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RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

Abstract
Autonomous Intelligent Systems

Institute for Computer Science VI

Master of Science in Computer Science

Multi-Resolution Surfel SLAM and Rough Terrain Navigation using a

Continuously Rotating 2D Laser Scanner

by Mark Schadler

Mapping and real-time localization in 3D environments are prerequisites for the

advancement of situation-aware, autonomous mobile robots. When combined with

terrain traversability assessment and global planning methods, these capabilities

form a solution for autonomous rough-terrain navigation, capable for real-world

use.

This thesis proposes a method for SLAM and autonomous robot navigation using

a continuously rotating 2D laser scanner.

Multi-resolution surfel representations allow for compact storage and efficient reg-

istration of local maps. Through probabilistic graph optimization algorithms,

local maps can be globally aligned to an allocentric environment map - suitable

for navigation planning.

Real-time pose tracking is performed using a particle filter and individual laser

scan lines. Particle filtering robustly handles non-linearity in both observation

and motion models and can be easily parallelized for efficient computation.

Navigation planning uses region growing methods within an allocentric map to

determine a traversability graph. Using this graph and drivability assessment to

determine path costs, the well-known A* algorithm is used for path planning.

This approach is evaluated using both simulation and challenging real-world envi-

ronments including the DLR Spacebot Cup competition arena and an open dataset

from the University of Toronto.

http://www.uni-bonn.de
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Chapter 1

Introduction

Numerous applications for autonomous robot navigation in rough-terrain environ-

ments exist. This includes search and rescue missions, security and monitoring

systems, and domestic service robots. These applications are most pressing when

the environment is not easily navigable for humans, possibly due to safety or other

related concerns.

Providing a navigation solution suitable for complex environments, poses chal-

lenges spanning several fields of study within robotics. Thus discussion can focus

on several independent but related problems, each having a key impact on the

overall system functionality. In this thesis, these issues are separated into three

distinct problem groups - each with a proposed solution.

Key to all components within the system is localization - the determination of pose

within the environment. Localization within a 3D environment must consider six

degrees of freedom (DoF) - three for position and three for orientation. Using laser

scanner data, odometry input, and the previous pose estimate, the localization

system calculates the most likely current pose estimate.

Mapping is responsible for modeling the environment in a representation suitable

for localization and planning activities. With a rotating 2D laser scanner, 3D laser

scans can be recorded and aligned allowing for allocentric map creation. Using a

1



2 Chapter 1 Introduction

Figure 1.1: The Explorer robot platform developed by the University of Bonn
pictured with the DLR Spacebot Cup arena.

probabilistic graph optimization framework, map data is globally registered and

the resulting pose information can be used to refine the localization system.

Given a pose estimate and an allocentric map, navigation planning can be used to

generate paths to target poses. Using drivability assessment, the system should

compute trajectories considered safe for the specific mobile platform. Along these

trajectories, new data for mapping and localization can be acquired - thus com-

pleting the data-cycle of the system.

The presented system has been developed for the Explorer platform at the Uni-

versity of Bonn. The Explorer robot has competed in the Deutsches Zentrum für

Luft- und Raumfahrt (DLR) Spacebot Cup competition with reasonable success.

Figure 1.1 shows the Explorer robot with the Spacebot Cup competition arena in

the background.

In the remainder of this chapter, work related to laser scanners, localization, map-

ping, and navigation is presented along with proposed improvements. Chapter 2

provides the theoretical background of system components while Chapter 3 de-

tails the key thesis contributions and implementation details. Evaluation of the

presented method is reported in Chapter 4. Finally in Chapter 5, a conclusion is

presented along with potential future improvements.
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1.1 Problem Definition

This thesis presents a framework for performing simultaneous localization and

mapping (SLAM), drivability assessment, and navigation planning.

SLAM simultaneously tracks the robot pose and builds an environment map given

a time series of laser range data. This problem statement is posed as given an

initial pose, x0, and time series of measurements, z1:t, determine the most likely

robot pose xt and most likely environment map mt. Due to system operation

discussed in Section 3.1, the mapping component only measures 3D scans during

specific time intervals, thus it is possible given some constant k for mt−k, · · · ,mt

to be identical.

Given the current map, mt, and the robot drivability parameters such as size and

maximum drivable incline, drivability assessment determines the drivable space dt

within the map mt. The navigation component generates a path pt through the

drivable space dt directed towards a goal gt that minimizes the path cost based

upon drivability metrics.

1.2 Related Work

Within this section, state of the art work within the field of SLAM and navigation

is discussed, including identification of approach similarities and differences. With

reference to sensing hardware, both works using laser scanners and those using

other sensors are presented. When sensing hardware accounts for major differences

in operation or theory, these issues are explicitly discussed.

1.2.1 Mapping

Due to the overwhelming computation and storage demands of sensor data gen-

erated in even relatively small 3D environments, approaches to mapping must

carefully analyze performance characteristics. Initial research to reduce the space
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and computation requirements focused on discretizing the environment into grids.

Roth-Tabak and Jain [1989] use a constant size grid within environments to model

free and occupied space. However, this approach is not scalable to large or detailed

environments due to the required storage space. Increasing environment size or

resolution results in non-linear space enlargements.

Hornung et al. [2013] propose OctoMap, a multi-resolution volumetric mapping

system based on octrees and occupancy mapping - see Section 2.3.1 for an overview

of the octree data structure. Within an octree, volumetric elements denoted “vox-

els” store the probability of being occupied. Thus the system naturally maintains

the distinction between occupied, free, and unknown for the full environment.

Using the octree structure, branching nodes store aggregate data for all children

allowing querying of the map at varying resolutions. Occupancy mapping ad-

ditionally allows for simple fusing of multiple range measurements, however the

highest map resolution is constant. The OctoMap library does not implement

map-to-map registration and thus needs additional components for localization to

correctly fuse sensor data.

Ryde and Hu [2010] present a differing approach to managing the copious data

generated by 3D sensors using multi-resolution occupied voxel lists. Contrary to

general occupancy mapping, the presented system only stores occupied cells in a

large list structure. List storage allows for the implicit dynamic enlargement or

reduction of the environment, as well as minimal memory overhead. Using a hash

table datastructure, this list can be efficiently queried and updated from new laser

data given an accurate pose estimate. Current methods of path planning within

this mapping scheme relies upon 2D region growing using neighbor querying within

the list structure.

Based on the work from Biber and Strasser [2003], Magnusson et al. [2007], and

Stoyanov et al. [2012], Saarinen et al. [2013] propose a mapping system using the

normal distributions transform (NDT) and occupancy mapping. The NDT was

originally developed for 2D laser scan matching, modeling a laser scan as a set

of Gaussian probability distributions. Subdividing the environment into regular
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cells, allows for a simple calculation of the cells distribution. This distribution is

represented by a mean and covariance that express the probability of measuring

a sample within the cell [Biber and Strasser, 2003]. Using work from Magnusson

et al. [2007] and Stoyanov et al. [2012], who expanded NDT to three dimensions,

the alignment framework was combined with occupancy mapping to efficiently

process highly dynamic environments. Within this work, NDT map alignment

was used to generate an occupancy grid; thus for testing an external localization

system was used. This work is highly similar to our surfel based mapping system.

We additionally consider the viewing angle of a cell and store up to 6 Gaussian

distributions per surfel (corresponding to the six faces of the cell boundary). How-

ever, we do not model the occupancy probability and thus are unable to robustly

handle dynamic environments.

Research addressing mapping with laser scanners without the necessity to stop

during 3D scans has been investigated [Bosse and Zlot, 2009, Elseberg et al., 2012,

Stoyanov and Lilienthal, 2009, Maddern et al., 2012, Anderson and Barfoot, 2013].

The work by Maddern et al. [2012] focuses specifically on calibration of 2D and 3D

light detecting and ranging (LIDAR) sensors to allow accurate aggregation of laser

data while moving. The method uses a pointcloud quality metric based on entropy

to determine suitable aggregation parameters. Using this approach could remove

the additional requirements of stop-and-go mapping, however the method has the

potential to inject additional error into sensor measurements. Due to the use case

of our system in primarily space exploration vehicles, the extra time necessary to

remain still during scanning is not seen as a pressing issue.

1.2.2 SLAM

Khoshelham [2010] proposes using planar objects extracted from laser scan lines for

localization within 3D environments. In this work, plane matching is performed

using least-squares optimization, similar to our mapping system. However the

localization system requires 3D scans for pose tracking.
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Kuemmerle et al. Kuemmerle et al. [2007] apply Monte Carlo localization in Multi-

Level Surface (MLS) maps.1 Contrary to our work where particles are updated

using importance weighting from observation likelihoods, Kuemmerle et al. mini-

mize an entropy calculation given the expected and actual measurements.

Klaess et al. [2012] model the environment in surfel maps in a fixed resolution,

similar to the 3D-NDT representation from Magnusson et al. [2007]. Localization

is performed using a tilting 2D laser by matching line elements extracted from the

2D scan lines in a particle filter framework, assuming motion of the robot in the

horizontal plane. Our approach can avoid making the assumption of horizontal

plane motion.

Nüchter et al. [2007] model the environment by storing point clouds generated

directly from sensing hardware. This direct-data approach has many potential

performance and space caveats when naively processed. To handle the computa-

tion demands to perform scan registration, a heuristic approach is used to initialize

the iterative closest point (ICP) algorithm. The ICP algorithm calculates the lo-

calization estimate from the registered map pose, and thus localization is only

updated after each scan registration. An additional step after all scans are taken

is performed to refine the environment model using a global constraint relaxation

technique.

1.2.3 Navigation and Drivability Assessment

Path planing for driving in planar 2D indoor environments is a well-studied topic

in robotics. Hornung et al. [2012] consider the variable footprint of a mobile

manipulation robot for 2D path planning. Starting from a 3D representation of

the environment in an OctoMap, they derive a multi-layered 2D representation for

planning. Planning is performed using a lattice graph in 2D space where nodes

consist of their 2D position and yaw orientation. Connections between graph

1 See Triebel et al. [2006] for an introduction on MLS maps.
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nodes are implemented as motion primitives, thus implicitly generating smooth

trajectories.

Klaess et al. [2012] map the environment in 3D surfel grids using a 2D laser scanner.

From this representation, a 2D navigation map is derived using similar drivability

features as our work. The height of the robot is additionally considered to plan

collision free 2D paths in a 3D environment.

For navigation on non-flat terrain, several approaches generate 2D cost maps from

sensor readings to essentially treat path planning in 2D [Lee et al., 2008, Gerkey

and Konolige, 2008, Ferguson and Likhachev, 2008]. Work by Lee et al. [2008]

uses rapidly exploring random trees for efficient planning within large outdoor

environments. Gerkey and Konolige [2008] plan trajectories implicitly by gener-

ating robot motion commands to determine costs. Using the cost map, motion

commands follow the minimum cost-gradient to execute trajectories.

Recently, Stoyanov Stoyanov et al. [2010] proposed a wavefront-propagation path

planner in 3D-NDT maps. Within our work, the wavefront algorithm is used for

region growing and the precomputation of node and edge costs. This separates cost

calculation from trajectory planning, thus our work does not need to recalculate

drivability metrics before each planning step.

1.3 Proposed Improvements

The following section details the proposed improvements to current research con-

cerning mapping, tracking, and navigation of rough terrain environments.

1.3.1 Multi-resolution Surfel Mapping

Presented in Section 2.3, multi-resolution surfel (MRS) maps are used as the un-

derlying structure for modeling the environment using laser range measurements.

The multi-resolution feature of this data structure implicitly handles sensor error
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during local map alignment. In the data association step of registration, maps are

processed from fine to coarse resolutions where association candidates are selected

from a query volume with size in dependence with node depth (resolution). By

controlling the resolution at which laser scanner data is aggregated into a MRS

map, one can influence data association and thus registration in accordance with

sensor error properties.

The MRS map implementation will be adapted to handle the specific error char-

acteristics of a laser scanner. This update specifically requires the calculation

of measurement dispersion and error in dependence with distance. Section 3.2

presents the error calculation used for our specific laser scanner model.

1.3.2 Scanline Localization

Current work concerning 6D localization using laser scanners requires 3D scan

measurements. This allows for a direct pose computation using local map align-

ment. However, this constrains the localization update rate to the rotation speed

of the laser - often in the range of 1
4

Hz - 1
2

Hz. During motion, aggregating laser

scan lines into a 3D scan requires intermediate localization estimates. This needs

an additional accurate localization method or a complicated correction model -

which has yet to be robustly developed. In order to overcome these issues, this

thesis presents a method to perform 6D localization using individual laser scan

lines.

Due to the limited data within a single laser scan line, there is insufficient informa-

tion to create a MRS map and calculate a direct localization estimate through pose

optimization. This work suggests using particle filters to allow for a scan line to

MRS map observation model. Through this method, the localization update rate

is theoretically tied to the sensor update rate and scan line aggregation accuracy

issues are avoided. Section 3.3 presents the implementation of this component.
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1.3.3 Surfel Drivability Assessment

Drivability assessment is implemented using MRS maps and the terrain assess-

ment characteristics described in Section 3.4.4. This specific contribution focuses

on region growing within surfel grids and using the surfel datastructure for cost as-

sessment when considering the entire robot coverage region. Additional issues due

to small misalignments of local MRS maps and sensor calibration must be handled

using a specialized combination strategy, allowing for planning within the entire

mapped environment. Drivability assessment must not only determine costs for

drivability, but construct a datastructure suitable for path planning. Section 3.4

details the implementation of drivability assessment.

1.3.4 Path Planning

Path planning is implemented using the well-known A* algorithm within a traversabil-

ity datastructure created by the drivability assessment component. Specific chal-

lenging cases such as planning to unknown regions or obstacles must be carefully

handled to maintain a robust navigation system. Section 3.5 documents the inte-

gration of A* planning within the presented system.





Chapter 2

Background

2.1 LIDAR

Light detection and ranging (LIDAR) sensors use directed pulses of light to cal-

culate shape and surface characteristics. LIDAR sensors are used in a number of

applications from simple range/motion detection to earth surface mapping [NOAA

Costal Services Center, 2012]. This section serves as a short introduction to LIDAR

and available sensing hardware. Figure 2.1 shows several laser ranging sensors cur-

rently available to the public. For the Explorer platform we have chosen to use

a Hokuyo UTM-30LX-EW; an overview of the Hokuyo UTM-30LX-EW sensor is

presented including error characteristics and sensor interface information.

