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Abstract

Random forests are a machine learning method that has recently become popular in the
computer vision community to solve image segmentation and object detection tasks. Exist-
ing random forest implementations are either general purpose and not efficiently applicable
for image segmentation or focus only on the speed of prediction. The implementation for
the Microsoft Kinect gaming platform, for instance, achieves real-time speed on a single
Microsoft Xbox GPU to recognize the pose of the user. Random forest training, however,
has been conducted on a large cluster with 1000 CPU cores. Generally, training on large
datasets is computationally demanding and impedes scientific research since the process
takes long if a computing cluster is not available or too expensive for the task at hand.

It is the goal of this master’s thesis to accelerate training and prediction of random forests
for object-class image segmentation on RGB-D datasets by efficiently using CPUs and the
massively parallel computing power offered by GPUs. We present an implementation that
runs up to 28 times faster on GPU and is capable to train a random forest in less than
four minutes on a GPU; thus drastically abbreviating a process that previously took about
one whole day on a CPU. Dense classification of RGB-D images in VGA resolution runs
in real-time speed on a single mobile GPU.
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1. Introduction
Visual perception belongs to the most important aspects to acquire knowledge about the
world that surrounds us. Precise information about our environment is an essential input
to plan and execute further actions. The visual system in the human brain accomplishes
this task with fascinating results. The computer vision community aims to achieve the
same quality level since their existence and researchers have made significant progress to
accomplish that goal in recent years.

Sophisticated computer vision systems have been constructed that process and analyse
digital images in order to understand the content. Segmentation of the digital image is
one step in the processing chain of such a system and defines the task to divide an image
into multiple regions where a class label is assigned to every pixel in the image. The
determined segments serve as input for subsequent processing steps such as, for example,
the selection of interesting regions in an image.

Random forests are a machine learning method that has become popular in the computer
vision community since Lepetit et al. [28] published their work on random forests for
keypoint recognition. Since then, several publications have depicted the application of
random forests and variants on computer vision tasks such as image segmentation [27, 41,
44, 43, 50, 38].

It is a common claim that random forests are classifiers which allow fast prediction and
fast training. However, training is only fast if the dataset is not too large and the choice
of features is sufficiently simple.

There has been a recent increase in the availability of large datasets with color and
depth images as commodity cameras with depth sensor such as the Microsoft Kinect have
become obtainable at low price. Such datasets demand research on new features that
operate on color as well as distance information of the captured digital image.

Microsoft for example applies random forests to detect the human body parts in the
Microsoft Xbox gaming platform. The technique allows users to operate games without
the need for a dedicated device. Toby Sharp [52] and Shotton et al. [43] present a way
of applying the processing power of a single Graphics Processing Unit (GPU) to detect
the body parts in real-time using random forests. They solve the extreme computational
effort of random forest training on a large computer cluster with 1000 Central Processing
Unit (CPU) cores.

Companies with a broad end-user reach and according investment capabilities, such as
Microsoft, might be able to apply this approach; scientific institutions such as academic
research institutes, however, are often not able to invest such amounts of money to solve
computationally intensive tasks.

This is one reason why the demand for an implementation increases that uses available
computing resources, such as CPUs and GPUs as efficiently as possible, not only for
random forest prediction but also for random forest training.

The scope of this master’s thesis encompasses the design and implementation of strate-
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1. Introduction

gies to accelerate random forests by efficiently using CPUs and the massively parallel
computing power of modern GPUs. We implement the visual features as proposed by
Stückler et al. [50] that operate on color and depth information of RGB-D images but are
computationally more complex than the features used by Toby Sharp [52] and Shotton
et al. [43].

Our experimental results show that we have accomplished to accelerate random forest
prediction to perform in real-time speed with less than 45 ms per image in VGA resolution
on a mobile GPU and to accelerate training by a factor of up to 28. Random forest
training which previously took about one whole day for one dataset now takes less than
four minutes.

The remainder of this master’s thesis is organized as follows: We discuss related work
in Chapter 2. Chapter 3 introduces random forests as well as concepts and techniques
that form the foundation of this work. In Chapter 4 we present our key contribution –
the acceleration of random forests on CPU and GPU. We evaluate our implementation on
two datasets and present the experimental results in Chapter 5. Chapter 6 concludes this
master’s thesis and outlines possible future work.

2



2. Related Work
Random forests are an ensemble classifier that became recently popular in the computer
vision community. A series of work has been published that proposes random forests and
variants for computer vision applications such as image segmentation or object detection.

