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Abstract
Image alignment is one of the core components for most vision-based systems to
estimate the motion between consecutive images and to establish correspondences
with subpixel accuracy. The gold-standard alignment method is the inverse com-
positional algorithm based on the original Lucas-Kanade algorithm. It has many
applications such as stereo reconstruction, tracking, image registration and Simul-
taneous Localization and Mapping (SLAM).
The underlying non-linearity of the problem and the existence of outliers make
it difficult to optimize and decide on how to weigh residuals as well as to find
good regularization parameters. Recently, Lv et al. improved the classical inverse
compositional approach through learning features, weights and damping factors
achieving good results on RGB-D data. Photometric-consistency is still a cen-
tral assumption within the algorithm and has proven to be less robust than e.g.
gradient-based similarity metrics. In this thesis, different error functions will be
tested within the framework. In our experiments, we will test the new introduced
error functions against the photometric error. In the next step, we will adapt the
framework to handle LiDAR data. We will compare the performance of the net-
work with a standard aligning method for point clouds, the Generalized Iterative
Closest Point algorithm.
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1 Introduction
When data is captured with a moving camera, the following frames can be used
to estimate the transformation of the two camera poses. Obtaining this transfor-
mation out of two consecutive images is known as image alignment. The standard
alignment algorithm is the Inverse Compositional (IC) [2] algorithm based on the
Lucas-Kanade algorithm from 1980. IC algorithm uses iterative optimization of
the transformation. It can be robustified by introducing a weight matrix in the
optimization step. Finding the right weight matrix requires domain knowledge,
which differs with each use case. By additionally introducing a damping term we
get the Levernberg-Marquardt update step. Once again the damping term can
not be chosen universally. Lv et al. [19] proposed a learned variant of the IC
algorithm, which lifts these constraints due to learned features.
In the update step of image alignment algorithms, we try to minimize a residual
between two images by finding the transformation between the two images. A
simple and effective approach to obtain the residuals is computing the difference
between the two images, which is called photometric error. In the first part of
this thesis, we evaluate the framework by Lv et al. [19] with different methods
to compute the residuals. We will use Cosine Similarity, the Structural Similarity
Index, the Gradient Magnitude, and two metrics proposed by Quenzel et al. [23].
These methods tend to be more robust against distortions than the difference, for
e.g. against lighting changes. The idea is that the new metrics can lead to a better
representation of critical points in the image. With a better representation of the
errors, the network could learn more efficiently.
In our experiments, we evaluate the different metrics on the TUM RGB-D [32]
dataset, the MovingObjects3D [5] dataset, and the ICL Pering [27] dataset. The
real-world dataset TUM RGB-D is often used for the evaluation of different algo-
rithms which gives good comparability with other algorithms. MovingObjects3D
and ICL Pering are both synthetic datasets, which give reliable depth estimation.
We use the End-Point-Error for training and the Relative-Pose-Error to evaluate
the framework.
Other than cameras, LiDAR sensors are common sensors to percept the environ-
ment. Aligning point clouds is a key component in mapping and localization tasks.
In the second part, we propose a framework to obtain the transformation between
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1 Introduction

two point clouds. It is based on the Deep Inverse Compositional algorithm [19].
We will use LiDAR range images (LRI) as input for the Two-View feature en-
coder introduced by [19] to use well-established operations like convolution. We
will compare the proposed framework to align LiDAR data against the generalized
iterative closest point (GICP) algorithm on the KITTI [11] dataset, and a dataset
captured in the DRZ Living Lab [28]. We use the End-Point-Error for training
and the Relative-Pose-Error to evaluate the framework.
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2 Fundamentals

2.1 Pinhole Camera Model
Cameras are one of the most used sensors for environment perception. Based
on this sensor a widely spread variations of algorithms are developed. There are
different methods for modeling a camera. Here, we will focus on the pinhole camera
model.
The goal of the model is to describe how 3D world objects are projected onto a
2D image plane and vice versa. A barrier with a small hole, the pinhole, is placed
between the object and the image. If there would be no barrier, all of the light rays
of the object will influence every point on the image. As one can see in Figure 2.1,

Figure 2.1: Pinhole camera model

the barrier with the pinhole establishes a one-to-one mapping between the object
and the image.
The location of the pinhole is referred to as the principal point and is given by x-
and y-coordinates in the image plane. The distance of the pinhole to the image
is referred focal length. The principal point (cx, cy)

⊺ and the focal length (fx, fy)

can be used to project a 3D point onto a 2D plane. The matrix used for this is
named the camera matrix K ∈ R3×3:

K =

 fx 0 cx
0 fy cy
0 0 1

 . (2.1)

3



2 Fundamentals

Let p = (x, y, z)⊺ ∈ R3 be a point in world coordinates. We project the point p
onto the image (u, v)⊺ ∈ Ω ⊂ R2 with the camera matrix K:u′v′

w′

 = K · p, (2.2)

(
u

v

)
=

(
u′

w′
v′

w′

)
. (2.3)

This leads to the projection function fproj : R³ 7→ R²:

⇒ fproj(p) =

(
fx

x
z
+ cx

fy
y
z
+ cy

)
. (2.4)

For many applications an image needs to be backprojected into a 3D pointcloud.
To achieve this the inverse camera matrix

K−1 =


1
fx

0 −cx
fx

0 1
fy

−cy
fy

0 0 1

 (2.5)

is applied on an image point x = (u, v, 1)⊺.

2.1.1 Jacobians of the Pinhole Model
Many computer vision applications require the Jacobians of the projection function
2.4. It is obtained by partial derivation w.r.t. each coordinate:

∂fproj
∂p = Jproj =

(
fx
fy

)
·
(

1
z

0 − x
z²

0 1
z
− y
z²

)
. (2.6)

2.2 LiDAR Range Images
Autonomous robots often use LiDARs to perceive distances to objects in their
vicinity. These measured distances are more accurate than stereo depth estimates
and can be converted to 3D point clouds. This section will explain how a 3D scan
of the environments works and how to create a 2D LiDAR range image (LRI).
A LiDAR sends out a focused light pulse and measures the time between sending
and receiving the reflected beam. The measured time is used to compute the dis-
tance. The distance and the direction of the laser pulse allow to compute the x,

4



2.2 LiDAR Range Images

y, z coordinates of the reflecting surface relative to the sensor.
To cover more space with one measurement, multiple lasers are used at once. Often
these are ordered vertically. All of them are tilted so that they cover a wide range
on the vertical axis. Rotating the sensor around its vertical axis allows to generate
a dense point cloud of the surrounding environment. This leads to measurements
in all directions. This can be thought of as placing a LiDAR sensor in the middle
of a unit sphere, where each laser would create a measurement line on different
heights.
Using an LRI instead of a point cloud is a good choice to process LiDAR scans
with neural networks since they contain all necessary information and allow to use
well-established operations for images like convolutions. The lines of each vertical
laser are mapped to the rows of the LRI. A typical number of vertical lasers would
be 64. While rotating, each measurement is mapped to a column of the image. A
typical number of taken measurements is 1024. This would lead to a 1024x64 pixel
image. The frequency of the laser scans results in the resolution on the x-axis. The
number of vertical lasers is the resolution on the y-axis.
The spherical coordinates are rather practical for dealing with LRIs, because other
than their equivalent Cartesian representations the first two entrys are not depend-
ing on the depth of the measurement. One can use the first two entrys to obtain
the pixel location within an LRI. Let p be a point in Cartesian coodinates (x, y, z),
to convert p in its spherical equivalent (θ, φ, r) following formula can be used:θφ

r

 =

 arctan( y
x
)

arccos( z
∥p∥)