2.1.1 Laser Scanner Overview

Laser scanners calculate range measurements by emitting pulses of light and mea-

suring the reflection detection time.1 In the case of 2D scanners, the emission angle

is additionally considered and produces a scan line of individual range readings.

1 In the form of laser pulses at a wavelength suitable for the application. The wavelength can
vary from around 10µm to 250 nm.

11
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(a) SICK LMS5xx (b) MDL SLM

(c) Riegl VQ-450 (d) Velodyne HDL-64E

Figure 2.1: Various 2D laser scanners currently available with brand indicated.

Recent advances in laser scanner technology allow detection of surface character-

istics including remission (reflectance) measurements. Due to the consistency of

the speed of light, laser range measurements exhibit excellent error characteris-

tics and allow for a relatively high data rate. These factors have increased the

attractiveness of using laser scanners sensors in robotic applications.

Three dimensional laser scans can be generated from 2D scanners by aggregating

2D scan lines. However as range information is relative to the scanner itself,

tracking of the sensor’s position is necessary for data aggregation. Section 3.1

details the specific sensor movement used on the Explorer robot platform to collect

3D laser scans.
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Figure 2.2: The Hokuyo 30-UTMLX-EW 2D laser scanner.

2.1.2 Hokuyo UTM-30LX-EW

The Hokuyo UTM-30LX-EW was selected for the project as the sensor is lightweight

and relatively affordable while having an acceptable field of view (FoV) and update

rate. The sensor is shown in Figure 2.2.

The sensor operates at 40 Hz and generates 1081 range measurements per scan

line with a FoV of 270◦ and angular resolution of 0.25◦. The maximum range

is 30 m with an accuracy of ±30 mm in the range 0.1 m - 10 m and ±30 mm in

the range 10 m - 30 m. Contrary to RADAR, LIDAR sensors are more prone to

environmental effects from fog, rain, clouds, and sunlight.2[NOAA Costal Services

Center, 2012] According to the product specification, under these environmental

conditions measured ranges will be shorter than true distances.

Figure 2.3 shows an example 3D laser scan from the Hokuyo sensor colored by

remission including a corresponding photo of the environment. From visualizing

the surface remission we can see additional environmental structure useful for 3D

scan matching.

According to the UTM-30LX specification, remission/reflectance readings from the

laser scanner vary quadratically with the distance from the sensor.3 Figure 2.4

shows the variation of intensity readings with distance [Hokuyo Autonomatic CO.,

2008].

2 RADAR uses radio waves to measure range which have very weak absorption characteristics
compared to the infrared and visible wavelengths used by LIDAR devices.

3A laser scanner from Hokuyo having only minor differences between the UTM-30LX-EW.
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(a) Gray-scale indicates surface remis-
sion/reflectance.

(b) Photograph of environment.

Figure 2.3: Example laser scan with corresponding color image.

Figure 2.4: The variation of laser intensity in accordance with sensor distance
for the Hokuyo UTM-30LX [Hokuyo Autonomatic CO., 2008].

Section 2.3.3 details the use of a surface reflectance feature. Problems related

to distance dependent reflectance readings are mitigated by considering only the

local contrast of surfaces. However, from Figure 2.4 we see there is a non-linear

dependence of intensity with distance. By assuming the local neighborhood of

surface data must be relatively close in distance, due to a sufficient mapping

resolution, we can then assume the distance dependence is approximately linear

in the local region.
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2.2 Pose Representation

The SLAM tracking problem is presented as the estimation of the most likely

robot pose within a map reference frame denoted M . The mapping problem is

posed as finding the most likely map from sensor readings and thus must use pose

information to combine 3D laser scans. The robot trajectory is assumed to follow

rigid body motion; this allows for a compact pose representation suitable for the

entire system.

This section introduces rigid body motions for pose representation, which serves

as a brief overview for the application of rigid body motion in the context of pose

tracking and mapping. A more detail introduction including proofs can be found

in the freely available work, “Classical Mechanics” [Shapiro, 2010, p.85-93].

2.2.1 Rigid Body Motion

A rigid body is an object that cannot undergo deformation, thus all distances

between any points within the body remain constant regardless of external forces.

Applied to three dimensional space using a rigid body X ∈ R3, the mapping

g : R3 → R3 is a rigid body motion when the following constraints are satisfied:

1. Distance preservation:

|g(p)− g(q)| = |p− q| ∀p, q ∈ R3

2. Vector cross-product preservation:

g(v × w) = g(v)× g(w) ∀v, w ∈ R3

These constraints implicitly result in preservation of angles within the rigid body

as well as orientation.4

4 Preservation of orientation preserves the handedness of a coordinate frame. Handedness
enforces the direction of “positive” in each axis. In three dimensions a coordinate frame can be
left or right handed.
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A trajectory can therefore be described by the rigid body motion of an arbitrary

coordinate frame attached to a rigid body. This configuration can be expressed as

the translation and rotation of a coordinate frame relative to some global frame

(here denoted as the map frame M). Often this frame is attached to the center of

mass of an object, however as we are not concerned with physical modeling but

simple pose representation we can ignore these specific details.

2.2.2 Pose Representation

To express an arbitrary coordinate frame F with respect to a global frame M in

R3, we use a rigid body motion g. The fixed frame M is defined by the basis vectors

e1, e2, e3. Thus the translational offset of frame F w.r.t. M can be described by a

vector ~t ∈ R3. The origin of frame F , of can be calculated as

of = t1~e1 + t2~e2 + t3~e3 (2.1)

By defining the basis vectors of frame F as e′1, e
′
2, e
′
3, we can calculate their value

w.r.t. frame M as

e′i =
3∑

j=1

Rijej : i ∈ {1, 2, 3} (2.2)

The mapping gMF defines frame F in the fixed frame M and is fully described

by the translation vector ~tMF and rotation matrix RMF = [u v w] with column

vectors u = g∗(e1), v = g∗(e2), and w = g∗(e2). A point PF in frame F can be

expressed in frame M by

PM = RMFPF + tMF (2.3)

The rotation and translation components can be combined using a 4× 4 homoge-

neous transformation matrix TMF with form:

TMF =

 RMF
~tMF

~0 1

 (2.4)
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Using this transformation matrix, we can rewrite Equation 2.3 as

PM = TMFPF (2.5)

Within the context of SLAM, we consider the robot trajectory in the map reference

frame M , a time-discrete rigid body mapping g(t) : R → SE(3). This mapping

gives the configuration of the robot frame in the map frame at time t. The relative

difference of frame configuration between time t1 and t2 can be calculated as

g(t2, t1) = g(t2)−1g(t1) (2.6)

Likewise composition from time t1 to t3 can be calculated by composing each

intermediate mapping as

g(t3, t1) = g(t3, t2)g(t2, t1) (2.7)

2.2.3 Alternative Rotation Representation

In the previous section a 3 × 3 rotation matrix R ∈ SO(3) is used to repre-

sent orientation. In practice this matrix must be calculated from an equivalent

parameterization often performed using Euler angles. This section presents this

parameterization and highlights the resulting issue of Gimbal lock including a

solution.

2.2.3.1 Euler Angles and Gimbal Lock

Euler angles describe a rotation in R3 by defining a rotation about each basis vec-

tor. Euler angles can be compactly represented as a vector ~v ∈ R3 with individual

components often denoted φ, θ, and ψ.

While Euler angles are both succinct and intuitive, several problems occur using

this representation. Due to the order of rotations impacting the final result, one
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must apply rotations with a consistent and fixed order. In three dimensions, twelve

orderings exist and can cause subtle implementation and interoperability problems

when not carefully addressed and documented.

The worst problem of Euler angles arises when two axes are aligned in parallel.

This results in the loss of one degree of freedom known as Gimbal lock. While

all rotations can be represented with Euler angles, Gimbal lock causes issues in

specific applications such as angle interpolation.5

2.2.3.2 Quaternions

Quaternions can be used to avoid Gimbal lock while still representing all possible

rotations in a succinct format. In a purely mathematical sense, quaternions are a

number system in the form q = q0 + q1i+ q2j + q3k where i, j, k satisfy i2 = j2 =

k2 = ijk = −1. Quaternions are often represented as q = (s,~v) where the scalar

s = q0 and the vector ~v = [q1 q2 q3].

Quaternions have several useful properties which allow for simplified calculation.

Given a quaternion q, the quaternion conjugate is defined as

q̄ = (s,−~v) (2.8)

The inverse can be written in terms of the conjugate as

q−1 =
q̄

||q||
(2.9)

To represent a rotation of θ about an arbitrary axis e = [ex ey ez]
T , a quaternion

q is defined as

q = (s,~v)

=

(
cos θ,

[
ex sin

θ

2
ey sin

θ

2
ez sin

θ

2

]) (2.10)

5 Consider the difference in angle and numeric representation between 180◦ and −180◦.
Within the context of animation where angle interpolation is necessary, using Euler angles to
specify rotations create singularities at such points.
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Composition of quaternions is defined using quaternion multiplication defined as

q1q2 = (s1, ~v1) · (s2, ~v2)

= (s1s2 − ~v1 · ~v2, s1~v2 + s2~v1 + ~v1 × ~v2)
(2.11)

Using a quaternion q to rotate a vector ~v is defined as

~v′ = qvq̄, (2.12)

where quaternion multiplication with a vector ~v is presented in Appendix A.2.

Due to the avoidance of Gimbal lock, compact representation, and relatively

straight-forward implementation, quaternions will be used to represent the ro-

tational component of poses within our system.

2.3 Multi-Resolution Surfel Mapping

This section presents the theoretical background of environment modelling with

sensory input using multi-resolution surfel maps. In the context of our system, the

sensory input consists solely of laser scanner range data further detailed in Sec-

tion 2.1. By using the error characteristics of the sensor data and spatial modelling

techniques, the mapping system can produce a model of the environment. Using

optimization methods, this system can additionally provide localization estimates

suitable for tracking refinement and navigation.

2.3.1 Octree Spatial-Partitioning

Due to the natural organization of spatial data, specialized data structures can

be applied to improve efficiency in map processing. An octree is commonly used

to partition data in three dimensional space and allows for efficient querying and

updating of spatial data.
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An octree organizes data by recursively partitioning space into eight equal volumes,

where each volume is represented by a node in a tree data structure. Within each

tree node, relevant data concerning points contained within the region is stored.

These volumes are defined by the three axis-aligned splitting planes separating

the three dimensional parent volume in half. As the splitting planes are not data

dependent, query performance can be improved by precomputing node neighbors.

Figure 2.5 shows this recursive division scheme by expanding only one child node

at each level along with the corresponding tree structure.

x

z
y

Figure 2.5: The spatial subdividing scheme of an octree showing a partitioned
volume with corresponding tree nodes.

As parent nodes can maintain aggregate child data, querying an octree at a specific

resolution consists simply of recursing to the depth necessary for the specified

resolution. Additionally due to the tree structure of an octree, a modified binary

search can be implemented allowing for efficient search of nodes. Opposite to

search, when inserting data into an octree, a node is only split into its eight children

if necessary. Thus unmeasured volume within the environment is not represented;

a large benefit when compared to similar structures such as multi-resolution grids.
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x

z

y

Figure 2.6: Three dimensional surfel with covariance matrix principle axes
drawn. Solid principle axis - in horizontal XY plane. Dashed principle axis -

vertical plane parallel to z axis.

2.3.2 Surface Elements - Surfels

Within the map structure, the smallest modeling unit is the surface element oth-

erwise referred to as a surfel. A surfel is represented by a multi-variate Gaussian

distribution modeling the probability of encountering a given measurement within

the surfel [Stückler and Behnke, 2013]. Figure 2.6 shows an example surfel in three

dimensions modeling only spatial data along with the principle axes.

Sensor data from the laser scanner consists of a three dimensional spatial compo-

nent and a one dimensional remittance value, thus a four-dimensional Gaussian

distribution is used to model the environment. The full specification of a surfel is:

µ = [µx, µy, µz, µremittance],Σ

This distribution is approximated by the sample mean and covariance of previous

sensor measurements within the surfel and thus must be iteratively updated using

new sensor information. To maintain space and processing efficiency, a stable iter-

ative method to calculate the data mean and covariance is necessary. Chan et al.

[1979] present an accurate single-pass update scheme used within the mapping
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system. Maintaining point statistics S(P ) := Σp∈Pp and S2(P ) := Σp∈Ppp
T point

sets can be combined using the following update rule

S(PA∪B)← S(PA) + S(PB) (2.13)

S2(PA∪B)← S2(PA) + S2(PB) +
σσT

NANB(NA +NB)
, (2.14)

where N(.) :=
∣∣P (.)

∣∣ and σ := NBS(PA) − NaS(PB). Using these statistics, the

Gaussian parameters can be calculated as µ(P ) = 1
|P |S(P ),Σ(P ) = 1

|P |−1
S2(P )−

µµT

To maintain numerical accuracy, a surfel is only valid when |P | ≥ 10. Additionally,

a surfel is no longer updated when |P | ≥ 100002.

Within both mapping and localization applications, shape of the surfel has far-

reaching impacts on data association and observation likelihoods. The three prin-

ciple spatial axes of the normal distribution can be calculated using singular value

decomposition (SVD). The principle axis having the smallest corresponding eigen

vector has the least data variation and thus can be used as the surfel normal. This

is illustrated in Figure 2.6.

2.3.3 Surfel Features

To aid in map registration, specifically data association, surface and reflectance

features are extracted w.r.t. the local surfel neighborhood. Between each surfel

s and the 26 neighbors s′ (where surfel data exists), three shape features are

extracted:

1. Angle between surfel normals ∠(n, n′)

2. ∠(n,∆µ)

3. ∠(n′,∆µ)
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x
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Figure 2.7: The three shape features extracted from a surfel’s local neighbor.

where ∆µ := µ − µ′. The shape feature calculations are visualized in Figure 2.7.

The reflectance feature is simply the difference in surfel remission. These shape

features are classified into a three-bin histogram of positive, negative, and equal

within a tolerance. Additionally a smoothing process is applied to reduce dis-

cretization effects by adding neighbor histograms with a factor γ = 0.1. The

resulting histograms are then normalized by the number of surfel data points.

2.3.4 Map Representation

Multi-resolution surfel (MRS) maps model the environment using an octree to

maintain voxel data. The modelling accuracy is naturally dependent upon both

the minimum resolution of the octree and the mapping characteristics of a voxel.