Schroff et al. [41] use random forests with RGB, HOG and filter bank features for pixel-
wise segmentation of images. Shotton et al. [43] use random forests in the Microsoft
Kinect system to recognize the human pose from single depth images. The visual features
for object-class image segmentation were inspired by Lepetit et al. [28] and calculate the
average depth differences of two regions surrounding the pixel that is to be classified. For
this master’s thesis we implement and evaluate the visual features as proposed by Stückler
et al. [50] that also use region differences but combine color and depth information in order
to be applicable for RGB-D datasets.

Real-time applications as presented by Lepetit et al. [28] and Shotton et al. [43] require
extremely fast prediction in few milliseconds per image. Random forests inherently allow
a fast prediction, but require a long training phase when the dataset is large. Toby Sharp
[52] implements real-time prediction for the Microsoft Kinect system on GPU which allows
the dense labeling of 320 px×240 px images [31] at 200 frames per second on the Microsoft
Xbox 360 hardware [2]. Shotton et al. [43] use a distributed CPU implementation to
reduce training time. Nevertheless, it takes one day to train three trees from one million
images on a 1000 core cluster [43]. Toby Sharp [52] describes a method to implement
training and prediction of random forests on GPUs which is a proprietary solution based
on Microsoft Direct3D and the High Level Shader Language (HLSL). The features are
chosen to target computer vision applications such as presented by Viola and Jones [54],
Lepetit et al. [28] and Schroff et al. [41]. The implementation of Toby Sharp accelerates
prediction on GPU by a factor of 100, while training has only a speed-up factor of eight.
His measurements show that 96 % of training time is spent for histogram accumulation.
Toby Sharp states that this might be a limitation of Direct3D and refers to experiments
that indicate significant benefits by using CUDA, the GPU programming framework of
NVIDIA.

Other work has been conducted to implement general purpose random forests on GPU
that are not targeted to computer vision applications. Geary et al. [16] present an imple-
mentation of extremely randomized trees using CUDA but conclude that their method is
inferior to an implementation on CPU.

Slat and Lapajne [48] also present a general purpose implementation of random forests
that uses the CUDA framework. They achieve a maximal speed-up factor of five for an
artificially chosen setup of 256 trees. They compare their implementation to the random
forest CPU implementation in the data mining software Weka which has not been manually
optimized and is written in Java.

Van Essen et al. [53] compare implementations for compact random forest classifiers
on CPU, GPU and a Field Programmable Gate Array (FPGA). Compact random forests

3



2. Related Work

are a variant of random forests that are more suitable for parallelization. However, Van
Essen et al. focus on classification only and derive the training implementation from the
LogitBoost classifier in Weka, which is also written in Java.
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3. Foundations
This master’s thesis focuses on the acceleration of random forests used for object-class
image segmentation, which is a pixel-wise classification of images. In this section we
cover the foundations of the accelerated machine learning algorithm, the features, notions,
measures and last but not least the basics of the framework that we used to accelerate
random forests on GPU.

Section 3.1 introduces the machine learning method “random forests”. Section 3.2 de-
scribes the visual features that we use as input to the random forests. Sections 3.3 and 3.4
present the measures for segmentation accuracies and GPU-CPU speedup that we use in
this master’s thesis.

Training of random forests is a computationally intensive task, especially if complex
features are used or the dataset contains many training instances. We accelerate random
forests on GPU by using the programming toolkit CUDA of NVIDIA. Section 3.5 intro-
duces the programming and memory model of the CUDA framework. Section 3.6 closes
with notes on our strategy to use multi-dimensional arrays as abstraction layer in the CPU
and GPU implementation.

3.1. Random Forests
Random forests, which are also known as random decision trees or random decision forests,
were independently introduced by Ho [22] as well as Amit and Geman [3]. Breiman intro-
duced the term “random forest” and compared the algorithm to Adaboost [5]. Breiman
himself was influenced by the work of Amit and Geman as he states in his publication.

Random decision forests are ensemble classifiers that consist of one or many binary
decision trees. Decision trees themselves are simple and commonly used models in data
mining and machine learning. A decision tree consists of a hierarchy of questions that are
used to map a multi-dimensional input value to a scalar output. The scalar output can
be a real value (regression) or a class label (classification). In the scope of this master’s
thesis, we focus on decision trees and forests for classification.

