the initial model parameters. More recent work investigated
special physics engines that are end-to-end differentiable [8, 9], however, when
initially testing the use of such engines, we found that they were much slower
and less adaptable to new scenarios than commercial engines like NVidia PhysX
[10]. In our group, we developed a PhysX-based framework for the creation of
simulated data to train agents in bin picking scenarios called Stillleben [11].
The goal of this thesis is to test approaches that will allow us in the future to
use Stillleben for improving scene understanding by updating the knowledge of
physical properties of objects. This includes keeping our framework efficient in
order to be able to actively improve the scene-knowledge at runtime. To achieve
this goal, we build on an iterative approach that is used to estimate the 6D pose
of objects, see ref [12]. In this work by Li et al., a simulated pose is compared to
an observed object in order to determine changes in the pose. This is done itera-
tively, in order to refine the predictions and allow for incremental improvements.
In our case, we observe time series of frames to allow for efficient interpretation
of the shown dynamics. Our guess comes from a physics engine that is used to
simulate the scene. The comparison of both then allows to determine corrections
to parameters of the simulation, that correspond to physical properties of the
investigated objects. The network that we use throughout this thesis is based
on the ResNet architecture [13], but modified for the use of 3D convolutions to
account for the time-series dimension. The task of predicting physical param-
eters of objects has been investigated before, for example unsupervisedly from
short video sequences [14]. Oftentimes, properties are also predicted from single
pictures, for example via micro-CT pictures for porous media [15], pictures of
stacked crops [16] or pictures of liquid crystals [17]. In a more robotics-centric
context, neural networks have been used to predict the hardness of objects with
a GelSight sensor [18]. In context to these earlier works, our dynamic approach
utilises iteration over observed scenes that allow for constant refinement of the
parameters by taking into account new information.
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3 Simulating Physics for Bin Picking
Commercial physics engines are often developed with efficiency in mind and
not to be differentiable, which prevents backpropagation to the initial input pa-
rameters. In our case, we decided to circumvent this problem by not doing a
backward pass through the physics engine itself, but rather have a prediction
module compare the ground truth observation to a simulation and then correct
the corresponding input parameters that represent the physical objects’ prop-
erties. This will allow for the use of an arbitrary physics engine, that takes the
parameters that are subject to optimization as an input.

3.1 Physics engine
In principle, with our approach, the choice of the physics engine is arbitrary. For
testing in a two-dimensional environment, we chose the Python-based physics
library Pymunk [19], which is built on the physics engine Chipmunk [20]. The
library allows for efficient simulation of two-dimensional rigid-body physics.
Objects can be defined with arbitrary (two-dimensional) shapes, represented
through polygons. Other physical properties like the mass, center-of-mass, mo-
ment of inertia, elasticity and friction can be set as well, which allows for several
different parameters to be predicted by our framework. Forces can be added
to objects, which allows for dynamical behaviour. To design scenes, fixed (im-
movable) objects can be added to the scene that can act as barriers. Pymunk
includes helper functions for visualisation with pygame [21], which allows for
prototyping and visualisation of our test scenes. Pymunk is independent of
units, as the calculated physics only depends on the ratio between them. For
this reason, throughout this thesis, no physical units will be given.

3.2 Test scene
The ultimate goal of the presented approach is to be used in a bin picking
scenario in three dimensions. For testing purpose, we restrict ourselves to un-
derstanding the two-dimensional case in this thesis, in order to test different net-
work architectures and prediction parameters. The scene we choose for testing
consists of three objects in a schematic box, shown in Figure 1. The resolution
of each image array is 400×400 pixels. The box is formed by three fixed lines,
which provide confinement for the objects. Two objects are placed at a fixed
position next to each other in the box. The third object is placed above the first
two and accelerated by a force impulse. All object are subject to a gravitational
force pointing down. We usually observe the scene for 30 frames, with the col-
lision between the objects happening at frame 15. Each circle is marked by a
line to provide an angle and measure the orientation of the circle.This simple
scene setup allows us to investigate simple seperated collisions, which are the
elementary processes used to determine physical properties.