If each voxel stored one surfel, surfaces within the volume would be modelled irre-

spective of viewing direction. Even for relatively small volumes, this assumption

is insufficient to accurately model even simple surfaces. Thus within a voxel, up

to six surfels are maintained - each corresponding to the axis-aligned faces of the

volume. Figure 2.8 shows an example of modeling a rectangular prism within a

voxel using both one and six surfels. Using only one surfel, one cannot correctly
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Figure 2.8: Left: Modeling of rectangular prism using six surfels per voxel.
Right: Modeling of rectangular prism using one surfel per voxel.

assess the surface normal from multiple view directions. This causes problems in

3D scan registration and drivability assessment.

MRS maps model sensor data at a resolution according to the data and error

properties of the sensor itself. This is possible by limiting the depth in the octree

where a measurement is aggregated. By calculating this depth from sensor prop-

erties, the mapping system can be implicitly applied to various sensors by simply

updating the error model.

A MRS map can be created from a three dimensional laser scan by inserting all

endpoints into the octree and updating the encompassing voxel surfels statistical

data. From the sensor orientation, the sensor to voxel view direction can be

easily calculated so that the correct voxel surfel is updated. Due to environment

structure, neighboring measurement endpoints are often contained within the same

voxel. Using this property, neighboring data can often be aggregated into a single

surfel update reducing the number of octree search queries.
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2.3.5 Map Registration

Given two MRS maps, using registration techniques we can determine pose con-

straints between their map origins. In the context of 3D laser scans, this regis-

tration results in an estimation of the sensor origin with an arbitrary map frame

- allowing for localization refinement as well as global map creation. Registration

is performed by iterating two main steps: data association and pose refinement.

2.3.5.1 Data Association

Data association matches surfel pairs from a source and target MRS map for use

during pose refinement. The association step is performed with fine to coarse

resolutions until all surfels have an association candidate, only processing surfels

with no child surfel associations. Consequently surfel associations are independent

within a given resolution allowing for parallelization of this technique.

As map registration is an iterative process, surfels may or may not have a previous

association. These two cases are explicitly handled using different methods. Surfel

having no previous association use a volumetric query within the surfel neighbor

to find association candidates. The query volume center is determined by the

surfel mean transformed by the current registration estimate with the query size

calculated as twice the size of the node depths resolution. Using the node depth

resolution to determine query size allows for the implicitly adaptation of misalign-

ments from coarse to fine resolutions.

The association candidate having the closest shape-reflectance feature-distance is

selected for association only when thresholding this distance df (s, s′) ≤ τ with

τ = 0.1. The feature-distance df is calculated as the euclidean distance between

the shape and reflectance histograms:

df (s, s′) =
∑

c∈{shape,reflectance}

|fc − f ′c| (2.15)
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2.3.5.2 MRS Map Observation Model

With a target MRS map mt and three-dimensional laser scan data z, we model

pose refinement as finding the pose x that maximizes the observation likelihood

p(z|x,mt). Poses x = (q, t)T encompass a unit quaternion q and translation t ∈ R3.

Using the scan data z to create a source MRS map ms, the observation likelihood

can be rewritten as:

p(ms|x,mt) =
∏

(i,j)∈A

p(ss,i|st,j) (2.16)

where A is the set of surfel associations from Section 2.3.5.1, ss,x is surfel x in the

source map ms, and st,x is surfel x in the target map mt. As surfels are modelled

as normal distributions, calculating the observation likelihood from Equation 2.16

is defined as:

p(ss,i|st,j) = N (di,j(x); 0,Σi,j(x))

di,j := µt,j − T (x)µs,i

Σi,j := Σs,j +R(x)Σs,iR(x)T

(2.17)

where T (x) is the homogeneous transform matrix from pose estimate x and R(x)

is the corresponding rotation matrix.

2.3.5.3 Pose Optimization

To determine the pose estimate x of the observation map mo, we optimize the

logarithm of the observation likelihood from Equation 2.16 resulting in the loss

function

L(x) =
∑
a∈A

log |Σa(x)|) + dTa (x)Σ−1
a (x)da(x), (2.18)
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where A is the complete set of surfel associations, a = (i, j) is the surfel association

pair, and Σa = Σi,j, da = di,j from equation 2.16.

The pose optimization process is performed in two stages. Levenberg-Marquardt

(LM) optimization quickly provides a fast estimate used to initialize Newton’s

method for refinement.

2.3.5.4 Pose Estimate Uncertainty

The uncertainty of the registration estimate can be calculated using a closed-form

approximation

Σ(x) =

(
∂2L

∂x2

)−1
∂2L

∂s∂x
Σ(s)

∂2L

∂s∂x

T (
∂2L

∂x2

)−1

, (2.19)

where x is the pose estimate, s denotes associated surfels from the target and

observation map, and Σ(s) is the covariance of all surfel associations. This closed-

form solution was derived by Censi [2007] and is further detailed in his work.

2.3.6 Probabilistic Optimization

Pure map-to-map registration could allow for pose tracking and the creation of a

global allocentric map. Using a mapping scheme where the newest scan is aligned

to the previous scan, forming a change of alignment poses, is very prone to accumu-

lated drift. To mitigate these affects, local loop closure is performed by registering

each new observation to all maps within a tolerance distance. Including all regis-

tration estimates creates several possible paths from an arbitrary reference frame

to a scan, each with a potentially different estimate.

The graph optimization library g2o is used to calculate a consistent pose estimate

for each scan given the entire set of alignments.6 For each 3D laser scan, a keyview

is extracted representing the scan coordinate frame w.r.t the first scan coordinate

6 See Kuemmerle et al. [2011] for an in-depth overview of the g2o framework.
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frame. This coordinate frame is calculated using the alignment procedure from

Section 2.3.4 and implies a geometric constraint between keyviews. Considering

all keyviews as vertices v ∈ V and each alignment estimate an edge ei,j ∈ E , a

graph G = (V , E) is maintained. Keyview pose estimates are calculated with the

g2o framework given the input graph G.

The resulting keyview estimates have been determined from global optimization

and thus allow for the creation of global allocentric maps of the environment.

2.4 Stochastic Filtering

This sections presents the theoretical background of stochastic filtering and math-

ematically defines the localization problem in the context of robotic motion. Using

the general problem definition, a discrete-form solution to the estimation problem

is presented in the form of Bayesian filtering. Using the concepts of Bayesian

filtering, I describe the Kalman filter and Monte-Carlo filtering methods. This

leads to the particle filter, an estimation method that allows for handling of non-

linearity in observation and motion and can additionally be used to solve the global

localization problem.7

Filtering can be described as the determination of a quantity of interest at time

t, using a time series of unreliable or noisy observations. Within the context of

pose filtering, we are not only interested in an individual quantity of interest but

a vector referred to as state. Filtering the state of stochastic systems will be

referenced as stochastic state estimation and allows for an exact formulation of

the tracking problem.8

We model a stochastic system using random variables X ∈ X , Z ∈ Z representing

the true system state and observation respectively. Applying this nomenclature to

7 Global localization is the process of determining the absolute pose of an object within an
environment given no previous pose knowledge. This problem is considered harder to solve than
localization as there is a reduction from global localization to localization however the reverse is
not necessarily true.

8Stochastic systems cannot be accurately modeled using currently available tools due to both
complexity and the non-deterministic nature of the system.
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the discrete time-domain, we can pose the tracking problem as the estimation of the

system state xt at time t given previous state estimates x1:t−1 = {x1, x2, ..., xt−1}

and actual observations Z1:t = {Z1, Z2, ..., Zt}.

To model the time-discrete system, we assume there exists a transition function

relating a system state xt−1 to the successor state xt having additional system

noise.9 Equation 2.20 shows state propagation where f is the transition function

and εt denotes the constant system noise. 10 We additionally model the expected

observation zt of the state xt−1 by Equation 2.21 where h is an observation function

and δt measurement noise.

xt = f(xt−1) + εt (2.20)

zt = h(xt) + δt (2.21)

2.4.1 Bayesian Filtering

Bayes’ rule, discovered by mathematician Thomas Bayes in the 18th century, allows

one to express a posterior probability p(X|Y ) in terms of the prior probability

p(X), the evidence p(Y ), and the likelihood p(Y |X).

p(X|Y ) =
p(Y |X)p(X)

p(Y )
(2.22)

Equation 2.22 shows the Bayes’ rule formulation that can be used to derive a

recursive Bayes filter. If we assume the stochastic system can be modelled by a

first-order Markov process, the recursive Bayes filter provides a solution to the

state estimation problem. 11

9System noise may or may not be 0 and can additionally vary with the time parameter.
10Function f may or may not be linear. The linearity of f impacts which Bayesian filtering

implementation can be used for accurate state estimation.
11A first-order Markov process assumes the successive state of a system is only dependent

upon the current system state.
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Assuming we can model a system by a first-order Markov process in the context of

filtering is known as the Markov assumption. Here we assume each measurement zn

is independent of previous measurements z1, z2, · · · , zn−1 given the current system

state xn.

Using previously presented notation concerning the system state x and measure-

ment z in a discrete time series, we can insert our quantity of interest into Bayes’

rule shown in Equation 2.23.

p(xt|z1:t) =
p(z1:t|xt)p(xt)

p(z1:t)

=
p(zt, z1:t−1|xt)p(xt)

p(zt, z1:t−1)

=
p(zt|z1:t−1, xt)p(z1:t−1|xt)p(xt)

p(zt|z1:t−1)p(z1:t−1)

=
p(zt|z1:t−1, xt)p(xt|z1:t−1)p(z1:t−1)p(xt)

p(zt|z1:t−1)p(z1:t−1)p(xt)

=
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)

(2.23)

To derive an iterative update rule, all components of the resulting formula derived

in Equation 2.23 must only depend on the previous state estimate p(xt−1|zt−1).

By inserting a marginalizing integral we arrive at the recursive update rule for the

Bayes filter shown in Equation 2.24. 12

p(xt|z1:t) =
p(zt|xt)

∫
p(xt|xt−1)p(xt−1|zt−1)dxt−1∫

p(zt|xt)p(xt|zt−1)dxt−1

=
p(zt|xt)

∫
p(xt|xt−1)p(xt−1|zt−1)dxt−1∫

p(zt|xt)
[∫
p(xt|xt−1)p(xt−1|zt−1)dxt−1

]
dxt

∝ p(zt|xt)︸ ︷︷ ︸
filtering

∫
p(xt|xt−1)p(xt−1|zt−1)dxt−1︸ ︷︷ ︸

prediction

(2.24)

12See Appendix A.3 for an introduction to working with probability densities.
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2.4.2 Kalman Filtering

A Kalman filter is an implementation of Bayesian filtering where the state prop-

agation function and the measurement function are modelled as linear systems.

This allows f from Equation 2.20 to be rewritten as

xt = Axt−1 + εt, (2.25)

where A is a state propagation matrix. We model the function h from Equa-

tion 2.21 as

zt = Hzt−1 + δt, (2.26)

where H is a measurement matrix. The method uses iterative prediction and

correction at each time step to calculate a state estimate xt.

Using the additional constraint that error is Gaussian distributed allows for a pose

estimate xt that maximizes the posterior probability p(xt|z1:t) - assuming system

linearity [Kalman, 1960].

Linear state propagation and measurement functions are often inadequate to model

many real-life situations. Due to the Explorer platform using skid-drive steering,

the propagation model is certainly non-linear. Additionally, laser scanner data

is inherently non-linear due to the complex environment structure. A standard

Kalman filter is therefore unusable for our application.

2.4.3 Non-linear Kalman Filtering

Methods have been proposed to deal with non-linearity in both state propagation

and measurement.

The National Aeronautics and Space Administration (NASA) was among the first

to publish work concerning non-linearity with Kalman Filtering [Smith et al.,

1962]. The Extended Kalman Filter uses multivariate Taylor series expansion to

compute partial derivatives in the form of a Jacobian. The Jacobian is evaluated
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at each time step and used for prediction updates. This method assumes that the

non-linear functions are differentiable.

Similarly, the Unscented Kalman Filter deals with non-linear state and measure-

ment functions through approximation, however it is better equipped to handle

highly non-linear functions than the EKF. Sampling points, called Sigma points,

are selected using a sampling method known as the unscented transform. The

sigma points are propagated using the non-linear functions and the resulting val-

ues are used to calculate a sample mean and covariance [Julier and Uhlmann,

1997].

While these methods can handle non-linearity in both measurement and obser-

vation, large non-linearity can cause filter instability. Additionally, due to the

observation model presented in Section 3.3.2, a direct pose estimate from a single

laser scan line cannot be calculated. Future work presented in Section 5.2 details

the possibility of using iterative closest point (ICP) methods to determine a direct

pose estimate from scan lines.

2.4.4 Particle Filtering

Particle filtering offers an alternative application of recursive Bayesian filtering

capable of handling non-linearity in both propagation and measurement models.

Within the context of localization using laser scanners, particle filtering does not

require a direct state (pose) measurement, but simply requires calculation of a

measurement likelihood p(zt|xt).

Contrary to Kalman filtering where the posterior p(xt|z1:t) is approximated using

a mean and covariance of a normal distribution, a particle filter uses Monte-Carlo

methods described in the next section to approximate the pose xt maximizing the

posterior.

Sequential importance resampling (SIR) allows for approximation of the posterior

distribution using a set of weighted particles [Gordon et al., 1993]. SIR is an
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iterative implementation of importance sampling and useful as the true underlying

distribution of pose cannot be directly sampled. To describe the particle filter at

time t, we consider a set of N particles

P = {(x(n)
t , w

(n)
t ) : n ∈ 1, · · · , N, (2.27)

where w
(n)
t is the particle’s importance weight, and x

(n)
t is the particle’s estimate.

The following sections describe the foundations of Monte-Carlo sampling and the

SIR filter in the context of particle filtering. Additionally, the bootstrap filter is

presented which is the basis of our particle filtering algorithm.

2.4.4.1 Monte-Carlo Sampling

Monte-Carlo sampling attempts to approximate the expectation of a random vari-

able using a set of random samples drawn independently from the underlying

probability distribution.

If we consider a random variable X having probability density function pX (x), the

expected value of a function f of X is

E[f(X )] =
∑
x∈X

f(x)pX (x), (2.28)

assuming X is discrete.