‖p‖

 . (2.7)

Similar to the pinhole camera matrix, we define a spherical projection matrix:

K =

 −fx 0 cx
0 −fy cy
0 0 1

 , (2.8)

with fx as the inverse of the horizontal resolution of the laser scan and fy as the
inverse of the vertical resolution of the LiDAR scan. The principal point (cx, cy)

⊺

is defined as
(

(a·w)
2
, h
2

)⊺
, with w as the width and h as the height of the image. a

is the area of the scanner where the tilting angle is positive. cx is set to be the
center of the range image, and cy is set to match the 0° horizontal angle.
The location on the image can now be computed with K · p, with p as a point in
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Figure 2.2: Example of an LRI

spherical coordinates:

K · p =

 w − θ · fx
h− φ · fy

1

 . (2.9)

This would lead to the projection function fproj : R³ 7→ R²:

fproj(p) =
(
w − θ · fx
h− φ · fy

)
. (2.10)

While the spherical coordinates are useful for understanding how the pixel loca-
tions are determined, Cartesian coordinates are the typical choice to represent
coordinates. Figure 2.2 gives an example of an LRI. The pointcloud is captured
with a quadrocopter. The black pixel are invalid pixel.

2.2.1 Jacobians LRI

For our application we need the Jacobians of Equation (2.10). To obtain those
each part of the projection function needs to be derived w.r.t. x, y and z. We
substitude θ and φ in Equation (2.10) following Equation (2.7):

fproj(p) =
(
w − arctan( y

x
) · fx

h− arccos( z
∥p∥) · fy

)
. (2.11)

The Jacobian Matrix w.r.t. (x, y, z) = p ∈ R3 is:

∂fproj
∂p =

(
fx

fy

)
·

(
− y
x²+y²

x
x²+y² 0

− xz
(x²+y²)r2 −

yz
(x²+y²)r2

√
x²+y²
r²

)
, (2.12)

with r as norm of p.
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2.3 Transformation in 3D

2.3 Transformation in 3D

In this thesis we focus on transformations that include arbitrary rotations and
translations. We can transform a point p ∈ R3 with the rotation Matrix R ∈ R3×3

and a translation vector t ∈ R3:

p̃ = Rp + t. (2.13)

R is a rotation matrix, therefore it is an orthogonal matrix (RR⊺ = R⊺R = I) with
det(R) = +1. Matrices with these properties build the group of special orthogonal
trasformations, known as SO(3). This group is closed under multiplication.
A transformation with a rotation and a translation can be represented in a tranfor-
mation matrix T ∈ R4×4. To apply a transformation matrix on a point p, it needs
to be extended by one in the fourth dimension. This homogeneous coordinates
will be marked with [p].

[p̃] = T · [p] =
(

R t
0 1

)
· [p] (2.14)

Rotation and translation together form the special euclidean group SE(3). This is
the group of affine rigid motions.
SE(3) is a Lie group. Therefore it has an associated Lie algebra se(3). Transfor-
mations in SE(3) have six degrees of freedom (DoF), three for the rotation and
three for the translation. An arbitrary element v ∈ se(3) can be represented as a
vector in R6. The log- and exp-map convert between SE(3) and se(3) where the
Lie algebra acts as the tangent space for optimization. A detailed introduction to
Lie groups and its associated Lie algebra is given in [3].

2.3.1 Jacobians of SE(3)

The Jacobians can be divided into two parts. The first 3x3 matrix is for the
rotational part, the second for the translation:

Jwarp =

 0 z −y 1 0 0

−z 0 x 0 1 0

y −x 0 0 0 1

 . (2.15)
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2 Fundamentals

2.4 Convolutional Neural Networks

2.4.1 Convolution
Artificial intelligence improved significantly in recent years with the convolutional
neural network (CNN) paradigm. Inspired by the human visual cortex, CNNs are
organized in layers. Each layer is connected to the next by a convolutional kernel.
To process data through the network, the convolution operator ∗ : Rn 7→ Rm is
used.

(I ∗K)(u, v) =
X∑
x=0

Y∑
y=0

I(u− x, v − y)K(x, y), (2.16)

with K ∈ Rx×y as kernel and I ∈ Ω ⊂ R2 as an image. Similar to the human
visual system, the kernel values are shared in each layer and are adjustable. The
adjustment of the kernel values is known as training.
The kernel is applied locally. Thus, the first layer of a CNN obtains low-level
features, such as edges or corners. Later layers create more abstract feature rep-
resentations.

2.4.2 Fully Connected Layer
Often the convolutional layers are followed by a fully connected layer. As one
can see in Figure 2.3, in a fully connected layer, each neuron is connected to each
neuron in the next layer. Convolutional layers only use local information. In a
fully connected layer, all information is available to every neuron. The convolu-
tional part of such an architecture can be viewed as feature extraction. The fully
connected layer interprets the feature and gives a result.

Figure 2.3: Fully connected layer [10]
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2.4 Convolutional Neural Networks

2.4.3 ReLU

One reason for the success of neural networks is non-linearity. For many years the
most popular non-linearity functions were tanh or sigmoid. Recently the Rectified-
Linear-Unit is favored because it is much simpler and does not have problems with
vanishing gradients in back propagation [1].

ReLU(x) = max(0, x) (2.17)

ReLU layer often follow a convolutional layer.

2.4.4 Dilation

The idea behind dilated convolutions ∗l is to deal with the local and the global
context simultaneously. We achieve this by applying a filter with a greater size on
the input data. In addition, this filter is not considering every data point but every
lth. The number of parameters does not increase, but the size of the receptive field
does increase.

(I ∗l K)(u, v) =
X∑
x=0

Y∑
y=0

I(u− lx, v − ly)K(x, y) (2.18)

For a more detailed explaination we refer to [36].

2.4.5 Batch Normalization

Normalization of the input data is a common way to speed up the learning of a
network or handle outlier. Batch normalization is a technique to normalize data
between layers of a Neural Network instead of normalizing only the input data.
The goal is to lead the data to a mean of zero and a standard deviation of one
over one mini batch B with size m:

µB =
1

m

m∑
i=1

xi, (2.19)

σ2
B =

1

m

m∑
i=1

(xi − µB)2, (2.20)

x̃i =
xi − µB√

σ2
B

. (2.21)
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x̃i is the normalized neuron value. For a more detailed explaination we refer to
[14].
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3 Related Work

3.1 Dense Image Alignment
Many different algorithms were developed for image alignment. Kerl et al. [16]
use a coarse-to-fine approach to minimize the photometric error to align two im-
ages. Sturmberg et al. [30] published a framework that is invariant to lighting
changes. Their GN-Net uses a Gauss-Newton algorithm for optimization. Instead
of Gauss-Newton, Levenberg-Marquardt can be used to improve the robustness
against bad initialization [31]. Another approach for dense image alignment was
proposed in 1981, the original Lucas-Kanade (LK) algorithm. Different variations
of the LK algorithm were developed including the compositional and the inverse
compositional (IC) algorithm [2].

