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Abstract

6D Pose estimation describes the prediction of translation, rotation and object cat-
egory of rigid objects in an RGB or RGB-D image. This information is important
for the ability of robots to interact with objects in their environment.

PoseCNN [46] is a recent, partially convolutional, network architecture, that
separates the estimation of the translation and rotation and shows state-of-the-art
results on the OCCLUDED (Linemod) dataset. The authors of PoseCNN intro-
duce the YCB dataset, a significantly larger dataset than the previous benchmarks,
that is challenging due to occlusions, clutter and symmetric objects.

In this thesis we developed two fully-convolutional architectures, ConvPoseCNN
and CoordPoseCNN, based on the PoseCNN architecture and compare them to
PoseCNN on the YCB dataset. CoordPoseCNN estimates the visible object co-
ordinates pixel-wise and recovers the pose by solving the PnP problem. Con-
vPoseCNN replaces the fully-connected rotation estimation branch of PoseCNN
with a convolutional architecture that produces pixel-wise quaternion predictions.
For the resulting quaternion predictions we evaluated different averaging and clus-
tering strategies and experimented with weighting the predictions. ConvPoseCNN
reaches comparable results to PoseCNN on the YCB dataset and yields advantages
in the performance and the number of parameters.
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1 Introduction

Given images of rigid objects, 6D Object Pose Estimation describes the problem
of finding their object class, their position and their rotation. Recent research
focuses on increasingly more difficult datasets with multiple objects, cluttered en-
vironments and partially occluded objects. For the rotation estimation, symmetric
objects are challenging. A specific use-case where these challenges might occur,
are robots as they could be used in a warehouse. Here the objects are known
in advance and the environment might contain many objects, which occlude each
other. This problem setting has received more attention in the recent years, for
example in the Amazon Picking Challenge of 2015 and 2016 and in the Amazon
Robotic Challenge of 2017 and 2018 (see Fig.1.1), where robots had to pick objects
from a bin filled with many objects. Generally, robots trying to grasp or manipu-
late objects will benefit from a better pose estimation, which can be used in many
applications including household helpers or assembly robots.

Figure 1.1: Example from the Amazon Robotic Challenge 2017. Pictures taken from
[37].

While many pose estimation methods rely on RGB and depth data, recently
more works consider the task of only using the RGB information. As Rad and
Lepetit [32] point out, depth cameras might fail outside or with specular objects
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1 Introduction

Figure 1.2: A Region of Interest crop that contains more than one instance of the same
object class and might lead to confusion for the rotation estimation.

and depth sensors consume more energy. Also, RGB cameras are already available
on many devices.

Deep learning methods have shown great improvement for the solutions of many
kind of problems that deal with images, pose estimation is no exception. Recently,
PoseCNN [46] has delivered state of the art performance on their YCB dataset.
PoseCNN decouples the problem of pose estimation into estimating the transla-
tion and rotation separately. It uses features given from the convolutional layers
from VGG16 and then three different branches: Two fully convolutional branches
estimate a semantic segmentation and center directions for every pixel of the im-
age. The third branch consists of a RoI pooling and a fully-connected architecture
which regresses each region of interest to a quaternion describing the rotation.

In this thesis we developed different fully-convolutional architectures evolved
from PoseCNN. Our architectures are fully convolutional and have no fully con-
nected layers. One of them uses the segmentation and translation estimation as in
PoseCNN and changes the rotation estimation to a pixel-wise prediction of quater-
nions. We then infer a final quaternion. Another architecture predicts pixel-wise
3D object coordinate correspondences. Finding the pose is then equivalent to
solving the Perspective-n-Point (PnP) problem.

One motivation for this is speed. Convolutional layers have far less parameters
than fully connected layers and are faster to train. Also, it removes the necessity of
RoI Pooling, which is a time-consuming procedure. Apart from that, our proposed
changes unify the architecture and make it more parallel: PoseCNN first predicts
the translation and the region of interests and then, using the regions, the rotation
estimation. Our architecture can perform estimate the rotation independent of the
translation estimation. We compare the results of our architectures to PoseCNN
on the YCB dataset.

We also expect possible improvements for cases where multiple objects of the
same class lie close enough, that they will be in the same RoI. Since the RoI gets
no further information on which object it is supposed to predict the rotation of,
it could possibly lead to confusion. An example is shown in Figure 1.2. However,
since the YCB dataset does not feature any images with multiple instances, this
hypothesis can not be verified on this dataset.
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First we will introduce the algorithms and techniques in Chapter 2 that are
used or compared against in this thesis. Afterwards, in Chapter 3, we briefly
introduce some important Convolutional Neural Network architectures and then
give an overview over the related work for 6D pose estimation. In Chapter 4 we
describe the architecture of PoseCNN in detail, followed by our own architectures
in Chapter 5. Then, in Chapter 6 we introduce in detail the YCB dataset, as well
as, other used datasets and describe our experiments. At the same time we report
our performance against PoseCNN. Finally, Chapter 7 summarizes our results and
concludes this thesis.
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2 Methods

Our work builds upon many different methods from Computer Vision and Deep
Learning and consists of different problem settings. In this chapter we will give a
brief introduction to the basic concepts that we use in our thesis.

2.1 Convolutional Neural Networks

Multilayer networks consist of layers with typically non-linear processing units
called neurons and weighted connections which pass on the results of the previous
layers. Usually these layers are fully connected, meaning that all neurons in one
layer are connected to all neurons of the following layer. Neural networks try to
learn a function where the internal parameters of the function are the weights of
the model [22].

Convolutional Neural Networks (CNNs) are multilayer neural networks, which
were developed for array-like input as images. These networks contain convolu-
tional layers, which are inspired by the mathematical operation of the same name:
For an image I, a small m × n-dimensional array K, called kernel or filter, the
convolution, K ∗ I, of K and I at indices i and j is given by:

(K ∗ I)(i, j) =
m∑

mi=1

n∑
ni=1

I(i−mi, j − ni)K(mi, ni). (2.1)

Convolutions are widely used in computer vision. The operation convolutes the
image with a filter of a usually small size and produces another image as an output.
Important to understand is that the value of a specific pixel, which is calculated
by the operation, only takes information from a patch of the input image around
this pixel position. The size of the patch corresponds to the size of the filter. The
response will be large if the patch of the image around this pixel contains a feature
which is similar to the weights inside the filter. Convolutions are interesting for
processing images, since they look at local features. This reflects that pixels that
are close together are more likely to form relevant connections than pixels which
are far away from each other [12]. Most frameworks implement cross correlation
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2 Methods

instead of the original convolution, which is defined as

(K ∗ I)(i, j) =
m∑

mi=1

n∑
ni=1

I(i+mi, j + ni)K(mi, ni). (2.2)

This flips the filter, but in practice otherwise makes no difference.

Before the advent of CNNs, filters were hand designed to extract specific infor-
mation from images, as for example the edges. A CNN will learn its own filters.
A convolutional layer may contain a lot of feature maps, where each feature map
performs a convolution on the previous layer. To achieve this, the neurons from a
feature map will only be connected to a small, local patch from the previous layer.
The size of the patch corresponds to the size of the convolutional filter. These
connections share the same weights for all the neurons of the same feature map.
Performing a forward pass is then the same as performing a convolution on the
output of the last layer, where the weights are the values of the filter. Another
advantage is that it might often not matter for a specific feature, where in the
image it will appear. Since the filter is applied to every pixel of the input image,
the whole image will be checked for this feature without the need to learn this
feature for all the positions separately [12, 22].

There are four key ideas in CNNs: ”Local connections, shared weights, pooling
and the use of many layers” [12]. The first two ideas are reflected in the feature
maps. The third idea is realized by pooling layers. Each neuron from the pooling
layer is only connected to one patch of neighboring neurons from the layer before.
It will take a summary from its inputs (for example the maximum or the average
value) and pass this on. Pooling layers can also be used to reduce the dimension
of the feature maps. An example is shown in Fig 2.1. A typical architecture of
a CNN usually combines convolutional layers and pooling layers and ends with
one or more fully-connected layers. Convolutional layers are usually followed by
non-linear activation functions. The convolutional layers are supposed to identify
features and the pooling layers are useful for downsampling. They can also make
the network more robust to small translations in the input data [12, 22].

An advantage of convolutional layers is that they are in comparison usually
much faster than using a fully-connected layer, since they have less parameters.
This reduces both the amount of operations needed to compute the output of this
layer as well as the size of the model in memory [12, 22].

The Rectified linear unit (ReLU), defined as f(z) = max(z, 0), is a popular
choice as a non-linearity, since it enables deep networks to often learn faster [22].
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2.1 Convolutional Neural Networks

Figure 2.1: An example for Max pooling, for a 2-dimensional feature map. For each
patch the maximum value is passed on.

Figure 2.2: Left: example of a 2-dimensional convolution with kernel size 3. If the grey
coloured neurons are removed it is a convolution with stride 2, meaning the
kernel moves over the image skipping every second pixel. Right: example of
a 2-dimensional deconvolution, which is equivalent to the backward pass of
the convolution with stride 2.

2.1.1 Upsampling
While pooling and strided convolutions reduce the size of the feature maps, up-
sampling is the process of increasing their size. One possibility is using transposed
convolution, sometimes inaccurately also called deconvolution, for this task. As
Long, Shelhamer, and Darrell [25] describe it, this is essentially the same process as
backpropagating the gradient through a regular convolutional layer. An example
of that is shown in Figure 2.2.

2.1.2 Region of Interest Pooling
Some architectures predict bounding boxes called Region of Interests (RoIs) con-
taining interesting parts of the image and then crop these parts to use them for
the further prediction. The cropping does not need to happen on the image itself,
but can also happen on the features. Since the layers of the neural network have
a fixed input size it is necessary to change the size of the crop to this input size.
A RoI Pooling Layer takes as input feature maps, and a RoI of size (h,w) and
reduces the feature maps to a size of (H,W ). It crops the rectangle given by the
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Figure 2.3: Different problem settings for finding objects in images. Image
taken from http://cs231n.stanford.edu/slides/2017/cs231n_2017_
lecture12.pdf.

RoI from each feature map and divides it into a H×W grid of roughly equal sizes
and then pools over the grid, such that each grid cell is reduced to one value. This
is done for all feature maps separately [10]. If the RoI is smaller than the input
size, the RoIPooling Layer will upsample it.

2.1.3 Important Applications of CNNs

Classification describes the task of giving some input an object label. In multi-label
classification, different items appearing in the same image should be recognized.
That can be combined with finding the bounding boxes of these objects. Seman-
tic segmentation describes the task of assigning a class label to each pixel of an
input image. Figure 2.3 shows an example of different problem settings related to
semantic segmentation and object detection. CNNs are state-of-the-art for these
problem settings. The architectures we use in this thesis solve semantic segmen-
tation as a sub-problem. The semantic segmentation determines the object class,
but also helps in identifying which pixels are relevant for determining the rotation
and translation.

2.2 Training Deep Neural Networks
Training Deep Neural Networks is a challenge because of the big amount of pa-
rameters and often long training times which makes tuning of the often numerous
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2.2 Training Deep Neural Networks

hyperparameters infeasible. Additionally, regularization methods can reduce over-
fitting effects, that are induced by the large model capacities. Therefore we will
shortly present some methods used for training and regularizing neural network
models.

2.2.1 Stochastic Gradient Descent and Momentum
Gradient descent is used for training the network. It calculates the gradient of some
loss function that describes the error for every parameter of the model and then
updates the weights along this gradient, such that they change towards a smaller
error. It is usually used with backpropagation, an efficient method for computing
the gradient with regard to the single parameters. The learning rate determines
how large the step along the gradient should be. It is a very important parameter
with regard to the models performance [12]. Stochastic gradient descent (SGD)
is an adaption from the gradient descent algorithm. While the classical gradient
descent method uses the gradient of the loss calculated over all training examples
to update the weights once, stochastic gradient descent approximates the whole
training loss by taking the loss of a mini-batch of examples. Stochastic gradient
descent is therefore suited to be used with large training sets. The term batch size
refers to the number of training examples used for each approximation.

Momentum is a method used to speed up learning. It saves gradients from the
past updating steps and adds a fraction of them to the current gradient. Therefore,
the direction and strength of the former gradients is partially kept. This might
be compared to a momentum of a moving body, which does not disappear when a
new directional impulse is given. The influence of the former gradients decreases
exponentially and a momentum parameter α can further scale this exponential
decrease. So for a current gradient θ and a current velocity v, given learning rate
ε and momentum parameter α, as well as new gradient estimate g, the velocity is
updated by v = αv − εg and then the new gradient is θ = θ + v [12].