This expectation can be approximated using Monte-Carlo sampling. Using n sam-

ples {x(1), x(2), · · · , x(n)} : x ∈ X according to the PDF pX (x), the expected value

of f can be estimated as

Ẽ[fn(X )] =
1

n

n∑
i=1

g(xi). (2.29)

This is also known as the Monte-Carlo Estimator of f(X ) and has the useful

properties that as n→∞ the error
∣∣∣Ẽ[fn(X )]− E[f(X )]

∣∣∣→ 0.
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2.4.4.2 Importance Sampling

As the distribution pX (x) often cannot be directly sampled, importance sampling

provides a way to draw samples from a related distribution and still approximate

the expected value of X . This distribution qX (x) is called the proposal distribution

and has the property that qX (x) = 0 =⇒ pX (x) = 0. By inserting a neutral term

into Equation 2.28 and reordering terms we can calculate the expected value of

f(X ) as

E[f(X )] =
∑
x∈X

f(x)pX (x)
qX (x)

qX (x)

=
∑
x∈X

f(x)
pX (x)

qX (x)
qX

=
∑
x∈X

f(x)WX (x)qX (x),

(2.30)

where WX (x) = pX (x)
qX (x)

is the importance weight according for the difference between

the distributions pX (x) and qX (x). Rewriting Equation 2.29 using importance

weighting, the Monte-Carlo Estimator using the distribution qX (x) for sampling,

can be calculated as

Ẽ[fn(X )] =
1∑n

i=1W
(i)
X (xi)

n∑
i=1

W
(i)
X (xi)g(xi), (2.31)

where

W
(i)
X (xi) =

pX (xi)

qX (xi)
. (2.32)

2.4.4.3 Sequential Importance Sampling

Sequential importance sampling (SIS) filter is the foundation of the SIR filter and

offers a framework for combining recursive estimation with importance sampling.
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We reformulate the posterior p(x0:t|z1:t) using the Markov assumption as

p(x0:t|z1:t) = p(xt|x0:t−1, z1:t)p(x0:t−1|z1:t)

= p(xt|x0:t−1, z1:t)p(x0:t−1|z1:t−1)

=
p(z1:t|xt, x0:t−1)p(xt|x0:t−1)

p(z1:t|x0:t−1)
p(x0:t−1|z1:t−1)

=
p(zt|���z1:t−1, xt,���x0:t−1)((((

(((
(((

p(z1:t−1|xt, x0:t−1)p(xt|x�0:t−1)

p(zt|z1:t−1, x0:t−1)((((
((((p(z1:t−1|x0:t−1)

p(x0:t−1|z1:t−1)

=
p(zt|xt)p(xt|xt−1)

p(zt|z1:t−1, x0:t−1)
p(x0:t−1|z1:t−1)

(2.33)

Similarly, we rewrite the proposal as

q(x0:t|z1:t) = q(xt|x0:t−1, z1:t)q(x0:t−1|z1:t) (2.34)

Using these formulations, the importance weight definition from Equation 2.32,

and the Markov assumption, we can compute recursive importance weights as

W
(i)
t =

p(x
(i)
0:t|z1:t)

q(x
(i)
0:t|z1:t)

∝
p(zt|x(i)

t )p(xt|x(i)
t−1)p(x

(i)
0:t−1|z1:t−1)

q(x
(i)
t |x

(i)
0:t−1, z1:t)q(x

(i)
0:t−1|z1:t)

∝
p(zt|x(i)

t )p(x
(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, z1:t)

W
(i)
t−1

∝
p(zt|x(i)

t )p(x
(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
t−1, zt)

W
(i)
t−1

(2.35)

2.4.4.4 Sequential Importance Resampling Filter

The SIR filter estimates the posterior probability using the SIS recursive algo-

rithm. Thus, this filter has the property of convergence to the true posterior as

the number of particles n→∞, assuming the proposal and posterior distributions

are sufficiently close.
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After many iterations of the SIS filter, many particles have a very small importance

weight and thus provide little benefit to the posterior approximation. This is due

to the Monte-Carlo sampling of the proposal generates poses that diverge from

the true pose. This process is known as particle depletion.

To avoid particle depletion, an extra resampling step is performed which re-

initializes the set of particles maintained by the filter. The new particles are

independently drawn from the current particle set with a selection probability

proportional to the importance weights. In this way, particles having a large

importance weight will be represented by additional particles in the new set. Par-

ticles having small importance weights are likely to be removed by the resampling

set. This process focuses particles to areas that better represent the posterior

distribution.

2.4.4.5 The Bootstrap Filter

As previously explained, the choice of proposal distribution impacts the accuracy

of the algorithm and given a bad proposal can result in divergence of the filter

from the true state. The optimal proposal distribution is the posterior distribution

itself, however it is often not possible to sample from the distribution.

The Bootstrap filter uses the state propagation density p(xt|xt−1) as the proposal

distribution [Gordon et al., 1993]. This choice allows for easy sampling and shows

improved results over a random-walk proposal distribution.

By selecting the proposal density q(x
(i)
t |x

(i)
t−1, zt) = p(xt|xt−1), Equation 2.35 can

be simplified to

W
(i)
t ∝ p(zt|x(i)

t )W
(i)
t−1. (2.36)
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2.4.4.6 The Particle Filter Algorithm

The previous sections have presented the theory behind recursive sampling theory

and stochastic filtering. To present an overview of particle filtering, the general

algorithm pseudocode is given in Algorithm 1.

1 Initialization:

2 Draw m samples x
(i)
0 ∼ p(x0)

3 Set importance weights W
(i)
t = 1

m

4 for time step t = 0 to n do

5 for i = 1 to m do

6 Sampling: x
(i)
t ∼ p(xt|x(i)

0:t−1)

7 Importance Weighting: W
(i)
t ← p(zt|x(i)

t )W
(i)
t−1

8 end

9 for j = 1 to m do

10 Resampling: draw x
(j)
t ∝ W

(j)
t

11 end

12 end

Algorithm 1: Pseudocode for general particle filtering.

2.5 Drivability Assessment and Path Planning

Within the navigation framework, drivability assessment and path planning must

only consider the environment from a global perspective. Low-level planning and

robot control are considered external systems, thus the main objective of our

planning is to generate trajectories to goal positions. The execution of these

trajectories is the topic of other research.

Due to the usage of the navigation system, discussed in Section 3.1, autonomous

exploration of environments is not a requirement. While the robot should handle

planning to unknown or occupied space, a remote human user can guide explo-

ration to allow for successful trajectory planning. Although the environment is
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fully three dimensional, the target mobile platform must move locally along planes

when considering roll and pitch limitations (common to all rover-type platforms).

Therefore, planning methods can be simplified to use a grid-based structure.

To provide adequate trajectories to lower level robot control systems, we must

handle planning to unknown space as well as provide safety guarantees that the

generated path is traversable. From these requirements, simple but effective graph

planning approaches can be successfully used for all planning purposes.

This section gives a general description on graph generation and planning methods

used within the navigation system.

2.5.1 Region Growing

In order to apply graph planning methods, we must first generate a traversability

graph describing the potential drivable space of the robot. Using a traversability

graph as opposed to implicit graph structure within an MRS map saves compu-

tation time due to a reduced state space as well as separates map and planning

structure.

Wave front region growing is an efficient method of determining this “drive space”

and has guaranteed convergence. For our usage, the wave front algorithm acts as

a simple space exploration and graph building tool; more advanced uses of wave

front exist [Stoyanov et al., 2010].

The wave front algorithm maintains a list of unprocessed cells, initially containing

cells deemed “drivable”. Until this list is empty, each cell is removed from the

list, processed, and all unvisited cell neighbors are added to the processing queue.

During processing cell costs are computed based on the characteristics discussed

in section 3.4. If a cell is deemed “not drivable”, no neighboring nodes are added
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to the processing queue effectively stopping propagation from this location. The

pseudo-code for this algorithm is shown in Algorithm 2.

input : Environment map, Initial drive space

output: Drivability Grid

1 OpenList := { Initial drive space }

2 ClosedList := {}

3 while OpenList 6= {} do

4 Current := Front(OpenList);

5 ClosedList := ClosedList + { Current };

6 CalculateDriveCost(Current);

7 if Drivable(Current) then

8 for Neighbor in Neighbors(Current) do

9 if NOT in ClosedList then

10 OpenList := OpenList + { Neighbor };

11 end

12 end

13 end

14 end

Algorithm 2: Pseudocode for region growing using wavefront propagation.

2.5.2 A* Graph Planning

The A* algorithm is an efficient and easy to implement best-first-search method of

path planning within weighted graphs using a heuristic. Presented by Hart et al.

[1968], A* can be considered a modified version of Dijkstra’s algorithm where an

admissible heuristic is used to improve the order of node expansion. The improve-

ment of expansion order allows the A* algorithm to drastically outperform the

standard Dijkstra’s algorithm due to the large branching factor of three dimen-

sional state spaces.
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Using standard terminology, A* computes a path along graph edges between a

source and target node. Nodes represent vertices within a graph while edges refer

to the same graph counterpart. The graph may have both edge and node costs

with the constraint that costs must be positive to ensure optimality of the path.

The algorithm works by first initializing a selection queue with the source node.

Next, the node having the lowest expected total cost to the target node from the

queue is selected for search expansion. If the selected node is the target node,

searching is finished and the path can be reconstructed from the expansion order.

Otherwise the node is considered “explored” and all neighbor nodes that are not

yet “explored” are added to the node selection queue. If the neighbor node has

already been placed in the selection queue, the node in the queue is updated to

have the lower expected cost.

The key to the efficiency of A* comes from determining the expected cost of a

node to the target node. The expected cost of a node is calculated using the

heuristic function which must be admissible. In this context an admissible heuristic

means the function may not overestimate the distance to the goal. A heuristic

which is always 0 fulfills this constraint, however transforms the A* algorithm

into an implementation of Dijkstra’s algorithm that stops once the goal node is

reached. Thus one must be careful to find a heuristic that fulfills the admissible

constraint but accurately describes the search space. In robot navigation planning,

the Euclidean or Manhattan distance is an often used heuristic.

Figure 2.9 shows paths computed using the A* algorithm in a two dimensional

grid where black cells indicate impassable walls. All cells that have been expanded

during the algorithm execution are colored with varying shades of red, where the

lighter the shade the lower the total cost estimate is from the cell. The calculated

path is highlighted in blue. The Manhattan distance was used as the heuristic

and transitions are allowed to the Moore neighborhood. As one can see, the

environment has a large impact on the number and positions of nodes that are

expanded.
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S G S G

Figure 2.9: Example A* path planning in two similar grid environment. “S” is
the starting cell and “G” is the goal cell. Cells colored in red have been expanded
by the A* algorithm where shading indicates expansion order. Lighter means

earlier as deeper means later.

Using a heuristic, the total cost from a node is the sum of the actual cost to reach

the node and the heuristic cost h. Using this paradigm, the pseudocode for the A*

algorithm is shown in Algorithm 3. Within this algorithm, the “OpenList” main-

tains all the possible selection queue while the “ClosedList” tracks all “explored”

nodes. Maintaining a “ClosedList” ensures no node is processed more than once.
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input : Traversability Graph, Starting Node, Target Node
output: Path to Target Node

1 OpenList := { Starting Node };
2 ClosedList := {};
3 while OpenList 6= {} do
4 Current := LowestTotalCostEstimate(OpenList);
5 if Current is TargetNode then
6 return ReconstructPath(Current);
7 end
8 ClosedList := ClosedList + { Current };
9 for Neighbor in Neigbors(Current) do

10 if Neighbor in ClosedList then
11 Continue;
12 else if Neighbor in OpenList then
13 TotalCostEstimate = Cost(Neighbor);
14 Update OpenList with minimum TotalCostEstimate;

15 else
16 OpenList = OpenList + { Neighbor };
17 end

18 end

19 end
Algorithm 3: Pseudocode for the A* path finding algorithm.
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Method

3.1 System Operation

The presented SLAM and navigation system was developed for the Explorer robot

platform at the University of Bonn, specifically for the DLR Spacebot Cup com-

petition. The Spacebot Cup is an autonomy challenge for rover-type robots mod-

elling conditions expected during planetary exploration. The competition involved

completion of several tasks including autonomous mapping, navigation, object

recognition, and object grasping.

Due to the large amount of divided effort to produce such a robust system, several

externally developed components were available for usage and testing of SLAM

and navigation. Visual odometry estimates are provided by a fovis implementation

using RGB-D cameras [Huang et al., 2011]. The odometry estimate is used by

the localization system for an improved motion model. Additional components

implementing low-level planning and control have been provided. The competition

also permits giving the robot a “rough” pre-planned trajectory, thus mitigating

the explicit need for autonomous exploration. Therefore, the navigation system

must only consider high-level planning methods to provide robot trajectories.

43
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Rotation
Axis Scan Line

Plane

Figure 3.1: The Hokuyo laser scanner mounted on the Explorer robot with
rotation axis and laser scan line plane indicated.

3.1.1 Map Initialization

To initialize the SLAM and navigation system, an initial 3D laser scan of the

environment is recorded and processed by the mapping system. This initial scan

defines the map coordinate frame where all localization and mapping scan poses are

represented. This initial scan also provides mapping data for localization allowing

for pose tracking.

3.1.2 Laser Configuration

The Hokuyo laser scanner is mounted above the robot for improved sensor visibility

on a slip-ring attached to a servo. The slip-ring allows for continuous electrical

power and data communication during continuous rotation and the servo provides

rotational speed control and orientation readings for scan line aggregation.

The laser is rotated about the vertical axis with each laser scan line plane parallel

to this line. This allows for good coverage of the environment with minimal mea-

surement dead-zones. With this configuration, only the space directly above and

below the robot cannot be measured. Figure 3.1 shows the laser mounted on the

Explorer platform indicating the rotation axis and scan line plane.
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To accurately map large environments, sensor measurements must be sufficiently

dense. To ensure dense data from 3D laser scans, the laser is rotated at a relatively

slow speed of 1
15

Hz during 3D scanning. However, during localization we wish to

maximize visible space per time unit and rotate the laser at a higher speed of 1 Hz.

3.1.3 SLAM Operation

Stop-and-go mapping is used for SLAM operation. This process requires an itera-

tive process of 3D laser scans with a stationary pose. Assuming the map has been

initialized as described in Section 3.1.1, a 3D scan is recorded during a “stop”.

After the mapping system has completed processing the newest mapping data,

the robot may “go” to a new region of interest for recording a new 3D scan. Dur-

ing the “go” stage, laser range measurements are processed by the localization

system. The next 3D scan registration guess is initialized using the localization

system guess after stopping. This process is repeated until an environment has

been sufficiently mapped.

3.2 Mapping Error Model

The error properties of the sensor can be captured by varying the map resolution of

points added to an MRS map. Through this same method, the reduction in point

density due to measurement depth can also be mitigated. This section presents the

error model used by the MRS map for the Hokuyo UTM-30LX-EW laser scanner.

