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Abstract

The 6D object pose estimation is an indispensable requirement for many robotic ap-
plications, such as autonomous manipulation or motion planning. Object symmetries
create ambiguities in an object’s pose, increasing the complexity of the pose estimation
task. Existing approaches predict only a single pose which makes it unable to reason
about object symmetries in downstream tasks. Recently, modeling object orientations
implicitly as non-parametric probability distributions on the rotation manifold SO(3)
has shown impressive capabilities to capture geometric symmetries.

This thesis proposes ImplicitPosePDF model which aims to model poses by ex-
tending the approach to the space of all rigid body transformation SE(3) to capture
object symmetries. The estimation of the distributions is decoupled in two models es-
timating an orientation and a translation distribution respectively. Each distribution
is parametrized through a neural network. Using an efficient equi-volumetric sam-
pling strategy for the rotation manifold SO(3) and the translation space R3, the pose
distribution is approximated as a histogram over the respective space. The models
are trained to estimate the likelihood of a single orientation, respectively translation,
hypothesis taken from a set of ground-truth poses representing the object symmetries.

Acquiring ground-truth labels, especially multiple symmetrical poses for each frame,
for the pose estimation task remains a bottleneck in the training process. To produce
ground-truth labels to train our model, this thesis further introduces a three-stage
pipeline that generates multiple symmetrical pseudo ground-truth poses for each train-
ing image without the supervision of object poses or symmetries. Given an RGB-D
image and a 3D object model, the pipeline produces the set of pseudo ground-truth
poses through a two-stage point cloud registration process with a succeeding render-
and-compare validation stage.

The pose labeling scheme and ImplicitPosePDF model are evaluated on a photore-
alistic dataset and the T-Less dataset. Through thorough experimental evaluations,
we demonstrate the strengths of our model to capture arbitrary symmetries in realistic
scenarios and highlight the advantages of the proposed pose labeling scheme.
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1 Introduction

In our daily life, we continuously estimate the relative locations and orientations
of objects in our surroundings. For instance, grasping a coffee mug requires us to
estimate the relative location and orientation of the mug to our hand. If the handle
of the mug is not visible, the orientation estimation is not unique but rather introduces
uncertainty about the orientation. Consequently, we are not only aware of the pose
of an object but also of the uncertainty around it. We have a notion of symmetry
exhibited by the mug and can estimate the possible orientations that hide the handle.
With the increase of automatization in the everyday life, autonomous systems require
similar capabilities to interact with their surroundings.

The 6D object pose estimation becomes essentially important in the field of robotics.
With the goal of building autonomous agents in human environments, robots need to
reason about an object’s 3D location and 3D orientation for manipulation or motion
planning tasks. While there are very successful approaches to generating accurate
poses from RGB-D images, the pose estimation from RGB images still faces open
challenges. The low costs and small sensor sizes, while conveying a broad range of
information, makes RGB cameras particularly interesting for robotic applications. Vi-
sual data conveys vital information about an object’s pose which is extracted in recent
approaches using Convolutional Neural Networks (CNNs) as feature extractors [1] [2].
In real-world scenarios, such data is strongly impacted by external influences such as
lighting conditions, occlusion, object texture or pose variations arising from symme-
tries. Object symmetries introduce ambiguities in the pose, meaning that the visual
representation of an object can be mapped to several correct poses and vica versa.
While most recent 6D pose estimation approaches focus on estimating a single correct
6D pose of symmetric objects [3] [4] [2], modeling object symmetries is still an open
challenge.

Furthermore, to efficiently train such CNN models through deep learning, large-
scale datasets of ground-truth annotated images are required. Acquiring ground-
truth labels for large datasets still remains the bottleneck in the training process.
This problem is further aggravated when dataset labels should include multiple poses
representing the symmetries of arbitrary objects, especially without prior knowledge
about the symmetries.

Murphy et al. [5] proposed the Implicit Probability Distribution Function (Implicit-
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Figure 1.1: Predicted Distributions of the Implicit-PDF Model. The circles and
continuous lines represent the ground-truth orientations. The dots indicate the
estimated orientations with the size corresponding to the probability propagated
by the model. Upper Row: The Implicit-PDF model is able to express the
continuous symmetry of the cone and the 60 discrete symmetries of the icosahe-
dron. Lower Row: The visual features break the visual symmetries, showing
that Implicit-PDF model estimates an orientation distribution representing the
visual symmetries. [5]

PDF) model for rotation manifolds that constructs non-parametric probability distri-
butions over the rotation manifold SO(3) implicitly to model an object’s orientation.
This representation is parametrized by a neural network that can be trained by only
observing a single object orientation for each training image. The model shows im-
pressive capabilities of representing complex symmetries of platonic solids, such as
cones, spheres and icosahedrons, shown in Figure 1.1. The qualitative results show
that the model expresses symmetries arising from ambiguities in the visual features of
the object. Unfortunately, the model is limited by visual features expressed through
object textures, shown in the lower row of Figure 1.1. The distribution fails to cap-
ture geometric symmetries that are particularly interesting for robotic applications.
Moreover, the model was only constructed to represent distributions over the rotation
manifold SO(3) and not SE(3), the group containing all rigid body transformations.
The training process requires a ground-truth annotated dataset which poses an ad-
ditional limitation, especially in real-world scenarios when dealing with symmetric
objects. This thesis tackles the previously mentioned limitations of the model by
making the following contributions:

1. The ImplicitPosePDF model which constructs arbitrary pose distributions over
SE(3) using an adaption of the Implicit-PDF model for estimating the transla-
tion in R? (Translation-IPDF) combined with the original Implicit-PDF model
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(Rotation-IPDF),

2. an adjusted training procedure to model geometric symmetries of arbitrary ob-
jects,

3. the Automatic Pose Labeling Scheme that produces a pseudo ground-truth set
consisting of multiple poses for each training image, eliminating the necessity
of ground-truth annotated training data,

4. evaluation on multiple real-world objects exhibiting different types of symmetry,
showing that the model is able to construct arbitrary pose distributions over
SE(3) invariant to object textures and negligible geometric features.

The Automatic Pose Labeling Scheme and the implicit probability distribution func-
tions for modeling object orientations developed during the thesis were published at
the IEEE International Conference on Robotic Computing (IRC) [6].



2 6D Pose Estimation

YI

Figure 2.1: 6D Pose Estimation Problem. The task of 6D pose estimation is to find a
rigid transformation consisting of a rotation R and translation t transforming the
object coordinate system O to the camera coordinate system C. The resulting
transformation is called the pose P of the object in the camera frame.

Before discussing the pose estimation task itself, we introduce a common notion of
symmetry in Section 2.1, meaning we need to define a formal criterion that describes
whether two different poses P; and P; are considered to be symmetric. In the case
of two poses being symmetric, both poses might be defined as correct poses in the
6D pose estimation task. First, we define a pose P € SE(3) of an object as a rigid
transformation from the object coordinate system O to the camera coordinate system
C, as shown in Chapter 2. The pose consists of a rotation R € SO(3) and a translation
vector t € R?, P = (R, t). In this thesis, the rotation is represented by a 3 x 3 rotation
matrix to avoid discontinuities and the translation by three independent coordinates
x,y, and z. As shown by Murphy et al. [5], the representation through rotation
matrices also yields the best results of the Implicit-PDF model.

2.1 Object Symmetries

Symmetries can be split into two categories. Visual symmetries arise due to the lack of
distinctive visual features. In this case, an object placed in poses P, and P; produces
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the same image Z:

T(0,P;)=T7(0,P,). (2.1)

Geometric symmetries on the other hand are still present if an object has distinctive
visual features. These are solely determined by the geometry of the object. Given
the 3D model consisting of n 3D points x of an object O, two poses P; and P; are
considered geometrical symmetric if they have a small mean closest point distance:

1 )
— > min |[Pix; — Pyl < 0. (22)

x1€0

In Figure 2.2 the exemplar Can object from the YCB-Video dataset exhibits multiple
geometric symmetries while the texture prevents visual symmetries. The Can object
can be continuously rotated around the z-axis and rotated by 180° around the 2 and
y-axis respectively to produce symmetric poses. The resulting symmetric orientations,
shown in Figure 2.2 (b), form two continuous sets over the rotation manifold SO(3).
The symmetries are further appreciated in the provided video.!

Z A Symmetry Axis Z

Symmetry Plane

5

(a) Object Symmetries (b) Symmetric Orientations

Figure 2.2: Can Object Symmetries. (a) The Can object exhibits a continuous symme-
try around the z-axis and two discrete flip symmetries along the z and y-axes
respectively. (b) The resulting symmetric orientations form two continuous sets
of orientations over SO(3)

This thesis follows the proposal of Bregier et al. [7] to define the proper symmetries
M, regarding geometric symmetries as a group of rigid transformations:

1
Mo = {m € SE(3) | VP € SE(3), — E min [[Px; — m - Px,|| =~ 0}. (2.3)
n x2€0
x1€0
Visual and geometric symmetries arise from ambiguities in the rotational component
of a pose. Thus, the symmetries are only expressed through the rotational component.