2.2.2 Transfer Learning
Transfer learning aims to take learned knowledge from one dataset and use it for
a different domain. For neural networks this knowledge can be interpreted as the
weights which a particular architecture learned. A model can be trained first with
the different dataset. This is called pre-training. Many frameworks offer models
which are already trained on some dataset. If the architecture of the models is not
the same, then the weights of some layers can be transferred to parts of the other
architecture that are the same. In the fine-tuning step the network is then trained
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Figure 2.4: The visualized layers of a deep convolutional architecture. Image taken from
Yann LeCun’s tutorial http://www.iro.umontreal.ca/~bengioy/talks/
DL-Tutorial-NIPS2015.pdf, based on Zeiler and Fergus [48]. The low-level
features contain edge filters or recognize colours, which can be useful features
for most images.

with the new data. Transfer Learning has been shown to reduce the generalization
error [12].

Transfer learning is used as a method to intelligently initialize models, especially
in cases, where there is not much training data available. For CNNs it is very easy
to see, why this initialization might work, even when the application are different:
When visualizing trained networks the early layers show that they learnt very
easy features as for example edge or colour detectors [12]. Even if the domains are
very different, the knowledge represented in this kernels would be useful for many
applications dealing with photos. An example for that is shown in Figure 2.4.

2.2.3 Dropout
Dropout is a regularization method. It is used with mini-batch based training
methods as SGD. In each training step units are effectively taken out of the network
at random for forward pass, backpropagation and weight update by multiplying
their output with 0. The probability that a neuron is present in any step is
independent of the other units and other steps and is a fixed hyperparameter.
The probability for including input or hidden units might differ though. Dropout
simulates training not only the present network architecture, but an ensemble of
all the architectures that one can obtain by removing units. During training not all
the features, that are predicted by the other units, are available which encourages
the network to learn more robust predictions, that do not rely on all the input
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http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf
http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf


2.3 Hough Voting

features. Dropout has shown good regularizing results at a low computational cost
in cases with sufficient training data. [12]

2.3 Hough Voting
The Hough transform was originally described as a way to find lines in images.
For this, points of the image vote on lines they might be part of. The voting is
performed in Hough space, which spans the parameters describing possible lines.

For example to find lines the normal parameterization of lines can be used:

x cos θ + y sin θ = ρ. (2.3)

Then the Hough space has as one axis θ and as the other ρ, and a line can be
represented as one point in the Hough space. If θ is restricted to [0, π], then the
parameterization for a line is unique. Each point in the image votes in Hough
space for all lines it can be part of. All the points that lie on one line should
therefore give a vote to the point representing this line in Hough space.

To count the votes and determine the maximum, the Hough space is discretized,
usually in a grid. The finer the quantization is, the more accurate the result can
be. On the other hand it increases the computation time and if only few voting
points are available, it might make finding the accurate maximum more difficult.
If only one entity should be detected, then the bin with the most votes is selected.
Multiple objects can be detected at the same time by selecting bins as a detection
that are above a certain threshold. The Hough transform can be generalized to
find other objects as curves or circles. [8]

We use the Hough transform to find the object centers. For this the Hough
space is the pixel space and we do not need a reparametrization. Our use of the
Hough transform is explained in detail in Section 4.2.

2.4 Camera Projections
Since we need some parts of this in the following, we will quickly define some terms
related to how the 3D scene is transformed to the 2D image.

We assume a 3D scene that might contain objects. Initially the scene including
the objects are given in world coordinates and somewhere in this scene there
is the camera. Taking the camera as the origin of its own coordinate system,
the scene can be transformed from world to the camera coordinate system by
a translation T and rotation Ω. If the camera is assumed to be at the center,
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Figure 2.5: A depiction of the intrinsic camera parameters. Image taken from Prince
[31].

then the world coordinates and camera coordinates are the same. The position
and orientation of the camera are called the extrinsic camera parameters. Then
the scene given in the camera coordinate system is projected onto the 2D image
plane. This transformation depends on the assumed camera model as well as
the intrinsic camera parameters: the focal lengths of the camera (fx, fy) and the
principal point (cx, cy). In our case we assume the pinhole model and therefore a
perspective transform is used. The whole transform of a 3D point (u, v, w) to the
2D image points can then be calculated in homogeneous coordinates as follows:

λ

x

y

1

 =

fx 0 cx
0 fy cy
0 0 1

ω11 ω12 ω13 tx
ω21 ω22 ω23 ty
ω31 ω32 ω33 tz

(u v w 1
)

(2.4)

The first matrix contains the intrinsic camera coordinates, the second the ex-
trinsic camera coordinates. The first matrix projects the The variable λ arises from
the conversion of homogeneous coordinates to Cartesian coordinates [31]. This is
illustrated in Figure ??.

2.5 RANSAC
RANdom SAmple Consesus (RANSAC) [9] is an approach to find a hypothesis
given measurements. It randomly selects k measurements and fits a hypothesis
that fits these measurements. For all measurements it is tested, whether they fit
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2.6 Perspective-n-Point

the hypothesis or not. If they do, they are counted as inliers. This is repeated S

times. Afterwards, the hypothesis with the highest amount of inliers is selected.
This hypothesis can be used, but often the hypothesis is refined by fitting it to all
the inliers [39].

2.6 Perspective-n-Point
Given a set of n 2D image and 3D world coordinate correspondences and the intrin-
sic camera matrix, the Perspective-n-Point (PnP) problem describes the problem
of finding the pose consisting of translation and rotation . Classically the pose
of the camera itself should be determined. For n = 3 (the P3P problem) there
usually exist four possible solutions, therefore four points are in general sufficient
for estimating the pose [23].

Different solvers for the PnP problem exist, that solve the problem if more
correspondences than necessary are given. Another way of dealing with too many
correspondences is to wrap a PnP solver into a RANSAC loop, which makes the
procedure more robust to outliers.

2.7 Iterative Closest Point
The Iterative Closest Point algorithm (ICP) determines a transformation for two
point clouds that transforms one of them, called reading, to match the other one,
called reference, more closely. ICP then iteratively improves the matching from the
initial pose of the reading. In each step it finds associations between the reading
and reference and then calculates a transformation that minimizes the distance
between the point clouds. The initial pose of the reading has a big influence
on the overall performance of ICP. ICP might also do some preprocessing of the
point clouds, since it is sensitive to outliers. It can also determine the number of
iterations with a stopping criterion.

There exist many ICP variants, which use different methods to perform the
individual steps [30].

2.8 Quaternions and Rotations
Quaternions are popular for representing 3D rotations. While theoretically one
only needs three dimensions to represent any possible 3D rotation, there are in-
stabilities representing them this way. A famous example is the gimbal lock when
using the Euler rotation representation [42].
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A quaternion, as defined by Hamilton, is expressed as the sum

q = qw + qxi+ qyj + qzk

and

i2 = j2 = k2 = ijk = −1ij = k, jk = i, ki = jji = −k, kj = i, ik = −j

where qw, qx, qy, qz ∈ R. So you can express the quaternion by the tuple (qw, qx, qy, qz)
[42].

The addition of two quaternions q and p is defined as

p+ q = (pw + qw) + (px + qx)i+ (py + qy)j + (pz + qz)k. (2.5)

The norm is defined as |q| = √
q ∗ q. A unit quaternion has norm 1 [42].

Any rotation in R3 around axis u = (u1, u2, u3) by θ degrees, can be expressed
as a the unit quaternion

q = cos θ
2
+ u1 sin θ

2
+ u2 sin θ

2
+ u3 sin θ

2
. (2.6)

In addition to avoiding the gimbal lock, representing rotations as quaternions is
popular because the representation is continuous [39].

2.8.1 Quaternion Symmetry
Since we are not interested in the direction of the rotation, but in the final re-
sult, expressing rotations by axis and angle leads to two different ways in which
you can express the same rotation and therefore also two different unit quater-
nions. For example rotating an object by 90 degrees around axis (0, 0, 1) is equiv-
alent to rotating it around the axis (0, 0,−1) by 270 degrees. So the quaternions
(0.7071, 0, 0, 0.7071) and (−0.7071, 0, 0,−0.7071) express the same final object ori-
entation.

For two quaternions p and q, where q = cos θq
2
+ ux sin θq

2
+ uy sin θq

2
+ uz sin θq

2

and p = cos θp
2
+ ux sin θp

2
+ uy sin θp

2
+ uz sin θp

2
,

if −q = p, then θp = 360◦ − θq and vi = −ui for i = x, y, z. Proof:

θp = 2 arccos(pw) = 2 arccos(−qw) = 2(180◦ − arccos(qw)) =
360◦ − 2 arccos(qw) = 360◦ − θw, (2.7)

using arccos(−x) = 180◦ − arccos(x).
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2.8 Quaternions and Rotations

And for i = 1, 2, 3:

vi =
pi

sin( θp
2
)
=

−qi

sin(360◦−θq
2

)
=

−qi

sin(180◦ − θq
2
)
=

−qi

sin(90◦ + 90◦ − θq
2
)

=
−qi

cos(90◦ − θq
2
)
=

−qi

sin( θq
2
)
= −ui (2.8)

Using sin(90◦ + x) = cos(x) and cos(90◦ − x) = sin(x).
This is exactly the case of the rotation axis pointing the opposite direction and

the rotation around the other direction, mentioned above.
Apart from the q,−q symmetry the rotation representation through unit quater-

nions is unique [39].
In order to unify the quaternion representation, we force the ground truth

quaternions to all have a positive qw, by multiplying the quaternion by -1 if qw is
negative.

Averaging by Markley et al. [27]

As Markley et al. [27] point out in their paper it is not so obvious how to average
quaternions. One reason is the symmetry of q and −q since replacing any q with −q

changes the average, though the same rotations are present. Also an average does
not have to be a unit quaternion and then has to be normalized to be interpreted
as a rotation.

They argue that what they want is an average of the rotations and that for this
they can use the rotation matrices. So they define the quaternion q̄ as the average
that minimizes the squared Frobenius norm between its corresponding rotation
matrix A(q) and the corresponding rotation matrices A(qi) of all the quaternions
that should be averaged:

q̄ = arg min
q∈S3

n∑
i=1

wi||A(q)− A(qi)||2F .

wi are weights and S3 is the unit 3-sphere. This average is then indifferent to
whether q or −q is averaged since their rotation matrices are the same. Also, by
definition, q̄ is a unit quaternion.

We will directly introduce the algorithm for the weighted case. The algorithm for
determining the average quaternion, as layed out by Markley et al. [27] derivations,
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2 Methods

is the following: For a set of quaternions {q1, ...qn}, n ∈ N and weights {w1, ...wn}:

M =
n∑

i=1

wiqiq
T
i (2.9)

Then q̄ is given by normalizing the eigenvector corresponding to the maximum
eigenvalue of M .
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In this chapter we will first briefly describe some deep learning methods, that are
used in the following, and then try to give an overview over the state-of-the-art
in 6D pose estimation. While pose estimation is applied in many scenarios, for
known or unknown, rigid or non-rigid objects, we will focus on giving an overview
over the literature that is relevant for our task of developing a predictor that can
handle clutter and symmetry for known and rigid objects.

3.1 Convolutional Neural Networks
Convolutional neural network architectures have shown great performance on sev-
eral tasks related to image understanding: For classification, VGG16 and ResNet
have produced state-of-the-art results for the ImageNet dataset [36]. YOLO [33]
is a state-of-the art real-time detection system that also uses convolutions. It pre-
dicts the object class and bounding boxes for multiple objects in the image and
can also handle multiple instances of the same class. R-CNN [11] predicts region
proposals and the corresponding object label, it is also extendable to predicting
the segmentation. Mask R-CNN [13] performs object instance segmentation.

3.2 6D Object Pose Estimation
6D object pose estimation was a problem that at some point was almost considered
solved. However, the detection systems were only able to achieve good results for
textured objects. The research focused on finding features that improved the
robustness to changes in illumination. Later, more methods were developed that
focused on objects with less or no texture.