3.3 Achievable resolution
The ability of the network to correct the input parameters is limited by the
resolution of the observed scene: If a small parameter change causes a change in
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Figure 1: Test scene. Left to right: Frame 1, frame 15 and frame 30 of the
test scene that we use throughout this thesis to estimate the performance of
different approaches.

the object position that is smaller than one pixel, the network will – without ad-
ditional processing, e.g. through antialiasing – perceive the scene as unchanged.
To get an estimate of the achievable resolution, we investigated how large the
observed changes are for a given change in input parameters for our scene. One
parameter that is predicted by the network is the mass. With an initial mass
of 5 for both objects in the bin, we create a reference time series of 30 frames
in grayscale. We then change the mass by an amount ∆m, re-simulate, and
calculate the mean squared distance to the reference time series. The result can
be seen in Figure 2.

Other parameters that can be tuned are elasticity and friction. In Pymunk,
both are given by coefficients ranging from 0 to 1. Starting from 0.1, we again
compare time series for several differences in elasticity and frictions, see Figures
3 and 4.
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Figure 2: Influence of the mass parameter on the mean squared error of
the time series. Top panel shows the mean squared error (MSE) for different
mass differences ∆m. The reference mass is m = 5. The panels in the bottom
show the difference between the last picture of the reference and changed time
series for different ∆m, indicated by the grey dashed lines in the top panel.

In conclusion, all three parameters show a strong change towards small pa-
rameter changes, which is important towards the end of the iterative process,
where small increments in parameter space are expected. For large paramter
changes the curves for mass and especially friction flattens. It remains to be
seen, wether this poses a problem for the neural network. In any case, good
initial guesses help alleviate this situation.
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Figure 3: Influence of the elasticity parameter on the mean squared
error of the time series. Top panel shows the mean squared error (MSE) for
different elasticity differences ∆e. The reference elasticity is e = 0.1. The panels
in the bottom show the difference between the last picture of the reference and
changed time series for different ∆e, indicated by the grey dashed lines in the
top panel.
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Figure 4: Influence of the friction parameter on the mean squared
error of the time series. Top panel shows the mean squared error (MSE) for
different friction differences ∆f . The reference friction is f = 0.1. The panels
in the bottom show the difference between the last picture of the reference and
changed time series for different ∆f , indicated by the grey dashed lines in the
top panel.
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3.4 Using a differentiable physics engine
As mentioned at the beginning of this chapter, our approach aims to make use
of a non-differentiable physics engine, by predicting the parameters of objects
that act as input to the engine. The already mentioned alternative is to use
a physics engine, that in itself is differentiable. To be able to compare both
approaches, we adapted the code of de Avila Belbute-Peres et al. [9] for testing
with a similar scene. The results are shown in Figure 5. While the differentiable
engine is able to reliably find the ground truth values of the two masses (given
by the dashed lines), it takes several hundreds of iterations to do so. While this
approach is very dynamic and can in principle determine the parameters of any
scene setup, we chose an approach that aims to be more efficient. However, this
comes at the cost of being very specialised on scenes that are captured by the
training data.

Figure 5: Loss and predicted masses during inference with a differen-
tiable physics engine. Code adapted from [9]. The blue curve shows the loss
value (mean squared error between predicted and ground truth mass) and the
green and orange lines show the actual mass values of the objects. Dashed lines
indicate the expected ground truth mass.
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Figure 6: Schematic of our approach. Our approach consists of two inde-
pendent modules in order to improve our understanding of the physical scene.
We use a simulated and an observed time series and feed them into a prediction
module, which then predicts possible changes to the input parameters of the
simulation. We then update our initial input parameters and re-simulate the
scene. This procedure is iteratively repeated to refine the parameter guesses
and take into account new observations.

4 Predicting Physical Properties
In this chapter, we investigate the optimization of physical properties with dif-
ferent approaches. In the first section, we will present our general approach for
parameter optimization, which is both independent of the physics engine and the
optimizer that is used. In the later section we will investigate hyperparameter
optimization and deep neural networks as a possible prediction modules.

4.1 Iterative approach for parameter optimization
Our general approach to predicting the physical parameters of objects in a bin
picking scenario is inspired by earlier work on iterative predictions of pose es-
timation, see ref [12]. In summary, we take an observation and try to estimate
the physical properties by matching a simulated scene with guessed parameters.
Importantly, this approach seperates the simulation aspect from the task of
predicting the input parameters. In comparison to approaches where the simu-
lation itself has to be differentiable, we can independently choose which physics
engine we use for simulation and which module to optimize the parameters.