3.1.1 Lucas-Kanade Algorithm
The LK algorithm aims to align an input image I(x) to a template image T (x),
where x = (u, v)⊺ is a pixel coordinate. To achieve this the LK algorithm tries to
find a transformation W (I, ξ) on the input image I(x) to align the input and the
template image [2]. ξ is a set of warp parameters and I(ξ) is short for the warped
input image using warping function W (I, ξ).
For example let W (I, ξ) be a 2-D translation, with ξ = (p1, p2) then:

W (I, ξ) = I(ξ) = I(x̃), (3.1)

with x̃ = (u+ p1, v + p2), is the corresponding warped input image.
The goal of the LK algorithm is to minimize the objective function:

min
ξ
‖I(ξ)− T (0)‖2. (3.2)

T(0) is the template image with no warping applied. Instead of trying to solve
this directly the LK algorithm solves

min
∆ξ
‖I(ξk +∆ξ)− T (0)‖2 (3.3)

11
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iteratively, where ξk are the warp parameters at kth iteration. We use first-order
Taylor approximation to linearize this expression and to obtain warp update ∆ξ.
Therefore, we compute the derivative:

∂

∂∆ξ
(I(ξk +∆ξ)− T (0)). (3.4)

T (0) is not depending on ∆ξ, thus, we only need to take the derivative of I(ξk+∆ξ)

into consideration. We iterate over following steps of the LK algorithm [2]:

1. Compute the residual image rk(I, T ) = I(ξk)− T (0).

2. Calculate the derivative of the transformed input image w.r.t. the warping
update ∇I(ξ)∂W

∂ξ
.

3. Compute the Hessian Matrix H = [∇I ∂W
∂ξ

]⊺[∇I ∂W
∂ξ

].

4. Obtain the warp update, ∆ξk = H−1[∇I ∂W
∂ξ

]⊺rk.

5. Update the warp parameters, ξk+1 = ξk ◦∆ξ.

6. Continue with step one until convergence.

The transformation function can be chosen arbitrarily as long as it is differentiable
w.r.t. the transformation parameter ξ. Note that computing the gradient of the
transformed image in each step is very time-consuming.

3.1.2 Inverse Compositional Algorithm
To avoid the costly gradient recomputing in each step, we apply the warping update
∆ξ to T instead of I. We avoid computing the gradients of the input image I(ξ)
because it does not depend on ∆ξ anymore. The new objective function is:

min
∆ξ
‖I(ξk)− T (0 + ∆ξ)‖2. (3.5)

To linearize this, we use the first-order Taylor approximation. The derivative of
T (0+∆ξ) can now be precomputed, because T (0) does not change in each iteration
and therefore ∂T

∂∆ξ
stays the same. This saves some time and leads to the Inverse

Compositional algortihm in [2]:

1. Precompute the gradient of the transformed image ∇T ∂W
∂ξ

.

2. Precompute the Hessian H =
[
∇T ∂W

∂ξ

]⊺ [
∇T ∂W

∂ξ

]
.

12



3.1 Dense Image Alignment

3. Calculate the residual image rk = I(ξk)− T (0).

4. Obtain warp update ∆ξ = H−1
[
∇T ∂W

∂ξ

]⊺
rk.

5. Update warp parameters ξk+1 = ξk ◦ (∆ξ)−1.

6. Continue with step 3 until convergence.

A faster version of the original LK algorithm [2] is obtained, the Inverse Composi-
tional algorithm. Note that we change the manner of updating our warp parameter.
Instead of applying the warp update itself, the inverse of the update needs to be
applied. The residual of I and T does not change if we apply a transformation on
I or apply the inverse transformation on T.

3.1.3 Robust IC Algorithm
Some parts of an image can be less critical for the correct transformation than
other parts. For example, it could be that the edge of the first image is not
in second image, because the sensor was moved. In the current approach, the
residuals of the image will take the edge in the same consideration as the rest of
the image, and the resulting high errors distort the result. Therefore, a weight
matrix W is introduced to balance the influence of different parts of the image [2].
The objective changes to

min
∆ξ

rk(∆ξ)
⊺Wrk(∆ξ), (3.6)

where rk(∆ξ) = I(ξk) − T (∆ξ) is the residual between I and T. This objective
function relies on an appropiate weight matrix W. If no more information is avail-
able it can be difficult to choose W.
The main difference compared to the steps of the inverse compositional approach
is the calculation of the approximated Hessian matrix, where the weight matrix
has to be taken into consideration. Because the approximated Hessian matrix
could easily become ill-conditioned a damping term λ is introduced:

H = (J⊺WJ) + λdiag(J⊺WJ), (3.7)

with J =
[
∇T ∂W

∂ξ

]
. This leads to the Levenberg-Marquardt update step. The

following steps apply the robust version of the IC algorithm:

1. Precompute the approximated Hessian matrix H = (J⊺WJ)+λdiag(J⊺WJ).

2. Compute residuals rk = I(ξk)− T (∆ξ).
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3. Obtain warp update ∆ξ = H−1J⊺Wrk(0).

4. Update warp update ξk+1 = ξk ◦ (∆ξ)−1.

5. Continue with step 2 until satified.

Keep in mind that this assumes that we already got suited λ and W.

3.2 Feature Extractor
Many approaches focused on improving feature representations for dense image
alignment from handcrafted (SIFT [18], BRIEF [4]) to learned. Some methods
with learned features use pre-trained models for feature extraction [6], [15], but
these pre-trained feature extractors are not naturally consistent across different
views. A more promising approach is to train the feature extractor along with the
rest of the framework. Xu et al. [35] divide the feature extractor into three parts.
First comes the Two-View encoder, which finds spatio-temporal information in
the two images. Second, there is the actual feature extractor which outputs the
feature representation. Then they expand the feature extractor with a network
that provides an uncertainty map for the images. The weights are shared between
the extractor and the uncertainty map. The feature-image and the uncertainty
map are used for the least square minimization with a Gauss-Newton algorithm.
The whole framework performs on four coarse levels, which leads to a more robust
result against large motions. Dusmanu et al. [8] introduce a cross-descriptor for
localization and mapping. It addresses the problem of combining different ever-
developing features.
Point clouds are used very often in robotics. In the past, the most common ap-
proach for using features to align point clouds was to use handcrafted features
over learned features. Rusu et al. [26] describe each point with a 16D feature his-
togram. This is used as starting point for other iterative registration algorithms
like ICP. Other approaches use volume descriptor [12], or fast point feature his-
tograms [25]. Dealing with point clouds in Neural Networks can be difficult due
to their instability in size and because they are usually given in an unordered way.
Nevertheless, some approaches are dealing with point clouds, like PointNet [21].
PointNet uses features for segmentation. Instead of splitting the task of computing
a feature representation and aligning, it is built in one network. Du et al. [7] use
local and global learned features to obtain a 6 DoF pose for relocalization. This
is used for relocalization.

14
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3.3 Iterative Closest Point
Aligning two point clouds to each other is a common problem in SLAM systems.
For a long time, ICP was the standard alignment method. The Generalized It-
erative Closest Point (GICP) algorithm improves the standard ICP. It combines
the point-to-point ICP with the point-to-plane ICP, resulting in a plane-to-plane
algorithm. Here we will give a short explanation of ICP and how ICP leads to
GICP.
In ICP, two steps are repeated until the convergence criterion is satisfied. First,
correspondences between A and B are computed by searching for the nearest
neighbour of each point. Second, a transformation is computed which minimizes
the distance between corresponding points. A threshold tdist is necessary because
we can not assume a full overlap between the two scans. If the nearest point
bi ∈ B of ai ∈ A is further away than tdist this correspondence is not taken into
consideration. Then the transformation T is updated by minimizing the distance
of T · ai and its corresponding bi:

T ← min
T
‖T · ai − bi‖. (3.8)

In the point-to-plane variant of ICP, we update our transformation by minimizing
the distance of ai along the normal direction of a plane spanned by at least three
bis. Therefore, a matching between A and the surfaces that are represented in B

is searched.