To properly capture the sensor data properties, we must consider all possible

sources of measurement error and point dispersion. Using the sensor configuration

shown in Section 3.1.2 and considering three dimensional mapping, there exist

three sources of consideration. The depth error is modelled by the laser scanner

sensor properties provided by Hokuyo. Dispersion in the vertical axis comes from

the angular resolution of the laser scanner. Dispersion in the horizontal axis comes

from rotation and is dependent upon the laser scanner update rate and rotation
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speed. By calculating the correct depth dependency to mapping resolution for

each axis and then using the least precise value, we can conservatively model the

sensor error properties.

According to the laser specification provided by Hokuyo, the Hokuyo UTM-30LX-

EW has an error of ±30mm in the range of 0.1m− 10m and ±50mm in the range

of 10m− 30m [Hokuyo Autonomatic CO., 2012]. From this error specification we

consider the error to be linear in distance and compute a worse case depth-error

constant of kd = 0.00027.

The vertical dispersion of measurement data depends solely on the angular res-

olution of the laser scanner. According to the laser specification, the Hokuyo

UTM-30LX-EW has an angular resolution of 0.25◦. By computing the distance

between adjacent measurements ∆m, both measured at the same distance d, we

can compute the vertical error constant as d
∆m

. Using the law of cosines and an

angular resolution of 0.25◦, we calculate the vertical error constant as kv = 0.00436.

Horizontal dispersion of the measurement data depends on the rotation speed and

laser update rate of 40 Hz. During 3D scanning, the laser scanner is rotated at a

frequency of 1
15

Hz. Thus the angular resolution of scanning in the horizontal plane

is 0.6◦. Using the same method for vertical dispersion we calculate a horizontal

error constant of kh = 0.01047.

By selecting the largest error constant, we arrive at a conservative error model for

3D laser scans. Thus the constant kh = 0.01047 is used to determine the voxel

resolution of measured points. Given a measurement with distance d, the voxel

resolution is proportional to log2 (dkh).

3.3 Localization

A particle filter is used for real-time 6D pose localization within an allocentric

map. The localization estimate is used to initialize the map-to-map registration

for all 3D laser scans excluding the initial scan, extending the global map and thus
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further improving localization. A particle filter implementation was selected due to

the uncomplicated handling of a non-linear observation model. Considering other

Bayesian filtering implementations that allow for similar non-linear processing

such as an Extended Kalman Filter (EKF), a particle filter allows for a simplified

scan-line-to-map observation model and the ability to solve the global localization

problem.

3.3.1 State Propagation Model

Robot state transition is modelled using a simple time-discrete linear dynamics

system (LDS). The state estimation problem is posed as the estimation of the full

6-DoF configuration of the robot pose xt = (q, t)T having orientation q represented

as a quaternion and translational component t ∈ R3. From an external system,

odometry information is given as input to calculate a reasonable state propagation

estimate assuming Gaussian noise in both translational and rotational components.

To simplify additive noise calculations, the pose orientation q is converted to Euler

angle form denoted r(x). For consistency, the translation part of pose x is indicated

by t(x). Odometry input is represented by the relative transform between the

current and previous update step ot = (∆q,∆t)T where the orientation delta is

again converted to Euler angles for processing. Odometry information is calculated

by an external system. The entire LDS update is calculated as

t(xt) = t(xt−1) + t(ot) +N (n; 0,∆tΣt(ot))

r(xt) = r(xt−1) + r(ot) +N (n; 0,∆tΣr(ot))
(3.1)

where ∆t is the time since the last motion model update, Σt(ot) and Σr(ot) represent

the assumed noise covariance for odometry in translational and rotational parts

per time unit respectively.

After the update step is performed, the Euler angle vector r(xt) is converted to a

quaternion giving the final state estimate xt.
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3.3.2 Scanline Observation Model

Within the mapping system, full 3D laser scans are used to determine a refined

pose estimate using alignment and global graph optimization techniques. Using

this method for real-time tracking has many deficiencies mostly related to the

maximum update rate of sensor data. Due to the Hokuyo laser scanner data-rate

of 40Hz, 3D scans dense enough for map-to-map registration can take seconds and

requires the robot to stop; thus we cannot rely on map registration for real-time

pose tracking.

To overcome this limitation I propose using individual laser scan-lines to perform

observational updates, resulting in a theoretical localization rate of 40 Hz. As each

scan-line does not contain dense enough information for accurate map registration,

we must use the structure of the particle system to determine an observation

update. Transforming the laser scan-line by each particle’s pose estimate allows for

a simple end-point model calculation of observation likelihood against the global

localization map.

Given a laser scanline Z = {zi}n ∈ R3 with n endpoint measurements and a target

localization map mt, we can calculate the observation likelihood of a particle with

pose x as,

p(Z|x,mt) =
n∏

i=1

p(zi|x,A(zi, x,mt))

A(zi, x,mt) = argminstdplane(st, T (x)zi)

(3.2)

where A(zi, x,mt) associates the transformed measurement endpoint ztransformed =

T (x)zi to the target map surfel minimizing the plane distance dplane(st, T (x)zi).

The surfel association is calculated by first performing a volumetric query centered

at the transformed measurement endpoint to find surfel candidates. The size of

the query volume is dependent upon the measurement’s distance to the sensor

using the method described in Section 3.2. For each association candidate, the
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Figure 3.2: Illustration of the association method used to associate scanline
endpoints to surfels based on the plane distance metric. Three surfel planes are
shown along with five measurement endpoints. Each measurement endpoint is

color-coded to their associated surfel from minimum plane distance.

distance between the surfel’s approximate plane defined by the surfel mean and

normal and the measurement endpoint is calculated. The surfel with the smallest

plane-to-measurement distance is used to calculate the likelihood following

p(zi|A(zi, x,mt)) = p(zi|x, st)

= N (dplane(st, T (x)zi;x); 0,Σsz(x))

Σsz(x) = Σst +R(x)ΣziR(x)T ,

(3.3)

where Σzi is the point measurement covariance in R3. If no association candidates

exist, the likelihood is assigned a default no-association-likelihood corresponding

to the sensor models false/random measurement probability. This likelihood is

calculated for each particle and normalized by the number of valid points in the

scan-line. Figure 3.2 shows the association method for several measurement end-

points.
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3.3.3 Importance Weighting

As discussed in Section 2.4.4.2, importance weights w(i) compensate for the mis-

match between the target and proposal distribution. As the motion model from

Section 3.3.1 represents the proposal distribution, the importance weights for each

particle is given by the observation likelihood,

w(i) = p(Z|x(i),mt). (3.4)

Using importance weighting from observation likelihoods and following the stan-

dard particle filter algorithm, the particles are resampled according with proba-

bility proportional to the their importance weight.

3.3.4 Particle Filter Configuration

Several parameters can be used to tune the performance of the particle filter. This

section enumerates each possible parameter including a description of potential

side-effects.

1. Particle count

The particle count has a large impact on localization performance. As the

number of particles increases, the accuracy of the filter also increases given

an adequate proposal distribution. However hardware performance concerns

arise as each particle must have an observation likelihood calculation per

laser scan. This value should be tuned to platform hardware and additional

constraints on CPU usage. Within our implementation, heavy usage of par-

allelization allows for fast localization at the cost of high CPU usage.

2. Translation Noise

Translation noise, denoted Σt(ot) in Equation 3.1, controls the additive trans-

lation noise stochastically added to particles during motion model prediction.
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This noise value is calculated as

Σt(0t) = γ ∗∆t(ot) + τ, (3.5)

where γ is the multiplicative noise constants, ∆t(ot) is the odometry delta

between the current and previous time step, and τ is constant additive noise.

γ should be chosen to compensate systematic over- or undershoot of the

odometry system. This parameter assumes that the faster the robot moves

(resulting in larger deltas), the more error exists in the supplied odometry.

τ is a constant noise added to ensure good sampling of state space.

To avoid confusion, γ and τ are referred to as the “translation sampling

variance factor” and “translation sampling variance min” respectively.

3. Rotational Noise

Rotational noise, denoted Σr(ot) in Equation 3.1, has the same parameters

and effects at the translational noise constant.

To avoid confusion, γ and τ in reference to rotational noise are referred to as

the “rotational sampling variance factor” and “rotational sampling variance

min” respectively.

4. Resampling Rate

Within our system, filter resampling is performed after a configured timeout

has been reached. Resampling should be performed to avoid particle de-

pletion and refocus particles to allow for a reduced particle count necessary

for satisfactory results. Due to 6D particle filtering with a limited number

of particles due to performance reasons, by default the filtering algorithm

resamples at each timestep.

3.4 Drivability and Cost Assessment

Using MRS maps for drivability and navigation planning poses several problems

due to map discretization. Local MRS maps generated from individual 3D laser
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scans use the standard multi-resolution scheme based on the sensor error proper-

ties. Due to this discretization, downsampling and upsampling of the map surfels

would be needed to model regular regions for drivability assessment discussed in

Section 2.5. An example of this discretization issue is shown in Figure 3.3.

Desired Planning Cell Size Downsampling Needed

Upsampling Needed Map Origin

Figure 3.3: Figure showing necessary downsampling and upsampling when
using multi-resolution maps for grid planning.

Additional complexity comes from general planning within three dimensions. Three

dimensional environment have a large state space as well as complex environment

structure such as stairs or tunnels. Due to the our navigation system being used

within the Spacebot platform, we are able to assume the drivable space of the

environment contains no structures where multi-level surfaces (positioned at the

same location within the horizontal plane) exist. With this assumption, planning

can be performed within a two dimensional grid structure where surface informa-

tion is stored for cost and drivability assessment - otherwise known as planning in

2.5 dimensions.
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Figure 3.4: A slight misalignment results in large differences between mea-
surement data at far distances. This point cloud has an error of only 3◦, yet at

a distance of 10 meters (pictured) the misalignment is clearly visible.

3.4.1 Drivability and Cost Map Representation

In 2.5 dimensions a grid is the natural datastructure for region growing and plan-

ning, using the implicit graph structure. Surface information must be stored within

the grid to allow for terrain assessment. Surfels lend themselves well to this task

as they provide all necessary terrain information and have well defined combina-

tion rules allowing data aggregation. Thus the data structure used for drivability

and planning is a two dimensional grid of surfel structures denoted drive-surfels.

Drive surfels contains all traditional surfel information with additional data for

drivability flags and cost calculations.

Using the global allocentric map (from localization) for planning is a simple solu-

tion to overcome issues related to multi-resolution. This global map could simply

be generated at the required resolution for planning resulting in a single data struc-

ture for region growing and planning. However to accurately assess drivability, near

perfect alignment of all 3D scans would be required. Small inconsistencies in align-

ment can result in large surfel misalignments at far sensor distances. Figure 3.4

illustrates this issue using two laser scans of a flat surface with a misalignment

of 3 degrees pitch. This side-view shows the large error at even relatively close

distances (10 meters).
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3.4.2 Drivability Map Creation

As previously discussed, the drivability map cannot simply be created by applying

a 2D grid structure to the global allocentric surfel map. Thus a method must be

created to combine individual 3D scans given their registration estimate resulting

in a suitable representation of the environment.

This process starts by generating a surfel map at a predefined planning resolution

for each 3D scan. Each 3D scan is transformed by the registration estimate into

the map coordinate frame and inserted into a MRS map. By transforming all scans

into the map frame, we guarantee an aligned grid structure between all data. This

aligned structure allows for simplified aggregation of data.

By iterating over all surfel data in each map, we can generate a global 2D surfel grid

by first calculating each surfel’s grid index in the horizontal plane and updating

the grid cell’s surfel using merging criteria. Given n surfels from n 3D scans that

correspond to the same cell within the 2D grid, the following criteria is used to

determine the sensor data included in the cell’s surfel:

1. Any surfel within a thresholded distance from the corresponding scan’s sen-

sor origin is used within the drivability map. When data within this thresh-

old distance exists for multiple scans, the closer data is selected.

2. Given no surfels within a thresholded distance from the corresponding scan’s

sensor origin, the surfel having the highest mean height is selected. Addi-

tionally all surfels within a thresholded height difference from the selected

surfel is merged.

Criterion 1 ensures that data having minimal sensor error and thus the highest

accuracy is always included in the resulting global map. Criterion 2 is used to

mitigate small misalignment issues shown in Figure 3.4. Merging data within a

height tolerance is used to include data from multiple view perspectives and to

maximize the amount of data used.
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Inclined Terrain
(side-veiw)

Map Representation

Desired Drivability
Representation

Figure 3.5: Side-view of hillside (left) modelled using surfels. Due to map
discretization, the hillside is separated into three neighboring voxels (center)
For robust drivability assessment, this data must be combined and represented

using an individual surfel (right).

As an additional pre-processing steps, all surfels within a scan are merged to

neighboring surfels in the gravity axis. This surfel data would correspond to

identical cells within the 2D grid, however this data should always be merged.

Merging of data along the height axis is necessary due to potential environment

structure conflicting with the map discretization. Figure 3.5 illustrates this issue

by displaying three surfels generated from a steep hillside shown from a side-view

perspective. Within the diagram, the surfels are in neighboring voxels due to

map discretization, however for drivability processing the entire hillside should be

represented.

3.4.3 Drivable Region Determination

The wavefront method described in section 2.5.1 is used to generate the drivable

region using our surfel grid. To reduce memory consumption, the region growing
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Figure 3.6: MRS map with corresponding drivability map indicating similar
structure.

itself does not generate an additional datastructure but instead modifies drivability

flags within the drive-surfel grid. Figure 3.6 shows a visualization (from above) of

a global allocentric surfel map alongside the corresponding drivability grid where

only drivable surfels are displayed.

3.4.4 Drivability Assessment

During region growing, we must evaluate the drivable characteristics of the current

grid cell, including neighboring cells within the robot region. This allows for

precomputation of cost parameters used for planning as well as the reduction of

region growing effort as undrivable nodes are not further expanded.

The following characteristics are considered when determining the drivability of

an individual surfel where the robot region is centered at the cell center:

1. Robot region data coverage percentage

2. Robot region bumpiness

3. Robot region global incline
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3.4.4.1 Region Coverage

The robot coverage space is model by a bounding circle - an overestimate that

allows for turning in place and thus negates the affects of orientation on cost.

Thus to determine the region coverage centered at a cell, we simply perform a

distance query within the pre-processed surfel grid where the distance between the

query cell and originating cell centers is less than the robot radius. The coverage

percentage is modelled by the number of cells containing valid surfel data divided

by the total number of cells within the region.