The principle is sketched in Figure 6. We start with two time series of pic-
tures, the ground truth observation and a simulation with guessed parameters.
Both sets of pictures are passed to the prediction module, which outputs a set
of parameter changes ∆pi for all n parameters entering the simulator. These
parameter changes are then added to the initial parameters to yield the updated
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simulation parameters. Afterwards, a re-simulation with updated parameters
is performed. The new simulation results can then be used with the (possi-
bly updated) observed ground truth, to re-iterate the physical parameters. In
summary, each iteration takes one forward pass through the prediction module
(potentially for each object) and one pass through the simulator.

4.1.1 Multiple objects

One important question is how our approach should treat different numbers of
objects in the scene. When predicting physical parameter changes, the naive
approach would be to predict all parameter updates at the same time. However,
since the shape of the output is fixed at runtime, this would mean the network
is only usable for a fixed number of objects. In our case, we decided to gain
flexibility by predicting parameter changes for objects one at a time. We select
the object on the input by marking it with a different color, see Figure 7. In
the bin picking use case, this would amount to an initial segmentation task that
can either be performed seperately, or by the prediction module itself. In the
following, we will compare the performance of the single-object approach with
the multi-object approach. An alternative approach to the color-marking would
be to place the objects themselves in separate channels.
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Figure 7: Example frame with marked object. One object is being marked
by a different color. This allows the prediction module to identify the object
under investigation.

4.2 Hyperparameter optimization
One possible choice for the prediction module is to use generic gradient-free op-
timization techniques. In our case, we test the hyperopt library [22] for Python,
which implements a Tree of Parzen Estimators (TPE) approach to find the opti-
mal set of parameters for a given objective function [23]. The objective function
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has to take the parameters as input and provide a measure for the accuracy
of the output. As a criterion for accuracy, we choose the mean squared error
between the ground truth and simulated time series. Hyperopt itself provides
the framework to log arbitrary measures during the optimization cycle, and pro-
vides the best set of parameters after optimization. In the following subsection,
we will investigate the performance of hyperopt as prediction module.

4.2.1 Optimization and performance

We start by analysing the performance of the hyperopt approach, when the
masses of the two unknown objects are the only free parameters. We repeat the
optimization procedures several times by randomising the ground truth mass,
and starting with a random initial guess. Hyperopt will then optimize the mass
parameters to achieve the lowest mean squared error between the time series.
The search space for the hyperopt algorithm is restricted to the space of possible
masses for the ground truth. The performance of the hyperopt approach is
shown in Figure 8.
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Figure 8: Performance of our approach when using the hyperopt li-
brary as prediction module. Top: Mean squared error of the estimated
mass for 20 different scenes (different colors). Note that we show the mass error
corresponding to the minimum visual error up until the current iteration, for
easier analysis of convergence. Bottom: MSE averaged over over the 20 scenes
with standard error. The orange curve is an exponential fit with a decay con-
stant of τ = 2.8.

Note that for the analysis of the performance, we look at the mean squared
errors between the ground truth and guessed masses, while the hyperopt algo-
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rithm itself only operates on the mean squared error between the time series
pictures. The upper panel in Figure 8 shows the error curves for twenty dif-
ferent ground truth / initial guess pairs and for each curve the minimum mean
squared error between the masses at a given iteration. The behaviour of the
mean squared error between masses and time series pictures is qualitatively sim-
ilar (a minimum in the latter always corresponds to a minimum in the former),
however, we chose this visualisation for its straightforward interpretation. The
lower panel in Figure 8 shows the mean error at a given iteration, excluding the
randomized initial guess with errorbars denoting the error of the mean. The
orange line represents an exponential fit to the curve with a decay parameter
of τ ≈ 2.8. While the exact shape is not necessarily expected to behave expo-
nentially, we found the fit to be reasonably accurate in the predicted range and
the decay parameter allows for a quick estimation of the expected errors after a
certain number of iterations. Figure 9 shows the trajectory of guesses through
the parameter space for three exemplary curves (color coding similar to Figure
8). Note that this trajectory includes guesses that perform worse than the best
guess at a given point. It can be seen that while the hyperoptimization uses
the TPE algorithm to improve its guesses, it still samples a large part of the
parameter space.
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Figure 9: Parameter space trajectories for three exemplary curves of
the hyperopt optimization. The curves correspond to the ones shown in fig
8 with similar color coding. Arrows denote the guess trajectories, points are the
ground truth values. It is apparent that the hyperopt approach explores a large
area in parameter space.