T ← min
T
‖ηi · (T · ai − bi) ‖, (3.9)

where ηi is the surface normal at bi.
In GICP a probabilistic model is attached to the minimization in the update step
of T , which considers the covariance of each point. For example, points on a plane
are restricted more strongly by the surface normal. This can be used to establish
a plane-to-plane correspondence between A and B. For a detailed explanation of
this probabilistic model, we refer to Segal et al. [29]. With this plane-to-plane
matching, we rather try to find a transformation between the surfaces that are
represented by the point clouds than try to match the points themselves.

3.4 Metrics
Iterative methods for visual odometry (VO) and SLAM usually need to compare
a transformed image T with a reference image I to align them. For example,
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after transforming one image, it is compared to another image. This comparison
is a metric for the quality of the transformation. It needs to have an optimum
if the images are the same. Other than that, different functions will change the
importance of different features in the image and therefore influence the results
drastically. In direct image alignment, the photometric error is often used for this
purpose, which is the difference between two intensity images. Let I, T ∈ Ω ⊂
Rh×w be two images, and x = (u, v) be a pixel location. Then the photometric
error between I and T is:

rd(x) = I(x)− T (x). (3.10)

There are several other metrics to compare two images that robustify the residuals,
such as the Huber norm used in [9]. Quenzel et al. [23] propose a new metric for
pixel-wise matching which considers the gradient orientation and the magnitude
of the intensities. This metric and variations of it are explained in Section 4.1

3.5 Deep Inverse Compositional Algorithm

The Deep Inverse Compositional algorithm [19] was proposed by Lv et al. to
integrate learning features into the robust version of the LK algorithm. The learned
features lift the consumptions that the damping term λ and weight matrix W

is known, and it results in a framework that can be trained in an end-to-end
manner. The three main contributions in this framework are the Two-View
Feature Encoder, the Convolutional M-Estimator and the Trust Region
Network. The framework operates on four coarse levels to handle large motions,
each level halves the image size of the previous level.

3.5.1 Two-View Feature Encoder

By using a feature representation of the images, the brightness constancy con-
straint is relaxed. This leads to a more robust representation than the intensity
image. The Two-View feature encoder is a convolutional network Φ which pro-
cesses the two image I, T to obtain feature representations Iθ, Tθ. To achieve this
for each feature representation it takes both images as input.

Iθ = Φ(I, T ), (3.11)
Tθ = Φ(T, I). (3.12)
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As one can see in Figure 3.1, on each coarse-level, it has three dilated convolu-
tional layers, followed by a batch normalization layer. The obtained features are
summed up to gain a one-dimensional feature image on which the algorithm will
be performed. By taken input image I and template image T into consideration
for the feature representation, both spatial and temporal information are taken
into account.

Figure 3.1: Two-View Feature Encoder [19]

3.5.2 Convolutional M-Estimator
As mentioned before, the weight matrix W is often hard to find. To deal with
this issue, Lv et al. propose a fully convolutional network that predicts the weight
matrix W. This convolutional M-Estimator ψ takes the residual of the feature
images and the feature images itself as input. It also takes the estimated weight
matrix from the coarser level of the algorithm as input. It takes the identity matrix
as additional input at the highest resolution because of the lack of a coarser level.

Wi = ψ(Wi−1, r, Iθ, Tθ), (3.13)

where i is the coarseness level. The proposed diagonal weight matrix W and espe-
cially the underlying robust function ρ are not restricted to a particular error model
but on the input data itself. Figure 3.2 gives an overview of the Convolutional
M-Estimator.

3.5.3 Trust Region Network
The third core component of [19] is the Trust Region Network, pictured in Figure
3.3. The Trust Region Network tries to find a suited damping term λθ to overcome
instability in the approximated Hessian matrix. This λθ replaces λdiag(J⊺WJ) in
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Figure 3.2: Convolutional M-Estimator [19]

the Levenberg-Marquardt update step.
To achieve this first a set of N damping proposals λi is sampled on a logarithmic
scale. With these hypothetical damping terms, the resulting Levenberg-Marquardt
update steps is computed:

∆ξ = ((J⊺WJ) + λidiag(J
⊺WJ))−1J⊺Wrk(0). (3.14)

With these hypothetical update steps residuals are computed.

rik+1 = Iθ(ξk ◦ (∆ξi)−1)− Tθ(0) (3.15)

These N hypothetical residuals as well as the approximated Hessian matrix J⊺WJ

are fed into the Trust Region Network. It contains 3 fully connected layer each
with the ReLu transfer function.

Figure 3.3: Trust Region Network [19]

3.5.4 Summary
Here is an overview over the funcionality of the whole framework [19]:

1. Feed the images [I,T] through the Two-View Feature Encoder to obtain the
feature representations Iθ, Tθ for all 4 levels.
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2. Compute the residuals r0(Iθ, Tθ) = Iθ − Tθ.

3. Precompute the Jacobians with respective to the warping parameters∇T ∂W
∂ξ

.

4. Feed the residuals r0, the feature images Iθ, Tθ and the warping function
as well as the weight matrix W of the coarser level to the Convolutional
M-Estimator to gain the weight matrix W.

5. Compute the approximated Hessian matrix H = J⊺WJ .

6. Compute the residuals of the kth iteration rk = Iθ(ξ)− Tθ.

7. Sample N damping proposels λi and compute the resulting residuals rik+1.

8. Feed rik+1 and rk to the Trust Region Network to obtain λθ.

9. Calculate warping update ∆ξ = (H + λθdiag(H)−1J⊺Wrk.

10. Update warp parameter ξk+1 = ξk ◦ (∆ξ)−1.

11. Continue with step 6 for 12 iterations.

3.5.5 Jacobians
In the following section we will specify how the Jacobians of the residual image
w.r.t. the warping parameters are calculated. To get the Jacobians the chain
rule is applied, therefore the derivatives of the residual Image w.r.t. the image
dimensions u,v, the derivatives of the projection w.r.t. world dimensions x,y,z,
and the derivative of the transformation w.r.t. the warping parameter ξ is needed.
As we already derived in Section 2.1.1 and Section 2.3.1, here are the Jacobians
of the projection and the warping:

Jproj =

(
fx
fy

)
·
(

1
z

0 − x
z²

0 1
z

(− y
z²)

)
, (3.16)

Jwarp =

 0 z −y 1 0 0

−z 0 x 0 1 0

y −x 0 0 0 1

 . (3.17)

Multiplying these leads to:

Jproj · Jwarp =
(
fx
fy

)
·
(

−xy
z² 1 + x²

z²
−y
z

1
z

0 − x
z²

(−1− y²
z²)

xy
z²

x
z

0 1
z
− y
z²

)
. (3.18)
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Lv et al. further simplified this by exploiting the inverve depth parameterization
p = (u

d
, v
d
, 1
d
), with (u, v) as image location and d as its associated depth[19]:

Jpw = Jproj · Jwarp =
(
fx
fy

)
·
(
−uv 1 + u2 −v d 0 −dv
−1− v2 uv u 0 d dv

)
. (3.19)

The desired Jacobians of the template image w.r.t. the warping parameters is the
combination of 3.19 and the Jacobians of the residuals. Since the difference is used
to compute the residuals, the gradients of the template image can be used:

J = ∇T · Jpw. (3.20)
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In our method, we build on the work by Lv et al. [19] by using their learning
approach of the inverse compositional variant of the LK algorithm previously de-
scribed in Section 3.1.3. The changes to the framework are explained here. Figure
4.1 gives an overview of the original method. We will detail made changes in the
following sections.