If region coverage percentage is less than a threshold, the cell is marked “not

drivable” and the region growing from the cell is stopped. The recommended

region coverage depends on several factors including general environment, safety

considerations, and mapping resolution. Generally it is not desirable to require

a coverage region of 100% due to occlusions and similar data limitations causing

missing surfel data.

3.4.4.2 Bumpiness

We define local bumpiness of a cell bl(c) as the maximum difference between the

cell’s surfel mean height and all eight direct neighboring surfel mean heights. This

calculation is shown in Equation 3.6 where N is the set of immediate neighbor

cells and µ(c) is the surfel mean within cell c.

bl(c) = max
n∈N

(µ(c).z − µ(n).z) (3.6)

Using local bumpiness, the region bumpiness of a grid cell br(c) is defined as the

maximum local bumpiness of cells contained within the robot region. Equation

3.7 shows this calculation where R(c) is the set of cells contained within the robot

region centered at cell c.
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br(c) = max

(
0, max

cr∈R(c)
bl(cr)

)
(3.7)

If the region bumpiness of a cell is greater than a threshold, the cell is marked “not

drivable” and region growing from the cell is stopped. The bumpiness threshold

should be set depending on the robot ground coverage, robot wheel size, and

general planning safeness required.

3.4.4.3 Global Incline

Global incline refers to the incline angle (in radians) of the region with reference

to the gravity vector. One must consider global incline due to the constant force

of gravity acting upon the robot. To determine the global incline of a cell ir(c)

we aggregate the statistical data of all surfels within the robot region to model

a “region surfel” according to the update procedure described in Section 2.3.2.

From this surfel, the normal vector is extracted from the covariance matrix and

compared against the gravity vector for determining incline. Equation 3.8 shows

how to calculate the angle (always positive in radians) between two vectors using

the vector inner product and magnitude operator.

θ(~a,~b) =

∣∣∣∣∣acos
(

~a ·~b
||~a||||~b||

)∣∣∣∣∣ (3.8)

If the global incline angle relative to horizontal is outside a thresholded range

(±20◦ for example), the cell is considered “not drivable” and region growing from

the cell is stopped. The incline threshold should be related to the incline driv-

ing characteristics of the robot considering both motor capabilities and tipping

resistance.
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3.4.4.4 Drivability Cost

The cost of a cell C(c) is used as the node code for planning and is dependent

upon both region bumpiness and incline. The cost is calculated as

C(c) = αbr(c) + βir(c), (3.9)

where α and β are the weight parameters for bumpiness and incline respectively.

As with previous measures of drivability, the total cell cost is compared to a

threshold. When the cost is greater than the given threshold, the cell is marked

“not drivable” and region growing is halted.

Thresholding the cell costs offers extra safety limitations against a combination of

bumpiness and incline resulting in an unsafe path from planning. This threshold

should be related to the robot characteristics including resistance to tipping and

wheel size.

3.5 Navigation Planning

Navigation planning is performed using the implicit graph structure from the driv-

ability cost grid described in Section 3.4. For path planning, the well-known and

efficient A* algorithm presented in Section 2.5.2 is implemented including han-

dling of special cases (described in Section 3.5.5). The following sections describe

the integration of an A* planner for producing robot trajectories.

3.5.1 Neighborhood Transition

When considering the grid structure used for drivability and cost assessment, two

standard neighborhoods are used. The von Neumann [Weisstein, a] and Moore

neighborhood [Weisstein, b] definitions are commonly used to determine legal tran-

sitions in a grid-like structure. The von Neumann neighborhood consists of the four
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direct neighbors in a 2D grid (excluding diagonals); predictably the Moore neigh-

borhood is the eight-neighborhood including diagonals. Due to the kinematics of

the Spacebot robot as well as the advantage of generating smoother trajectories,

the Moore neighborhood was used as the transition rule. As an additional limita-

tion to improve planning efficiency, a possible transition is only considered valid

if the neighbor node is drivable.

3.5.2 Node Costs

The node cost used during planning is the drivability cost described in Section

3.4.4.4. In order to ensure optimality of the A* algorithm and to fulfill the heuristic

admissibility requirement, the node cost Cnode must always be ≥ 0. This constraint

can be inspected on a term by term basis referencing the drive cost calculation

from Equation 3.9. The first term, region bumpiness, is by definition ≥ 0 from

Equation 3.7. The second term, global incline must also be positive due to the

absolute value operation in Equation 3.8.

3.5.3 Edge Costs

One issue with using A* planning is the dependence upon a admissible heuristic

for efficient path planning. Determining a heuristic function that is both accu-

rate and admissible can be a challenging problem. To drastically reduce heuristic

function complexity, the edge cost between two nodes can be modelled as the eu-

clidean distance between the surfel means scaled by a weighting factor γd. Within

the presented framework, an additional edge cost parameter determined by the

orientation change ∆θ between the surfels connected by the edge is used - also

weighted by factor γo. The orientation between two surfels s and s′ having region

averaged normals n and n′ respectively can be calculated as

∆θ =
∣∣cos−1(n · n′)

∣∣ , (3.10)
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using the vector inner product and the normal vectors n and n′ which have unit

length.

The weighting factor allows customization of the planning algorithm to generate

paths focusing on minimizing different drivability aspects. To summarize, the total

edge cost Cedge between surfel s and s′ can be calculated as

Cedge = γd distance (µ(s), µ(s′)) + γo∆θ (3.11)

3.5.4 Heuristic

Without knowing the path to the goal from the current cell, it is not possible to

accurately assess the expected sum of node costs to the goal. However due to

edge costs using a scaled euclidean distance, the heuristic can also used this scaled

euclidean distance to the goal cell. This heuristic is guaranteed to be admissible

because node costs are never negative and the sum of edge costs from a cell to

the goal must be at least the euclidean distance due to the triangle inequality. As

an important note, admissibility can only be guaranteed if the same scaling factor

γedge is used for both edge cost calculation and the heuristic function.

Figure 3.7 shows the use of the euclidean distance heuristic in a two dimensional

grid. Due to environment structure, the heuristic does not accurately predict the

true cost - however the heuristic is admissible and without a more complex method

of environment analysis cannot be easily improved.

3.5.5 Special Navigation Cases

Special care must be taken for planning to target locations of any type listed below.

1. The target location is inside an obstacle

2. The target location is outside the drivable area
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Figure 3.7: Example of euclidean distance heuristic function in two dimen-
sional environment.

3. The target location is outside the perceived environment

The results of the general A* path planning algorithm will fail given any of these

conditions. In the failure case, the A* algorithm has essentially performed Dijk-

stra’s algorithm for the entire drivability graph. For a robust planning system,

we wish to approximate or determine a “close” solution suitable for continuing

navigation.

Cases 1 and 2 describe nearly identical situations as the target location has map-

ping data but is not drivable. In this case, the planning system considers the 10

closest surfels to the target position.1 The candidate having lowest total path cost

and a distance to the target position within “target reached” threshold is selected

as the new target surfel. As the system has already computed all minimum cost

paths, the path can be easily computed to the new target and returned. If no

surfels are within the “target reached” threshold the surfel having lowest total

1 Using the euclidean distance as a metric.
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cost including heuristic is selected as the target surfel and the path is computed

as before.

In case 3, there is no guarantee that close surfels allow for a future path to the

target location without additional mapping data. In this case, the surfel having

the lowest total cost (including heuristic) is selected as the target node and the

minimum cost path to this node is computed.

Handling these special cases allows for the navigation system to continue in a

“likely” correct direction and allows for additional data collection.
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Evaluation

This chapter details the evaluation results of the presented system. Within simu-

lation, systematic experiments have been performed to demonstrate the accuracy

and robustness of the mapping and localization systems, along with additional

tests of the drivability assessment and path planning components. Real-world ex-

periments in three distinct environments are presented, including results from the

DLR Spacebot Cup. Additionally a public dataset from the University of Toronto,

Institute for Aerospace Studies has been used for mapping evaluation.

4.1 Test Environment

All real-world experiments and the University of Toronto dataset has been pro-

cessed using an Intel Core i7-4770K CPU @ 3.50 GHz CPU with 32GB RAM.

1 This computer is available both onboard and offboard the Spacebot Explorer,

however results presented here have been processed offboard from sensor data

collected during robot operation.

Simulation experiments have been performed using an Intel Core i7-2670QM CPU

with 8GB RAM. 2

1 Four main cores with four virtualized cores.
2 See footnote 1

65
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Figure 4.1: The Intel Core i7-4470K CPU @ 3.50 GHz with 32GB RAM used
for the Explorer platform.

Figure 4.1 shows the computation unit used for real-world experiments and Ex-

plorer operation.

4.2 Simulation Experiments

This section presents the systematic experiments to the mapping and localization

systems as well as tests of the drivability assessment and navigation systems. Each

component has a section detailing experimental setup and results.

Simulation data was generated using the Gazebo simulation suite using hand mod-

elled terrain. Odometry was also simulated having systematic error in all degrees of

freedom. Figure 4.2 shows the simulation environment using for experimentation

in the following sections.

(a) Open-air environment. (b) Enclosed environment.

Figure 4.2: The rough-terrain simulation environment shown in the Gazebo
simulator.
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4.2.1 Mapping Snap-In With Surface Features

Snap-in distance is measured as the maximum distance from the origin that a 3D

scan can be transformed and still be successfully registered to itself. A scan is

considered successfully aligned if the registration system estimate is equal to the

applied transformation. This metric gives information concerning the robustness

to the registration guess and thus gives an idea of the required accuracy of the

localization system.

As an additional test, experiment data is processed with and without reflectance

measurements showing the impact of surface features during registration.

As presented in Section 2.3, gradient descent methods are used to align 3D scans.

As with all parameter optimization using gradient descent, it is possible for the

registration system to find only a local minimum and thus an incorrect registration

estimate. This depends greatly on the initial registration guess. Using surface

features should improve registration by limiting the surfel associations and thus

modifying the error gradient.

For this set of experiments a 3D scan was used to initialize the mapping system.

Next the scan was copied and transformed with an offset of x ∈ [−4, 4], y ∈

[−4, 4] at a 0.4 meter interval and rotated with an angle θyaw ∈ [−π, π] with a

22.5 deg interval and processed using the registration system. If the resulting pose

estimate was equal to the initial transform with a threshold parameter τ = 0.1,

the registration is considered successful.

Figure 4.3 shows the 3D scan used for testing snap-in distance.3 Figure 4.4 shows

successful registrations where a vector represents both the offset in meters and

the rotation from ground truth. Additionally vectors are colored coded to show

alignment quality. A registration is considered successful if the sum of the squared

distances between transformation matrices is less than 0.1. Red vectors correspond

3 The scan was taken including a roof and wall similar to those found at the Spacebot Cup.
Additionally the data was cut to include just the terrain.
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(a) Full scan. (b) Cut scan.

Figure 4.3: Snap-in distance experiment where points are colored by height.
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(a) Results using full scan.
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(b) Results using cut scan.

Figure 4.4: Successful registrations given transformed offset and rotation for
the snap-in distance experiment.

to high quality alignment while yellow indicates less accurate. The vector shown

in the center in red is the ground truth vector.

As seen in the figures, the presence of large well-defined features such as walls

and a ceiling increases the ability to register scans given larger initialization error.

Alignment using walls resulted in 1559 successful registrations; within the cut scan

only 98 successful registrations were recorded.

To test the effects of surface features on registration, the experiment was also

performed with a laser scan of a ceiling. Due to lighting fixtures, the ceiling has a

unique reflectance profile and consists of a relatively flat surface where shape does

not necessarily provide adequate information for 3D scan alignment. Figure 4.5

shows the ceiling 3D scan with reflectance values shown by gray scale color.
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Figure 4.5: 3D laser scan of ceiling colored by reflectance intensity.
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(a) With reflectance information.
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(b) Without reflectance information.

Figure 4.6: Successful registrations given transformed offset and rotation for
the snap-in experiment testing surface reflectance features.

Using the ceiling laser scan, “snap-in” tests were executed both with and with-

out reflectance information. Figure 4.6 shows successful registrations for both

instances in the same format as above. From careful inspection of this figure,

one can see using reflectance features improves the robustness of the registration

system. Without using the reflectance feature, 415 successful registrations were

recorded; including reflectance information resulted in 452 successful registrations.
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4.2.2 SLAM

To evaluate the SLAM system within simulation, five mapping and localization

runs were performed in enclosed and open-air environments. As localization is a

stochastic process, each run must be processed several times with the results aver-

aged. Each experiment was performed using various initial poses and trajectories

within the simulation environment shown in Figure 4.2.4

In this section I first present the error metric and the SLAM experiment configu-

ration. Results are presented for localization and mapping in the form of ground

truth comparisons. Additional qualitative results are presented in the form of

aligned point clouds.

4.2.2.1 Absolute Trajectory Error

Sturm et al. [2012] propose benchmarking RGB-D SLAM systems using Abso-

lute Trajectory Error (ATE). ATE is a global error measure that indicates the

consistency of a tracked path w.r.t. ground truth information. Our simulation

evaluation presents the following ATE error measures: mean, standard deviation,

minimum error, maximum error.

To calculate ATE, both the tracked and ground truth poses are sampled including

time stamp information. After collecting samples for the entire trajectory, the

tracked path is aligned to the ground truth path using a closed form least squares

method [Horn, 1987]. Using time stamp information for data association, global

error measures can be calculated.

ATE shows localization performance by comparing tracked and ground truth tra-

jectories. Mapping performance is also evaluated by this metric and is presented

by comparing the robot poses at 3D scan locations. Mapping results compare the

initialization estimate from localization, the graph optimized registration estimate,

and ground truth pose information.

4 Roof and side walls are not shown.
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Parameter Value

Particles 250
Translation Sampling Variance Min 0.00625
Translation Sampling Variance Factor 0.08
Rotational Sampling Variance Min 0.0025
Rotational Sampling Variance Factor 0.15

Table 4.1: Particle filter configuration for SLAM simulation experiments.

4.2.2.2 Particle Filter Configuration

The localization parameters were originally tuned for usage at the Spacebot Cup

using the Explorer platform. Due to movement restrictions of the simulated robot

(turning in place), the orientation parameters were refined using an initializa-

tion experiment. This initialization allowed for reduced noise in orientation and

demonstrates the need to tune localization parameters for specific applications.

The tuned filter configuration is shown in Table 4.1. See Section 3.3.4 for a dis-

cussion on particle filter parameters and effects.