With application in robotics becoming interesting that needed methods that
are robust to occlusions and clutter in the scene, new datasets representing these
challenges emerged: Datasets popular in the more recent works are the LINEMOD
dataset [16] and OCCLUDED (Linemod) [20]. LINEMOD contains 15 objects,
some of them textureless and symmetric. For each object there are around 1000
images, where the object was manually annotated. So only one object per image is
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annotated. OCCLUDED is a subset of LINEMOD where the annotations for the
other objects were added to 1214 images, so multiple objects have to be detected.
All 1214 images were taken from the same video and the dataset contains only 8
different objects. Both datasets contain occlusions. Both datasets are small for
training deep architectures. The YCB dataset [46] is a more recent dataset, that
contains textureless and symmetric objects, clutter and very strong occlusions.
There are multiple objects in each frame. In all datasets at most one object of
each possible object class is present. YCB contains 133,827 pictures, so far more
than the other datasets, making it more suitable for training deep neural networks.
Since we work with the YCB dataset, we give a more detailed description in Section
6.1.1.

In the following we will present some works on object detection sorted by their
general approach.

3.2.1 Sparse Feature-based Methods and Template Methods
In the past mostly feature-based or template based methods were used. The
feature-based methods find features in the image that correspond to known object
points and then calculate the pose. Usually only a few well-recognizable features
are extracted for each object, therefore some also refer to them as sparse feature-
based or keypoint-based models. Feature-based methods as for example by Lowe
[26] and Wagner et al. [43] are popular and successful for determining the pose of
highly-textured objects. A disadvantage of these methods is that they generally
do not work well for non-textured objects.

Template-based methods try to match a rotated object to the image and decide
the pose by the best fit. Two noteworthy template-based approaches were pub-
lished by Hinterstoisser et al. [15] and Hinterstoisser et al. [16]. Though working
well for non-textured objects, template-based approaches generally do not work
well if part of the object is occluded.

3.2.2 Using Depth
With the development of cheaper depth sensors, methods using the depth modality
became popular: Wong et al. [44] uses a CNN to predict a pixel-wise segmentation
of the RGB input image and selects the depth map of the pixels belonging to
some object. This point cloud is then matched to the object model using the
iterative closest point algorithm (ICP). Hinterstoisser et al. [17] only uses the
depth information to match pixel locations to object points. They extend the
method of Drost et al. [7] to find object - image point pairs and use Hough voting
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3.2 6D Object Pose Estimation

to determine the final pose.
Apart from methods for which the depth is a necessary input, all methods can

be refined if depth data is available by performing ICP on the final prediction.

3.2.3 Deep Learning Approaches

With the rise of deep learning methods showing success for different problem set-
tings, models inspired or extending these have been increasingly used. Some meth-
ods use established architectures to solve subproblems. For example Jafari et al.
[18], Xiang et al. [46], and Rad and Lepetit [32] present methods that use a net-
work for segmentation as part of their pipelines. Other works, as Do et al. [5],
use instance segmentation. What separates these methods from the sparse feature
based ones is, that they do not extract the features, but work on the images di-
rectly and learn some internal features. A lot of the recent methods can be divided
into two groups: Methods that predict some sort of 2D image, 3D object coordi-
nates correspondences and then solve the arising PnP problem for recovering the
object pose, and methods that directly regress to some pose representation.

Predicting Pixel, Object Coordinate Correspondences

Brachmann et al. [2] uses random forests to jointly predict pixel wise 3D object
coordinates and class labels for an RGB-D image. They sample pose hypotheses
inside a RANSAC algorithm and evaluate the best pose using a energy function
that is based on the reprojection error of the rendered pose hypothesis. Brachmann
et al. [3] extend this work with a similar joint prediction of object coordinates and
labels distributions. They improve the method by utilizing the uncertainty of
the predictions. They introduce also a new energy function that does not need
the depth information and therefore enables the method to work without depth
information.

Jafari et al. [18] introduce a pipeline that divides the problem into subproblems:
It uses an instance segmentation network to find the pixel belonging to each object,
then an encoder-decoder network to densely map pixel to 3D object surface points.
The instance segmentation is used to select the 3D object surface points that belong
to each object. For RGB-D data the pose is then determined by sampling a fixed
number of hypotheses, each based on three 3D points. The most promising scores
are selected using a scoring function and then refined by using ICP. The pose with
the lowest ICP fitting error is selected. Afterwards another refinement based on
rendering is used. For RGB data the RANSAC method from Brachmann et al. [3]
is used. Some qualitative results are shown in Fig. 3.1.
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Figure 3.1: Results from IPose [19] on the OCCLUDED (Linemod) dataset.

Also there have been works, that instead of densely estimating the correspon-
dences for all pixel, estimate the 2D points corresponding to the 3D object bound-
ing boxes [41, 40].

Tremblay et al. [41] use exclusively synthetic data to train a VGG19 based fully
convolutional architecture which predicts belief maps and the 2D image corre-
spondences of the 3D bounding boxes. PnP is used for extracting translation and
rotation. The belief nets are used to determine which objects are present.

Tekin, Sinha, and Fua [40] introduce a deep CNN architecture based on an
improved version of YOLO [33], that directly predicts the 2D-3D bounding box
correspondences. Translation and rotation are then recovered with PnP.

Rad and Lepetit [32] use a network architecture, called BB8, that extends VGG
[38] to predict a segmentation. The centroid of an object segmentation is regarded
as the 2D center of the object. Then another CNN, that is also based on VGG,
takes crops centered on the 2D center of the original image to predict the 2D
projections of the 3D bounding boxes and solves for the pose with PnP. The
method handles symmetric objects by limiting the possible rotations to a fixed
range during training. At run-time a separate classifier predicts the range the
rotation is in. The prediction is followed by an optional refinement step that also
uses only colour and no depth information. While BB8 achieves state-of-the-art
results on different datasets, Jafari et al. [18] exclude it from their own comparison,
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3.2 6D Object Pose Estimation

Figure 3.2: Qualitative results taken from Oberweger, Rad, and Lepetit [28] on the YCB
dataset [46]. The ground truth 3D bounding box is drawn in green, the
prediction in blue.

because its results rely on ground truth crops.
Oberweger, Rad, and Lepetit [28] also predict the projection of the 3D bounding

box. They try to tackle occlusion by using small object patches for independent
predictions. These predict a heatmap of possible corner locations based on that
patch. Then the heatmap from the patches are added and the maximum is selected
as the corner position. If patches are ambiguous, they are trained to also show
that ambiguity in their prediction. If a patch cannot give any valuable information,
for example because it is occluded, the heatmap is trained to be uniform. Some
qualitative results are shown in Fig. 3.2.

Direct Pose Regression

Another group of methods uses either fully connected or convolutional networks
for regressing directly to some representation of the pose. For many of the methods
only parts of the pipelines are trainable, but there also has been work aimed at
developing end-to-end trainable methods. While the methods predicting object
coordinates predict translation and rotation jointly, directly regressing methods
separate the estimation of translation and rotation.

Do et al. [5] use Mask R-CNN [13] for instance segmentation and add a pose
estimation branch to it. They decouple the estimation of translation and rotation.
For rotation they estimate Lie parameters. No post refinement is needed and the
architecture is end to end trainable.

Xiang et al. [46] predict the pose using the convolutional features given by
VGG16 [38]. These features are used to estimate a segmentation and pixel-wise
translation. The 2D object center is then inferred in a Hough voting and a si-
multaneous prediction of RoIs is used to crop the VGG16 features and regress
the rotation with a fully-connected architecture. They introduce Shapeloss, a
loss function that avoids penalizing symmetric objects. Our work builds upon
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PoseCNN, therefore there will be a more thorough description in Chapter 4.
A recent method that uses the same feature extraction set up as PoseCNN is

Silhonet by Billings and Johnson-Roberson [1]. It uses an RCNN [11] to predict
Region of Interests (RoIs) and then crops the features to that regions. These re-
gions are concatenated with additional 12 rendered viewpoints of the recognized
object. From this the unoccluded silhouette of the object is predicted. Finally a
ResNet-18 [14] architecture predicts quaternions from the unoccluded silhouette
representation. For the training, object silhouettes are matched to quaternions
thus eliminating the problem of shape symmetry. As PoseCNN it does not require
depth data. It shows better performance than PoseCNN for estimating the rota-
tion, however, the translation is not estimated and therefore not the same measures
are applied, which makes comparison difficult. Also the texture of objects is not
considered, so objects that are symmetric in shape but not in texture cannot be
oriented due to their texture.

3.2.4 Refining the Result
Apart from predicting the pose from the RGB or RGB-D data, there are several
refinement techniques for improving the poses after determining an initial pose.
For some of the methods this refinement step is based on the prediction and
therefore related to the method. Others, such as ICP, can be used with any
initial estimation.

Li et al. [24] introduce a refinement technique that improves the estimation only
using the original RGB input. It takes an image and an initial pose estimate
and then iteratively improves the pose by zooming in on objects and matching
a rendered image against the original image. For this it generates a foreground
mask for both original image and rendered image and feeds them with the two
masks into a FlowNetSimple [6] architecture. It uses the Point Matching Loss, a
modified version of the geometric reprojection loss to jointly regress translation and
rotation. The authors show improvement on the initial estimate of both PoseCNN
[46] and Faster RCNN [34].

3.2.5 Our Approach
Our own work incorporates some of the previously listed related work: As many
of the newer methods we will make our predictions only using the RGB image.
Also we do not use any post-refinement. Our models are fully-convolutional and
we produce a dense prediction. From the presented work only few have a strategy
to handle symmetric object poses. We will experiment using the Shapeloss for our
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models. While many of the works use semantic segmentation and a few use pixel-
wise object coordinate predictions, none of the works we saw has tried a pixel-wise
rotation estimation.
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Figure 4.1: The architecture of PoseCNN. Graphic taken from [46].

4 PoseCNN

In this chapter we will describe the 6D Pose Estimation architecture PoseCNN,
as introduced by Xiang et al. [46], which is the base for our own architectures
and our most important baseline for evaluation. Figure 4.1 shows an overview
of its architecture. There one can see the main parts of PoseCNN: It uses the
convolutional backbone of VGG16 [38] to extract features. These features are then
processed by two convolutional parts: The segmentation branch, that predicts the
pixel-wise semantic segmentation, and the vertex branch, which predicts a pixel-
wise estimation of the center direction and center depth. Both results are combined
to vote for object centers in a Hough transform layer. The Hough layer also
predicts bounding boxes for the detected objects. These bounding boxes are used
to crop the extracted features which are then pooled and fed into a fully-connected
neural network architecture. This fully-connected part predicts quaternions for all
bounding boxes.

Input to the network are RGB images. The network makes its prediction without

25



4 PoseCNN

using any depth information. Only afterwards the depth information is used to
refine the pose with ICP.

In the following we will introduce the different parts of the network more closely.
We will present them as they were presented in the original paper. However, we
have found some differences to their published code, which we will discuss in
Section 6.3.

4.1 Segmentation
The semantic branch of PoseCNN is inspired by the architecture of Long, Shel-
hamer, and Darrell [25]. The features of two different parts of the VGG backbone
are passed through convolutions and added together. Transposed convolutions are
used to upsample the smaller feature maps to the same size and again to transform
the added feature maps to the original image size. This way the prediction has a
direct relation to each pixel of the input image.

4.2 3D Translation Estimation
The second branch of the network, called vertex branch, is used to estimate the 3D
translation in the camera coordinate system: T = (Tx, Ty, Tz). For each pixel of
the image it predicts the direction towards its corresponding object center (cx, cy),
which is the projection of T onto the image. Each pixel also estimates Tz. It
uses an architecture similar to the semantic branch, but increases the number of
feature maps, since it is not only predicting (#classes· image size) but (3·#classes·
image size) values. Since the network estimates the directions and depth for each
possible object class, the labels from the semantic branch are needed to determine
which information is relevant.

The Hough voting layer then determines where the center (cx, cy) is: It operates
separately for every class. For each pixel p that belongs to this class, all pixel that
lay in the predicted center direction of p receive a vote in the Hough space. So for
each pixel of the class one line is added to the Hough space. Where there intersect
many lines, the voting space reaches a local maximum. Then either the maximum
is selected as the estimated center or non-maximum suppression is applied to find
multiple object centers. The voting space has the same size as the image, so centers
can only be found inside the image.

The Hough layer determines inlier for each center, which are pixels whose es-
timated direction is close to the selected center. For this the cosine similarity
between the direction n that is estimated at point p and the direction from p to
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the determined center x is used:

s(p, x) =
〈n, (x− p)〉

||n|| · ||(x− p)||
.