The symmetric poses share a common translation vector.

thttps://uni-bonn.sciebo.de/s/cjNsVTuiOBAkqlB
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2.2 Problem Definition

This definition of symmetry allows us to define the 6D object pose estimation problem
in two different ways: Given an RGD image x depicting an object, (a) estimate a single
pose P € SE(3) or (b) estimate the complete set of proper symmetries M,. Using
the definition (a) has a major advantage: symmetric and non-symmetric objects can
be treated the same in terms of network architecture, training scheme and inference,
only the training loss has to be adjusted. Using the definition (b) makes it necessary
to define the symmetries either explicitly or implicitly, making it arguably the harder
task.

Figure 2.2 (b) shows a projection of the rotation manifold SO(3). The symmetries
exhibited by the Can object depicted in Figure 2.2 (a) result in multiple correct poses.
In this case in two continuous sets of symmetric poses with a unique translation vector.
Using problem definition (a), every pose coming from these sets is considered to be
a correct pose. The challenge of this task is to estimate one of the correct poses
as accurately as possible. If we defined the problem as stated in definition (b), the
coverage of all correct poses is the objective. In this thesis, we will refer to the problem
definition (a) as the Single 6D Pose Estimation task and to the problem definition
(b) as the 6D Pose Distribution Estimation task.



3 Related Work

3.1 6D Pose Estimation

In recent years the performance of 6D pose estimation methods was significantly
improved through the emergence of deep learning. Larger networks and increasing
computational power allow us to train more accurate models. Especially in combina-
tion with Convolutional Neural Networks (CNNs) the 6D pose estimation from RGB
data has seen significant progress.

In our human-made world objects often exhibit some kind of rotational symmetry.
These symmetries create ambiguities in the ground-truth pose which might hamper
the learning abilities of such approaches. Thus, it is evident that in order to efficiently
train deep learning models, symmetries have to be incorporated into the training pro-
cess. Among the recent approaches, strategies have been proposed to either implicitly
or explicitly utilize symmetry annotations.

Xu et al. [4] and Li et al. [3] employ the ShapeMatch-Loss [1] which copes object
symmetries during training. It implicitly selects a pose closest to the predicted pose
from the proper symmetry set as the correct pose. While this does not require any
prior knowledge about object symmetries, this variability in the ground-truth pose still
hampers the learning ability. Opposed to the implicit approach, Pitteri et al. [8] and
Amini et al. [2] mapped the symmetric rotations to a single "canonical” rotation. The
downside of such approaches is the explicit definition of object symmetries. Object
symmetries are typically not known prior to training or must be defined by hand,
which makes them untractable for large datasets.

Another common explicit approach is modeling symmetries using pre-defined sym-
metry classes. Rad and Lepetit [9] defined an additional auxiliary task to classify
the type of symmetry an object exhibits that benefits the single 6D pose estimation
task with additional properties. Esteves et al. [10] and Saxena et al. [11] proposed
methods that learn visual features equivariant to specific symmetry classes. While
using pre-defined symmetry classes may improve the 6D pose estimation accuracy, it
is limited in the scope of modeling arbitrary symmetries. The previously mentioned
approaches modeled symmetries to improve the precision of single 6D pose estima-
tions. Different strategies were proposed to cope with object symmetries to increase
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the learning ability of such models. They made no approach toward estimating and
modeling object symmetries during inference.

The approach by Corona et al. [12] modeled the pose estimation task as an image
comparison task. Given an input image, a codebook of images is used for comparison.
They trained a model to estimate a similarity score between two RGB images which is
then used to find the best matching codebook image. The pose of the best matching
codebook image is taken as the pose estimation during inference. In the presence of
symmetry, multiple codebook images with a high similarity score are chosen. While
this approach does not need explicit symmetry definition to model object symmetries,
it requires a large codebook of images for accurate pose estimation. This comes at the
cost of a high inference time requirement. To improve the inference time Sundermeyer
et al. [13] introduced an Augmented Autoencoder to learn a low-dimensional latent
space representation of the images used for image comparison. This improves the
inference time but does not make it real-time capable and usable for robotic applica-
tions. The major drawback of such image comparison approaches is that they only
model visual symmetries and not geometric symmetries which are more interesting
in robotic applications. Instead of making a single prediction, Manhardt et al. [14]
trained their model to predict a set of poses. The model predicts up to five different
visual symmetric poses. This is neither sufficient to cover the complete set of proper
symmetries nor to reason about the type of symmetry exhibited by an object.

Recent approaches model symmetries by estimating probability distributions over
the rotation manifold SO(3). Deng et al. [15] and Gilitschenski et al. [16] modeled mul-
tiple pose hypotheses as a mixture of Bingham distributions and trained a CNN model
to estimate the distribution parameters from RGB-D images. Since a single Bingham
probability distribution function describes a uni-model distribution on the rotation
manifold, a high number of Bingham distributions is required for an accurate approx-
imation of more complex object symmetries, such as continuous symmetries. The
computation time needed during inference is strongly increased by objects exhibiting
a high degree of symmetry. Okorn et al. [17] modeled multiple pose hypotheses using
Fisher distributions. These methods suffer from overhead in the computation of the
normalization term. Moreover, using parametrized probability distributions makes a
prior assumption on the pose distribution which makes it unlikely to be extended to
arbitrary complex object symmetries.

3.2 Ground-Truth Acquisition

The aforementioned learning approaches are trained in a supervised manner observing
a single ground-truth pose. This requires ground-truth annotated datasets.
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Sun et al. [18] showed that an increase in the dataset size results in a logarithmical
increase in model performances. In ablation studies, Murphy et al. [5] confirmed this
proposition. Increasing the dataset size logarithmically increases the Implicit-PDF
model’s performance, stagnating after a dataset size of 50,000 images. In real-world
scenarios, acquiring such large-scale ground-truth annotated datasets constitutes a
bottleneck in the training process. Xiang et al. [1] annotated the YCB-Video dataset
by manually annotating the first frame of each video. The remaining frames are an-
notated by tracking the camera trajectory revolving around the object and finally
deriving the ground-truth pose analytically. The quality of the ground-truth pose an-
notations strongly relies on the accuracy of the camera trajectory and precise camera
calibration. Hodan et al. [19] manually annotated the T-Less dataset by reconstruct-
ing the 3D scene using the RGB-D images and CAD object models. Misalignments
in the scene reconstruction are repeatedly corrected by hand until the alignment is
satisfactory. For small datasets like the T-Less dataset which only consists of 1,296
training images for each object, this method is tractable. It is evident that such an
approach is not tractable for large-scale datasets. Overall, both methods are able to
annotate ground-truth poses with manual supervision but miss the ability to output
multiple ground-truth annotations to characterize the symmetries present in the im-
ages. Extending those methods to also define ground-truth symmetries would require
prior knowledge about object symmetries.



4 ImplicitPosePDF Model

The ImplicitPosePDF (IPPDF) model presented in this thesis is based upon the
Implicit-PDF (IPDF) model proposed by Murphy et al. [5]. The IPDF model has
shown tremendous capabilities of expressing object symmetries implicitly. To ap-
proach 6D pose estimation, we extend the IPDF model to estimate a pose distri-
bution over SE(3). Murphy et al. [5] noted that the translation may be predicted
simultaneously within the same model. In a series of experiments, we observed that
the incorporation of translation and rotation into one model compromises the ability
of the model to capture object symmetries while making accurate pose estimations.
Thus, the rotation and translation estimation is decoupled into two separate mod-
els, the Rotation-IPDF and Translation-IPDF model. The two models and methods
used are discussed in detail throughout Section 4.1. In the following, we present our
adjusted training procedure in Section 4.2 and the visualization method used to evalu-
ate the pose distributions in Section 4.3. The ground-truth labels utilized for training
are generated by the Automatic Pose Labeling Scheme which will be introduced in
Chapter 5. Finally, we put the ImplicitPosePDF model to a test in Chapter 6. We
highlight the strengths of the IPPDF model to predict accurate 6D poses while being
able to capture the complete set of proper symmetries M g,.

4.1 Methods

The ImplicitPosePDF model, illustrated in Figure 4.1, expresses 6D pose distributions
by modeling two separate non-parametric probability distribution functions for the
orientation and translation respectively. The orientation distribution generated by
the Rotation-IPDF model is responsible for capturing the object symmetries. The
Translation-IPDF generates a distribution that approximates the unique translation
vector as accurately as possible. Ideally, this distribution describes a highly peaked
uni-modal distribution.

At the center of the two models stands a multi-layer perceptron that implicitly
represents the probability distribution. Both models are similar with respect to the
used methods and network architecture. The probability distributions are approx-
imated as a histogram. The rotation manifold SO(3) and translation space R® are
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Figure 4.1: ImplicitPosePDF Model. The model’s objective is, given an image x, to es-
timate the probability of the given pose hypothesis P. The rotation and transla-
tion probability are estimated separately. The Rotation-IPDF and Translation-
IPDF estimate the unnormalized joint log probability. Using the pose queries,
we retrieve the normalized probabilities that are multiplied to yield the proba-
bility of the pose hypothesis p(P | x)

discretized into bins of the histogram and the probability of each bin is approximated
by our model. In part a) of Figure 4.1, the two models estimate the unnormalized
joint log probability function f:x x SO(3) — R and f : x x R* — R given an input
image x € 7 and pose hypothesis P € SE(3). The sampling techniques described later
allow us to efficiently approximate the normalization term. The resulting normalized
probability functions p(R | x) and p(t | x) are finally combined to produce the pose
probability distribution function p(P | x).