In the following section, we will investigate a more informed method for
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updating physical parameters, namely neural networks.

4.3 Neural network
In this section, we investigate the performance of our approach when using a
neural network as a prediction module. To keep the computational efficiency
high, our goal was to use the simplest possible network architecture, as this
will cut the time required for a forward pass. We found, however, that the
most simple architecture given by several convolutional and pooling layers, was
insufficient to achieve training progress. As a consequence, we changed our
network architecture to closely resemble a ResNet architecture [13], however,
we use 3D convolutional layers to accomodate for the time series collection of
pictures. The input to our network has the shape (B×T×C×Y ×X), where B is
the batch size, T the length of the concatenated time series (usually 2×30 = 60),
C the number of color / object channels and Y ×X the resolution of the frames.
We furthermore found that in our case, dropout regularisation leads to more
stable results as compared to the usually employed batch normalisation. In
comparison to the hyperopt approach above, the network predicts a correction
of the parameters that go into the simulator ∆pi (as compared to the absolute
value pi). The updated value can then be calculated by summing the old value
with the parameter update pt+1

i = pti + ∆pti.

4.3.1 Training

To estimate the performance of the network, we train it on simulated data. For
this, we use randomised input parameters for guess and ground truth simula-
tions, and use the calculated differences between the input parameters as labels.
We implemented the network with the PyTorch library [24]. We minimise the
mean squared error between ground truth and perform backpropagation with
the ADAM optimizer [25]. For predicting only the masses of the objects as free
parameters, we found good convergence when using a batchsize of 20 for 6500
iterations, see Figure 10.

4.3.2 Performance

To evaluate the performance of the neural network, we perform iterative pre-
diction of the parameter changes. For this, we randomly select ground truth
and guess masses and predict the parameter changes several times. The result-
ing minimum mean squared error between the predicted and (updated) guess
masses can be seen in the upper panel of Figure 11. The lower panel in the
same Figure shows the mean minimum mean squared error between the masses
after each iteration, excluding the randomised initial guess. Error bars denote
the error of the mean. We again chose the minimum mean squared error of
the masses as a measure of accuracy, as it is directly connected to the readily
accessible mean squared error between the time series frames.

In comparison to the hyperopt results shown in Figure 8, the neural network
approaches much faster to its final value. Already after two iterations, the net-
work converges towards a constant value within error bars. This fast conversion
is also highlighted in the parameter-space trajectory shown in Figure 12. Here,
it can be seen that the first step traverses the majority of the distance between
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Figure 10: Example loss trajectory during training. We use the ADAM
optimizer with a learning rate of 5 × 10−6 for 6500 iterations with a batch size
of 20.

the start point and target point. In some cases,the final point lies at an offset,
which may be caused by finite resolution of the frames.
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Figure 11: Performance of a neural network as prediction module. Top:
Mean squared error of the estimated masses for 10 different scenes (different
colors). We show the mass error that corresponds to the minimum visual error
up until the current iteration. Bottom: MSE averaged over 10 scenes, with
standard error. Compared to the hyperopt approach shown in Figure 8, the
neural network needs significantly less iterations to achieve lower error.
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Figure 12: Parameter space trajectories for the neural network. Curves
correspond to the ones shown in Figure 11, using the same color coding. Arrows
show the trajectory of the guesses and points correspond to the ground truth
values. In comparison to the hyperopt approach shown in Figure 9, the neural
network does not need to explore the parameter space, but converges quickly to
its final value, around which it oscillates afterwards. In some cases, the network
has an offset to its final mass, most likely due to resolution effects discussed in
section 3.3.
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4.3.3 Second order processes

One possible complication compared to our baseline scene might be second order
interactions between objects. This happens whenever an object does not directly
interact with the test object, but with a different object that is also subject to
optimization. In this situation the guess for the second object depends on the
guess for the first object. While the guess for the second mass should improve
once the guess for the first mass improves, it is worth to investigate how this
affects the performance of the network. To investigate the effect of second order
processes, we changed the scene such that the test objects collides with only
one object, which is then accelerated towards a second object, see Figure 13.
In this case it is guaranteed that the test mass does not have direct interaction
with the second mass.
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Figure 13: Second order process experiment. From left to right: frame 1,
frame 15, frame 30 (last frame). The mass (circle) on the right is accelerated
towards the two masses in the center. It collides with the middle mass, which
then collides with the left mass. In this way, the left mass does not interact
directly with the right mass.