4.2.2.3 Localization Results

The localization estimate was recorded during 10 runs of each SLAM experiment

and compared to ground truth using the ATE metric. Figure 4.7 shows an example

tracked trajectory, including ground truth and odometry input, for each of the ten

total SLAM experiments.

The SLAM experiments had an average duration of 288 seconds with an average

path length of 33.8 meters. Table 4.2 presents the average ATE for each of the

experiments. Averaging all simulation experiments, a mean error of 0.117 m was

recorded - including a minimum and maximum error of 0.005 m and 0.546 m re-

spectively. Analysis shows localization ran with an average update frequency of

32 Hz.
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Experiment Environment
Error metric in meters

Mean Std Minimum Maximum

1 Enclosed 0.103 0.091 0.003 0.459
2 Enclosed 0.095 0.084 0.002 0.507
3 Enclosed 0.049 0.038 0.002 0.255
4 Enclosed 0.311 0.240 0.012 1.140
5 Enclosed 0.130 0.127 0.004 0.615
6 Open-air 0.035 0.031 0.002 0.276
7 Open-air 0.054 0.057 0.002 0.334
8 Open-air 0.039 0.046 0.001 0.346
9 Open-air 0.037 0.028 0.001 0.288
10 Open-air 0.412 0.379 0.025 1.528

Average 0.117 0.105 0.005 0.546

Table 4.2: Tracking ATE results for each simulation experiment in meters.
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(a) Open-air environment.
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(b) Enclosed environment.

Figure 4.7: Selected trajectories for the 5 SLAM experiments comparing
odometry, localization, and ground truth trajectories.
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4.2.2.4 Mapping Results

Mapping results including input estimate, registration results, and ground truth

pose information were recorded from each simulation experiment. Figure 4.8 shows

a selected result from each of the ten experiments.

The SLAM experiments had an average duration of 288 seconds with 7 3D scans.

Table 4.3 presents the average 3D scan registration error for each experiment. The

localization component had an overall average registration guess error of 0.159 m.

Through global optimization and map-to-map alignment, the mapping component

produced more accurate results with an average error of .029 m.

Experiment Environment
Scan Registration (m) Localization (m)

Mean Std Mean Std

1 Enclosed 0.014 0.002 0.019 0.011

2 Enclosed 0.012 0.002 0.017 0.010

3 Enclosed 0.013 0.003 0.072 0.149

4 Enclosed 0.012 0.001 0.380 0.763

5 Enclosed 0.011 0.001 0.113 0.210

6 Open-air 0.027 0.018 0.160 0.163

7 Open-air 0.049 0.021 0.071 0.030

8 Open-air 0.028 0.010 0.131 0.173

9 Open-air 0.040 0.040 0.406 0.407

10 Open-air 0.080 0.028 0.222 0.249

Average 0.029 0.013 0.159 0.216

Table 4.3: Mapping ATE results for each simulation experiment in meters.
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(a) Open-air environment.
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(b) Enclosed environment.

Figure 4.8: Selected localization guess, mapping estimate, and ground truth
3D scan poses for the 5 SLAM experiments in both open and enclosed environ-

ments.
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Parameter Value

Robot size 1.0m
Coverage threshold 50%
Bumpiness threshold 0.20m
Incline threshold 20◦

Maximum Cost Threshold 0.48
Bumpiness cost weight 0.5
Incline cost weight 0.5

Figure 4.9: Parameters used for the drivability map shown in Figure 4.10.

4.2.3 Drivability Assessment

Drivability assessment was tested under several simulation environments to deter-

mine the correctness of terrain analysis. First experiments performed simply show

qualitative results of generating drivability maps in simulation. Additional experi-

ments to analyze the incline assessment and bumpiness calculations are presented.

4.2.3.1 Drivable Region Determination

Using the method presented in Section 3.4, a surfel grid including drivability costs

was computed for the simulation environment shown in Figure 4.2. Figure 4.10

visualizes the surfel grid where drivable surfels are in gray scale with intensity

corresponding to normalized surfel cost. All other visible surfels are undrivable

and indicate the reason by color. Table 4.9 lists the drivability parameters and

values used for generating the map.

In the Section 4.2.4, path planning is shown for various drivability parameters.

These results include drivability maps similar to that shown in Figure 4.10. These

results are additional examples of the effects of drivability parameters on the

traversability map and surfel costs.
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Figure 4.10: Aligned point cloud and corresponding drivability assessment
results from the simulated environment. Green: maximum bumpiness threshold
reached. Blue: maximum incline threshold reached. Red: minimum region
coverage threshold reached. Yellow: total cost threshold reached. Gray scale:

Drivable surfels where white indicates lower cost.
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Figure 4.11: The custom simulation environment used for testing incline as-
sessment including label for each ramp.

Ramp True Incline Measured Incline

1 5◦ 5.025◦

2 10◦ 10.340◦

3 15◦ 15.440◦

4 20◦ 20.199◦

5 25◦ 25.703◦

6 30◦ 29.990◦

7 35◦ 35.439◦

8 40◦ 40.365◦

Figure 4.12: Incline assessment results.

4.2.3.2 Incline Assessment

Using a custom simulation environment incline assessment accuracy was tested.

Figure 4.11 shows an environment consisting of several ramps with a known incline.

Using a complete 3D laser scan of the environment, the inclines of each ramp were

queried and compared to the ground truth.

Table 4.12 shows the measured and actual inclines of each ramp in the exper-

iment. The results have been averaged over 10 evaluations. To model the true

sensor properties as accurately as possible, simulated laser ranges include Gaussian

additive noise. For this experiment, the additive noise had a standard deviation

of 0.01 m.
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Parameter Value

Robot size 1.0m
Coverage threshold 50%
Bumpiness threshold 0.20m
Incline threshold 20◦

Maximum Cost Threshold 0.48
Bumpiness cost weight 0.5
Incline cost weight 0.5

Figure 4.13: Example planned trajectory and drivability map with corre-
sponding drivability cost parameters. This trajectory uses the settings tuned

for the Spacebot Cup competition.

Parameter Value

Robot size 1.0m
Coverage threshold 50%
Bumpiness threshold 0.20m
Incline threshold 20◦

Maximum Cost Threshold 0.32
Bumpiness cost weight 1.0
Incline cost weight 0.0

Figure 4.14: Example planned trajectory and drivability map with corre-
sponding drivability cost parameters. This trajectory uses a cost calculation

ignoring incline costs.

4.2.4 Path Planning

Path planning has been tested within simulation to qualitatively show the A*

algorithm as well as the impact of cost weighting factors from Section 3.4.4.4 on

the generated trajectory. Figure 4.13, Figure 4.14, and Figure 4.15 show a planned

trajectory using various drivability parameter settings using the same start and

target locations. Notice the drivability map surfels change between figures due

to the different cost parameters. Figure 4.16 shows path planning using only the

Euclidean distance heuristic. Here one should notice the shortest available path is

generated - often using diagonals to minimize distances.
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Parameter Value

Robot size 1.0m
Coverage threshold 50%
Bumpiness threshold 0.20m
Incline threshold 20◦

Maximum Cost Threshold 0.32
Bumpiness cost weight 0.0
Incline cost weight 1.0

Figure 4.15: Example planned trajectory and drivability map with corre-
sponding drivability cost parameters. This trajectory uses a cost calculation

ignoring bumpiness costs.

Parameter Value

Robot size 1.0m
Coverage threshold 50%
Bumpiness threshold 0.20m
Incline threshold 20◦

Maximum Cost Threshold 0.48
Bumpiness cost weight 1.0
Incline cost weight 1.0

Figure 4.16: Example planned trajectory and drivability map with corre-
sponding drivability cost parameters. This trajectory uses no costs for path

planning, instead relying only on the Euclidean distance heuristic.

4.3 University of Toronto Outdoor Dataset

We evaluate the mapping component against a publicly available dataset from the

University of Toronto, Institute for Aerospace Studies [Tong et al., 2013]. The

“a200 met” dataset consists of 25 laser scans recorded with a SICK LMS291-S05

sensor. The open-air environment measures 120 m by 60 m and consists of several

terrain features including ridges, craters, and rocks.

For each 3D scan the following measurements are available: odometry estimate,

pose estimate, and ground truth pose. The odometry estimated was produced

using a Point Grey Bumblebee XB3 stereo camera. The pose estimate was cal-

culated using spar-feature-based-batch alignment presented by Tong et al. [2011].
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Figure 4.17: Aligned point cloud from the University of Toronto dataset using
different registration estimates.

Ground truth data was measured using an on-board differential global position

system (DGPS). As laser data between 3D scan positions is not provided, this

dataset is only used to test the mapping system.

Figure 4.17 shows the aligned point cloud from all scans using the odometry esti-

mate as an input guess. Within this point cloud, environmental features such as

trees, ridge faces, and several others are clearly visible. One may also notice small

misalignments, specifically when looking for straight lines below the row of trees.

However when compared to the odometry guess and ground truth, the mapping

results show a clear improvement.

Comparing against the provided ground truth data is however problematic. Fig-

ure 4.18 shows the combined point cloud when setting pose estimates to ground

truth. From visual inspection it appears the ground truth data has been somehow

corrupted or was incorrectly measured. Thus only qualitative visual inspection

can be used for a comparison.
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Figure 4.18: 3D scans aligned by the supplied ground truth data without
registration.

3D Scans 0-1 1-2 2-3 3-4 4-5 5-6 Average Error

Ground Truth 4.20 4.94 6.53 4.45 4.54 8.54
Localization 4.30 5.26 6.39 4.44 4.85 9.40 0.29

3D Scan Registration 4.18 4.90 6.37 4.40 4.49 8.43 0.07

Table 4.4: Parking garage distances between 3D scans in meters.

4.4 Parking Garage

The parking garage experiment was conducted in an enclosed parking space ap-

proximately 25×60 meters in size. Figure 4.19 shows the environment highlighting

structures including vehicles, girders, support beams, and windows.

Laser scanner data was recorded using the Explorer platform which includes visual

odometry. Seven full 3D scans were taken at an average distance of 5.53 m along

an approximately 35 meter path. Ground-truth was hand-measured and consists

of the relative distances between keyframe poses.



82 Chapter 4 Evaluation

Figure 4.19: The parking garage experiment environment.

Using 250 particles for localization with reduced motion model noise in the z-axis

(parallel to gravity), 3D scan registration with graph optimization resulted in a

minimum and maximum error of 2 cm and 13 cm respectively. Table 4.4 shows a

comparison between measured ground truth, localization estimate, and 3D scan

registration estimate over the course of the experiment. This comparison consists

of the estimated relative distance from the previous key-view in meters.

Localization had a measured update rate between 30 Hz and 35 Hz. Figure 4.20

shows the tracked trajectory of the robot during the experiment compared to pure

visual odometry along with 3D scan registration poses. The corresponding point

cloud generated using the final pose estimates is shown in Figure 4.21.
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Figure 4.20: Parking garage experiment’s tracked vehicle movement viewed
from above - blue path. Black path - raw odometry input. Green circles - the
tracking estimate when starting a 3D registration. Red circles - the registration

estimate.

Figure 4.21: Parking garage experiment registered point clouds colored by
height for visualization.
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3D Scans 0-1 1-2 2-3 3-4 4-5 5-6 Average Error

Ground Truth 6.60 8.25 6.59 6.69 5.69 4.37
Localization 6.59 8.26 6.47 7.27 5.97 4.57 0.20

3D Scan Registration 6.58 8.18 6.55 6.66 5.67 4.35 0.03

Table 4.5: Courtyard distances between 3D scans in meters.

Figure 4.22: The LBH courtyard experiment environment.

4.5 Courtyard

An experiment testing the tracking and mapping abilities in an open-air envi-

ronment was conducted at the University of Bonn Landesbehördenhaus (LBH)

courtyard. Due to the lack of a roof and relatively feature-bare environment, a

few boxes and garbage contains were arranged to create a denser test environment.

Figure 4.22 shows an aerial view of the experiment environment.

Using the Explorer platform, seven 3D scans where taken at an average distance

of 6.37 meters. Ground truth is again presented in the form of relative distance

between 3D scan key-views. Using this metric, scan registration received minimum
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and maximum relative distance errors of 0.02 and 0.05 meters respectively. From

the tracking system minimum and maximum errors of 0.01 and 0.58 meters were

recorded.

Table 4.5 shows a comparison between measured ground truth, localization esti-

mate, and 3D scan registration estimate over the course of the experiment. This

comparison consists of the estimated relative distance between key-views.

Similar to the garage experiment, the localization update rate was measured be-

tween 30 Hz and 35 Hz. Figure 4.23 shows the tracked trajectory of the robot

during the experiment compared to pure visual odometry along with 3D scan

registration poses. The corresponding point cloud generated using the final pose

estimates is shown in Figure 4.24.
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Figure 4.23: Courtyard experiment’s tracked vehicle movement viewed from
above - blue path. Black path - raw odometry input. Green circles - the tracking
estimate when starting a 3D registration. Red circles - the registration estimate.



86 Chapter 4 Evaluation

Figure 4.24: Courtyard experiment registered point clouds coloured by height
for visualization.

4.6 Spacebot Cup Arena

The Spacebot Cup competition arena, shown in Figure 4.25, modelled a terra-

planet environment potentially encountered during space exploration. The arena

consisted of rough terrain with various obstacles such as rocks and even a “lan-

der base station”. The terrain consisted of various types of materials including

sand, stones, and compacted dirt adding to the complexity of wheel odometry and

tracking systems.

The arena environment was indoors and thus contained features not reliably

present in space exploration applications - including a ceiling and walls. To show

robustness and applicability of the entire system, from each recorded dataset two

versions have been created. In the following sections the “un-cut arena” refers

to the original laser data which includes all building features. Similarly the “cut
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Figure 4.25: The Spacebot Cup arena.

arena” will reference laser data which has been filtered to remove all measurements

outside the arena. 5

Due to the nature of the Spacebot Cup competition, additional robots and re-

searchers were present during data recording. Thus the laser data contains erro-

neous measurements mainly resulting from people moving within the arena during

scanning. These points have not been filtered from the datasets and is specifically

discussed where evaluation is impacted.

Using the Spacebot arena as a testing environment, two separate runs were recorded

which included visual odometry and laser scanner data. Due to no additional

means of measurement, no ground truth data is available. However from visual

inspection of the aligned points clouds and comparison to the tracked trajectory

and supplied odometry, these results show the qualitative accuracy of the system.

Run 1 consists of 8 3D scans taken over a duration of 854 seconds. The robot

trajectory has a length of ˜ 80 meters. Run 2 has a duration of 971 seconds and

consists of 14 3D scans. This run has a total traveled distance of ˜ 75 meters.