To prevent repetitions we introduce G as a placeholder for either the rotation
manifold SO(3) or the translation space R?. Equally, we define G as a placeholder for
either the rotation R or the translation t.

Mathematical Derivation. In the following we derive the method used in parts b)
and c) of the ImplicitPosePDF model presented in Figure 4.1. We obtain p(G|x) from
the network output using the product rule:

_pGx)

p(GIm) =

(4.1)

The joint distribution p(x, G) is derived through:

p(X, G) = exp(f(x, G))7 (4'2)
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using the normalization term «. Note that the computation of « is infeasible be-
cause it would require integration over the space of images Z. p(x) is estimated by
marginalizing over G, and approximating the integral with a discrete sum:

p(x) = / p(x, G)dG

Geg

=« / exp(f(x, G))dG (4.3)

Geg

e Z exp(f(x,G;))V.

The queries {G;} are the centers of an equi-volumetric partitioning of either SO(3) or
R? with N partitions of volume V = yorV = % Veup is the volume a sub-space
T C R? containing the possible translation vectors t € T.

The normalization term « cancels out in the expression for p(G|x), leading to a
formulation that can be computed by querying the neural network over the hypotheses
{Gi}:

p(Glx) ~ % _op(f(x.G) (4.4)
> exp(/f(x, Gi))

On a small scale, we can assume that the rotation component is independent of the

translation component, meaning p(R|x) and p(t|x) are independent of each other.
Therefore, the final pose probability p(P|x) can be derived through:

p(P[x) = p(R[x)p(t[x). (4.5)

Sampling. To make the integration over G feasible in Equation (4.3), the integral
is approximated by a sum over an equi-volumetric partitioning of SO(3)/R3. To con-
struct an accurate probability distribution, it is crucial to precisely approximate the
normalization term. This requires a dense grid which comes at the cost of compu-
tational effort. For training and pose estimation a sparse grid is sufficient for both
models.

To sample from the rotation manifold SO(3), we follow the sampling method pro-
posed by Murphy et al. [5] to produce an equi-volumetric grid {R;} € SO(3). The
equi-volumetric sampling in SO(3) is produced in two steps. First, equal-area grids on
the 2-sphere are produced using the HEALPix method [20]. The equal-area grids are
produced in hierarchical order, leading to a convenient side effect of multi-resolution
sampling. Second, the Hopf fibration [21] is used to create a great circle through
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Figure 4.2: Equi-Volumetric Sampling of SO(3). The normalization term is approxi-
mated by computing the unnormalized probabilities on an equi-volumetric grid.
The method proposed by [21] produces equal-area grids hierarchically on the
2-sphere using the HEALPix method [20] and finally samples rotations using
the Hopf fibration [22]. Left: a grid with 576 rotations, right: 4608 rotations [5].

each point in the equal-area grid. Finally, the equi-volumetric sampling of SO(3) is
generated in recursive steps with a grid of size 72 as a starting point. The size of the
grid increases by the factor eight after each subdivision 4, [{R;}| = 72 - 8'. Figure 4.2
displays the grid with ¢ =1 and ¢ = 2.

To sample from the translation space R?, we restrict the translation vector in the
spatial boundaries of the given scene. It is inefficient to include impossible translation
vectors in the sampling process. We define T C R? as the subset containing all possible
translation vectors:

T = {t S R3 | t, € [to,tl] /\ty S [tg,tg] At, € [t4,t5]} (46)

to, ..., ts mark the borders of the possible translation queries. These values can be cho-
sen manually or also be learned before or during the training from the training data.
Finally, the sampling of T is done using a regular grid with equi-volumetric, cubic

cells. The centers of the cells are used as the translation queries for the Translation-
IPDF model.

Inference Since the rotational and translational components of a pose are not in-
tertwined, we decouple the estimation of the most likely pose as well as the pose
distribution. For inference, the Rotation-IPDF model and Translation-IPDF model
make separate estimations of either the most likely orientation/translation or the
complete orientation/translation distribution.

To predict a 6D pose, the objective of both models is to find the single most likely
pose. Using the differentiable network output f(x, G), both models optimize G using
gradient ascent to yield:

~

Gy = argmax f(x,G). (4.7)
Geg
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Figure 4.3: Implicit-PDF Model. Given an image x and an orientation hypothesis R,
respectively a translation hypothesis t, the Implicit-PDF model is trained to
generate the unnormalized joint log probability of the orientation/translation
hypothesis and the image.

The single most likely rotation R and translation & are then combined to yield the
pose prediction p:

p=(R,t). (4.8)

The pose distribution p(SE(3) | x) is represented through two seperate distributions
p(SO(3) | x) representing the orientation and p(T | x) representing the translation.
To reconstruct each distribution, we generate a dense equi-volumetric sampling of
SO(3) and the translation space T and evaluate Equation (4.4) on each query.

Neural Network. The Rotation-IPDF and Translation-IPDF models in part a) of
Figure 4.1 share a common network architecture. The network architecture is depicted
in Figure 4.3. The image is fed to a feature extractor which extracts the visual
features. A standard state-of-the-art feature extractor is sufficient to create a visual
representation used as input for the MLP. We carried out experiments with different
feature extractors as the backbone to our model in Section 6.5, and finally settled for
the ConvNeXt model proposed by [23] in the tiny configuration.

Positional encoding each element of the rotation or translation query with m ele-
ments proved to yield a better performance of our model. Together with the positional
encoded query, the feature descriptor is fed to MLP. The MLP consists of n fully con-
nected layers of size 256 with a ReLu activation function. The last layer outputs the
unnormalized joint log probability for a given image and rotation/translation query.
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4.2 Training

A standard loss to learn probability distribution functions is the negative log-likelihood
L(x,Ggr) = —log(p(Gear | x)). The log-likelihood measures how tightly two proba-
bility distributions fit, evaluated on a single point. Given a single ground truth, the
model is trained to minimize the negative log-likelihood. This requires estimating the
pose distribution as described in Equation (4.4). For normalizing the distribution,
the pose distribution needs to be evaluated on a grid {G;} in G. The grid is finally
rotated to include the ground truth Ggr.

During training, the normalization term is not required to be approximated with
high accuracy. A coarse grid is sufficient during training. Murphy et al. [5] showed
that the model is even robust enough to be trained without an equi-volemtric grid.
Randomly sampled {G;} during training yield comparable model performances as the
models trained with an equi-volumetric grid.

The model as proposed by Murphy et al. [5] is trained observing a single ground-
truth pose for each image. In Chapter 6, we show that training the model in this
manner does not yield the desired set of proper symmetries M,,. Using the Au-
tomatic Pose Labeling Scheme, which is later introduced in Chapter 5, we generate
a set of pseudo ground-truth poses representative of the proper symmetries. The
Rotation-IPDF model is then trained on varying single ground-truth annotations for
each image. The training of the Translation-IPDF remains the same as the ground-
truth translation is unique for each image.

4.3 Visualization

Finding a proper method to visualize poses in our use case is not trivial. The objective
of the visualizations is to allow reasoning about the composition of a set of rotations or
translation vectors and the propagated probabilities. Thus, besides the visualization
of the rotation or translation itself, an additional degree of freedom is required to
visualize the probability of each point. Furthermore, the visualization should facilitate
a notion of distance between rotations or translations to reason about the accuracy
of the estimated rotations or translations in relation to the ground truth.

Rotation Manifold SO(3). Rotation matrices have three degrees of freedom. Mur-
phy et al. [5] proposed a method that represents two degrees of freedom as a 2-sphere.
The third degree of freedom is represented using the Hopf fibration [22] by a great
circle of points to each point on the 2-sphere. The 2-sphere is projected onto a plane
using the Mollweide projection. Finally, the third degree of freedom is expressed
through a color wheel that indicates the location of a point on the great circle. The
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Figure 4.4: Visualization Technique for Pose Distributions. The estimated distribu-
tions for the orientation and translation are visualized separately. The dots in
the visualizations show the estimated rotation/translation with their size corre-
sponding to the propagated probability. The ground-truth rotations are marked
through circles and continuous lines. The unique ground-truth translation is
marked through a single red dot.

middle row of Figure 4.4 presents the visualization technique for the rotation manifold
SO(3). The single dots represent the rotations estimated by the model with the size of
the dots corresponding to the propagated probability. Through continuous lines and
circles, the ground-truth symmetries are visualized on the rotation manifold. Finally,
this method allows reasoning not only about single rotations but also about complete
pose distributions compared to the underlying ground-truth distribution.

Translation space R?. The translation component is represented by three indepen-
dent coordinates, x, y and z. These are visualized in a three-dimensional cartesian
coordinate system. The resulting visualization can be seen in the right row of Fig-
ure 4.4. The points represent the predicted translation vectors with the size of the
points indicating the estimated probability. The single ground-truth vector is rep-
resented through a red dot. Since the translation component is not compounded by
symmetries, the translation component can be expressed through a unique translation
vector. The ground-truth distribution is a uni-modal Gaussian probability distribu-
tion with a small standard deviation. Therefore, a three-dimensional projection on a
plane is sufficient to reason about the estimation of the translation distribution.