We train the prediction module network network with the same hyperpa-
rameters and learning rate as before. We perform the same tests as compared
to our initial test scene, see Figures 14 and 15. The performance of the network
does not suffer from the second order process visibly.
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Figure 14: Performance of the neural network with second order pro-
cesses. Top: Mean squared error of the estimated masses for 10 different scenes
(different colors). Whe show the mass error corresponding to the minimum vi-
sual error up until the current iteration. Bottom: MSE averaged over 10 scenes
with standard error. The performance is comparable to that of the test scene
shown in Figure 11, which leads us to believe that second order processes do
not play a large role.
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Figure 15: Parameter space trajectories (arrows) for the second order
scene. The curves corresponds to the ones shown in Figure 14 with same color
coding. Points show the ground truth values. Qualitatively this looks similar
to the performance in the test scene shown in Figure 12.
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4.3.4 Multiple objects

One modification to our presented approach would be the aforementioned par-
allel prediction of parameter corrections for multiple objects. While this takes
away some of the flexibility of our single object approach, it requires N − 1 less
forward passes through the prediction module network, where N is the total
number of objects. However, this approach only presents an alternative! when
the exact number of objects is known. Alternatively, it might be feasible to
train the network to a large number of objects, where all unused object-slots
are masked out. In this section, we measure the performance of the multi-object
approach and compare it to our single object approach presented above. The
performance in this case is shown in Figures 16 and 17. It can be seen that the
performance is comparable to the single object case. Predicting the parameters
of several objects at the same time therefore might be feasible in situation, where
the number of objects is known, in order to achieve less forward passes through
the network. However, in our case, the physics simulation is the dominant time
factor and increasing the number of forward passes through the neural network
does not add much to the total runtime.
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Figure 16: Performance of the multi-object approach. Top: Mean squared
error of the estimated masses for 10 different scenes (different colors). We show
the mass error corresponding to the minimum visual error up until the current
iteration. Bottom: MSE averaged over 10 scenes with standard error. The
performance is comparable to that of the test scene shown in Figure 11, choosing
between multi-object detection and single-object detection therefore is tradeoff
between speed and flexibility.
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Figure 17: Parameter space trajectories (arrows) for the multi-object
approach. The curves shown in Figure 16 have the same color coding.
Points show the ground truth values. Qualitatively this looks similar to the
performance in the dummy scene shown in Figure 12.

4.3.5 Imperfect observation of the scene

To simulate the effect of imperfect observation of the ground truth, we introduce
some imperfection to the ground truth channel by applying a gaussian filter
with σ = 3 to each picture of the time series. This blurs out the image and
mimics the effect of segmentation errors or a misplaced focus. Example pictures
from the imperfect ground truth and a simulated guess are shown in Figure 18.
Performance and parameter space trajectories are shown in Figures 19 and 20.
It can be seen that blurring the ground truth does not affect the performance of
the network at all. This proves that the method is robust against some common
error sources when observing the scene with a camera.
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Figure 18: Example frames from the imperfect ground truth. A gaussian
filter is applied to the ground truth frame on the left. A picture of a guess
produced by the physics engine is shown on the right.
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Figure 19: Performance with imperfect observation. Top: Mean squared
error of the estimated masses for 10 different scenes (different colors). We show
the mass error corresponding to the minimum visual error up until the current
iteration. Bottom: MSE averaged over 10 scenes with standard error. The
performance is comparable to that of the test scene shown in Figure 11, which
demonstrate robustness agains certain kinds of imaging errors.
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Figure 20: Parameter space trajectories (arrows) for imperfect obser-
vation. The Curves shown in Figure 19 have the same color coding. Points
show the ground truth values. Qualitatively this looks similar to the perfor-
mance in the dummy scene shown in Figure 12.
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4.4 Increasing the complexity with friction and elasticity
In a realistic scenario, the dynamics of the physics is not only determined by a
single parameter like the mass we investigated above. Rather, all kinds of differ-
ent parameters play a role. In this section, we investigate wether our approach
can correctly predict the role of elasticity and friction of the objects, while keep-
ing the respective other parameters constant. In the end, we investigate if it is
possible to predict all three relevant parameters - mass, elasticity and friction -
at the same time.