During each run, problems with the laser scanner driver resulted in invalid mea-

surement readings. This problem is detectable within the data and thus during

these outages no localization or scan aggregation is performed. Run 1 has a 45 sec-

ond period where laser data is invalid and occurs during motion between two 3D

5 Walls outside the arena bounds and the ceiling were removed from the laser data. This
was achieved using scan registration results from the initial experiments where all laser data was
processed.
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Parameter Value

Particles 250
Translation Sampling Variance Min 0.00625
Translation Sampling Variance Factor 0.08
Rotational Sampling Variance Min 0.0025
Rotational Sampling Variance Factor 0.15

Table 4.6: Particle filter configuration for Spacebot Cup arena experiments.

scan poses. Effects from this issue is specifically addressed in the results discussion

below. Run 2 has a 25 second period of invalid laser data and occurs during the

start of a scan and can be safely ignored without impacting the system results.

4.6.1 Particle Filtering Configuration

Table 4.6 presents the particle filter configuration used during Spacebot Cup ex-

perimentation. The values were experimentally derived during development of the

Spacebot platform and tuned from initial data captured at the Spacebot Cup.

These settings were used for all Spacebot arena dataset experiments. See Sec-

tion 3.3.4 for a discussion on the parameters and effects.

4.6.2 SLAM

To test SLAM within an unknown environment, both recorded runs were processed

on-line using qualitative analysis to judge accuracy. As previously mentioned, for

each run an “un-cut” and “cut” dataset has been recorded.

Figure 4.26 and Figure 4.27 show the aligned 3D scans and tracked trajectory for

both run 1 and 2 respectively. Due to a highly dynamic environment from people

and robots combined with their proximity to the robot, the run 1 “cut” dataset is

unable to be processed.

Within the aligned point cloud, one can see fine-grain details such as the rocky

slope of an incline or the surrounding arena structure. Additional features such
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Figure 4.26: Spacebot arena run 1 aligned point cloud and tracked path. The
ceiling has been removed from the uncut scan for viewing purposes.

as large boulders or the elongated ditch are also clearly visible. The mapping

results are considered accurate through visual inspection and a comparison with

arena photographs. In addition, there is no clearly visible difference between the

aligned scans of the “un-cut” and “cut” datasets. This indicates that even without

enclosing features such as ceilings and walls the mapping system can robustly

handle open-air environments.

Inspecting the tracked path highlighted in blue reveals details about the localiza-

tion component while performing SLAM. At each 3D scan location, a rectangular

area is visible within the aligned point clouds. The center of the rectangular area

is the robot pose according to the mapping system. If the localization gave perfect

estimates, the localization path would pass directly through this center. After

analyzing each of the 3D scan poses, it is clear the localization system adequately

performs for mapping. Localization had a consistent update rate of about 25 Hz.

There is a noticeable difference between the “un-cut” and “cut” datasets for track-

ing. The tracked path is both smoother and more accurate when using the “un-

cut” dataset, most likely due to sharp ceiling and wall features useful for localiza-

tion.

This qualitative analysis of localization is further founded by the results shown

in Table 4.7 and Table 4.8. These tables present the error in meters between the

localization estimate and registration estimate for each 3D scan from run 1 and 2

respectively.
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Localization Guess Error (meters)
3D Scan Uncut Dataset

0-1 0.200
1-2 0.108
2-3 0.052
3-4 0.086
4-5 0.056
5-6 0.151

Average 0.109

Table 4.7: Localization guess error compared to mapping during SLAM for
Spacebot Cup Run 1

Localization Guess Error (meters)
3D Scan Uncut Dataset Cut Dataset

0-1 0.210 0.032
1-2 0.051 0.063
2-3 0.072 0.093
3-4 0.126 0.143
4-5 0.050 1.087
5-6 0.165 0.191
6-7 0.070 0.273
7-8 0.051 0.280
8-9 0.023 0.608

9-10 0.044 0.291
10-11 0.077 0.367
11-12 0.022 0.417
12-13 0.040 0.334

Average 0.077 0.321

Table 4.8: Localization guess error compared to mapping during SLAM for
Spacebot Cup Run 2
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(a) Full uncut scan. (b) Cut scan.

Figure 4.27: Spacebot arena run 2 aligned point cloud and tracked path. The
ceiling has been removed from the uncut scan for viewing purposes.

4.6.3 Drivability Assessment and Path Planning

The Spacebot arena was also processed for drivability characteristics and used for

trajectory planning evaluation. Due to the method of combining 3D scans for

drivability analysis presented in Section 3.4 the results have been impacted by er-

roneous measurements of people. Map locations where drivability evaluation does

not have a clear correspondence to mapping results are due to these unavoidable

measurements.

Figure 4.28 shows the drivability map generated from the first Spacebot arena

dataset. The aligned point cloud is also shown for a side-by-side comparison.

Figure 4.29 shows the drivability map for the second dataset. Within this figure

both the “un-cut” and “cut” datasets have been processed.

Using drivability assessment previously demonstrated, several trajectories have

been planned from several source and goal locations - including planning to special

cases of unmapped environment and obstacles. Figure 4.30 show two example

paths planned between “Start” and “Target” positions.

Figure 4.31 uses the drivability assessment data from the run 2 “cut” dataset to

show handling of special cases - specifically planning to unknown space and within

obstacles. As shown in the figure, the planning component successfully creates a
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(a) Drivability map from uncut dataset. (b) Corresponding aligned point cloud.

Figure 4.28: The drivability assessment results from the first Spacebot arena
dataset. The drivability map is color-coded to allow for easy readability. Green:
maximum bumpiness threshold reached. Blue: maximum incline threshold
reached. Red: minimum region coverage threshold reached. Yellow: total cost
threshold reached. Gray scale: Valid surfels where white indicates lower cost.

(a) Uncut dataset. (b) Cut dataset.

Figure 4.29: The drivability assessment results from the second Spacebot
arena dataset. The drivability map is color-coded to allow for easy readabil-
ity. Green: maximum bumpiness threshold reached. Blue: maximum incline
threshold reached. Red: minimum region coverage threshold reached. Yellow:
total cost threshold reached. Gray scale: Valid surfels where white indicates

lower cost.
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Figure 4.30: Two example trajectories from the planning component.

(a) Planning to obstacle. (b) Planning to unknown space.

Figure 4.31: Two example trajectories from the planning component where
the target location cannot be reached.

trajectory leading to the general desired target area that is reachable by the robot

given the current mapping information.

4.7 Summary

This chapter presented the experimental results of the SLAM and navigation sys-

tems in both simulation and real-world environments.

Simulation experiments presented in Section 4.2 show the accuracy of the SLAM

system. After averaging results over five simulation experiments, the localization
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system had an average ATE of 0.117 m. Using the same experiment data, the

mapping system had an average ATE of 0.029 m.

An external dataset has been processed by the mapping system in Section 4.3.

While no comparison to ground truth data is made, the resulting aligned point

clouds contain visible evidence of mapping accuracy.

Additional real-world experiments of the mapping and localization system are pre-

sented in Section 4.4 and Section 4.5. From these experiments, the localization-

based registration guess had an average error of 0.29 m and 0.20 m when comparing

relative distances between scans for the garage and courtyard experiment respec-

tively. Using the same data, the mapping system had an average error of 0.07 m

and 0.03 m.

Results from the DLR Spacebot Cup are presented in Section 4.6. Qualitative

results from SLAM and drivability assessment are presented including example

planned trajectories and aligned point clouds.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis has presented an approach for SLAM, drivability assessment, and navi-

gation planning within the context of the Explorer robot platform. A continuously

rotating 2D laser scanner is used as the sensing system for both mapping and lo-

calization.

Using a particle filter and an observation calculation from single 2D laser scan

lines, the localization system can suitably track the robot pose for mapping and

planning activities. In simulation experiments, localization estimates had an av-

erage absolute trajectory error of 12 cm. Real world experiments recorded at the

University of Bonn, show a localization error of 20 cm and 29 cm when compared

to mapping estimates. Throughout testing, this system ran in real-time with an

update frequency between 25-35 Hz.

Multi-resolution surfel maps allow for compact modelling of complex environ-

ments and an accurate mapping system. The MRS map implementation has been

adapted to model surfaces based on the error properties of the Hokuyo UTM-

30LX-EW laser scanner. In simulation, 3D scan registration had an average error

of 3 cm when compared to ground truth information. In real world environments,
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the mapping system produced errors of 7 cm and 3 cm when compared to hand-

measured distances.

Drivability assessment is performed within MRS maps by analyzing several driv-

ability factors. These factors include terrain bumpiness, incline, and robot cov-

erage. Through the precomputation of costs, efficient path planning can be per-

formed using the A* algorithm.

Experiments have demonstrated the accuracy of the SLAM and navigation sys-

tems. Simulation experiments have allowed for precise ground truth comparisons

of mapping and localization results. Complex real-world experiments have tested

the ability of the tracking system to initialize 3D scan registration as well as the

robustness of map alignment. A freely available dataset from the University of

Toronto is also used to show qualitative mapping results. Data from the DLR

Spacebot Cup show the applicability of the system to land-rover type platforms.

5.2 Future Work

A number of promising options are available for future work relating to the pre-

sented SLAM and navigation system.

The first route would be to calculate an improved proposal distribution for use

in the localization system. The current system uses bootstrap filtering and thus

the state propagation model as the proposal distribution. By using ICP methods,

each laser scan line could be registered to the MRS map. This would allow for an

improved proposal distribution.

A second direction of future work would be to implement occupancy mapping

within MRS maps. This would allow for the distinction between free and unknown

space. This additional information could be used to improve the observation mod-

els used by the mapping and localization systems.



Appendix A

Fundamentals

A.1 Non-linear Least Squares Optimization

Parameter optimization wishes to minimize the weighted sum of squared error

between a set of truth values y = y1, y2, · · · , yn and an assumed non-linear function

f(x) parameterized by x = x1, x2, · · · , xm. The error for instance i is defined as

ei(x) = yi − fi(x). (A.1)

We define the total error function S(x) as

S(x) =
n∑
i

e2
i . (A.2)

We find the parameters x that model the truth values y by minimizing this func-

tion. Function minima occur when the function gradient ∂S
∂x

= 0.

This section presents common methods used to iteratively compute the parameters

x where the gradient is zero.
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A.1.1 Gradient Descent

Graident descent iteratively adjusts the parameters x in the direction of the error

function gradient. Iterative values of the parameters at time t + 1 are computed

as

x
(i)
t+1 = x

(i)
t − α

∂S

∂x(i)
, (A.3)

where α is the adjustment rate parameter.

This method converges to a local minimum however when very close the conver-

gence rate is relatively slow.

A.1.2 Newton’s Method

Newton’s Method is used to find stationary points of a function. A stationary point

exists where the gradient is zero and thus this algorithm can be applied to our

optimization problem. Newton’s Method iteratively approximates the objective

function by modelling a quadratic function about the current parameter value.

The iterative update is given by

x
(i)
t+1 = x

(i)
t − αH−1

S J, (A.4)

where α is the adjustment rate parameter, HS is the Hessian matrix of second

derivatives of S, and J is ∂S
∂x

- the jacobian of S.

Newton’s Method converages faster than gradient descent when close to stationary

points.

A.1.3 Gauss Newton Method

The Gauss Newton method is a variant of Newton’s Method were the objective

function is assumed to be quadratic near stationary points. This method approx-

imates the Hessian as HS = JTWJ where J is the Jacobian matrix and W is a
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diagonal weighting matrix for the residuals ei.

The Gauss Newton iterative update is computed as

x
(i)
t+1 = [JTWJ ]−1JTWei(x). (A.5)

This method converges faster than Gradient Descent when close to the minimum.

A.1.4 Levenberg-Marquardt Method

The Levenberg-Marquardt method implemented damped Gauss Newton iterations

by inserting an additional parameter. The update is now defined as

x
(i)
t+1 = [JTWJ + αI]−1JTWei(x), (A.6)

where α is the adjustment rate parameter. When α is large, this update reduces

to Gradient Descent. When α is small the resulting update performs similar to

the Gauss Newton Method.

Through varying the parameter α, this method can use the benefits of both Gra-

dient Descent and Gauss Newton. Fast convergence with Gradient Descent when

far from the minimum; fast convergence with the Gauss Newton Method when

close to the minimum.

A.2 Quaternion Rotations

The rotation of vector ~e by quaternion q = (s,~v) in R3 is defined as

~v′ = qvq̄, (A.7)

where q̄ is the conjugate of quaternion q.
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Multiplication between a quaternion and vector is performed by converting the

quaternion to its rotation matrix form. For a quaternion q = (w, x, y, z) where w

is the scalar component referenced as s above, we define the 3x3 rotation matrix

as

Mq =


1− 2y2 − 2z2 2xy − 2zw 2xz + 2yw

2xy + 2zw 1− 2x2 − 2z2 2yz − 2xw

2xz − 2yw 2yz + xw 1− 2x2 − 2y2

 . (A.8)

Using this definition, multiplication with a quaternion and thus a rotation reduces

to simple matrix multiplication.

A.3 Probability Density Functions

This sections presents a short introduction to the law of probability used for work-

ing with probability density functions on random variables. A probability density

function (pdf) is a function that models the probability for a random variable to

take a specific value. A pdf modelled by p(x) has the following properties:

1. Total Probability - The integral over the entire variable state space is equal

to 1. This essentially means the true value of the variable is within the state

space. In a discrete state space, we can define this property as the following

constraint ∑
x∈X

p(x) = 1 (A.9)

2. Non-negative - The probability density has a non-negative value for the entire

state space.
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A.3.1 Marginalization

Marginalization uses knowledge of an external random variable y with a depen-

dence to the random variable x to calculate information about x. We can refor-

mulate the pdf of x, p(x) in terms of y as

p(x) =
∑
y∈X

p(x, y). (A.10)

Using the Bayes’ formula, we can rewrite this definition to use conditional proba-

bilities. This form is shown in Equation A.11.

p(x) =
∑
y∈X

p(x|y)p(y) (A.11)

A.3.2 Bayes’ Formula

Bayes formula allows one to express a posterior probability p(x|y) using a prior

probability p(x) and a likelihood probability p(y|x). This formula is used in

Bayesian filtering to simplify random variable calculations and is heavily applied

in the derivation of particle filtering. Bayes’ rule is defined as

p(x|y) =
p(y|x)p(x)

p(y)
, (A.12)

where p(y) is a normalization term.
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