Figure 4.1: Overview of the Framework by [19]

4.1 Residuals
There are multiple methods to point out the differences between image I and image
T . A simple but effective approach is to compute the pixel-wise difference between
the two images, the photometric error, described in Equation (3.10), which is used
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by Lv et al. [19]. Figure 4.2 gives an example of a residual computed with rd.
White pixel means there is a high error and black pixel means there is no error.
As one can see in Figure 4.1, there are two spots where a residual is needed.
These are marked with a red rectangle. r0 is part of the precomputation, rk is
computed in each step of the iteration. In our method, we test this framework
with other metrics to compute the residual image. Each of them having several
advantages compared to the difference. However with introducing new metrics to
the framework the procedure changes. To give an idea of the residuals each will
be performed on Fig. 4.3.

Figure 4.2: difference

Figure 4.3: depth image of two images out of the ICL dataset [27]

4.1.1 Gradient Magnitude

A more robust version of the difference relies on the gradient:

rgm = ‖∇I(x)‖ − ‖∇T (x)‖, (4.1)
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where x = (u, v) is a pixel location. rgm has an advantage over the following
residuals, the Jacobians only rely on T :

∂rgm
∂x =

∇xvT +∇xuT

2
√
∇uT 2 +∇vT 2

. (4.2)

In Figure 4.4 is an example for a residual computed with rgm. White pixel means

Figure 4.4: residuals with gradient magnitude

there is a high error and black pixel means there is no error.

4.1.2 Cosine Similarity

Cosine similarity is a widely used metric for learning different tasks [17]. To
measure the cosine similarity for two images, the dot-product is computed and
then scaled by the maximum of the euclidean distances of the single images:

rcossim(x) =
I(x) · T (x)

(‖I(x)‖‖T (x)‖) + ϵ
. (4.3)

ϵ is a small constant that ensures stability when ‖I‖, ‖T‖ are close to zero. The
advantage of cosine similarity compared to the difference is the robustness in terms
of the magnitude of the image. When both image I and T only differ in lighting,
e.g. T = I + α1, the gradient of rd will be strong everywhere. Cosine Similarity
avoids this.
The derivation of the cosine similarity w.r.t. to x is:

∂rcossim(x)
∂x =

T (x)
|I(x)| · |T (x)| − rcossim(x) ·

I(x)
|I(x)|2 . (4.4)
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4.1.3 rsgf

This metric was proposed by Quenzel et al. [23]. The main advantage compared
to other metrics is that it combines a gradient orientation-based metric, such as
the cosine similarity, with a magnitude depending scaling term. Quenzel et al.
propose several variants of the metric. In our work, we will focus on two of them,
the rsgf metric explained here and the rsgf3 metric explained in the following
section. In rsgf the gradient orientation is aligned with the dot-product following
the approach of [20] and [33]. This is more efficient than using the costly tanh
operator [23]. A parameter ϵ is introduced to normalize the gradients:

ϵ =
1

|I|
∑
x∈I

‖∇I(x)‖2, (4.5)

∇ϵI =
∇I√
‖∇I‖2 + ϵ

. (4.6)

The orientation of the normalized gradients ∇ϵI(x) · ∇ψT (x) will now be scaled
by the maximum value, this leads us to the equation:

rsgf (x) = 1− ∇ϵI(x) · ∇ψT (x)
max(‖∇ϵI(x)‖2, ‖∇ψT (x)‖2, τ)

. (4.7)

We choose ϵ and ψ as normalization parameter to clarify that these are two different
values. The normalization parameter is computed on a per image base. τ is a small
constant that prevents division by zero. An example for rsgf is given in Figure 4.5.

Figure 4.5: rsgf
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4.1.4 rsgf3

A simplification of rsgf is rsgf3. It reduces the number of mathematical operations
especially the regularization leading to a more slim formula with similar advantages
as rsgf . The orientation and magnitude is now combined as follows:

rsgf3(x) = ‖∇I(x)‖‖∇T (x)|‖ − n(x), (4.8)

where n(x) = ∇I(x) · ∇T (x) is the dot-product of I and T for each pixel location.
Other than being more slim than rsgf , rsgf3 has another advantage for our purpose.
The Jacobians w.r.t. the pixels are easier to compute:

∂rsgf
∂x =

(
1

2

‖∇T‖
‖∇I‖

∇I −∇T
)
(∇2)I. (4.9)

(∇2)I denotes the hessian of the intensity at pixel x [23]. Figure 4.6 gives an

Figure 4.6: rsgf3

example of rsgf3.

4.1.5 Structural Similarity Index
This metric is focused on the structure of the scene in the image. It combines a
local luminance term with local measured contrast term and adds a structure term
which leads to a overall similarity measure [38]:

S(x) = f(l(x), c(x), s(x)). (4.10)

These comparison terms should satisfy the following conditions [34]:
1. Symmetry: SI,T (x) = ST,I = (x).
2. Boundedness: S(x) ≤ 1.
3. Unique maximum: S(x) = 1 only if I=T.
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For the local luminance term first the mean intensity in a chosen window is com-
puted:

µI =
1

N

N∑
i=1

xi. (4.11)

The luminance term is defined as:

l(x) = 2µIµT + C1

µ2
I + µ2

T + C1

. (4.12)

C1 is a small constant that ensures stability in case µ2
I + µ2

t is close to zero. The
contrast comparison function is similar to the luminance function but instead of
taking the mean of the intensity the standard deviation in a given window is used.

c(x) = 2σIσT + C2

σ2
I + σ2

T + C2

, (4.13)

where σI is computed over the Image with a window size N as follows:

σI =

(
1

N − 1

N∑
i=1

(I(xi)− µI)2
) 1

2

. (4.14)

Once again a constant C2 is introduced to avoid instability.
The structure comparison is computed as follows:

s(x) = σI,T + C3

σIσT + C3

. (4.15)

Note that s(x) can take negative values. The three part terms are combined to
the Structural Similarity (SSIM) index between image I and T:

r̃ssim(x) = [l(x)]α · [c(x)]β · [s(x)]γ. (4.16)

To balance the influence of the three components α, β and γ are to be adjusted.
To further simplify the equation α, β and γ are set to one and C3 = C2/2, this
results in:

r̃ssim(x) =
(2µIµT + C1)(2σI,T + C2)

(µ2
I + µ2

T + C1)(σ2
I + σ2

T + C2)
. (4.17)

To use the Structural Similarity Index as a residual measurement it needs to be
ensured that in the best case I=T the residual function is zero. This leads to the
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residual function:

rssim(x) = 1− r̃ssim(x). (4.18)

Please keep in mind that the SSIM index is computed over a window for each pixel
in the images. For the implementation the pixel within the window for a given
pixel is weighted in a gaussian manner. So 4.11 and 4.14 is implemented slightly
different.
SSIM can be divided in two parts l(x) · cs(x). The first part is the luminance
function (4.12). The second part is the combination of the contrast (4.13) and the
structure function (4.15):

cs(x) = 2σIT + C2

σ2
I + σ2

T + C2

. (4.19)

To obtain the Jacobians of the residuals at each pixel location the derivative w.r.t.
each other pixel q in the window W needs to be computed. More formally [38]:

∂rssim(W )

∂I(q)
= −∂r̃ssim(x)

∂I(q)
= −

(
∂l(x)
∂I(q)

· cs(x) + l(x) · ∂cs(x)
∂I(q)

)
. (4.20)

With the derivatives of:

∂l(x)
∂I(q)

= 2 ·GσG(x− q) ·
(
µT − µI · l(x)
µ2
I + µ2

T + C1

)
, (4.21)

and

∂cs(x)
∂I(q)

=
2

σ2
I + σ2

T + C2

·GσG(x− q) · [(T (q)− µT )− cs(x) · (I(q)− µI)] . (4.22)

GσG(x−q) weights the pixel x with a gaussian centered at q and standard deviation
σG. Figure 4.7 gives an example for rssim.