4.4.1 Predicting other parameters separately

In this section, we investigate the performance of the network, when prediction
either elasticity or friction updates. For this, we keep the masses of the test
object fixed to m0,1 = 15. The performance when predicting the elasticity as
free parameter is shown in Figures 21 and 22. The results show, that after only
a few iterations the error drops significantly. We conclude, that the network is
able to predict the elasticity parameter reliably.
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Figure 21: Performance for elasticity prediction. Top: Mean squared
error of the elasticities for 10 different scenes (different colors). We show the
elasticity error corresponding to the minimum visual error up until the current
iteration. Bottom: MSE averaged over 10 scenes with standard error.

Things are more complicated when predicting the friction parameter, see
Figures 23 and 24. In this case, the error drops less significantly, and after ≈ 5
iterations settles around a value of 0.01, which corresponds to an average error
of δf = 0.1, corresponding to 10% of the total range. Interestingly, the param-
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Figure 22: Parameter space trajectories (arrows) for elasticity predic-
tion. The curves shown in Figure 21 have the same color coding. Points show
the ground truth values.

eter space curves shown in Figure 24 show only small and directionally similar
changes per iteration, especially when approaching high values for either f1 or
f2. This could be a direct consequence of the flatness of the error curve shown
in Figure 4. From a physical point of view, the reduced effectiveness in learning
the friction parameter can be explained as well: The observed collision in our
dummy scene happens between three circles. Each collision - especially those
with high elasticity factor - happens on a single point on the circle surface, hence
in good approximation the interaction can be modeled by elastic collisions. The
following movement of the unknown circles is only weakly dependent on the
friction parameter, as simple (ideal) rolling motion does not allow for quantita-
tive analysis of the friction parameters. We expect therefore, that the motion
is only weakly dependent on the friction parameter. This, however, could be
vastly different when observing more complicated shapes, especially those with
flat surfaces.
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Figure 23: Performance for friction prediction. Top: Mean square error
of the frictions for 10 different scenes (different colors). We show the friction
error corresponding to the minimum visual error up until the current iteration.
Bottom: MSE averaged over 10 scenes with standard error.
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Figure 24: Parameter space trajectories (arrows) for friction predic-
tion. The curves corresponds to the ones shown in Figure 23 with same color
coding. Points show the ground truth values.
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4.4.2 Predicting all parameters simultaneously

Predicting all parameters - mass, friction and elasticity - of the objects simul-
taneously turned out to be very complicated. We trained a neural network to
predict updates to all three parameters. However, while training we found that
the error - the mean squared error between masses, elasticities and frictions - did
not converge sufficiently to produce usable results. One reason for this may be
the difference in order of magnitude between for the parameter updates. While
the mass difference is on the order of ∆m ≈ 10, the differences of friction and
elasticity are on the order of ∆e,∆f ≈ 0.1. Therefore, using the mean squared
error for the parameter updates does focus strongly on the mass difference, but
excludes the other two parameters. To circumvent this behaviour, we normalise
the mass difference that goes into the mean squared error to its maximum value,
which is given by the maximum possible mass:

∆m̃ = ∆m/mmax.

This restricts the mean squared error between the parameter update values
to values between 0 and 1, with no dominating value. Unfortunately, retraining
the network with the modified loss values did not lead to improvement. While
the error naturally reduces (due to smaller values to begin with), we found that
the final value levels at a value that does not allow for reliable prediction of
parameter updates. We also found that the network does not predict parameter
changes for the masses. The network does attempt to predict the elasticity and
friction, but it is also limited by the achievable resolution of the friction param-
eter. While it cannot be excluded that for more elaborate network architectures
it is possible to predict all three parameters simultaneously, we conclude that
for our test scene the friction parameter prevents reliable updates. More expres-
sive scenes (especially those that contain sliding motions) might improve this
situation. To verify this conclusion, we train our network with both elasticity
and mass and investigate whether a lower prediction error is achieved.