5 Automatic Pose Labeling Scheme

As shown later throughout the evaluation in Chapter 6, the ImplicitPosePDF model
trained with a single ground-truth pose for each image is not able to represent the
complete set of proper symmetries. Training the ImplicitPosePDF directly with the
ground-truth symmetries enables the model to construct pose distributions represen-
tative of object symmetries. In this case, the ground-truth symmetries are derived
analytically and a set of poses, accurately approximating the object symmetries, is
used during training. Defining ground-truth symmetries analytically requires prior
knowledge about the object’s symmetries and the object’s pose. Since it is impossible
to define every source of object symmetry, this approach is not scalable to arbitrary
objects.

As an approach to make the ground-truth symmetries available to us during train-
ing without any prior knowledge, this thesis proposes the Automatic Pose Labeling
Scheme (APLS). In the following, the complete pose labeling pipeline is described
in detail. First, this thesis formally defines the problem intended to be solved by
the pose labeling scheme in Section 5.1. Next, the methods used in each stage of
the pipeline are described and motivated in Section 5.2. Finally, these methods are
incorporated into the three-stage pipeline and their implementation is discussed in
detail in Section 5.3. To evaluate the quality of the resulting pseudo ground-truth
poses, we show experimentally in Chapter 6 that the APLS generates a set of ground-
truth poses that accurately covers the set of proper symmetries. The effectiveness of
the pseudo ground-truth labels to train the IPPDF model is shown by comparing it
against models trained with analytically derived ground-truth symmetries.

5.1 Problem Definition

First, we need to define the task intended to be solved by the APLS to motivate the
choice of methods. We assume the segmentation information and camera intrinsic
values corresponding to each image to be given. The objective of the APLS is to
register a given 3D object model O,,.4¢ against the observed point cloud O to
output a pose from the set of proper symmetries M., . Formally, the goal is to
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output a pose P that satisfies the condition:

1
— g min ||z; — Pas|| = 0, (5.1)
n 22€0model

Ileoobs

meaning that pose P is one of the symmetric poses corresponding to the observed
point cloud. As already described, a single ground-truth label for each image is not
sufficient to train the IPPDF model. Thus, it should be able to generate a set of
ground-truth poses that are representative of the object symmetries. Note that the
APLS does not output the set of proper symmetries as defined in Equation (2.3),
but rather outputs the final poses resulting from the symmetries. Using this dual
representation of the geometric symmetries has the advantage that the IPPDF model
directly propagates the pose distribution over all possible poses and does not simply
define the geometric symmetries. Retrieving m from the set of ground-truth poses is
as simple as multiplying all generated poses with the inverse of a fixed pose.

5.2 Methods

Observed
Point Cloud

Observed Depth

—» Fast Global —y
Registration

Py Py P Rendered Depth

ICP
Refinement

Pixel-wise
comparison _)-

Model
Point Cloud

Figure 5.1: Automatic Pose Labeling Scheme. Given an RGB-D image without ground-
truth labels, the APLS produces a pseudo ground-truth label in three stages.
First, the object model is put in an initial pose Py. The Fast-Global-Registration
algorithm then generates an initial alignment P;. Together with the initialization
set Pjpit, this pose is fed to the ICP algorithm to produce the final poses P. In the
final step, the observed depth map is compared against the depth map rendered
using poses P to yield the similarity score S. The pose with the smallest S is
taken as pseudo ground-truth label [6].

The Automatic Pose Labeling Scheme, shown in Figure 5.1, aligns a given object
model O with the observed point cloud O, using a three-stage pipeline. For this
purpose, we assume that an RGB-D image with segmentation information is given.
Additionally, camera intrinsic values need to be provided. In the first stage, the



Chapter 5: Automatic Pose Labeling Scheme 19

object model is globally registered against the observed point cloud to yield a rough
alignment. In the second stage, this alignment is refined to produce an accurate pose
of the object. To determine the quality of this pose, the tightness of the alignment
is checked in the final stage. In the following, the methods used in each step of the
pipeline are discussed. The two-stage alignment process is described in a bottom-up
manner to motivate design choices.

Observed point cloud. From the RGB-D image the observed point cloud O, is
extracted by unprojecting the depth map D(z,y) into 3D. Knowing the camera in-
trinsics (focal length (f;, f,) and focal point (c,, ¢,)), the 3D points, corresponding to
each pixel p = (p,, py), can be recovered using a pinhole camera model:

Cx — Pz

=7 ~d(z,y)

y=" () (5:2)
fy

z =D(z,y).

Finally, by using the segmentation information the 3D points belonging to the de-
picted object are extracted to obtain the observed point cloud O ..

Iterative-Closest-Point algorithm. A common method for registration tasks is the
Iterative-Closest-Point (ICP) algorithm. Given two point clouds, namely the source
point cloud Ogpyree and target point cloud Oigpger, the ICP algorithm iteratively
matches the points in the source point cloud to the closest point in the target point
cloud. Iteratively, the algorithm finds the rotation R and translation t that minimizes,

LSS min o - Rast (5.3)
" 1€0s0urce #2€0arget
Ideally, a perfect alignment of the point clouds yields a distance, as defined in Equa-
tion (5.3), of approximately zero. Comparison with Equation (5.1) shows that a
converged ICP solution yields a pose from the set of proper symmetries. Moreover,
it shows that the poses from the proper symmetry set ideally create local optima
in the optimization domain which causes the ICP algorithm to converge to different
symmetric poses depending on the initialization of ICP. This variability in the result-
ing poses comes with the downside of the ICP solutions being only locally optimal.
Without proper initialization with a pose close to one of the symmetric poses, ICP
tends to diverge to local optima producing poses that do not correspond to the proper
symmetry set. This requires a previous global registration step to produce an initial
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alignment such that ICP converges to the correct local optima.

Fast-Global-Registration algorithm. To retrieve an initial global alignment, we
chose the Fast-Global-Registration algorithm [24] due to its computational efficiency.
Before the optimization process, correspondences between the points of the two point
clouds are established through rapid feature matching using Fast Point Feature His-
togram features [25]. During the optimization process, the transformation is itera-
tively optimized, minimizing an objective function, without recomputing these cor-
respondences. This leads to an extremely efficient alignment algorithm that yields
a rough alignment of two point clouds. This initial alignment needs to be further
refined to produce an accurate pose of the object.

Pixel-wise comparison. To ensure proper ground-truth labeling, we need to assess
the quality of the final pose generated by the ICP algorithm. A naive implementation
of a quality measure is the evaluation of the alignment of two corresponding points
from the point clouds using the L2 metric or similar distance metrics. Using the
nearest neighbors as corresponding points, this metric yields the objective function
from the ICP algorithm. Since the observed point cloud is extracted from the depth
map of the image, this point cloud suffers from a high degree of self-occlusion, leading
to potentially wrong correspondences. In these scenarios, a point-wise comparison
fails to distinguish between bad and good alignments. To eliminate the effect of self-
occlusion, we chose a pixel-wise comparison approach, comparing the observed depth
map Dy, with a rendered depth map D,.,q of the object put in the pose resulting
from the ICP algorithm. The rendered depth map is generated using the Stillleben
framework [26]. From the observed and rendered depth map, the edges are extracted
using the Canny Edge Detector [27] and dilated to make it more robust to minor
differences in the contour of the object. Finally, a similarity score S computed by
measuring the L2 distance between the edge pixels {€/,.} € E,s from Dy, and the
nearest neighbour from the edge pixels {efnend} € E,¢ng coming from D,.,q and vica
versa:

B 1
|Eobs| + |Erend|

S (Z Injin(Heibs - eiend|’2) + Z Hliin(Heiend - eibs||2>)' (54)
i J

The similarity score expresses the quality of the alignment of the point clouds pro-
duced using the ICP algorithm and can be utilized to determine good alignments from
bad alignments. A lower score indicates a better alignment.
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Figure 5.2: Pseudo Ground-Truth Generation Process. The observed point cloud C,ps
is colored green and the point cloud resulting from each stage is colored red. (a)
RGB image, the observed point cloud is extracted from (b) Pose generated by
the Fast-Global-Registration algorithm. (c¢) Final pseudo ground-truth pose
generated by the APLS [6].

5.3 Pipeline

The complete pipeline is depicted in Figure 5.1. The results of each stage are shown in
Figure 5.2. The starting point of the three-stage pipeline is the extraction of the ob-
served point cloud O,ps from the image in column (a) of Figure 5.2. The object model
O noder 1S put into an initial random pose Fy to ensure that the pipeline converges to
different poses. In the first stage of the pipeline, the Fast-Global-Registration algo-
rithm is utilized to produce an initial alignment of the object model and the observed
point cloud. The rough alignment of the two point clouds can be seen in column (b)
of Figure 5.2 The resulting pose P, roughly aligns the object axes of the object model
with the observed point cloud. This pose can then be used as an initial alignment for
the Iterative-Closest-Point algorithm.