Figure 3.1 depicts an example of a single decision tree that could be part of a random
decision forest. To classify input x, we traverse each of the K random decision trees Tk of
the random forest F , starting at the root node. The root node of the decision tree is the
topmost split node (also known as decision node), which is depicted as a circle. Each split
node defines a test with a binary outcome (i.e. true or false). We traverse to the left child
if the test is positive, otherwise we continue with the right child. Classification is finished
if a leaf node lk(x) (depicted as square) is reached. The output value is obtained from the
reached leaf node, which stores a single class label or a distribution p (c | lk(x)) over class
labels c ∈ C.

The K decision trees in a random forest are trained independently. The output values
or distributions for input x are collected from all reached leaves in the decision trees and

5



3. Foundations

  £ ? ¿     < 

true false

Figure 3.1.: Left: Example for a binary decision tree. Circles depict decision nodes.
Squares depict leaf nodes. Right: Each decision node contains a test func-
tion in the form τ < θ that compares a feature response τ with a threshold θ
to generate a binary decision.

combined to generate a single classification. Various combination functions are possible.
Common methods are the majority vote or the average of all probability distributions
defined by

p(c | F , x) = 1

K

K∑
k=1

p (c | lk (x)). (3.1)

3.1.1. Random Forest Training
Key difference between a decision tree and a random decision tree is the training phase.
The idea of random forests is to train multiple trees on a random subset of the dataset
and a random subset of features.

A common process to train a decision tree is Top-Down Induction of Decision Trees
(TDIDT), which is a greedy algorithm. TDIDT based decision tree training consists of
two training phases:

1. Iteratively growing the decision tree until a stopping criterion is reached
a) Selecting a leaf node that is not yet pure
b) Selecting the best test that minimizes the impurity score
c) Splitting the leaf node into left and right according to the selected test
d) Continuing with a)

2. Prune the decision tree using a validation set

A decision tree is grown by iteratively splitting the nodes until the stopping criterion is
reached. We do not split nodes with instances that all belong to only one class (i.e. the
node is pure). This would not change the prediction given that we use majority voting or
averaged probabilities as result combination method.

6



3. Foundations

Decision trees allow an arbitrary function (i.e. feature) to be used as splitting criterion
of a decision node. The function with the best parameterization is selected according to
a score function. Two commonly used score functions are information gain and the Gini
index [15, Section 9.2].

In contrast to normal decision trees, random decision trees are not pruned after training
as they are less likely to overfit [5]. Breiman’s random forests use Classification And
Regression Tree (CART) as tree growing algorithm [5] and are restricted to binary trees
(tree order of 2) for reasons of simplicity. Whether the decision tree is balanced depends
on the dataset and the impurity score function used for training.

Tree growing finishes if a stopping criterion, such as a maximum tree depth, is reached.
Additional per-node stopping criteria can be used, such as a minimum number of training
instances (minimum support threshold). The chronological order of calculating node splits
does not influence the decision tree structure. Thus, training can proceed in depth-first
or breadth-first order as outlined in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Depth-first training of a random decision tree
Require: D training instances
Require: F number of feature candidates to generate
Require: P number of feature parameters
Require: T number of candidate thresholds to generate
Require: stopping criterion (eg. maximal depth)

1: D ← randomly sampled subset of D (D ⊂ D)
2: GrowTreeDepthFirst(D) ▷ start growing the decision tree at the root note
3: function GrowTreeDepthFirst(D)
4: if stopping criterion holds then return
5: (Dleft, Dright) ← EvaluateBestSplit(D)
6: GrowTreeDepthFirst(Dleft) ▷ recursively grow left child
7: GrowTreeDepthFirst(Dright) ▷ recursively grow right child
8: function EvaluateBestSplit(D)
9: F ∈ RF×P ← create random feature candidates

10: T ∈ RF×T ← create random threshold candidates for each feature
11: I∗ ← ∞ ▷ initialize optimal impurity
12: for all f ∈ 1..F do
13: for all θ ∈ Tf do
14: Dleft ← {d | d ∈ D,FeatResp(Ff , d) < θ} ▷ left split
15: Dright ← D \Dleft ▷ right split
16: I ← ImpurityScore(D,Dleft, Dright)
17: if I < I∗ then ▷ update the best parameters f∗, θ∗

18: I∗ ← I; f∗ ← f ; θ∗ ← θ

19: Dleft ← {d | d ∈ D,FeatResp(Ff∗ , d) < θ∗} ▷ left child samples
20: Dright ← D \Dleft
21: return (Dleft, Dright)

We recommend Criminisi [7] for further reading in the topic of decision trees, random
forests and its variants.