If this similarity s is bigger than a chosen threshold s∗, then the point p is con-
sidered an inlier. For each center the depth is determined by taking the inliers
associated to one center and averaging the depths they predict.

Now with an estimate for the 2D image center (cx, cy) and the depth Tz, one can
determine Tx and Ty using the projection equation, based on the pinhole camera
model.

(
cx
cy

)
=

(
fx

Tx

Tz
+ px

fy
Ty

Tz
+ py

)
and therefore (

Tx

Ty

)
=

(
(cx − px)

Tz

fx

(cy − py)
Tz

fy

)
where fx and fy are the focal lengths of the camera and (px, py) is the principal
point.

The network regresses to the normalized center directions (nx, ny):(
nx =

cx − x

||c− p||
, ny =

cy − y

||c− p||

)
for a pixel p = (x, y)T and center c = (cx, cy)

T . Xiang et al. [46] state that
they experimentally verified that this is easier to train than regressing to the
unnormalized variant.

Figure 4.2: Images from our implementation of the Hough voting. The left picture shows
the ground truth segmentation, the middle shows the predicted segmentation
and the right picture the Hough inliers.
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The Hough layer additionally predicts Regions of Interests (RoIs), which are
bounding boxes containing part of the image where the wanted object is present.
For this the smallest rectangle that includes the inliers of each object is used.

Figure 4.2 shows an example from our implementation of the inliers returned
from the Hough layer. The Hough layer removes small patches of wrong prediction,
as the pink and yellow one. Since the cosine similarity is used for the selection,
pixels that are far away have a higher tolerance on how much their prediction can
differ from the center direction, leading to the holes in the middle of the objects.

4.3 Rotation Estimation
The rotation branch consists of a fully-connected architecture. The RoIs predicted
by the translation estimation part are used to crop and pool the features given
from VGG16. Like the other branches it uses features from two different feature
extraction branch layers. These are passed through two different RoI pooling
layers and then added. The result is then put through three fully-connected layers
(FCs). For each of these RoIs and each possible class a quaternion is predicted.
With the information from the Hough layer, the correct quaternion can then be
selected. The published code shows that the first two FCs are followed by ReLU
activations and the final layer is followed by a tanh activation, however, both the
direct output and the tanh activation are returned. We got the best results, when
training with tanh but using the quaternions before the nonlinearity for testing.

4.4 Training Losses
The network learns the segmentation, vertex prediction and rotation somewhat
separately and uses different losses for training the different parts. The Smooth
L1 Loss is defined as follows:

loss(x, y) =
1

n

∑
i

zi (4.1)

where

zi =

{
0.5(xi − yi)

2, if|xi − yi| < 1

|xi − yi| − 0.5, otherwise

It is less sensitive to outliers than using a L2 loss [34]. For training the semantic
branch a softmax cross entropy loss is used.

For training the rotation Xiang et al. [46] use the ShapeMatch Loss. This loss
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consists of two losses: The point-wise loss (Ploss) and the shape loss (Sloss). The
ShapeMatch loss takes as input whether an object is symmetric or not and returns
the Sloss for a symmetric object and the Ploss if not. Given a set of 3D points
M, where m = |M| and R(q) and R(q̃) are the rotation matrices from the ground
truth quaternion and the estimated quaternion, the Ploss and Sloss are defined as
follows:

Ploss(q̃, q) = 1

2m

∑
x∈M

||R(q̃)x−R(q)x||2, (4.2)

Sloss(q̃, q) = 1

2m

∑
x1∈M

min
x2∈M

||R(q̃)x1 −R(q)x2||2, (4.3)

Similar to ICP, it uses the distance between any point of the 3D model in the
estimated orientation and the closest point on the 3D model of the ground truth
orientation. That means that the Sloss does not penalize a rotation for a symmetric
object that is not the ground truth rotation but leads to an equivalent shape.

4.5 Evaluation Metrics

For the final evaluation Xiang et al. [46] use the average distance metric, ADD,
and the average distance metric using the closest points, ADD-S, as stated by
Xiang et al. [46]:

ADD =
1

m

∑
x∈M

||(Rx+ T )− (R̃x+ T̃ )||, (4.4)

ADD-S =
1

m

∑
x1∈M

min
x2∈M

||(Rx1 + T )− (R̃x2 + T̃ )||, (4.5)

where R̃ and T̃ are the estimated rotation and translation.

For the final evaluation the Area Under the Curve (AUC) for these losses is
considered. Here they consider the curve which shows for a range of average
distance threshold (ADD) values, how many percent of the objects fall below that
threshold. They cut off the maximum error at 0.1. Also unrecognized objects are
penetalized with an ADD of 0.1. An example is shown in Figure 4.3. We call
AUC P the area under the curve of ADD and AUC S the area under the curve for
ADD-S. An example of some of the relevant loss functions is shown in Figure 4.4.
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Figure 4.3: An example for the curve evaluating the ADD metric, with which AUC P is
calculated.

Figure 4.4: Different losses shown for the example rotation of a sugar box. The blue box
stays, while the orange one is rotated by 360 degrees around one axis. The
L2, angle, P, S, ADD, ADD-S and Shape loss are shown for this rotation.

4.6 Training of PoseCNN
The training of PoseCNN starts with a pretraining. The weights of a VGG16
network trained on ImageNet are transferred to the convolutional layers of the
feature extraction part and the fully connected layers. The weights are optimized
using Stochastic Gradient Descent with momentum (0.9) and a learning rate of
0.001. First, the segmentation and translation parts are trained with the cross
entropy and the Smooth L1 losses as described above. The losses are calculated
directly on the network prediction before it enters the Hough layer. The network
training then optimizes the loss L = Lseg+Ltrans. Then also the rotation is trained.
For this the Shape loss is calculated and added to the other losses. The training
then optimizes L = Lseg + Ltrans + Lrot. While the rotation estimation uses the
RoIs predicted from the Hough layer, no gradient is backpropagated through the
Hough layer.
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Our goal was to replace the RoI pooling and fully-connected parts for the rotation
estimation of PoseCNN with a fully convolutional design. For this we investigated
two different approaches: The first, as PoseCNN, estimates quaternions. The
second one estimates 2D pixel, 3D object coordinate correspondences. Both these
architectures estimate this information pixel-wise.

5.1 ConvPoseCNN
As a possible improvement we implemented a network that predicts the quater-
nions pixel-wise. For this we use the architecture shown in Figure5.1, which we

Figure 5.1: Our ConvPoseCNN architecture for estimating the quaternions pixel-wise.
Image adapted from [46]. The selection of the quaternions for each object
is done using the segmentation labels. However, for the case of detecting
multiple instances of the same object class, the Hough inliers can be used.
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will call ConvPoseCNN (short for convolutional PoseCNN). It uses PoseCNN as
a base, but the former RoI pooling and fully connected layers of the PoseCNN
rotation estimation branch are replaced by an architecture similar to the segmen-
tation and translation estimation branch. The segmentation estimation branch
has 64 feature maps to estimate one value, which was increased in the design of
PoseCNN to 128 for the vertex branch, since it estimates three values. Since we
are predicting four values for each pixel, we increase the number of feature maps
to 256.

5.1.1 Training ConvPoseCNN
For training ConvPoseCNN we generally follow the same approach as for PoseCNN:
We use SGD with momentum on the combined loss L = Lseg + Ltrans + Lrot. We
calculate the rotation loss pixel-wise using the ground truth segmentation. For a
pixel-wise loss, the proposed Shape loss from PoseCNN is too slow. We use either
the L2 loss or the Qloss. For two quaternions q̄ and q the L2 loss is defined as

L2(q̄, q) =
4∑

i=1

(q̄i − qi)
2. (5.1)

The Qloss was introduced by Billings and Johnson-Roberson [1] and is designed
to handle the quaternion symmetry. For two quaternions q̄ and q it is defined as

Qloss(q̄, q) = log(ε+ 1− |q̄ · q|). (5.2)

ε is a small constant used for stability.

5.1.2 Averaging or Clustering Quaternions
Since we estimate quaternions pixel-wise, we obtain many quaternions for each
object in the image and need to find a way to determine a final quaternion.

First we need to identify which quaternions belong to which object. For this we
can use the predicted segmentation. If multiple instances of one object can occur
one could use the Hough inliers. Then we need to determine a result quaternion
for each object based on the quaternions belonging to one object:

First it is possible to calculate a simple average of quaternions q̄ = 1
n

∑n
i=1 qi.

As we explained in Section 2.8.1 it is not an accurate average of the quaternions
though. For this Markley’s average is better suited.

Additionally, when considering the shape of some objects, we expect that some
parts of the object are more important for determining the correct rotation than
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Figure 5.2: Example of rotating an objects point cloud by three quaternions: One that
expresses no rotation (blue points), one that rotates the points by 90◦ (orange
points) and their average (green points). While both quaternions represent
a similar shape for the symmetric object, the averaged quaternion would not
represent that shape.

others. For example looking at a non-textured cup, most of the cup could be turned
in either direction, but the handle shows the additional information that at least
a human needs to determine the rotation. Therefore, we will also experiment with
weighting the quaternions by a confidence. For this we try different weighting
sources. One of them is the norm of the quaternions before they get normalized.
Another possibility is using the segmentation confidence.

Also depending on the object it might not be a good idea to simply average the
quaternions. For example if we have an object that is symmetric by 180◦, then it
is quite possible that the network would predict quaternions that correspond to
both likely rotations. If you average these quaternions though, you get a result
somewhere in between, as you can see in the example in Figure 5.2. Because
of this we also investigate methods that will try to cluster the quaternions, such
that, ideally, it results in an average of one potential rotation and not an average
between multiple valid rotations.

One method for finding cluster is using a RANSAC algorithm. This algorithm
repeatedly chooses a random quaternion q̄ from all quaternions {q1, ..., qn} and
then counts quaternions that are close by as inliers I. As a measure of closeness
different metrics d can be used. Also the distance threshold t and the number of
repetitions r are parameters that need to be chosen. A quaternion quaternion qi
is then an inlier if d(qi, q̄) < t. The quaternion that has the highest number of
inliers,

∑
qi∈I 1, is considered the cluster center.

We also use a modified version of this approach that considers weights. For
this we count the inliers with their weight instead of simply by number. So for
quaternions {q1, ..., qn} and weights {w1, ..., wn} and inliers I, the q̄ with the highest
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5 Fully Convolutional Architectures

Figure 5.3: The architecture of CoordPoseCNN. The direction prediction is replaced by
estimating the object coordinates and the rotation branch is dropped. Image
adapted from [46].

sum
∑

qi∈I wi is selected. Additionally, the initial quaternion q̄ in each iteration is
not chosen uniformly at random, but with a probability proportional to its weight.

5.1.3 Training with an Average Quaternion
It is also possible to first average the predicted quaternions for an object and then
calculate the loss on the average. We then train with this loss. This makes it
possible to use for example the Shape loss. We used the simple and weighted
simple average for this, since the PyTorch autograd engine is not able to compute
the gradient of Markley’s average.

5.2 CoordPoseCNN
We also tried another fully convolutional architecture derived from PoseCNN that
aims to estimate the 3D object coordinate - 2D pixel correspondences for each pixel
of the input image. The architecture is shown in Figure 5.3. Also Xiang et al.
[46] shortly mention such experiments in their paper, with the same architecture,
which they used as a base-line. However, they do not describe these experiments
in detail and refer to Brachmann et al. [3] on how they recovered the poses from
the correspondences. Brachmann et al. [3] also predict object coordinates for
each pixel and a probability for belonging to each possible class. They sample
pixels and their class according to the predicted distributions for all classes and
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then perform RANSAC for each object class separately. Their RANSAC approach
takes four pixels belonging to the same class and calculates inliers by solving the
PnP problem and calculating the reprojection error.

We use PnP for recovering the final pose for each object separately by selecting
the relevant pixel with the predicted labels. We investigated different PnP solvers
offered by OpenCV [4]. One method for solving the PnP problem is the EPnP
approach, as proposed by [23]. It is a non-iterative approach that runs in O(n) for
all n ≥ 4. The approach reduces the n 3D points to four so called virtual control
points and then estimates their 2D image correspondences.

OpenCV also offers an approach called ITERATIVE, that works by minimiz-
ing the sum of squared distances of the reprojection error. For this it uses the
Levenberg-Marquardt optimization [35]. Both algorithms can be wrapped into a
RANSAC loop.