Before the next stage, an initialization set P;,;; of poses is generated to force the
ICP algorithm to converge to different local optima and to determine good alignments
in the final stage. To generate the initialization set, we take pose P; as a starting point
and rotate it iteratively eight times by 45° around the x,y, and z-axis respectively.
This set of poses is then used as initial alignments for the ICP algorithm, which
refines the poses and produces the final poses P. In the last stage of this pipeline,
the quality of these poses is assessed. For each pose, the similarity score is computed
and subsequently compared. Finally, the pose with the smallest score is chosen as the
final pseudo ground-truth pose.

Our experiments in Section 6.4 show that the majority of final poses correspond
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to one of the ground-truth symmetries. To make the pipeline computational more
efficient in practice, we introduced a threshold 7 to determine good alignments. Using
this method to distinguish between good and bad alignments, all good alignments are
included in the set of pseudo ground-truth poses and consequently, the number of
iterations of the APLS for each image is reduced. The thresholds however need to be
determined experimentally prior to the pseudo ground-truth generation process. We
found that a threshold of 7 ~ 5 works well for most objects.



6 Evaluation

Murphy et al. [5] concluded that the Implicit-PDF model is able to represent arbi-
trarily complex distributions for 3D orientations. An implicit representation of the
orientation distributions yields better results than existing state-of-the-art methods.
The model allows us to reason about object symmetries and pose uncertainties. This
thesis extends the approach to estimating pose distributions over SE(3) expressive of
geometric symmetries found in real-world applications.

For evaluation, this thesis will examine the performance of the ImplicitPose PDF
(IPPDF) model to construct arbitrary complex pose distributions over SE(3) on sym-
metric objects invariant to object textures. First, the datasets and evaluation metrics
used are introduced in Section 6.1 and Section 6.2. The pseudo ground-truth labels
for each dataset are generated using the Automatic Pose Labeling Scheme (APLS).
The quality of the pseudo ground-truth labels is assessed in Section 6.4. Before ex-
amining the performance of the IPPDF model trained with the pseudo ground-truth
labels, the implementation of the models used for evaluation is described in detail in
Section 6.3. The backbone feature extractor was experimentally determined and the
ablation studies are described in detail in Section 6.5. In addition, we further inves-
tigate the impact of different visual features. In the following Section 6.6, Section 6.7
and Section 6.9, the performance of the IPPDF model is evaluated on different sym-
metric objects on the 6D Pose Distribution Problem as well as the Single 6D Pose
Estimation Problem.

6.1 Datasets

To evaluate the performance of the APLS and the IPPDF model in real-world sce-
narios, we created a photorealistic dataset. Additionally, the T-Less dataset is used
as a popular dataset to compare our approach with state-of-the-art methods.

Photorealistic Dataset. The dataset contains three objects, can, box and bowl from
the YCB-Video dataset exhibiting different types of geometric symmetries. To sim-
ulate a realistic robotic environment, the objects are placed on a tabletop and put
in randomly sampled physical-plausible poses. The possible translation vectors are
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Figure 6.1: Object Symmetries in the Photorealistic Dataset. (a) The Can object
exhibits a continuous symmetry along the z-axis and two discrete flip symmetries
around the x and y-axis respectively. (b) The Bowl object exhibits a single
continuous symmetry along the z-axis. (¢) The Boz exhibits three discrete flip
symmetries around each axis respectively.

restricted by the size of the tabletop and its distance from the camera. The range of
the z and y-coordinates is [—0.51m, 0.57m| and [—0.33m, 0.42m] respectively. The
depth values z range from 0.43 m to 0.76. Using the Isaac GYM framework [28], a
training set of 15,000 photorealistic images and a validation set of 5,000 images were
generated. Each image is rendered in Full-HD with an additional depth map. The
segmentation information is additionally provided. The ground-truth poses as well as
the object symmetries are available to us during evaluation. To evaluate the impact
of object textures, we provide two datasets, the Texture dataset comprising objects
rendered with material texture, and the Uniform dataset containing objects rendered
in uniform red color.

For further understanding during the evaluation, the geometric symmetries of each
object are visualized in Figure 6.1. The box object is compounded by three discrete
flip symmetries around each axis respectively. The resulting four symmetric poses for
each image are called the ground-truth symmetry. The can and bowl object exhibit a
continuous symmetry around the z-axis. Can has two additional discrete flip symme-
tries around the x and y-axis. Both objects exhibit infinitely many symmetric poses
for each image. Additionally, videos of the resulting symmetric orientations used as
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ground-truth symmetries for each object during evaluation are provided.!

T-Less Dataset The T-Less dataset [19] consists of untextured industrial objects
of varying sizes. For the evaluation of the IPPDF model on symmetric objects, we
chose a subset of objects from the T-Less dataset that exhibit geometric symme-
tries. The objects are shown in Section 6.1. The objects are placed in isolation on
a turntable with a black background. As the objects are turned, a camera mounted
at different elevations captures the images. As a side-effect of this technique, the
translational component does not express many variations. Therefore, we only eval-
uate the Rotation-IPDF model on the T-Less dataset. For each object, the training
set contains 1296 images with depth information, ground-truth labels and camera
intrinsic values.

To make the segmentation information available to us, each image is reproduced
using the Stillleben framework [26]. Using the provided camera intrinsic values, a
synthetic image of the object placed in the ground-truth pose is rendered. The seg-
mentation information from the synthetic image yields an accurate segmentation im-
age for the original image from the T-Less dataset. This thesis follows the evaluation
strategy as implemented by Gilitschenski et al. [16] and Murphy et al. [5]. The train-
ing set of each object is split into a training and validation set. 1/6 of the training
set is used for the validation set.

Figure 6.2: T-Less Dataset Objects. For evaluation, we use a subset of objects from the
T-Less dataset that exhibit geometric symmetries.

Thttps://uni-bonn.sciebo.de/s/3moqVRuWwUcYk6S
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6.2 Evaluation Metrics

The IPPDF model consists of the Rotation-IPDF and Translation-IPDF which esti-
mate the rotation R € SO(3) and translation t € R? separately. The images contained
in the validation sets are annotated with a ground-truth poses Pgr = (Rgr, tar). Ad-
ditionally, the object symmetries are known during evaluation which yields the set of
ground-truth symmetries {R.;} C SO(3). This set contains the correct rotations of
an object with respect to the proper symmetries. In the case of continuous symme-
tries, we use a discretized set of 200 poses to make the computation of the evaluation
metrics tractable. Note that the translation component is unique for all ground-truth
symmetries. Symmetries are only expressed in the rotational component. Therefore,
we represent the ground-truth symmetries as a set of rotations.

To evaluate the probability distribution generated by each model, we report the log-
likelihood (LLH) separately for each model. The LLH metric measures the likelihood
given to a single ground-truth rotation or translation:

LLH(G) = Er () Ee~pyr @iz l0g(P(G[Z)), (6.1)

where G is a placeholder for either the rotation R or translation t. This gives valuable
insight into the model’s confidence in the estimated poses.

For the evaluation of the ImplicitPosePDF model on the Single 6D Pose Estimation
Problem, we measure the precision of a single 6D pose estimation P. As a precision
metric for the orientation estimation, the mean absolute angular deviation (MAAD)
is reported. The MAAD metric is defined as:

MAAD(R) = Erwpwz) [mingere, d(R, R')], (6.2)

with d being the geodesic distance between rotations. Separately, we measure the
precision of the translation estimation t using the L2 distance between the estimation
and the ground-truth translation tgr.

To give further insight to the overall quality of the pose estimation, we examine
the alignment of the object model placed in the estimated pose with the observed
object model. O,,,4e; denotes a set of m 3D points corresponding to the object model.
The average distance metric (ADD-S) as proposed by Corona et al. [12] evaluates the
object model alignment on symmetric objects. Since the matching between points
has ambiguities arising from the symmetries, the ADD-S metric utilizes the closest
point distance between the estimated and observed object model. The ADD-S metric
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is formally defined as:

1 . .
ADD-S = . xleozmode, oo [[(Rarx1 + tar) — (Bx; +t)]]. (6.3)
This metric compares against the complete set of proper symmetries by implicitly
choosing the closest ground-truth pose to compare the alignment against. A pose is
considered to be correct if the average distance is under a predefined threshold. We
finally report the AUC metric for thresholds ranging from 0.001 to 0.02 meters.

To highlight the strength of our model to express object symmetries, we evaluate
the performance on the 6D Pose Distribution Problem using the Recall MAAD as a
recall metric. The Recall MAAD expresses how accurately each rotation from {R%}
is estimated in the orientation distribution. From the orientation distribution a set
of predictions {f{} with a probability over le™® is extracted. Formally, the Recall
MAAD measures the mean absolute angular deviation for each ground-truth rotation
in {Ri,;} from the closest predicted rotation in {R}:

RMAAD(R) = ERNP(R|I) [minRe{R"p(R‘Z)ze}d(R, RGT)]- (64)

Furthermore, we assess the quality of the pseudo ground-truth labels produced by
the Automatic Pose Labeling Scheme to examine the impact of the pseudo ground-
truth labels on the training process of the ImplicitPosePDF model. As a precision
metric, we report the MAAD metric as defined above for the rotation component and
the L2 distance for the translation component. Additionally, we report the alignment
quality of the APLS using the ADD-S metric. To motivate the variation within
a set of pseudo ground-truth poses arising from object symmetries, we report the
average mean angular nearest neighbor distance (MANN) within the pseudo ground-
truth sets. This thesis defines the MANN metric for a single pseudo ground-truth set
Rper = {Rhpgr} of size n as:

1

MANN = — i R .
n Z RiE%l;ETRi d(R“RJ)7 (6 5)
R;€RpaT

where d is the geodesic distance between two rotations.