4.2 Jacobians of the Residuals
With the difference as residual, the Jacobians and the resulting Hesse matrix can
be precomputed because they only depend on the template image T , which is not
changing in each step of iteration. One can see it in the blue rectangle in Fig.
4.1. The newly introduced residuals have more complicated derivatives, which are
not only depending on the template image but on the input image I as well. I is
changing in each step of the iteration because the warping update is applied to it.
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Figure 4.7: rssim

Therefore the Jacobians and with it the approximated Hesse matrix needs to be
recomputed in each step of the iteration. Thus, the advantage of the IC version
of the LK algorithm is lost.
The learning modules make the framework flexible. To test this flexibility, in our
experiments, we train the network with the new residuals but do not recompute the
gradients in each iteration. This will be referred to as the ”light” version. Then we
compare the light version with the correct version, where gradients are recomputed
in each step of the iteration. In theory, the Convolutional M-Estimator should be
able to catch some errors caused by the inexact gradients.
The chained Jacobians Jpw of the warping and the projection are computed as
described in Section 3.5.5. The gradient of the image w.r.t. the warping parameters
depend on the used residual:

J =
∂r

∂x · Jpw. (4.23)

4.3 LiDAR
We adapt the framework for LiDAR range images (LRI). The computation of an
LRI from a point cloud is described in Section 2.2. LiDARs provide more accurate
depth and larger field-of-views (FoV) than RGB-D sensors, but are less dense. We
adjust the framework to deal with LRIs.´

4.3.1 Downsampling for LRI
LRIs are relatively small in height because each row requires another laser during
scanning as described in Section 2.2. Downsampling an image I of size w×h in the
framework results in Ĩ of size w

2
× h

2
. By dividing an LRI further in height, there

are too few data points to perform the algorithm. We decided to downsample the

28



4.3 LiDAR

LRIs only in width.
A common practice for downsampling an image is to perform max- or average-
pooling on it. That can lead to problems in LRI. Given that neighboring pixels
are not always representing the same object, average-pooling gives a data point
between these two objects, but in reality, there might be no object. For this reason,
average-pooling is not suitable for downsampling an LRI.
Max-pooling would prefer objects further away over near objects. Assuming that
it is easier to learn transformations of closer objects because often they are more
detailed and appear broader in the image due to sensor geometry min-pooling is
more appropriate to downsample the LRI in the w dimension. In addition to this
closer points are prefered by LiDAR. This ensures that closer object are better
represented than objects far away.

4.3.2 LRI from Point Clouds
The conversion of a point cloud into an LRI is detailed in Section 2.2. In theory,
every point is represented, every point gets represented by one pixel in the image.
In praxis, the slightest distortion can lead to errors, such as two points falling on
the same pixel leaving one pixel without value. This can lead to problems for the
Convolutional Feature Encoder. One such hole-filling method is inpainting [37].
In our experiments, we use the DRZ Living Lab dataset [22], which is already pre-
processed to have sparse data. The second dataset we use is the KITTI dataset.
Due to the very high resolution of the KITTI dataset in width, another method
can be applied. We reduce the image width, which leads to a much denser rep-
resentation. To record the KITTI dataset a Velodyne HDL-64E is used. It has a
approximatly 0.175° horizontal resolution and it has 64 channels. This leads to
an image resolution of 2048x64 pixels. Using this resolution results in incomplete
data. The upper image in Fig. 4.8 gives an example. If we reduce the image width
to 1024x56 pixels, we obtain a much better representation, as one can see in the
lower image in Fig. 4.8.

4.3.3 Two-View-Feature Encoder
A good feature representation is crucial for the results of the algorithm. The point
clouds exhibit different characteristics compared to RGB-D images. While they
lack color information, they have an intensity and reflectivity value per pixel. Ad-
ditionally, we add the point coordinates in the sensor frame. This information
might be helpful to align point clouds.
We feed the LRI together with the cartesian coordinates, the intensity, and the
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Figure 4.8: Different resolutions of LRI out of the KITTI dataset.

reflection value to the Two-View-Feature Encoder. Except for the input, we do
not change the structure of the Two-View-Feature encoder as explained in Sec-
tion 3.5.1.

4.3.4 Jacobians of LRI
We combine the Jacobian of the LRI projection, as described in Section 2.2.1, with
the Jacobian of the warping as follows:

Jpwl = Jproj · Jwarp

=

(
− y
x²+y²

x
x²+y² 0

− xz
(x²+y²)r2 −

yz
(x²+y²)r2

√
x²+y²
r²

)
·

 0 z −y 1 0 0

−z 0 x 0 1 0

y −x 0 0 0 1


=

(
− zx
x2+y2

− zy
x2+y2

1 − y
x2+y2

x
x²+y² 0

yz2+
√
x2+y2y

(x²+y²)r2
−xz2

(x2+y2)r2
− x
√
x2+y2

r2
0 − xz

(x²+y²)r2 −
yz

(x²+y²)r2
√
x²+y²
r²

)
.

(4.24)

This is combined with the derivatives of the residual image:

J =
∂r

∂x · Jpwl. (4.25)

4.4 Summary
As already mentioned, for some residual, we need to recompute the Jacobians in
each step of the iteration. This leads to the following algorithm.

1. Feed the data of both frames [I, T] through the Two-View Feature Encoder
to obtain the feature representations Iθ, Tθ for all four levels.
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2. Compute the residuals r0(Iθ, Tθ).

3. Feed the residuals r0, the feature images Iθ, Tθ and the weight matrix W of
the coarser level to the Convolutional M-Estimator to gain the weight matrix
W.

4. Compute the Jacobians ∂rk
∂ξ

.

5. Compute the approximated Hessian matrix J⊺WJ .

6. Sample N damping proposels λi and compute the resulting residuals rik+1.

7. Feed rik+1 and rk to the Trust Region Network to obtain λθ.

8. Calculate warping update ∆ξ = (J⊺WJ) + λidiag(J
⊺WJ)−1J⊺Wrk.

9. Update warp parameter ξk+1 = ξk ◦ (∆ξ)−1.

10. Compute the residuals of the k + 1th iteration rk+1 = Iθ(ξ)− Tθ .

11. Continue with step 4 for 12 iterations.
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5.1 Datasets
For training and evaluation, we use multiple datasets, synthetic as well as real-
world scenes. The datasets should meet some requirements. Firstly, it should
provide correct depth estimates. In reality, sensors do not always provide reliable
and dense depth. Nevertheless, the algorithm needs to cope with this. As we focus
on the comparison of different residuals, a robust residual metric should be able
to deal with a few outliers or missing data points.
Secondly, the intrinsic and extrinsic parameters of the sensor are required. Most
datasets fullfill this constraint. Thirdly, the scenes and trajectories should vary to
such that the network will generalize well and prevent over-fitting. Unfortunately,
some datasets such as Hypersim [24] provide camera trajectories with too large
gaps between consecutive frames. A central assumption within the framework is
to have a similar view-point. Thus, it will likely fail if the overlap is too small. The
advantage of synthetic data is that the sensors cause no errors. The network relies
on accurate depth information. If there are too many corruptions, the network does
not train efficiently. The LiDAR data is very precise in its depth. Following [19] we
chose TUM RGB-D [32] and MovingObjects3D [5] for the comparison of different
metrics. Additionally, we choose the synthetic ICL [27] dataset. Our adaptation
to LIDAR is tested on the DRZ Living Lab [28] and KITTI [11] dataset.