5.3 Training CoordPoseCNN
For training we only have two losses, the segmentation loss and the coordinate loss,
so we minimized the joint loss L = Lseg + Lcoor. For the segmentation we used
again the Cross Entropy loss and for the coordinates the SmoothL1 loss, defined
in Section 5.1.1. We used the same optimizer and learning rate as PoseCNN.
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In this chapter we will describe our experiments first on recreating the PoseCNN
architecture and then comparing it to our own architectures. Additionally, we
provide insights into the models training process and design choices and report
details on the used datasets.

6.1 Datasets
Both PoseCNN and our own architectures use a VGG16 architecture pretrained
on the ImageNet dataset. ImageNet [36] contains around 21 million images for
image classification from 1000 different object classes. Our models use a VGG16
pretrained on ImageNet.

SUN2012 and ObjectNet3D are used as backgrounds for the synthetic data
SUN2012 [47] contains 16,873 images of different scenes containing a wide range
of objects. The dataset was designed as an object detection benchmark. It is part
of a bigger scene recognition benchmark. Therefore the dataset has a lot of variety.
There are indoor and outdoor scenes, rigid and non-rigid objects and small and
big objects, as for example mountains.

ObjectNet3D [45] contains 90,127 images covering 100 different scene categories.
It is a database that was made for object category detection of rigid objects. It
contains indoor and outdoor scenes. ObjectNet3D also contains some objects that
are similar, to the objects in the YCB dataset, for example scissors and pens.

6.1.1 The YCB Dataset

The YCB dataset, created by Xiang et al. [46], contains RGB and depth images of
21 objects. There are 133,936 images extracted from 92 videos, which are separated
into 113,198 training images from 80 videos and 20738 validation images from 12
separate videos. Among the validation videos there are 2950 keyframe images,
that are used as the test set. The objects include symmetric objects and objects
with strong texture or almost unicoloured surfaces. The objects of the dataset are
shown in Figure 6.1 and a sample of images is shown in Figure 6.2.
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Figure 6.1: The 21 objects of the YCB dataset. Image taken from [46].

The data is not entirely hand annotated: Only the first frame was annotated
and the rest of the frames inferred by estimating and using the camera trajectory
throughout the video. Although the poses are again refined, the annotations of
the data are therefore not perfect. The images contain among their meta-data
the objects that are present in the images, their poses and 2D centers. However,
there are images, where objects are completely or almost completely occluded.
Our experiments checking the training set showed that around 0.6 percent of the
objects listed as being present in the images are completely occluded. Additionally
there are around 0.03 percent images which are present in less than 25 pixels.

In some images the 2D center of the object lies outside the image, so the Hough
layer of the PoseCNN architecture can not detect the correct center. We also
checked the distribution of classes in the training set. It is shown in Figure 6.3.
The classes are more or less equally distributed, only the bowl appears notably
less often. Also the full or strong occlusions are quite equally distributed, so we
do not expect any classes to be underrepresented in the training set. Each image
contains on average 4.4 objects.

Additionally to the frames extracted from the videos there are around 80.000
synthetic images containing the same objects. These synthetic images are not
physically realistic and contain hovering objects. The objects appear more or less
equally often. However there are a lot of completely or very occluded objects:
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Figure 6.2: Images from the YCB dataset [46]. The training set shows varying lighting
conditions, distracting backgrounds, clutter, unfocused images and severe
occlusions. The test set (keyframes) also shows challenging scenes.
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Figure 6.3: The number of appearances of each object class in the training, synthetic
and test set. For all sets the number of actual appearances is counted, so the
complete occlusions, that are still listed in the ground truth data, are not
counted. The symmetric classes are coloured red. The class appearing the
least in the training is class 13, the bowl. The other classes are in the same
order as in the following evaluations e.g. in Table 6.1.

Around 3.8 percent of objects are completely occluded and around 4.1 percent
are smaller than 25 pixels. The synthetic set contains on average 6.4 objects per
image.

The images shown in Figure 6.2 are rendered onto images from the SUN2012
[47] and ObjectNet3D [45] backgrounds. The synthetic images saved in the YCB
dataset are without background though. We explain this further in Section 6.3,
where we discuss the differences we found in the published code, which were not
mentioned in the paper.

For the test set the hand-annotated keyframes are used. Therefore, the data
has no completely occluded objects. However, occlusions can still be very strong
as can be seen in Figure 6.2 (c2): Behind the mustard bottle, there is a soup can,
that is almost not visible.

For each object the dataset contains a point model with 2620 points each, and
a mesh file. The dataset also contains label images, poses and two-dimensional
images of the object, where the three channels correspond to the 3D object coor-
dinate, that can be seen at that pixel.

The images contain multiple relevant objects in the same images, as well as
sometimes uninteresting objects and distracting background. Notably each object
appears at most once in each image. Therefore, this dataset is not able to test the
performance for the case of multiple instances of the same class.

A particular challenge we found in this dataset are the two clamp objects, that
appear to almost only differ in size. Also their reference rotation in the dataset is
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different. Therefore confusing the clamps will lead to a wrong rotation estimation.
In Figure 6.2, in images A6 and C4, both clamps can be seen side by side. Since
the architectures work without depth information, that would help determine the
scale of the clamps, the context is therefore important for determining the correct
clamp and the correct depth of the clamps.

Evaluating on YCB

Since we want to compare to PoseCNN, we use the same set up for comparison
and also tried their code for evaluation as described in Section 6.2. However, the
number of times each object appears in the test set is quite unbalanced as Figure
6.3 shows. Therefore, the final average over the AUC losses is far more dependent
on the performance of certain objects. Furthermore, the two different losses are
of different relevance for different objects: Deciding which loss is important for
which object is, of course, dependent on the use-case. When the task is to simply
grab an object, then only the shape matters. Symmetric objects with texture
(as for example the soup can or the tuna can) are then also symmetric. On the
other hand there might be use cases where it is important which way the soup
can is facing. For our evaluation we consider the losses with our expectations of
what the network should learn: For the average of the AUC S we consider only
the untextured, symmetric objects, which are the same that the PoseCNN paper
labeled as symmetric. For the average of the AUC P we use all other objects.
This is the same division as was used for PoseCNN to train the symmetric objects
with the Sloss and others with the Ploss. The average is taken over the class
averages, so the number of occurrences in the test set is irrelevant. This way
of averaging the AUC Losses made it easier for us to see, whether our models
were actually improving. In the following evaluations we call it SymC (short for
symmetry dependent and class-wise). Also Oberweger, Rad, and Lepetit [28] use
a similar final score to compare to PoseCNN. They report only the AUC S for
the symmetric objects and only the AUC P for the non-symmetric objects. They
then take only one average over all the classes. In the following we will report our
results using the following abbreviations: [46] total, for the values reported in the
PoseCNN paper, [28] average, for their reported average and SymC. We will also
report values for which we consider only the rotation estimation (so the translation
is perfect). These averages are then called [28] ROT and SymC ROT.

Another thing we had to consider is the detection sensitivity. The way Xiang
et al. [46] evaluate, there is no penalty for detecting objects that do not appear
in the image. The Hough layer implemented by Xiang et al. [46] has a detection
threshold that only returns a detection if the maximum vote is above a certain
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threshold. We do the same for all experiments.

6.2 Implementation
We implemented our experiments using PyTorch [29], a deep learning library for
Python.

PyTorch has an automatic differentiation module that computes the gradients
for most functions and operations that PyTorch offers.

Getting a quick implementation for the Hough transform was crucial especially
for using it in the training of PoseCNN. We used Numba [21], a compiler for
Python code, that can speed up NumPy code. This significantly outperformed
our approaches to implement it in PyTorch. Since no gradient is backpropagated
through the Hough layer, we could use NumPy and Numba instead of PyTorch.

Our models ran on different NVIDIA GPUs, which had 12GB memory. We
report time measurements on the fastest one in Section 6.7.

For the pretrained VGG16 weights we used the weights provided by PyTorch.
We also used the evaluation framework published in the YCB toolbox1, which

was published by Xiang et al. [46] to verify our own implementation of the evalu-
ation. This is discussed in the next Section.

6.3 Re-implementing PoseCNN
The PoseCNN paper reports the results for their model on the YCB dataset. The
authors additionally published the saved predictions from their model in the YCB
toolbox. This toolbox also provides a framework for evaluating these saved results.
Using the toolbox to evaluate their saved model produces results that are similar,
but not exactly the same as were published in the paper. They might be from a dif-
ferent trained model than the one that produced the results reported in the paper.
Thus we had to choose which values we want to use for the baseline. Oberweger,
Rad, and Lepetit [28] compared to values from the saved model. They again get
slightly different values than the toolbox evaluation, as did we, when implementing
our own evaluation. We show the results of all sources side by side in Table 6.1.
Our own evaluation framework gets similar numbers as their MATLAB code, but
not exactly the same, which also is the case for Oberweger, Rad, and Lepetit [28].
For our baseline we use the results saved in the toolbox, but evaluate with our own
evaluation framework since then we are able to compare also with other metrics
that were not reported in the paper.

1https://github.com/yuxng/YCB_Video_toolbox
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Figure 6.4: The PoseCNN architecture based on the code published by Xiang et al. [46]
(image adapted from [46]). The original image did not contain convolutions
without ReLu activations.

We implemented PoseCNN [46] as a baseline. For this we followed the de-
scription from the paper, apart from some differences we found in the published
code2. However, the code shown in the repository has also been changed since the
PoseCNN paper was published.

While the schematic depicting PoseCNN from the original paper shows every
convolution to be followed by a ReLU, some layers explicitly do not have any
activation function in their published code. We show the difference in Figure 6.4.

Also, we noticed that instead of predicting the depth directly, the published
code is predicting the logarithm of the depth value, which is scaled back during
the Hough voting. The fully-connected layers are followed by ReLUs, except for
the last layer which returns both the output before and after using tanh. The
implemented code also contains dropout in all the branches.

The YCB dataset contains 80.000 synthetic images and the paper states that
they used 80.000 synthetic images for training, however, their code shows a possi-
bility to render synthetic images online, during training, and they add the rendered
objects on top of images from the SUN2012 [47] and ObjectNet3D [45] datasets,
which was not reported in their paper. During training they use a synthetic image

2https://github.com/yuxng/PoseCNN/
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Figure 6.5: Left: The results for the translation from the original PoseCNN paper (image
taken from [46]); middle: the results we achieved using the changed architec-
ture, predicting the logarithm of the depth and scaling the depth by a factor
of 100; right: our results when using the logarithm, but no depth scaling.
We do not use ICP refinement for our results.

with a probability of 80%. If a synthetic image should be used, it is rendered and
added to a random background. We do the same, but do not render new images,
but use the ones provided in the dataset.

Training the network to achieve results similar to their paper turned out be
a challenge. PoseCNN first trains segmentation and translation. We trained the
network with training set and synthetic dataset for both the logarithm of the depth
and without for at least three epochs each, checking during the training using the
validation set and finally testing on the keyframes. For both options the translation
error of the network was too high to reach the results of the paper. Especially the
error of the depth prediction was very high, which caused the an overall high
translation error, since the translation of the other dimensions is recovered using
the predicted depth. We then tried scaling the depth to improve the estimate,
which for a scaling factor of 100 gave results, that closely resemble the depicted
performance in the PoseCNN paper. We show the evaluation curves in Figure
6.5. We used the model trained with segmentation and vertex loss after 40,000
iterations, as was indicated in an earlier version of the PoseCNN paper. Training
these losses first, enables the network to train with its predicted RoIs immediately.

Another detail, that was not mentioned in the paper, but turned out to be
important for the overall performance, was the initialization of the transposed
convolution layers. The layers are initialized to perform a class-wise bilinear up-
sampling. Weights of connections between different classes are set to zero.

As the PoseCNN implementation, we chose a batch size of 2. The Shapeloss
is extremely small compared to the other losses and training with a scaled loss
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showed much better performance. This was true also for trials where the depth of
the vertex loss was not scaled.

We also noticed that the Shapeloss had trouble learning. If we use it unscaled,
even for toy examples, the proposed learning rate is too small. Therefore we
also scaled the rotation loss. Additionally, we experimented with decreasing the
learning rate, as in the published code. However, the resulting learning rate is very
small and the network stops improving. We tried both training with and without
tanh, as well as using tanh or not at test time. We got the best results when using
tanh for training and not for testing.