6.3 Implementation Details

The ImplicitPosePDF model and the Automatic Pose Labeling Scheme are imple-
mented using the PyTorch library [29]. Additionally, the APLS uses the implementa-
tion of the Fast-Global-Registration algorithm from the Open3D library [30] and the
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PyTorch3D [31] implementation of the Iterative-Closest-Point algorithm.

Automatic Pose Labeling Scheme. The pose labeling scheme runs offline once for
each frame prior to training. The APLS runs at roughly 3 seconds for each frame
with the render-and-compare stage being the heaviest workload in this process. In a
post-processing step, close rotations within a pseudo ground-truth set are eliminated
to ensure variation in the ground-truth pose. Rotations with an angular deviation
under 5 degrees are substituted by a single rotation. This single rotation is generated
by minimizing the Frobenius norm between the set of close rotation matrices through
gradient descent.

ImplicitPosePDF. For the Photorealistic dataset the MLP of the Rotation-IPDF
consists of three layers of 256 neurons while the Translation-IPDF uses a reduced
version of two layers. The rotational component is encoded by three positional encod-
ing terms and the translational component with two terms. Using the segmentation
information, the background is masked out in each image. For the Rotation-IPDF
model, a quadratic crop of 560 x 560 pixels around the object is extracted. The crop
is then resized to the input size 224 x 224 of the feature extractor. To maintain in-
formation about the object’s position, the Translation-IPDF model is fed the resized
image without cropping. The images are then color-normalized and the gamma value
is increased to suppress dominant visual features on the objects. The gradients are
backpropagated through the backbone such that the feature extractor is included in
the training process.

As a starting point the feature extractor is initialized with pre-trained weights for
the ImageNet-1000 dataset [32]. The Rotation-IPDF model and the Translation-
IPDF model are trained separately with separate feature extractors. For each object
a separate model is trained. Using a combined model as done by Murphy et al. [5] did
not perform properly with our adapted training procedure. The models are trained
for 50 epochs with each epoch consisting of 200 iterations. In each iteration, the
models are trained with a batch of 32 RGB images. We early stop the training af-
ter 30 epochs when the training progress starts stagnating. Both models are trained
with an Adam optimizer (8; = 0.9, 8, = 0.999) and a base learning rate of 10~% used
for 20 iterations. The learning rate cosine decays to zero throughout the remaining
iterations. To stabilize the training process of the neural network we additionally uti-
lize gradient clipping and batch normalization. The Rotation-IPDF model is trained
using a grid of cardinality 4,608 and the Translation-IPDF is trained using a grid of
cardinality 4,913. The evaluation of the Rotation-IPDF model is completed with a
grid of 294,912 orientations and 97, 336 translation vectors for the Translation-IPDF.
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6.4 Automatic Pose Labeling Scheme Results
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Figure 6.3: Pseudo Ground-Truth Labels.
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labels compared against the ground-truth symmetries. The pseudo ground-truth
labels within a single set are spread well across the ground-truth symmetries.

Object | Dataset | Number of | MAAD[] | MANN[®] | L2 [cm]
Labels

Can Texture 15.59 1.44 31.81 0.33
Uniform 15.71 1.41 31.73 0.33
Bog Texture 4.01 3.09 174.22 0.82
Uniform 4.01 3.1 174.47 0.83
bowl Texture 9.05 1.32 35.80 0.23
Uniform 9.02 1.33 35.82 0.23
Average 9.565 1.95 80.64 0.46

Table 6.1: Evaluation of the Pseudo Ground-Truth Pose Labels

The Automatic Pose Labeling Scheme enables the ImplicitPosePDF model to be

trained without ground-truth annotated data.

As shown later in Section 6.6, the

ability of the IPPDF model to represent the complete set of proper symmetries M,

is highly dependent on the ground-truth labels.

The objective of the APLS is to

produce a pseudo ground-truth set for each frame that consists of accurate pose
labels that are representative of object symmetries.
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The evaluation of the APLS focuses on the Photorealistic dataset to highlight the
strengths on highly symmetric objects in a realistic environment. The quantitative
results for the Photorealistic dataset are presented in Table 6.1. The APLS achieves
an overall precision of 1.95° for the rotational component and an error of 0.46c¢m
in the translation component. To evaluate the overall quality pseudo ground-truth
poses generate by the pose labeling scheme, we additionally report the ADD-S metric
in Table 6.4. The average AUC of 90.57 shows that the APLS produces accurate
pose labels. The slightly worse performance on the Box object is contributed to
negligible geometric features such as small dents in the object model which cause
further ambiguities in the point cloud registration process.

To highlight the ability of the pose labeling scheme to produce pseudo ground-
truth sets representing the object symmetries, we additionally provide qualitative
results in Figure 6.3. For discrete symmetries the pseudo ground-truth sets include
an accurate pseudo ground-truth for each symmetric pose. With 4.01 pseudo ground-
truth labels for each frame of the Box object, the 4 symmetric poses of the Box are
well represented. The average distance between the rotations of 174.47° reflects the
180° rotation around one of the axes needed to transform between the symmetric
rotations. The small error in both metrics can be contributed to a marginal number
of false labelings that do not interfere with the learning ability of the IPPDF model.

The qualitative results indicate that the pseudo ground-truth labels are well spread
across the continuous symmetries. Note that a close approximation is not required.
A coarse sampling of the symmetric poses is sufficient to train the IPPDF model. On
average, the pseudo ground-truth sets of the Bowl object consist of 9.04 pose labels
with an average distance of 35.81 to the closest neighbor in the rotational component.
Due to the additional discrete flip symmetries, the pseudo ground-truth sets for the
Can are even larger with a similar distance to the closest neighbors.

The presented results show that the APLS is able to produce accurate pseudo
ground-truth sets without prior knowledge of object symmetries. Discrete and con-
tinuous symmetries are well appreciated through multiple pose labels for each image.
The size of each pseudo ground-truth set depends on the object symmetries and config-
uration chosen for the APLS. In Section 6.8 we will further highlight the effectiveness
of the pseudo ground-truth labels in the training process.

6.5 Backbone Ablation Studies

The backbone feature extractor produces a visual feature descriptor used as an input
for the MLP. State-of-the-art feature extractors use CNNs to produce visual features
in a hierarchical order. The first layers extract low-level features at a high resolution,
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Table 6.2: Comparison of different models as feature extractor.

N NeXt [2
Model Metric ResNet [33] . ' Conv' eXt [23]
18 50 Tiny | Tiny-1 | Tiny-2 | Small | Base
Hm
5 1.8G | 3.8G | 45G | - . 8.7G | 154G
=
. LLH 3.76 | 3.86 | 3.99 3.83 1.09 3.77 3.72
Rotation
- MAAD [°] | 2.24 2.46 | 2.44 2.52 21.5 2.55 2.79
]
© . LLH 9.19 | 9.31 9.19 9.34 9.13 9.56 9.43
Translation
L2 [cm] 0.71 | 0.79 0.48 0.52 0.53 0.6 0.57
. LLH 5.75 | 5.98 6.09 5.75 3.02 5.996 | 5.649
Rotation
% MAAD [] 5.2 4.73 5.24 5.97 34.27 4.28 | 8.609
< . LLH 8.86 | 8.97 9.49 9.03 8.79 9.29 9.24
Translation
L2 [cm] 1.07 1.1 0.88 1.04 1.02 0.94 0.99
. LLH 3.3 3.17 3.85 3.86 1.05 3.21 3.24
Rotation
= MAAD [°} 2.96 3.17 2.47 2.7 22.84 2.88 3.22
2 . LLH 9.1 9.25 9.19 9.52 9.45 9.56 9.6
Translation
L2 [cm] 0.58 | 0.63 0.49 0.53 0.53 0.67 0.7

"FLOP values are taken from [33] and [23].

whereas the last layers produced high-level features at a low resolution. Different
model architectures produce different visual features that typically generalize well
among different datasets and objects. To find the best-suited feature extractor for
the ImplicitPosePDF model, we carried out numerous experiments with a variety of
models.

The ResNet-50 model [33] was originally chosen by Murphy et al. [5]. Additionally,
we experimented with the ResNet-18 and the ConvNeXt models [23] in different con-
figurations. The last fully connected layer used for classification is removed from the
feature extractors such that the visual feature descriptors are fed directly to the MLP.
The ResNet-18 produces a feature vector of size 512 and the ResNet-50 outputs a fea-
ture vector of size 2048. In the tiny and small configuration, the ConvNeXt models
produce a feature vector of size 768. The ConvNeXt-Base model generates a feature
vector of size 1024. Table 6.2 presents the quantitative results of the Rotation-IPDF
model and the Translation-IPDF model using different backbones. Overall, using dif-
ferent feature extractors results in good performances across the board. The features
extracted seem to generalize well to our task.