4.4.3 Predicting elasticity and mass

Suspecting the friction parameter to limit the achievable performance with the
network, we retrained the network to just predict elasticity and mass. Using
the normalised loss, however, we again found that the network is discouraged
to predict the mass parameter and is limited in its accuracy on the elasticity
parameter. We retrained the network with an unnormalised loss to encourage
mass prediction. While the network seems to be able to predict the values for
both mass and elasticity in some cases, it fails or is inaccurate in many more.
We believe that one reason for this might be the predictive limitations of our
scene. For more complex scenes, especially in three dimensions, small changes
in parameters lead to larger changes in the final state, while in our case, small
changes in mass can lead to situations that resemble small changes in elasticity
- effectively limiting our prediction accuracy.

4.5 Changing the object shape
In a bin picking scenario our approach should be capable of handing different
shapes of objects. So far, in our dummy scene, we tested circular objects. In
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this section, we investigate, whether the network is able to determine physical
parameter of box shaped objects as well. For this, we modified the scene, seen
in Figure 25. The test object with fixed mass is a circle that is accelerated
towards two stacked boxes with unknown mass. The goal of the network is to
succesfully determine the mass of the boxes.
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Figure 25: Modified scene to evaluate the detection for box shaped
objects. Shown are (from left to right) frame 1, 15 and 30.

We train the network on this scene with the same parameters as our dummy
scene. The results are shown in Figures 26 and 27. Again, the network is able to
determine the mass accurately after very few iterations. However,the network
seems to be less accurate for high ground truth masses. Most likely due to less
dynamic behaviour of the boxes in this case.
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Figure 26: Performance for mass prediction for box-shaped objects.
Top: Mean squared error of the masses for 10 different scenes (different colors).
We show the mass error corresponding to the minimum visual error up until the
current iteration. Bottom: MSE averaged over 10 scenes with standard error.
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Figure 27: Parameter space trajectories (arrows) for mass prediction
of box shaped objects. The curves shown in Figure 23 with same color
coding. Points show the ground truth values.
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4.5.1 Predicting friction for the box scene

In section 4.4.1, we explained that limited predictive capabilities for the friction
parameter might be caused by the nature of the used scene. In more detail, we
assumed that more or less elastic collision between circle-shaped objects do not
allow for an accurate prediction of the friction parameter. To verify that it is
indeed possible to predict the friction for more expressive scenes, we retrain our
prediction module for the scene using the box-shaped objects. Here, the objects
have more flat surfaces, which should lead to more dynamics involving frictional
forces. Indeed, we see that the network is able to predict the friction with very
high accuracy, see Figures 28 and 29.
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Figure 28: Performance for friction prediction for box-shaped objects.
Top: Mean squared error of the estimated frictions for 10 different scenes (dif-
ferent colors). We show the friction error corresponding to the minimum visual
error up until the current iteration. Bottom: MSE averaged over 10 scenes with
standard error.
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Figure 29: Parameter space trajectories (arrows) for friction prediction
of box shaped objects. The curves correspond to the ones shown in Figure
23 with same color coding. Points show the ground truth values.
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5 Summary
In this thesis we investigated how video observation of objects can be used
to infer physical properties of said objects. We developed an iteration-based
approach that compares an observed (yet simulated) video feed with a simu-
lated guessed video feed. Our approach is strictly modular and decouples the
physics simulation from the prediction module that derives the parameters for
the guess. This allows flexibility in choosing both modules. To gain an un-
derstanding of the performance and limits of our approach, we tested it on a
two-dimensional elementary test scene, simulated with the pymunk library. For
the prediction module, we compared the hyperparameter-optimisation library
hyperopt with a trained neural network in ResNet-architecture. We found that
while the hyperopt-guesser works reliably, it requires tens of iterations to achieve
low error between guess and ground truth. The neural network on the other
hand only requires very few forward passes to reach low errors comparable to
the observation threshold. In conclusion, the neural network presented itself as
the superior approach.