Trying the possibilities above, the best result we got is shown in Table 6.2. The
total, as Xiang et al. [46] reports them, that our re-implementation achieves, is
similar to the original PoseCNN. Our model is worse at predicting the rotation
though, as can be seen with the angle loss. The translation, on the other hand, is
good enough, that the final AUC values are still similar.

We also evaluated the translation and segmentation class-wise, shown in Table
6.3. The segmentation of the toolbox model is better than of our implementation,
our implementation has a smaller translation error. The potted meat can, the
woodblock and the extra large clamp have a large translation error. The clamp
objects have a small segmentation Intersection over Union (IoU) in both models.
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PoseCNN Paper YCB toolbox [28] Our evaluation
class AUC P AUC S AUC P AUC S AUC AUC P AUC S
master_chef_can 50.9 84.0 50.18 83.92 50.1 50.08 83.72
cracker_box 51.7 76.9 53.07 76.86 52.9 52.94 76.56
sugar_box 68.6 84.3 68.42 84.25 68.3 68.33 83.95
tomato_soup_can 66.0 80.9 66.16 81.00 66.1 66.11 80.90
mustard_bottle 79.9 90.2 80.99 90.43 80.8 80.84 90.64
tuna_fish_can 70.4 87.9 70.65 88.05 70.6 70.56 88.05
pudding_box 62.9 79.0 62.70 79.05 62.2 62.22 78.72
gelatin_box 75.2 87.1 75.21 87.22 74.8 74.86 85.73
potted_meat_can 59.6 78.5 59.50 78.5 59.5 59.40 79.51
banana 72.3 85.9 72.33 85.99 72.1 72.16 86.24
pitcher_base 52.5 76.8 53.27 76.98 53.1 53.11 78.08
bleach_cleanser 50.5 71.9 50.31 71.56 50.2 50.22 72.81
bowl 6.5 69.7 3.33 69.61 69.8 3.10 70.31
mug 57.7 78.0 58.54 78.16 58.4 58.39 78.22
power_drill 55.1 72.8 55.31 72.70 55.2 55.21 72.91
wood_block 31.8 65.8 26.61 64.33 61.8 26.19 62.43
scissors 35.8 56.2 35.82 56.88 35.3 35.27 57.48
large_marker 58.0 71.4 58.27 71.73 58.1 58.11 70.98
large_clamp 25.0 49.9 24.59 50.16 50.1 24.47 51.05
extra_large_clamp 15.8 47.0 16.06 44.11 46.5 15.97 46.15
foam_brick 40.4 87.8 40.24 87.99 85.9 39.90 86.46
[46] total 53.7 75.9 53.71 75.81 53.70 76.12
SymC average 60.44 64.04 60.67 63.24 60.49 63.28
average by [28] 61.3 61.28 61.0 61.15

Table 6.1: Comparison of different PoseCNN result values: First, from the pub-
lished paper [46], second, the published model from the YCB toolbox
evaluated with the toolbox, then, Oberweger, Rad, and Lepetit [28]
values calculated from the model, as well as our own evaluation of the
model. The different averages are from the different papers and are ex-
plained in Section 6.1.1. The average that was reported in the respective
papers is bold. The coloured objects are symmetric.
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Our implementation YCB toolbox model
AUC P AUC S angle AUC P AUC S angle

002_master_chef_can 53.84 89.19 61.74 50.08 83.72 50.71
003_cracker_box 55.80 81.01 26.76 52.94 76.56 19.69
004_sugar_box 63.30 80.95 18.17 68.33 83.95 9.29
005_tomato_soup_can 57.49 80.87 59.40 66.11 80.90 23.17
006_mustard_bottle 62.79 88.33 58.97 80.84 90.64 9.94
007_tuna_fish_can 67.60 90.99 66.55 70.56 88.05 32.80
008_pudding_box 60.64 79.24 32.77 62.22 78.72 10.20
009_gelatin_box 87.26 93.22 12.63 74.86 85.73 5.25
010_potted_meat_can 55.39 75.92 68.85 59.40 79.51 31.24
011_banana 54.36 76.49 35.44 72.16 86.24 15.48
019_pitcher_base 64.47 84.63 17.48 53.11 78.08 11.98
021_bleach_cleanser 43.47 73.43 53.74 50.22 72.81 20.85
024_bowl 20.95 69.50 108.69 3.09 70.31 130.54
025_mug 60.19 80.85 19.88 58.39 78.22 19.44
035_power_drill 64.60 82.42 21.28 55.21 72.91 9.91
036_wood_block 0.13 17.54 109.87 26.19 62.43 23.63
037_scissors 58.65 77.61 53.10 35.27 57.48 43.98
040_large_marker 59.36 72.43 94.49 58.11 70.98 92.44
051_large_clamp 22.13 58.70 97.09 24.47 51.05 97.89
052_extra_large_clamp 4.57 61.50 136.49 15.97 46.15 126.82
061_foam_brick 43.96 87.63 130.49 39.90 86.46 160.37
[46] total 52.20 78.22 53.71 76.12
SymC 60.58 58.97 43.83 60.49 63.28 25.40
[28] average 60.19 61.15

Table 6.2: Our re-implementation vs the PoseCNN results, both evaluated using
our own framework. The results from PoseCNN shown are from the
model in the YCB toolbox. The angle error is given in degrees. The
SymC average of the angle is the class-wise average of the angles of the
non-symmetric objects. The symmetric objects are coloured.
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Our implementation YCB toolbox model
translation SEG IoU translation SEG IoU

002_master_chef_can 0.0224 0.8842 0.0329 0.8836
003_cracker_box 0.0284 0.8805 0.0402 0.9063
004_sugar_box 0.0331 0.8905 0.0306 0.9371
005_tomato_soup_can 0.0559 0.8715 0.0582 0.8782
006_mustard_bottle 0.0169 0.9262 0.0172 0.9426
007_tuna_fish_can 0.0180 0.9001 0.0241 0.9217
008_pudding_box 0.0333 0.6387 0.0369 0.7790
009_gelatin_box 0.0107 0.9246 0.0249 0.9082
010_potted_meat_can 0.1297 0.7590 0.0524 0.8537
011_banana 0.0341 0.8669 0.0243 0.9096
019_pitcher_base 0.0270 0.9513 0.0443 0.9574
021_bleach_cleanser 0.0463 0.8697 0.0486 0.8919
024_bowl 0.0559 0.8611 0.0523 0.9129
025_mug 0.0376 0.8809 0.0400 0.8769
035_power_drill 0.0284 0.8806 0.0459 0.8798
036_wood_block 0.1802 0.5556 0.0634 0.8331
037_scissors 0.0343 0.6593 0.0640 0.6643
040_large_marker 0.0356 0.6532 0.0389 0.7027
051_large_clamp 0.0880 0.4718 0.1149 0.4722
052_extra_large_clamp 0.1179 0.4381 0.1958 0.3528
061_foam_brick 0.0266 0.8723 0.0248 0.9011
class-wise average 0.0505 0.7922 0.0512 0.8269

Table 6.3: An evaluation of the class-wise segmentation, measured as the IoU (SEG
IoU) and of the translation estimation performance of the YCB toolbox
model of PoseCNN and our re-implementation.
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6.4 Estimating Quaternions Pixel-wise
Developing our model was an incremental process, since some model behaviour
surprised us and inspired new ideas. Therefore we will first show some of the
insights we gained when trying our model and how we used them to improve it.
Lastly, we will compare different versions to each other and to PoseCNN.

6.4.1 Training ConvPoseCNN
For training the pixel-wise model we used the architecture described in Section
5.1. While PoseCNN needs to pretrain segmentation and translation, since they
use the RoIs for training, ConvPoseCNN can be trained directly. We trained one
model with the L2 loss as the rotation loss and one with the Qloss, in the following
we call these two trained models ConvPoseCNN L2 and ConvPoseCNN Qloss. As
for PoseCNN, we used SGD with momentum (0.9) and a learning rate of 0.001
and then trained for around 300.000 iterations with batchsize 2 on the training
and synthetic data set. We used the validation set to select a good model and
tested on the keyframes. As for PoseCNN we had to scale the depth by 100, since
the translation estimation of the networks are the same. We did not scale any of
the other losses.

6.4.2 Visualizing the Weighted Quaternions
In order to understand which averaging or clustering methods might be success-
ful in determining a final quaternion from the pixel-wise estimations, we first
visualized the pixel-wise predictions. For this we used PCA (reducing to three
dimensions) as well as a rotation-axis representation. Both showed similar results
therefore we will show only the rotation-axis images.

For the rotation-axis representation, we mapped each quaternion (qw, qx, qy, qz)

to a 3D unit ball. qx, qy, qz are represented as the direction of a vector with the
direction of qx, qy, qz on the x, y and z coordinate axis. qw is shown in the length
of the vector. We plotted the endpoint of this vector for each quaternion using the
visualization framework visdom3.

Looking at the visualizations showed us that against our intuition the quaternion
that we were trying to estimate was not the center of any quaternion cluster
that our network predicted. Instead in almost all seen samples it is lying on the
border or outside the area, where the predictions lie. Figure 6.6 shows an example
visualization.

3https://github.com/facebookresearch/visdom
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Figure 6.6: The quaternions predicted for a bleach cleanser by CoordPoseCNN L2, vi-
sualized using the rotation axis representation. The left image shows the
quaternions coloured by the angle between them and the ground truth
quaternion The lowest error is less than 20 degrees (purple), then 30 (red), 40
(green), 50 (orange) and below 100 (blue). The right image shows the same
quaternions coloured by the Sloss. The order of the colours with regard to
the error size is the same as before. The ground truth quaternion is circled
in red.

ConvPoseCNN L2 [46] total SymC SymC ROT
AUC P AUC S AUC P AUC S AUC P AUC S

PoseCNN 53.71 76.12 60.49 63.28 86.90 87.01
simple avg. 55.76 78.70 61.25 58.38 76.67 82.08
norm weighted avg. 56.51 78.91 62.3 58.42 78.41 82.37
[27] avg. 56.59 78.86 62.16 58.54 78.04 82.28
[27] norm weighted avg 57.13 79.01 62.99 58.52 79.42 82.53
[27] segm. weighted avg 56.63 78.87 62.23 58.54 78.22 82.28

Table 6.4: Results of the different averaging strategies, defined in Section 6.1.1, for
ConvPoseCNN L2. The best results, excluding PoseCNN, are in bold.
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ConvPoseCNN Qloss [46] total SymC SymC ROT
AUC P AUC S AUC P AUC S AUC P AUC S

PoseCNN 53.71 76.12 60.49 63.28 86.90 87.01
simple avg. 55.90 76.47 63.12 52.96 85.04 84.50
norm weighted avg. 56.53 76.74 64.06 53.23 86.64 85.67
[27] avg. 56.57 76.69 63.51 53.53 85.70 85.62
[27] norm weighted avg. 56.98 76.90 64.28 53.69 87.05 86.39
[27] segm. weighted avg. 56.67 76.74 63.64 53.64 85.94 85.97

Table 6.5: Results of the different averaging strategies, defined in Section 6.1.1,
for ConvPoseCNN Qloss. The best results, excluding PoseCNN, are in
bold.

6.4.3 Comparison of Different Averaging Strategies

First, we evaluated some of the simple averaging strategies described in Section
2.8. We show the results for the model trained with the L2 loss in Table 6.4 using
the AUC averages as described in Section 6.1.1. As weights we use either the norm
of the quaternions before normalizing, which we also call their confidence, or the
segmentation confidence.

Markley’s averaging method [27] performs better than the simple average and
the norm weights improve both averages. The results for the non-symmetric ob-
jects are a bit better in comparison to PoseCNN. Using the AUC S from the paper,
the methods also all perform better than PoseCNN. However, as the SymC aver-
age shows, are the poses of the symmetric objects not estimated better than by
PoseCNN. Also the norm weights do not seem to work as well for the symmetric
objects as for the non-symmetric objects. When looking at the SymC AUCs cal-
culated using only the rotation, we see a big difference to PoseCNN. The rotation
estimation of the ConvPoseCNN is worse than of PoseCNN, however, the transla-
tion must be better, as we confirm in Section 6.4.7. The comparison between the
SymC losses with and without rotation also shows, that there is a difference be-
tween the translation estimation of symmetric objects and non-symmetric objects.