Furthermore, we examined the impact of different features taken from different
layers of the feature extractor. As tasks like object classification and object detec-
tion profit from high-level features, other tasks such as semantic segmentation benefit
from low-level features. To determine the best-suited features for our task, we ad-
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ditionally introduce the ConvNeXt-Tiny-1 model with the last average-pooling layer
removed and the ConvNeXt-Tiny-2 model with the last average-pooling layer and
ConvNeXt block removed. The features extracted by the ConvNeXt-Tiny-1 model
are of shape 768 x 7 x 7 and the features extracted by the ConvNeXt-Tiny-2 model
of shape 384 x 14 x 14. The quantitative results in Table 6.2 show that the fea-
tures from the ConvNeXt-Tiny-2 model seem to not provide useful information about
an object’s orientation but give sufficient information about the translation. Taking
low-level features from earlier layers seems to not improve our model’s performance.
We conclude that the final features extracted from the ConvNeXt-Tiny model are
well-suited for our task.

With the goal of estimating orientation distributions, we decided in favor of the
backbone yielding the best results of the Rotation-IPDF in terms of the log-likelihood.
The Translation-IPDF model’s objective is to predict a single translation as pre-
cisely as possible. Thus, we chose the backbone which produces the smallest error
in the translation estimation. Ultimately, we decided in favor of the ConvNeXt-Tiny
model without additional layers removed as our backbone feature extractor. The
ConvNeXt-Tiny model outperforms the other feature extractors by a small margin
for the Rotation-IPDF model and the Translation-IPDF model. The visual features
extracted by this model seem to be the best suited for our task. Note that the feature
extractor accounts for the majority of the computational effort of the ImplicitPose PDF
model. With about three times fewer floating point operations, the ResNet-18 still
poses an adequate alternative to speed up training and inference.

6.6 6D Pose Distribution Estimation

In order to evaluate the ability of the ImplicitPosePDF model to capture arbitrary
object symmetries, we examine the performance of the model on the symmetric objects
from the Photorealistic dataset. Without ground-truth annotations or prior knowledge
of object symmetries, the training is fully automated through the Automatic Pose
Labeling Scheme.

To highlight the advantages of the IPPDF model trained with pseudo ground-truth
labels over the training procedure proposed by Murphy et al. [5], we additionally
trained the IPPDF model observing only a single ground-truth label for each frame
which is referred to as the single model. The qualitative results presented in Figure 6.5
demonstrate that this model is not able to capture the proper symmetries. The
pose distributions degenerate to a single pose estimation, even for uniformly colored
objects. Table 6.3 presents the quantitative results of this model. The high average
Recall MAAD of 121.2° and LLH score of 6.5 emphasize that the model estimates a
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(b) Uniform dataset.

Figure 6.4: Pose Distributions on the Photorealistic Dataset. Pose distributions
predicted by the ImplicitPosePDF model on the Texture dataset and Uniform
dataset. The visualizations are generated using 294, 912 orientation and 97, 336
translation hypotheses.
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single pose with high confidence disregarding any object symmetries. We conclude
that the model is not able to generalize from the visual features to predict complete

e |

pose distributions.

Figure 6.5: Pose Distributions using Different Ground-Truth Labels. Upper Row:
Input image for the IPPDF model. Middle Row: Pose distribution predicted
by the IPPDF model trained with a single ground-truth label for each frame.
Lower Row: Pose distribution predicted by the IPPDF model trained with the
pseudo ground-truth labels.

In contrast, the pose distribution predicted by the models trained with pseudo
ground-truth labels shown in Figure 6.5 are able to represent the proper symmetries.
The qualitative results in Figure 6.4 show that continuous symmetries of the Can and
Bowl, and the discrete symmetries of the Box are well appreciated. Visual features
arising from object textures do not interfere with the quality of the pose distribu-
tions. The IPPDF model is able to construct pose distributions invariant to visual
features. A low average Recall MAAD of 2.27° emphasizes the ability of our model
to accurately approximate the proper symmetries. The unique translation vector is
estimated by a uni-modal distribution that propagates high probabilities for a small
number of translation queries close to the ground-truth translation. In absence of
occlusion, the Rotation-IPDF achieves a LLH score of 4.64. With more predicted
orientations included in the distribution the confidence in a single orientation declines.
Consequently, the LLH score of the single model, as well as the LLH score for the
Box that only exhibits four discrete symmetries, is higher. This effect is also visible in
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the Translation-IPDF model. The high LLH score of 8.84 of the Translation-IPDF
model reflects the high confidence in a single translation estimation. On average the
Translation-IPDF model predicts a translation with an error of 0.58 cm.

Figure 6.6: Pose Distributions in the Presence of Occlusion. The IPPDF model
predicts the complete pose distributions unaffected by the occlusion.

The difficulty of computer vision tasks is intensified by more complex scenes. Real-
world scenes typically include multiple objects or other disturbances that partially
occlude the object of interest. Occlusion excludes vital information about the object’s
pose in the object. To further evaluate the performance of our model in the presence
of occlusion, we add occlusion to 80% of the images. 10% to 50% of the cropped
images are occluded. The quantitative results in Table 6.3, show that the presence of
occlusion does not compromise the performance of the IPPDF model compared to the
non-occluded scenes. The LLH and Recall MAAD show that even in heavily occluded
scenes the IPPDF model is able to predict the object symmetries. The qualitative
results in Figure 6.6 show that the IPPDF model predicts the complete pose distri-
butions. Interestingly, the Recall MAAD of the single model is significantly smaller
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Table 6.3: Results of models trained on different ground-truth Labels.

GT Without Occlusion With Occlusion
LLH LLH |MAAD | Recall | L2 | LLH LLH |MAAD | Recall | L2
(Rot.) | (Trans.) MAAD | [em] | (Rot.) | (Trans.) MAAD | [em]

S S I S N S I A
Single 6.46 9.17 3.11 120.7 | 0.45 | 5.347 8.77 4.9 97.99 |0.77

% Analytic | 3.78 9.22 2.5 1.87 [0.46 | 3.47 8.81 3.87 1.95 |0.77
Pseudo | 3.99 9.19 2.44 1.86 [0.48| 3.55 8.83 4.16 1.99 |0.74
Single 6.56 9.59 5.35 | 123.61 | 0.61 | 6.76 9.35 5.6 119.63 | 0.99

é Analytic | 5.78 9.53 5.2 217 |0.62| 5.75 9.68 4.94 2.08 |0.97
Pseudo | 6.09 9.49 5.24 2.17 |0.88] 5.68 9.56 5.66 1.95 10.88

_,| Single 6.49 9.19 2.77 | 119.28 | 0.45| 5.36 9.28 4.99 97.12 | 0.9

E Analytic | 3.95 9.23 2.43 212 | 046 3.93 9.27 5.99 1.88 10.89

Pseudo | 3.85 9.19 2.47 2.05 |049]| 3.76 9.21 6.89 2.54 |0.97

Pseudo Avg. | 4.64 9.29 3.38 2.03 |0.62| 4.33 9.2 5.09 2.16 |0.86
1 indicates higher value better, whereas | indicates lower value better.

in the presence of occlusion. This can be attributed to the additional uncertainty
introduced through the occlusion.

To further demonstrate the expressiveness of object symmetries, we additionally
provide videos of the orientation distributions predicted by our model on a synthetic
dataset rendered using the Stillleben framework [26].2

Overall, our model expresses the ability to construct complete pose distributions
that are representative of object symmetries invariant to object textures. The Rotation-
IPDF model implicitly learns to represent the proper symmetries while the Translation-
IPDF learns a uni-modal distribution that precisely estimates a unique translation
vector. Even in more complex scenes that include occlusion, the IPPDF model learns
the distributions well for the rotational component, as well as the translational com-
ponent. Combined with the APLS, the ImplicitPosePDF is able to capture arbitrary
symmetries in realistic scenes without the supervision of object poses or symmetries.

To further demonstrate the capabilities of the ImplicitPosePDF

6.7 Single 6D Pose Estimation

Besides the ability to construct pose distribution, we want to highlight the advantages
of implicitly modeling symmetries in the Single 6D Pose Estimation Problem. While
state-of-the-art methods [3] [2] [1] only define symmetries during training, our model

Zhttps://uni-bonn.sciebo.de/s/VTegZYfUAQYIxLVe
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Pseudo ImplicitPosePDF
Object |Ground-Truth|Texture|Uniform |Single| Analytic|Occlusion

Can 93.40 91.61 91.61 [91.63| 91.42 91.94

Box 81.94 79.15 78.32 | 83.81 | 80.87 76.12

Bowl 96.37 91.43 | 90.66 |93.93| 93.57 85.63

Average 90.57 87.4 86.86 |89.79| 88.62 84.56

Can Box Bowl
nl | | nl | nl | |
0.9 [- . 0.9 | E 0.9 [ =
0.8 [ s 0.8 |- . 0.8 |- s
5 07| 1 % o7l 1 & o7} s
£ 06| | £ 06} 1 £ 06} :
S o5l 4 § o5} 1 E osf |
< 04 1 < o4l 1 < o4l -
0.3 | : 0.3 | . 0.3 :
0.2} : 0.2 | . 0.2 :
0.1} : 0.1} . 0.1} :
0 L L L L 0 L L L L 0 L L L L
0 04 08 12 1.6 2 0 04 08 1.2 16 2 0 04 08 1.2 1.6 2
Distance thresholds in centimeters [____ Texture Uniform Distance thresholds in centimeters
Single Analytic
Occlusion Pseudo Ground-Truth

Table 6.4: Area under the accuracy-threshold (AUC) of the ADD-S metric on the
Photorealistic dataset.

utilizes the implicit representation of the object symmetries during inference as well.