5.1.1 TUM RGB-D
TUM RGB-D is a standard benchmark that is used to compare many RGB-D
SLAM frameworks. The TUM RGB-D [32] dataset contains color and depth im-
ages of a Microsoft Kinect sensor. The data was recorded at full frame rate (30
Hz) and a resolution of 640x480 pixels per image. Capture was performed within
a motion-capture system that provides accurate ground-truth poses.
The ”pioneer360”-sequences in the dataset is obtained by a ground robot and the
rest is out of a hand-held perspective. We split the trainings-, validation-, and
testing-set like [19]. Most scenes are in the vicinity of one main element like a
desk. Fig. 5.1 shows an example image in TUM RGBD.

33



5 Evaluation

5.1.2 MovingObjects3D

MovingObject3D is a selection of six objects out of the ShapeNet repository [5].
It contains richly annotated synthetically generated data of single objects like a
boat or a car. Reliable depth estimation is a great advantage of synthetic data
over real-world datasets. We do not use most of the annotations provided by the
dataset, for example, object label, material, or weight. The annotations happen
in a hybrid mode. First, they are predicted algorithmically then the annotations
are verified by humans. The critical annotations for our purpose (depth, position,
rotation) are generated along with the data and are therefore reliable.
The six objects used in Lv et al.’s work are ’boat’ and ’motorbike’ as test set and
’aeroplane’, ’bicycle’, ’bus’, ’car’ as the training set. Lv et al. render 200 video
sequences with 100 frames for each object category [19]. We use the same Objects.
Figure 5.1 shows an example image of MovingObjects3D.

5.1.3 ICL Pering

Sahid et al. [27] created a high-quality synthetic RGB-D dataset. It contains 16
trajectories of indoor scenes, with some in the perspective of a flying unmanned
aerial vehicle (UAV), a walking person and a driving ground robot. ICL has reliable
depth estimation such as Moving Objects 3D. As shown in Fig. Figure 5.1, the
scenes are more complex and include mirrors and other reflecting objects. Each
scene contains between 500 and 2000 images. Each frame has a resolution of
640x480 pixels. In many frames, there is not one main object like in TUM RGB-D
and MovingObjects3D. Thus, the dataset contains more challenging scenes than
TUM RGB-D and MovingObjects3D.

5.1.4 DRZ Living Lab

Quenzel and Behnke [22] used an unmanned aerial vehicle (UAV) [28] equipped
with an Ouster OS-0 LiDAR to record multiple flights through a motion capture
volume in the DRZ Living Lab. The environment is an industrial hall filled with
some arbitrary objects like shelves and crates. In total 12 sequences with between
650 and 5000 scans were recorded with differing difficulty w.r.t. acceleration and
angular velocity. We used seven sequences for training, one for validation, and four
for testing. The training poses were provided by registering point clouds against
a surfel map [22].
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Figure 5.1: Examples of TUM RGB-D(up-lelft), MovingObjects3D(up-right),
ICL(bottom)
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5.1.5 KITTI

From the automotive context we chose the KITTI dataset [11]. LiDAR scans were
acquired by a Velodyne HDL-64 mounted on top of a car driving through rural and
urban areas of Karlsruhe. A GPS localization system provides the ground-truth.
The dataset contains 22 sequences captured with this setup. We use sequences 0-7
and 9-10 as training set. For validation, we use sequence 8. The rest is used for
testing.

5.2 Relative Pose Error

We evaluate and compare different residuals with the Relative Pose Error (RPE).
The RPE is a measurement for the local drift of the trajectory. We follow the
approach of [19] for comparability and take per frame the first, second, fourth and
eighth following frame. It is computed as follows:

Ei = (Q−1
i ·Qi+∆)

−1(O−1
i ·Oi+∆), (5.1)

with Qj as the ground truth pose on frame j = i + ∆ and Oj as the estimated
pose on frame j. The chosen frame interval is given with ∆. The RPE is computed
separately for the translation and the rotation.

5.3 End-Point-Error

The End-Point-Error is chosen as loss for training following [19]. The loss balances
the influence of rotation and translation.

L =
1

‖I‖
∑
p∈I

∑
l∈L

‖Tgtp− T (ξl)p‖22, (5.2)

where I ∈ Ω ⊂ R2 is the set of points and L is the set of resolutions. By trans-
forming the points of the same frame and not consider the other frame, the EPE
avoids the problem that points that are only present in one frame due to the
transformation.
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5.4 Experiments

5.4.1 Setup
The framework is trained for a different amount of epochs depending on the resid-
uals. More complex residuals are trained for more epochs. The simpler residual
rd is trained for 30 epochs, a more complex residual like rssim is trained for 50
epochs. The learning rate decays over time, with a decay ratio of 0.5. The decay
rate depends on the number of epochs. The Glorot initialization [13] is used to
initialize the weights uniformly following [19].

5.4.2 Different Residuals

TUM RGB-D
∆ 1 2 4 8
rd 0.403/0.666 0.562/1.113 0.960/2.199 3.016/5.188
rgm 0.421/0.738 0.611/1.304 1.223/2.713 3.980/ 6.549
rsgf1 0.522/1.073 0.887/1.916 1.711/3.675 4.681/7.775
rsgf3 0.545/1.015 0.898/1.921 1.781/3.802 4.536/7.990
rcossim 1.065/1.164 1.720/2.308 3.129/4.598 6.099/9.164
rssim 2.037/1.266 2.684 /2.392 4.236/4.697 6.914/9.256

Table 5.1: Angular/Translational RPE evaluation on TUM RGB-D dataset, in
[°]/[cm]

ICL Pering
∆ 1 2 4 8
rd 0.4178/1.901 0.761/3.832 1.687/8.344 4.534/19.171
rgm 0.830/3.541 1.508/7.078 2.736/14.158 5.706/28.337
rsgf1 0.753/2.341 1.203/4.057 2.054/8.258 5.031/20.820
rsgf3 0.751/3.529 1.231/7.062 2.308/14.129 5.860/28.203
rcossim 1.661/5.013 3.120/9.042 5.968/17.191 11.337/31.535
rssim 2.571/8.353 3.640/11.404 6.046/17.239 11.320/31.034

Table 5.2: Angular/Translational RPE evaluation on ICL dataset, in [°]/[cm]

First, we want to compare the performance of the different residuals. Table 5.1
- 5.3 are showing the angular and the translation RPE on the different datasets.
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MovingObjects3D
∆ 1 2 4 8
rd 3.705/9.944 7.485/20.128 14.715/39.202 27.132/70.807
rgm 3.995/10.572 8.003/21.149 15.451/40.729 27.989/72.785
rsgf1 3.961/10.672 7.811/20.857 14.953/39.369 27.230/70.280
rsgf3 3.917/10.128 7.846/20.255 15.074/38.969 27.279/69.991
rcossim 4.682/11.081 8.631/21.315 15.908/40.322 28.093/71.569
rssim 4.356/12.080 8.148/21.926 15.390/40.966 27.780/72.832