We show the results for the model trained with the Qloss in Table 6.5. The
results are better for the non-symmetric objects and worse for the symmetric ones,
compared to the L2 trained model, when considering both rotation and translation.
For only the rotation, the Qloss model performs better than the L2 model and very
similar to PoseCNN. Markley’s method weighted by the confidence, produces the
best results.
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ConvPoseCNN L2 [46] total SymC SymC ROT
AUC P AUC S AUC P AUC S AUC P AUC S

PoseCNN 53.71 76.12 60.49 63.28 86.90 87.01
pruned(0) 57.13 79.01 62.99 58.52 79.42 82.53
pruned(0.5) 57.43 79.14 63.52 58.55 80.34 82.91
pruned(0.75) 57.43 79.19 63.59 58.60 80.48 83.16
pruned(0.85) 57.39 79.21 63.53 58.68 80.42 83.39
pruned(0.9) 57.37 79.23 63.48 58.74 80.34 83.53
pruned(0.95) 57.39 79.21 63.53 58.68 80.42 83.39
most confident 57.11 79.22 63.17 59.01 79.80 84.11

Table 6.6: Results of the averaging strategies using the norm weighting for the
ConvPoseCNN L2. All, except the most confident one, were averaged
using Markley’s [27] method. The best results, excluding PoseCNN, are
in bold.

Removing Unconfident Quaternions

Since the weighting with the confidences worked so well we increased their effect
for the averaging. For this we used the following strategies:

• pruned(x): The quaternions are sorted by their confidences and the x percent
less confident ones are removed

• most confident: Only the most confident quaternion is taken.

The remaining quaternions are averaged using Markley’s weighted averaging method.
The results for the L2 model are shown in Table 6.6. Removing less confident
quaternions shows an improvement for both losses. The symmetric objects show a
clear improvement when there are less predictions, which might mean, that the pre-
dictions span multiple possible shape equivalent possibilities. The non-symmetric
objects perform better if there are around 25% of quaternions left, however, the
performance does not change much when up to 95% are removed.

The Qloss trained model, shown in Table 6.7, similarily improves when uncon-
fident quaternions are removed. Here also the non-symmetric objects perform
better when more quaternions are removed, the preformance difference between
the different pruning rates is smaller as for the L2 model.

6.4.4 Comparison with Clustering Strategies
For clustering we used both RANSAC strategies, described in 5.1.2. We used the
angle loss as a distance metric, since it can be calculated fast but unlike for the
L2 metric there are no problems with the quaternion symmetry.
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6.4 Estimating Quaternions Pixel-wise

ConvPoseCNN Qloss [46] total SymC SymC ROT
AUC P AUC S AUC P AUC S AUC P AUC S

PoseCNN 53.71 76.12 60.49 63.28 86.90 87.01
pruned(0) 56.98 76.90 64.28 53.69 87.05 86.39
pruned(0.5) 57.07 76.96 64.49 53.76 87.47 86.76
pruned(0.75) 57.12 77.03 64.61 53.89 87.69 87.16
pruned(0.8) 57.11 77.04 64.64 53.91 87.73 87.21
pruned(0.9) 57.07 77.06 64.65 53.96 87.77 87.31
pruned(0.95) 57.00 77.06 64.62 53.98 87.72 87.35
most confident 56.72 77.04 64.54 53.94 87.56 87.27

Table 6.7: Results of the averaging strategies using the norm weighting for the
ConvPoseCNN Qloss. All, except the most confident one, were averaged
using Markley’s [27] method. The best results, excluding PoseCNN, are
in bold.

The results for the L2 trained model are shown in Table 6.8. The number in the
brackets indicates the angle threshold in radian. For all we used 50 iterations. For
comparison the best performing averaging strategies are also listed. Symmetric
and non-symmetric objects perform best, according to only the rotation, with an
inlier threshold of 0.2 radians (around 11.5 degrees). Even then they are slightly
worse than the best averaging strategies. The weighted RANSAC variant performs
generally a bit better than the non-weighted one for the same inlier thresholds.

6.4.5 Confidence Weighting

Since weighting the predicted quaternions with their confidence gave good results,
we experimented with learning confidence weights. For this we used a slightly
changed architecture, where a confidence weight is learned with each quaternion.
So instead of returning four times the number of classes for each pixel, the network
now returns five times the number of classes. The quaternions are normalized as
before and the fifth value is used as the confidence weight.

Generally, the training of this model suffered from instabilities. We used the
already trained model from the previous experiments as a starting point. In order
to train the confidence weights we calculated the weighted average of the predicted
quaternions with regard to the learnt weights for each object and then calculated
the loss with that quaternion. For the average we used the simple weighted average,
since PyTorch’s autograd module can not calculate the gradient for Markley’s
average.

Doing this, we got the results shown in Table 6.10. The model has better results
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ConvPoseCNN L2 [46] total SymC SymC ROT
AUC P AUC S AUC P AUC S AUC P AUC S

PoseCNN 53.71 76.12 60.49 63.28 86.90 87.01
RANSAC(0.1) 57.18 79.16 63.26 58.69 80.01 83.39
RANSAC(0.2) 57.36 79.20 63.31 58.76 80.11 83.59
RANSAC(0.3) 57.27 79.20 63.14 58.80 79.80 83.48
RANSAC(0.4) 57.00 79.13 62.70 58.91 79.05 83.55
weighted RANSAC(0.1) 57.27 79.20 63.39 58.73 80.25 83.53
weighted RANSAC(0.2) 57.42 79.26 63.48 58.85 80.39 83.72
weighted RANSAC(0.3) 57.38 79.24 63.38 58.83 80.15 83.58
pruned(0.75) 57.43 79.19 63.59 58.60 80.48 83.16
most confident 57.11 79.22 63.17 59.01 79.80 84.11

Table 6.8: Results for different RANSAC clustering strategies for the L2 trained
ConvPoseCNN and the best performing averaging methods for com-
parison. The best results excluding the PoseCNN results are marked
bold.

ConvPoseCNN Qloss [46] total SymC SymC ROT
AUC P AUC S AUC P AUC S AUC P AUC S

posecnn 53.71 76.12 60.49 63.28 86.90 87.01
RANSAC(0.1) 57.14 77.08 64.59 53.98 87.81 87.83
RANSAC(0.2) 57.05 77.05 64.42 54.03 87.26 87.94
RANSAC(0.3) 56.79 76.97 64.07 54.06 86.35 87.81
RANSAC(0.4) 56.45 76.89 63.62 54.09 85.34 87.59
weighted RANSAC(0.05) 57.11 77.07 64.74 53.91 88.04 87.54
weighted RANSAC(0.1) 57.16 77.08 64.75 53.95 88.02 87.60
weighted RANSAC(0.2) 57.04 77.05 64.59 54.02 87.52 87.68
weighted RANSAC(0.3) 56.82 76.99 64.32 54.02 86.80 87.47
weighted RANSAC(0.4) 56.59 76.91 64.00 53.98 86.05 87.18
pruned(0.9) 57.07 77.06 64.65 53.96 87.77 87.31
pruned(0.95) 57.00 77.06 64.62 53.98 87.72 87.35

Table 6.9: Results for different RANSAC clustering strategies for the Qloss trained
ConvPoseCNN and the best performing averaging methods for compar-
ison. The best results excluding the PoseCNN results are marked bold.
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[46] total SymC SymC ROT
AUC P AUC S AUC P AUC S AUC P AUC S

[27] avg. 56.59 78.86 62.16 58.54 78.04 82.28
[27] weighted avg. 57.13 79.01 62.99 58.52 79.42 82.53
Conf [27] avg. 57.45 78.95 64.11 55.82 78.53 83.37
Conf [27] weighted avg. 57.48 78.97 64.12 55.83 78.54 83.31

Table 6.10: The results of ConvPoseCNN L2, at the top of the table, and the
results of the network adapted to learn a weighting, below (Conf).
The second network was initialized with the weights of the first one.

for the AUC P, but worse for AUC S than ConvPoseCNN. The weighting by the
learnt confidences does not improve the average much. The improvement using the
confidence weights in the original ConvPoseCNN is greater, therefore we conclude
that the other weighting leads to a better performance.

6.4.6 Training with the Shapeloss

Since computing the Shapeloss for all quaternions is too time consuming for train-
ing, we had to calculated an average quaternion first and then calculate the
Shapeloss to the ground truth quaternion. We use the simple average. Using
Markley’s average would probably produce better results, but PyTorch’s autograd
engine is not able to automatically differentiate the operation, therefore, using it
for training would require calculating and implementing it.

As for the training of PoseCNN it was necessary to weigh the loss, so L = Lseg+

Ltrans + αLrot. The best results for ConvPoseCNN Shapeloss were achieved using
α = 10. They are shown in Table 6.11. For the Shapeloss trained model, the norm
weights improve the averages, but pruning does not. Since the network is trained
with an average, it is likely that the quaternions are encouraged to lie around the
quaternion, so that the average is close to the estimate. Supporting this idea is
that pruning the less confident quaternions does not improve the results. Also,
RANSAC produces worse estimates than the averaging methods, but improves the
higher the distance threshold is. If the distance threshold is large, then RANSAC
is similar to an average.

6.4.7 Influence of Translation and Segmentation

Even though our aim was to improve the rotation estimation of PoseCNN, the
results show that this can not be isolated from the translation estimation. Scaling
the losses seems to create a trade off between translation and rotation estimation
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ConvPoseCNN Shapeloss [46] total SymC SymC ROT
AUC P AUC S AUC P AUC S AUC P AUC S

PoseCNN 53.71 76.12 60.49 63.28 86.90 87.01
simple avg. 53.11 78.55 59.66 56.33 72.71 87.01
simple weighted avg. 55.11 79.08 62.29 56.41 76.64 87.15
[27] avg. 54.27 78.94 61.21 56.35 74.89 87.03
[27] norm weighted avg. 55.54 79.27 62.77 56.42 77.54 87.16
[27] seg. weighted avg. 54.44 79.00 61.36 56.40 75.16 87.10
pruned(50) 55.33 79.29 62.40 56.56 77.11 87.12
pruned(0.75) 54.62 79.09 61.55 56.57 75.71 86.88
pruned(0.85) 53.86 78.85 60.67 56.52 74.41 86.47
pruned(0.9) 53.23 78.66 60.00 56.47 73.43 86.14
RANSAC(0.2) 49.44 77.65 56.09 56.33 67.97 86.43
RANSAC(0.3) 50.47 77.92 57.30 56.41 69.62 86.66
RANSAC(0.4) 51.19 78.09 58.17 56.40 70.85 86.72
weighted RANSAC(0.2) 49.56 77.73 56.29 56.33 68.35 86.36
weighted RANSAC(0.3) 50.54 77.91 57.33 56.41 69.82 86.58
weighted RANSAC(0.4) 51.33 78.13 58.16 56.45 70.99 86.76

Table 6.11: The results for ConvPoseCNN Shapeloss. The methods are the same as
used for the other evaluations. The pruning methods use Markley’s [27]
average. The best results excluding the PoseCNN results are marked
bold.
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6.5 Estimating Object Coordinates

[28] [28] ROT translation SEG IoU
PoseCNN 61.15 86.93 0.0520 0.8369
PoseCNN (reimplementation) 60.19 78.42 0.0484 0.8136
ConvPoseCNN Qloss 62.18 87.92 0.0565 0.7725
ConvPoseCNN Shapeloss 61.26 79.83 0.0455 0.8038
ConvPoseCNN(L2) 62.38 81.18 0.0411 0.8044
Ground truth semantic segmentation used
PoseCNN (re-implementation) 62.08 79.75 0.0345 1
ConvPoseCNN Qloss 63.57 88.72 0.0386 1
ConvPoseCNN Shapeloss 63.23 80.11 0.0316 1
ConvPoseCNN L2 64.52 81.82 0.0314 1

Table 6.12: The average translation error, the segmentation IoU and the AUC
losses, averaged as by Oberweger, Rad, and Lepetit [28] for different
models. The AUC results were achieved using weighted RANSAC 0.1
for ConvPoseCNN Qloss, Markley’s norm weighted average for Con-
vPoseCNN Shapeloss and weighted RANSAC(0.2) for ConvPoseCNN
L2.

performance. While overall our models reach similar AUC values, some perform
better for the rotation and some better for the rotation even though, the translation
estimation branch is the same for all of these networks. We want to look at
the performance of the model with regard to translation and segmentation more
closely. For this we report the average translation error and the segmentation
IoU for all models in Table 6.12. They show that there is a strong influence of
the translation estimation on the AUC losses. However, for the models with a
better translation estimation, the orientation estimation is worse. We conclude
that finding a proper balancing between translation and orientation estimation is
important but difficult to achieve. Also, the segmentation performance affects the
results.