7



3. Foundations

Algorithm 2 Breadth-first training of a random decision tree
Require: D training instances
Require: F number of feature candidates to generate
Require: P number of feature parameters
Require: T number of candidate thresholds to generate
Require: stopping criterion (eg. maximal depth)

1: D ← randomly sampled subset of D (D ⊂ D)
2: Nroot ← create root node
3: C ← {(Nroot, D)} ▷ initialize candidate nodes
4: while C ̸= ∅ do
5: C ′ ← ∅ ▷ initialize new set of candidate nodes
6: for all (N,D) ∈ C do
7:

(
Dleft, Dright

)
← EvaluateBestSplit(D)

8: if stopping criterion does not hold for (N,Dleft) then
9: Nleft ← create left child for node N

10: C ′ ← C ′ ∪ {(Nleft, Dleft)} ▷ add left child to candidates
11: if stopping criterion does not hold for

(
N,Dright

)
then

12: Nright ← create right child for node N
13: C ′ ← C ′ ∪

{(
Nright, Dright

)}
▷ add right child to candidates

14: C ← C ′ ▷ continue with new set of nodes
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The key part of the decision tree growing algorithm is the evaluation of the best split
criterion. The best split evaluation can be abstracted into four major phase that are
executed in sequential order.

1. Random feature candidate generation
2. Feature response calculation
3. Threshold selection
4. Impurity score calculation

We describe the four phases in the following section.

Random Feature Candidate Generation

Random forests have two sources of randomness. The first source is random sampling of
the dataset (Line 1 of Algorithm 1). Secondly, a subset of features is sampled from the
feature space to generate a set of candidate features that are evaluated to find the best
split criterion. The size of the random subset is a training parameter and influences the
correlation between individual trees in a forest. Increasing the size of the subsets leads to
a higher correlation of the decision trees. If the subset includes all features, the decision
trees have maximum correlation, i.e. the individual trees are identical. Usually this leads
to a higher generalization error; on the other hand, a lower correlation of the individual
trees requires training of more trees in order to keep the generalization error. Finding
the best parameters with respect to the generalization error is an optimization problem
which depends on the individual dataset. A common approach is to use cross-validation
or out-of-bag estimates [5] to optimize parameters such as the size of the random feature
subset or the number of trees to grow.

Feature Response Calculation

After we have selected a subset of random feature candidates, the best split evaluation
continues to calculate feature responses for every candidate in the selected set of features
(Line 14 of Algorithm 1).

Feature response calculation is not specified in detail, as it depends on the specific type
of feature. We distinguish between two feature classes. The first variant extracts features
from a dataset D. Feature responses for every feature and every item in the dataset are
pre-calculated in a pre-processing phase. The calculated feature responses constitute the
derived dataset D′, which is used as input data for training. An example would be a text
corpus D that is pre-processed to extract one feature vector per document according to
the bag-of-words model [21]. The set of bag-of-words vectors build the derived dataset D′

where a feature response calculation is a simple lookup in the vector.
The second variant does not pre-calculate feature responses. Instead, the original dataset
D is used to calculate the feature responses on-the-fly. This approach is typically used if
the feature space is large, such that pre-calculating D′ is infeasible and a sampling of the
parameter space is necessary. An example is pixel-wise classification with a dataset that
consists of images where the feature response depends on the neighborhood of a pixel. If
size and shape of the neighborhood is a feature parameter, the pre-calculation of feature
responses would imply a calculation for every pixel (in all images) times the number of
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possible neighborhoods.
Another example are the visual features used by this master’s thesis as described in

Section 3.2. The feature space is extremely large, such that pre-calculation of feature
responses is not feasible. Training a random forest from precomputed feature responses
has different runtime properties, especially with respect to parallelization. Instead of pre-
computing all values for all possible features, we sample the feature space at runtime and
calculate the feature responses on demand.

Threshold Selection

Finding the best node split criterion requires the comparison of the feature response with a
threshold (see the right hand side of Figure 3.1). It is possible to find the optimal threshold
analytically. However, this is computationally infeasible for real-value feature responses
and a large number of evaluated feature candidates. Instead, we follow the approach of
Toby Sharp [52], Stückler et al. [50] and randomly sample the threshold space.

Impurity Score Calculation

Impurity score calculation in Line 16 of Algorithm 1 is not specified. It is possible to use
any function that fulfills the requirements of an impurity score function, i.e. the output for
input a is smaller than the output for input b, if and only if input a should be preferred
over input b. The Gini coefficient (also known as Gini impurity) and information gain are
commonly used functions.