Table 5.3: Angular/Translational RPE evaluation on MovingObjects3D dataset,
in [°]/[cm]

TUM RGB-D
∆ 1 2 4 8

rsgf3 ”light” 0.552/1.052 0.880/1.921 1.758/3.615 4.410/7.594
rsgf3 ”full” 0.545/1.015 0.898/1.916 1.781/3.802 4.536/7.990
rssim ”light” 1.914/3.242 2.658/4.291 4.192/6.201 7.084/10.227
rssim ”full” 2.037/1.266 2.684/2.392 4.236/4.697 6.914/9.256

Table 5.4: Angular/Translational RPE evaluation on TUM RGB-D dataset with
”light” and ”full” method, in [°]/[cm]

In almost all the experiments the difference ”rd” outperforms the other residu-
als. This does not confirm our hypothesis that more robust residuals improve the
frameworks’ performance. It is remarkable, that the more complex residuals often
lead to worse results. One reason might be that the more complex residuals are
more challenging to train. Furthermore, the photometric consistency may perform
so well due to the Feature Extractor, which already points out the critical feature
of the image. The learned representation may already have learned to deal with
changing lighting. Hence, making more robust and complex residuals obsolete. In
addition, the difference computation is much faster.

5.4.3 Influence of Jacobian Recomputation
As described in Section 4.2, we need to recompute the Jacobians for the more
complex residuals. We test the influence of recomputing the residuals on rsgf3
and rssim. In the ”full” approach, we train the network with recomputing the
Jacobians. In the ”light” approach, we ignore the error in the Jacobians in each
iteration and keep the precomputed Jacobians. As one can see in Table 5.4, and
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ICL Pering
∆ 1 2 4 8

rsgf3 ”light” 1.137/4.848 2.156/10.140 4.121/ 20.054 8.439/36.693
rsgf3 ”full” 0.751/3.529 1.231/7.062 2.308/14.129 5.860/28.203
rssim ”light” 5.973/19.039 6.267/19.826 8.141/25.387 12.723/36.983
rssim ”full” 2.571/8.353 3.640/11.404 6.046/17.239 11.320/31.034

Table 5.5: Angular/Translational RPE evaluation on ICL dataset with ”light” and
”full” method, in [°]/[cm]

Table 5.5, especially in the more challenging ICL dataset the advantage of the
recomputing is visible. As expected, recomputation is more important for the
complex Jacobians of rssim and the more challenging dataset. For the more
compact rsgf3 on TUM RGB-D the difference between the methods is neglectable.
One reason for this could be the M-Estimator. This module should be able to
mitigate small errors in the Jacobians.

5.5 LiDAR
To evaluate the framework with our adjustments for LiDAR, we compare against
the generalized iterative closest point (GICP) algorithm [29]. The great advantage
of GICP is that there is no need for training. It can be performed on arbitrary
data. Often GICP relies on a good initialization. For testing, we compute the
angular and translation RPE, which is described in Equation (5.1).
Our first experiment was on a small subset of the DRZ Living Lab dataset. We
use 600 scans split into 510 for training, 50 for validation, and 40 for testing. The
subset allows training the network fast and ensures correct functionality. Table 5.6
shows the results on this subset. Our approach is slightly better than GICP in
almost every case. Next, we trained our network on six sequences of the Drz

DRZ subset
∆ 1 2 4 8

GICP 0.621/3.677 1.279/6.276 2.448/12.134 3.625/15.617
rd 0.453/3.037 0.867/5.304 1.765/11.285 2.765/24.085

Table 5.6: Angular/Translational RPE evaluation on subset of DRZ Living Lab
dataset, in [°]/[cm]

dataset. One sequence was used for validation. Then we compared our approach
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with GICP on sequence ”12_18_25”, ”13_45_56”, ”14_16_34”, and ”17_29_29”.
As we can see in Table 5.7, GICP outperforms our approach on the DRZ Living

DRZ
∆ 1 2 4 8

GICP 0.072/1.274 0.092/1.708 0.097/2.307 0.111/3.256
rd 0.646/5.776 1.025/8.372 1.783/16.495 3.129/42.538

Table 5.7: Angular/Translational RPE evaluation on DRZ Living Lab dataset, in
[°]/[cm]

Lab dataset. Especially for higher ∆, the difference is visible.
We can see in Table 5.8 that our approach performs slightly better on the KITTI
dataset. Both of the methods do not perform very well. The translation error is
over one meter for two following frames for both methods. We have to investigate
further, why this error is that high. We will neglect the results on the KITTI
dataset in our evaluation.
Using CNNs with with inclompete data can be difficult. While our downsampling

KITTI
∆ 1 2 4 8

GICP 0.775/125.245 1.511/255.164 2.86/472.053 5.280/809.872
rd 0.697/102.680 1.160/106.426 2.246/140.084 4.306/324.650

Table 5.8: Ang/Transl RPE on KITTI test data

approach fills most holes in the LRIs, a few remain. A further step to improve our
approach could be introducing an impainting module wich takes care of incomplete
data.
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6 Conclusion
In this thesis, we researched two hypotheses. First, we tried to improve the Deep
Inverse Compositional algorithm proposed by Lv et al. [19]. They used three learn-
ing modules, the Two-View-Feature Encoder, the Convolutional M-Estimator, and
the Trust-Region Network, and integrated them into the Inverse Compositional
Algorithm. Lv et al. use the photometric error to compare the transformed first
image with the second image within an iterative optimization step. We used the
residual functions Cosine Similarity, Structural Similarity index, gradient magni-
tude, rsgf , and rsgf3. The idea was that the newly introduced metrics give a better
representation of the errors in the residuals in terms of robustness. We were not
able to confirm this in our experiments on the datasets TUM RGB-D, Movin-
gObjects3D, ICL Pering. Furthermore, it seemed that the more complex metrics
perform worse. As an explanation, we listed the Two-View Feature Encoder. The
Two-View feature encoder already deals with problems that were addressed by the
new residuals. In addition to this, with the new residual functions, the framework
might be harder to train due to more complexity.
The new residuals result in a recomputation step of the Jacobians in the iterative
part of the algorithm. We tested the influence of recomputation by training the
network without recomputation and with recomputation and then compare these
two methods. We observed that the recomputation is more important for com-
plex residuals and complex scenes. For more simple residuals and scenes, the two
methods achieved similar results.
In the second part of this thesis, we adapted the Deep Inverse Compositional algo-
rithm for LiDAR data. We used Lidar Range images as input for the algorithm to
use well-established operations like the convolution in our learning modules. We
adapted the computation of the Jacobians to fit LRIs. We were able to propose a
new method, build on the work of Lv et al., to align point clouds to each other.
In our experiments, we compared our approach against the standard point cloud
alignment algorithm generalized iterative closest point (GICP). Our approach per-
forms very well in our first experiment on a subsampled dataset. The following
experiment does not confirm this. On the DRZ Living Lab dataset GICP per-
forms very well. Our approach is not able to achieve similar results. One reason
for the better results on the subset of DRZ could be that the learned modules in
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our method overfitted on the small subset. In addition to this, on average GICP
performs much better in the following experiment on the DRZ dataset. The errors
on the KITTI dataset were very high, therefore we do not consider the results in
our evaluation.
Further steps to improve our methods could be introducing an inpainting module
to ensure complete data for our learning modules. In addition, the error on the
KITTI dataset needs to be further investigated.
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