We also included results in Table 6.12 that were produced by evaluating us-
ing the ground truth semantic segmentation, in order to evaluate how much our
model’s performance could improve by the segmentation performance alone. If
the segmentation is perfect, then the rotation and the translation estimation of all
models improves. Even the re-implemented PoseCNN improves its rotation, there-
fore the RoIs must have improved by the better translation and inlier estimation.
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[46] total SymC SymC ROT
AUC P AUC S AUC P AUC S AUC P AUC S

ITERATIVE 0.07 0.18 0.06 0.15 24.31 80.38
ITERATIVE RANSAC 2.18 4.85 2.33 1.71 33.96 80.65
EPNP 7.20 16.09 7.71 6.08 64.21 83.71
EPNP RANSAC 9.19 21.38 9.47 9.55 58.89 82.70

Table 6.13: Results of the CoordPoseCNN for different PNP methods.

6.5 Estimating Object Coordinates
We trained the CoordPoseCNN as described in Section 5.2. Again scaling the
loss was essential for the model to learn. A scaling of 100 for the loss of the
the object coordinate prediction, Lcoor, gave the best results. We trained the
network for around 300,000 iterations and then tried different PnP solvers offered
by the OpenCV implementation, described in Section 2.6. Doing this we got the
results shown in Table 6.13. As expected, this approach performs badly on the
symmetric, textureless objects. But it also performs worse than the pixel-wise
quaternion estimation in general.

6.5.1 Adding External Translation
From the previous results you can see that CoordPoseCNN does not estimate the
translation well. Though not reported in the table, we calculated the translation
error for the dimensions separately and could see that especially the depth pre-
diction error is high. The results of the rotation are also not that good. It is
possible to combine the estimated rotation with a better translation estimation.
For this we used the translation estimation of PoseCNN and the EPNP method
for RANSAC since it has the best results for the rotation only AUCs. Using these
two regressors together improved the result to a SymC AUC P loss of 53.19 and a
SymC AUC S loss 58.99. That is worse for AUC P than for the ConvPoseCNN L2
and Qloss models. AUC S on the other hand surprisingly reaches the performance
of ConvPoseCNN L2.

6.6 Comparison to PoseCNN
We compare the best models from our previous evaluation more closely with
PoseCNN. Some models are better in translation and some in rotation, as we
noticed before. We chose the best ConvPoseCNN model by the [28] average and
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6.7 Time Comparisons

Figure 6.7: An example where ConvPoseCNN confuses the clamps.

report the class-wise results in Table 6.16. The table shows well some of the
difficulties that we noticed in the dataset: The two clamps are easy to confuse.
Because of this the segmentation is bad and rotation and translation errors are
high. When looking at visualizations of the prediction for images with both clamps
we can often see that the center of one clamp is close to that of the other, because
the network can not distinguish between the two different classes, which leads to
a bad translation. An example of that is shown in Figure 6.7.

Another object that has very bad results is the woodblock. Here the segmenta-
tion is not much worse than the average, but the results for translation and AUC
S are far worse than average. We also show some qualitative results of the Con-
vPoseCNN L2 model in Figure 6.8. The detailed results for our baseline PoseCNN
are shown in Table 6.17.

The weak performance of the ConvPoseCNN for some of the classes might in-
dicate some weakness of the ConvPoseCNN, however, also our implementation
of PoseCNN shows a much higher translation error for the woodblock class than
the PoseCNN model from the toolbox. Here also the segmentation IoU is below
average. The bad results for this class are therefore likely caused by the training
process and not due to the ConvPoseCNN architecture itself.

6.7 Time Comparisons
We timed our models on a NVIDIA GTX 1080 Ti with 11 gigabytes of memory.
Table 6.14 lists the training times for the different models, as well as the model
sizes when saved. The training of the ConvPoseCNNs is faster and the models are

59



6 Experiments

Figure 6.8: Some qualitative results of ConvPoseCNN L2 using pruned(0.75).

it/s model size
PoseCNN 1.18 1.1 GB
ConvPoseCNN L2 2.09 308,9 MB
ConvPoseCNN Qloss 2.09 308,9 MB
ConvPoseCNN Shapeloss 1.99 308,9 MB
CoordPoseCNN 3.89 164 MB

Table 6.14: Training times for our implementation of PoseCNN, ConvPoseCNN
and CoordPoseCNN reported in iterations per second. The values are
produced using a batch size of 2 and averaging over 400 iterations.
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time total in seconds it/s
PoseCNN 557 5.29

ConvPoseCNN

simple average 538 5.48
Markley 572 5.16
Markley norm weighted 572 5.16
Pruned(0.75) 586 5.03
RANSAC 838 3.52
weighted RANSAC 2908 1.01

Table 6.15: The total time measured on the test set with 2949 images and the
resulting number of iterations per second. The batch size is 1.

smaller compared to PoseCNN, CoordPoseCNN is even smaller and faster.
The speed of the ConvPoseCNN models at test time depend on the method

used to determine the final quaternion. The times on the test set are shown
in Table 6.15. A ConvPoseCNN L2 model was used to measure the time for
the ConvPoseCNN model. For the averaging methods the times do not differ
much from PoseCNN. PoseCNN takes longer to produce the output, but then
does not need to perform any other step. For ConvPoseCNN the simple averaging
method is the fastest, followed by the other averaging methods. RANSAC is slow.
The averaging methods are implemented in PyTorch since we also use them for
training. They could possibly be sped up for testing though by using a different
implementation.
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class AUC P AUC S angle translation SEG IoU
002_master_chef_can 62.32 89.55 48.90 0.0193 0.88
003_cracker_box 66.69 83.78 11.55 0.0293 0.89
004_sugar_box 67.19 82.51 10.43 0.0315 0.90
005_tomato_soup_can 75.52 88.05 29.25 0.0450 0.87
006_mustard_bottle 83.79 92.59 17.67 0.0110 0.93
007_tuna_fish_can 60.98 83.67 38.88 0.0322 0.90
008_pudding_box 62.17 76.31 17.54 0.0527 0.64
009_gelatin_box 83.84 92.92 22.53 0.0098 0.93
010_potted_meat_can 65.86 85.92 38.85 0.0368 0.83
011_banana 37.74 76.30 76.08 0.0275 0.82
019_pitcher_base 62.19 84.63 19.79 0.0288 0.95
021_bleach_cleanser 55.14 76.92 38.59 0.0377 0.83
024_bowl 3.55 66.41 123.61 0.0619 0.82
025_mug 45.83 72.05 23.03 0.0489 0.77
035_power_drill 76.47 88.26 13.08 0.0193 0.88
036_wood_block 0.12 25.90 105.10 0.1195 0.71
037_scissors 56.42 79.01 62.43 0.0362 0.68
040_large_marker 55.26 70.19 75.98 0.0358 0.63
051_large_clamp 29.73 58.21 112.26 0.0948 0.42
052_extra_large_clamp 21.99 54.43 84.86 0.1056 0.35
061_foam_brick 51.80 88.02 103.80 0.0241 0.87
[46] total 57.43 79.19
SymC 63.59 58.60 34.04 0.0432 0.79
[28] average 62.40

Table 6.16: The detailed results for the ConvPoseCNN(L2) pruned(0.75) model,
that has the best score as defined by Oberweger, Rad, and Lepetit [28]
of all ConvPoseCNN models. The averages stated for the segmenta-
tion IoU and the translation error are a class-wise average. For the
angle loss average the angle losses of the symmetric objects were not
considered.
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class AUC P AUC S angle translation segm. IoU
002_master_chef_can 50.08 83.72 50.71 0.0329 0.88
003_cracker_box 52.94 76.56 19.69 0.0402 0.91
004_sugar_box 68.33 83.95 9.29 0.0306 0.94
005_tomato_soup_can 66.11 80.90 23.17 0.0582 0.88
006_mustard_bottle 80.84 90.64 9.94 0.0172 0.94
007_tuna_fish_can 70.56 88.05 32.80 0.0241 0.92
008_pudding_box 62.22 78.72 10.20 0.0369 0.78
009_gelatin_box 74.86 85.73 5.25 0.0249 0.91
010_potted_meat_can 59.40 79.51 31.24 0.0524 0.85
011_banana 72.16 86.24 15.48 0.0243 0.91
019_pitcher_base 53.11 78.08 11.98 0.0443 0.96
021_bleach_cleanser 50.22 72.81 20.85 0.0486 0.89
024_bowl 3.09 70.31 130.54 0.0523 0.91
025_mug 58.39 78.22 19.44 0.0400 0.88
035_power_drill 55.21 72.91 9.91 0.0459 0.88
036_wood_block 26.19 62.43 23.63 0.0634 0.83
037_scissors 35.27 57.48 43.98 0.0640 0.66
040_large_marker 58.11 70.98 92.44 0.0389 0.70
051_large_clamp 24.47 51.05 97.89 0.1149 0.47
052_extra_large_clamp 15.97 46.15 126.82 0.1958 0.35
061_foam_brick 39.90 86.46 160.37 0.0248 0.90
[46] total 53.71 76.12
SymC 60.49 63.28 25.40 0.0512 0.83
[28] average 61.15

Table 6.17: The detailed evaluation of our PoseCNN baseline. The values are
produced using the model from the YCB toolbox and our evaluation
framework. The averages stated for the segmentation IoU and the
translation error are a class-wise average. For the angle loss average
the angle losses of the symmetric objects were not considered.
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In this thesis we developed two fully-convolutional architectures: ConvPoseCNN
and CoordPoseCNN based on the PoseCNN [46] architecture and compared them
on the YCB dataset [46]. CoordPoseCNN estimates the visible object coordinates
pixel-wise and recovers the pose using PnP. The results show a large error of the
depth prediction. Also the rotation estimation performs worse than PoseCNN.

ConvPoseCNN replaces the fully-connected rotation estimation branch of the
PoseCNN model with a convolutional architecture that produces pixel-wise quater-
nion predictions. We experimented with using the L2 loss, the Qloss and Shape loss
for regressing the orientation. For the resulting quaternion predictions we evalu-
ated different averaging and clustering strategies and experimented with weighting
the predictions. ConvPoseCNN reaches comparable results to PoseCNN for multi-
ple training and averaging or clustering strategies. The model trained with L2 has
a lower translation estimation error than PoseCNN, but a higher error considering
the rotation, the model trained with Qloss reaches similar values for the rotation
estimation than PoseCNN, but has a higher overall translation error.

Additionally, we re-implemented PoseCNN and evaluated the performance of the
three internal branches, segmentation, translation, and rotation, separately. Even
though ConvPoseCNN changes only the rotation estimation, we noticed a trade off
effect between the translation and rotation estimation performance, that is caused
by different loss scaling. Also, improving the segmentation would improve the
whole performance further. We shifted the emphasis of the model more towards
the estimation of the translation, when we scaled the depth. All in all, training
PoseCNN and our own models is difficult and the parameters need to be selected
carefully.

ConvPoseCNN and CoordPoseCNN are faster to train and use less memory than
our own implementation of PoseCNN.

A contribution of PoseCNN is the training with Shape loss to improve the ro-
tation prediction of symmetric objects. We also used Shape loss for training, but
the results did not outperform the other models for the symmetric or the non-
symmetric objects. A possible explanation is that we train with the average of the
predicted quaternions. If the quaternions are divided between different possible
rotations, then the average of these shape equivalent estimations might not be
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shape equivalent. Therefore, the quaternions are encouraged during training to
focus on one possible rotation. That removes some of the benefits of the Shape
loss.

For future work it could be interesting to investigate methods that train pixel-
wise with the Shape loss, or to find other methods that enable the network to train
with multiple correct rotations.

We believe that ConvPoseCNN can be easily altered for the detection of multiple
object instances by using the Hough inliers to select the quaternions belonging to
each instance. This might make it more robust in cases where the instances are
so close to each other that they lie in each others bounding boxes. If in the future
such a dataset arises, it would be interesting to confirm this hypothesis.

A problem of ConvPoseCNN, as well as PoseCNN, is the balancing of the three
losses. Finding a way to remove this problem would likely improve the performance
of the networks and reduce the amount of work needed to train the regressor.
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