To investigate the robustness of the neural network based prediction module,
we investigated several test cases: For one, we investigated the performance for
different approaches to the detection of multiple objects. Both simultaneous and
seperated prediction for all objects perform similar, with the latter providing
more flexibility regarding changing object numbers and the former needing less
forward-passes. We also investigated the role of second order processes in which
an object with unknown parameters does interact with a test object with known
parameters, but only with another unknown objects. In this case we found the
network still stable and performing on equal footing. To investigate the role
of imperfect observation, we introduced a gaussian filter to the observation. In
this case, the network still proved to be stable and performed well.

We also investigated how the network predicts other parameters, namely
elasticity and friction. When only predicting one and keeping the other and
mass constant, the network proves to be capable of predicting the elasticity. In
case of the friction, the network is limited in its predictive power, most likely due
to only small changes in the scene for high friction parameters. We assume our
scene is not expressive enough in regards to movements that allow to determine
the friction parameter.

Finally, we investigated whether our approach is able to determine physical
properties of differently shaped objects, namely boxes. By creating a modified
test scene, we observed that the performance when predicting the mass param-
eter is comparable to the other scene. In agreement with the assumption that
scenes with flat surfaces will increase the performance for friction prediction,
we found that this scene allows for an accurate determination of the friction
parameter.

In conclusion, we found that our approach with seperated physical simulation
and prediction module allows for an efficient prediction of physical parameters
for two-dimensional scenes. However, the expressiveness of a scene with regards
to certain parameters plays a big role. It is therefore imperative to provide our
approach with as much meaningful data as possible - for example by extending
and updating the time series on a rolling basis.
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6 Outlook
While in this thesis we layed the foundation for predicting physical properties
from video feeds, more tests and extensions have to be undertaken in order to
apply our approach to a real world bin picking scenario. In this section, we give
a brief outlook of the next steps towards applicability.

6.1 Increasing the scene complexity
While our test scenes capture elementary processes of a scene, the state-space is
limited. One interesting future investigation may explore the performance of our
approach in scenes with a (much) larger number of objects. Pymunk is easily
capable of simulating hundreds of objects. This will increase the state space
significantly and will allow us to judge whether the network is really able to
capture the underlying physics, without overfitting. This test also allows us to
evaluate how the duration learning process scales with complexity. Additionally,
the duration of the scene can be extended and the iteration can be applied with
a sliding window approach to allow for accumulation of additional information
over time.

6.2 Generalisation to three dimensions
In this thesis, we investigated our approach using two dimensional scenes to
understand the capabilities and limits, however, bin picking naturally happens
in a three dimensional environment. Extending to three dimension comes with
several caveats: For one, observing a scene with a video feed becomes more
difficult as information is projected onto a two dimensional picture which neces-
sarily leads to loss of information. This loss is not present in the two dimensional
case, where the depth dimension does not exist. This also brings with it the
possibility of overlapping objects, which makes segementation more difficult.
However, segmentation of objects via pictures of three dimensional scenes has
been demonstrated succesfully [1, 2, 3]. Secondly, the number of possible param-
eters becomes more complicated: Density, moment of inertia, center-of-mass all
require more information as compared to the two-dimensional case. Lastly, the
simulation-aspect becomes more involved, as a three dimensional physics engine
is required. In our case, we are looking to use Stillleben to generate scenes,
which has been developed in our group [11].

6.3 Simulating bin picking
While working on three-dimensional scene itself is interesting, the final use case
explicitly needs to take into account a robotic arm that performs the picking
process. While interacting with a test object provides us with information to
determine the physical properties of other objects, in reality, this interaction will
be caused by the robot arm and gripping process. It remains to be investigated
how the gripping process allows for predictions and what role failure cases (failed
gripping attempts) can play in this context. In our group, there is active work
on creating a dataset that can be used for this purpose and includes these failure
cases as well [26].
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6.4 Real world performance
Finally, it remains to be seen how our approach generalises from simulated
training data to real-world video feeds. While Stillleben is equipped to simulate
realistic video feeds, evaluating the performance on real feeds is an important
task and necessary to evaluate real-world applicability. While this was not
planned in the scope of this bachelors thesis, future investigations with the
developed framework will show how the performance scales to real use cases.
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