To assess the quality of the predicted rotation and translation separately, we re-
port the estimation error of the orientation and translation estimation in Table 6.3.
Compared to popular datasets used for pose estimation tasks such as the YCB-Video
dataset [1] or the LineMOD dataset [34], the translation range in our dataset is lim-
ited. Thus, it is not surprising that the Translation-IPDF model is able to estimate a
single translation with a small error of 0.58 ¢m. The estimation of the orientation on
the other hand still poses a difficult challenge for the Rotation-IPDF. With a broad
variety of orientations presented in our dataset, the Rotation-IPDF model is able to
predict an orientation with an average error of 3.2°.

We further evaluate the accuracy of the pose using the area under the accuracy-
threshold (AUC) of the ADD-S metric. The ADD-S metric is more sensitive to errors
in the translation than to errors in the orientation estimation. Therefore, to compen-
sate for the limited translation range and the resulting small estimation error, we use
smaller thresholds than the state-of-the-art methods. The thresholds used for evalu-
ation range from 0.1 cm to 2 cm. The results of the ADD-S evaluation are presented
in Table 6.4. Our model achieves an average AUC of 87.4 on the Texture dataset and
an average AUC of 86.86 on the Uniform dataset. The model tends to perform worse
on the Box object. This can be attributed to the learned orientation distribution for
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discrete objects. The distribution consists of a few orientations with a high probabil-
ity as shown in Figure 6.4 which does not allow the computation of useful gradients
to optimize the orientation such that the gradient ascent method gets stuck in local
optima resulting in less accurate predicitons. Overall the model is still able to predict
accurate poses on all objects in our dataset invariant to object textures. Compared
to the single model, we achieve similar results, while being able to produce complete
pose distributions.

While the occlusion does not affect the pose distributions predicted by our model,
it still seems to compromise the accuracy of predicted poses to a small extent. The
quantitative results in Table 6.3 show that occlusion increases the translation error
by 0.24 cm and the angular error of the orientation estimation by 1.71°. Especially
on objects with a high degree of symmetry, such as the Can and Bowl, the Rotation-
IPDF model performs worse in presence of occlusion. Since the pose distributions
are unaffected, we conclude that the occlusion mainly affects the gradients calculated
during pose estimation. With faulty gradients and a high number of local optima,
resulting from a high degree of symmetry, in the optimization domain SO(3), the
gradient ascent method gets stuck in local optima and is unable to converge to an
accurate pose estimation. Still, our model achieves an average AUC of 84.56 for the
images affected by occlusion, showing its capabilities in more complex scenes.

Even though our model is designed to estimate pose distributions, it is able to
predict accurate poses even in scenes including occlusion. Defining symmetries during
inference seems helpful for the 6D pose estimation task for symmetric objects.

6.8 Effectiveness of Pseudo Ground-Truth Labels

Using pseudo ground-truth labels during training instead of single ground-truth labels
has shown superior results with respect to the estimated pose distribution. To further
highlight the effectiveness of the pseudo ground-truth labels, we examine a third model
trained directly with the ground-truth symmetries of the object, called the analytic
model. Knowing a ground-truth pose and the object symmetries, we define a set
of analytically derived ground-truth labels. The quantitative results in Table 6.3
show that our model using pseudo ground-truth labels yields similar results as the
analytic model. The differences in the quantitative results for the Rotation-IPDF and
Translation-IPDF are marginal. The results also confirm that the drop in the LLH
metric compared to the single model is linked to the fact that our model estimates a
complete pose distribution and not a result of the utilization of the pseudo ground-
truth labels.

The quantitative results from the single 6D pose estimation task presented in Ta-
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Figure 6.7: Pose Distributions on the T-Less Dataset. Pose distributions predicted
by the IPPDF model trained with pseudo ground-truth labels.

ble 6.4 show that the pseudo ground-truth labels do not compromise the ability to
predict accurate poses. The analytic model performs similar to our model. Moreover,
the accuracy of the pseudo ground-truth labels is higher than the accuracy achieved
by the analytic model. Thus, we can conclude that the precision of the Implicit-
PosePDF model is not limited by the precision of the pseudo ground-truth labels but
rather by the capacity of the model itself. The small error in the pseudo ground-truth
labels reported in Section 6.4 does not affect the precision of the estimated poses.

In addition to the results of Section 6.4, we conclude that the pseudo ground-truth
sets are sufficient to train the IPPDF. The symmetries appear to be well appreciated
within the sets as the performance of the model trained with pseudo ground-truth
labels is the same as the model trained with the ground-truth symmetries. The
pseudo ground-truth labels pose an efficient alternative to using analytically derived
ground-truth labels. In contrast to producing ground-truth labels analytically, the
Automatic Pose Labeling Scheme does not need prior knowledge about an object’s pose
or symmetries and does not add any restrictions on the dataset acquisition process.
The pose labeling scheme fully automates the training of the ImplicitPosePDF model
and enables the learning of pose distributions of symmetric objects without ground-
truth annotations or explicit symmetry annotations.

0.9 T-Less Evaluation

The T-Less dataset poses a difficult challenge to evaluate the ImplicitPosePDF model
on real-world objects. With a relatively small training set of 1,000 images, the
qualitative results in Figure 6.7 show that the Rotation-IPDF model is able to express
an orientation distribution expressive of the object symmetries. Each of the symmetric
orientations is well approximated. To further investigate the performance of our
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Table 6.5: Results of the Rotation-IPDF model on the T-Less dataset.

Method LLH | MAAD[]
T |
Deng et al. [15] 5.3 23.1
Gilitschenski et al. [16] | 6.9 34
Prokudin et al. [35] 8.8 34.3
Murphy et al. [5] 9.8 4.1
Analytic 6.2 1.7
Ours 6.09 3.22

model we state the quantitative results in Table 6.5 compared to the state-of-the-art
methods. Overall, the Rotation-IPDF model achieves a LLH score of 6.09. Object
symmetries introduce uncertainty in the orientations. Our subset of objects used for
evaluation consists strictly of symmetric objects. Thus, our model performs worse in
terms of the LLH metric but this does not hamper the ability of the Rotation-IPDF
to accurately reconstruct orientation distributions. The MAAD score of 3.22° shows
that the model predicts orientations with high precision. The results of the Rotation-
IPDF model training with analytically derived ground-truth labels further show that
the pseudo ground-truth labels are effective to train the Rotation-IPDF model on the
T-Less dataset. We observed only a marginal difference in the LLH metric and a
difference of 1.52° in the MAAD metric. This error in the orientation estimation can
be attributed to a small error in the pseudo ground-truth labels but this impacts the
model’s performance only to a small extent. The small error in the pseudo ground-
truth labels does not hamper the learning ability of the Rotation-IPDF model. Thus,
using pseudo ground-truth labels poses an efficient alternative to analytically derived
ground-truth labels.



7 Conclusion

This thesis presents the ImplicitPosePDF model which extends the approach by Mur-
phy et al. [5] from the rotation manifold SO(3) to construct pose distributions over
SE(3). The model is able to be trained without any supervision of the poses and
symmetries through the usage of pseudo ground-truth labels. The Automatic Pose
Labeling Scheme, producing the pseudo ground-truth labels, is the second contribution
presented in this thesis.

The strengths of the ImplicitPosePDF were highlighted on a variety of symmetric
objects from the Photorealistic dataset and the T-Less dataset. The model is able
to construct complete pose distributions, capturing arbitrary geometric symmetries
invariant to object textures. Eliminating the high sensitivity to object textures en-
ables the IPPDF model to be employed in real-world scenarios. Additionally, we have
shown the advantages of implicitly modeling symmetries for the single 6D pose esti-
mation task. Even though the ImplicitPosePDF model is designed to estimate pose
distributions, it is able to predict object poses accurately.

Through the APLS the IPPDF model can be trained without the supervision of
object poses and object symmetries. Starting off with an unlabeled dataset, the pose
labeling scheme is able to produce sets of accurate ground-truth poses representative
of object symmetries. The pseudo ground-truth labels proved to be an efficient sub-
stitution for analytically derived ground-truth labels in the training process of our
model. The APLS is able to fully automate the training pipeline of our model and
eliminates the necessity of ground-truth labeled data.

The IPPDF model combined with the APLS has shown the capability of being
employed in more application-oriented tasks. Future work can include incorporating
our model into a grasp planning task to test its abilities in a robotic application.
Moreover, there is room to improve the efficiency of the pose labeling scheme. A
batch-wise computation of the pseudo ground-truth labels, further downsampling of

point clouds and reduction of image sizes could improve the running time of the
APLS.
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