Information gain is defined as the difference of Shannon entropy of the class distribution
D in the parent node and the weighted sum of Shannon entropies in class distributions in
the left child node Dleft and right child node Dright over the set of classes C by

IC
(
D,Dleft, Dright

)
:= HC(D)−

|Dleft|HC (Dleft) +
∣∣Dright

∣∣HC
(
Dright

)
|D|

, (3.2)

where

HC (D) := −
∑
c∈C

p(c |D) log2 (p (c |D)). (3.3)

Wehenkel and Pavella [58] define the normalized information gain by Equation (3.4),
which is a variant of the information gain that is normalized by the sum of the split
entropy1 and classification entropy HC (D) [17].

I ′C
(
D,Dleft, Dright

)
=

2IC
(
D,Dleft, Dright

)
HC (D) +HC (Dleft) +HC

(
Dright

) (3.4)

It can be shown that the normalized information gain holds the property of Equa-
tion (3.5) [58].

0 ≤ I ′C
(
D,Dleft, Dright

)
≤ 1 (3.5)

1HC (Dleft) +HC (Dright)
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The normalized information gain favors tests with a lower split entropy. Tests that split
into a large and a small child have a higher normalized information gain than tests that
split into two equally sized children, given that the tests yield the same information gain.

3.1.2. Random Forest Prediction
A random forest F classifies an input instance x of the dataset by processing it on each
random decision tree Tk in the forest and combining the individual results. We start at
the root node of each tree and continue traversing the decision trees until we reach a leaf
node. The type of information which is stored in a leaf node depends on the respective
application. The algorithm that is used to combine the information of all leaf nodes also
depends on the application. Random forests used for our image segmentation application
store probability distribution over all classes in the leaf nodes [50, 43].

Each decision tree stores the number of samples per class sc(lk) that reached each leaf
node lk during training. The class distribution p (c | lk(x)) for input x is then calculated
as the relative frequency of training samples by

p (c | lk(x)) :=
sc (lk(x))∑

c′∈C sc′ (lk(x))
. (3.6)

In case that the training samples Q of the training dataset D with Q ⊆ D are sampled
uniformly across all classes C such that p(c |Q) = |C|−1, we weigh the class distribution
stored in a leaf node according to the probability of class c in the original dataset D by

p (c | lk(x)) :=
sc (lk(x))∑

c′∈C sc′ (lk(x))

p(c | D)
p(c |Q)

. (3.7)

We use p(c | F , x), which is the averaged class distribution over all reached leaves in
the forest F according to Equation (3.1), and either return the class with the highest
probability

c∗ = arg max
c∈C

p(c | F , x), (3.8)

or the distribution p(c | F , x) itself and leave it open to the client how to use the informa-
tion.

In the case of object-class image segmentation, every pixel of the image represents an
instance that can be classified independently. This property leads to a so called “embar-
rassingly parallel” problem which is easy to parallelize on CPU and GPU.

3.1.3. Random Forest Variants
In this section we briefly present two variants of random forests. Both variants are special-
izations that add further restrictions to the properties of the decision trees in a random
forests.

Extremely Randomized Decision Forests

Extremely randomized decision forests have a restriction for the training of random forests.
During training, we randomly sample a set of feature candidates that are evaluated for
the best split criterion (cf. Section 3.1.1).
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Figure 3.2.: Random tree (left) and random fern (right) (based on [7]). Random trees have
different tests θn for every node n. Random ferns share the same tests θl per
tree level l.

Geurts et al. [17] coined the term “extremely randomized trees” for a variant with the
restriction that the training algorithm samples only a single feature candidate per node.

For prediction, we do not have to distinguish between trees of an extremely randomized
decision forest and trees of a normal random forest.

Training can be simplified dramatically, if threshold sampling is omitted and the thresh-
old value is randomly selected. Feature response calculation and impurity score calculation
can be skipped since the only feature and threshold candidate will be selected anyway.
However, for this master’s thesis we do not distinguish between extremely randomized
forests and normal random forests. Nevertheless, we can train extremely randomized
forests by setting the two parameters for the number of feature candidates and threshold
candidates to one.

Random Ferns

Ozuysal et al. [36] proposed a second random forest variant called “random ferns”. Random
ferns have the restriction that all nodes in the same tree level use the same split criterion
(i.e. test parameters).

Figure 3.2 depicts an example of a random tree and a random fern. We see that a
random tree has different tests on the first level (θ1, θ2), while the random fern applies
the same test θ1. The same principle applies for the other levels as well.

The properties of a random fern can be leveraged to improve parallelization since all
instances are classified by applying the same list of tests [36, 35]. The list of tests is known
in advance. In contrast to the test sequence in a random forests, the next element in the
sequence does not depend on its predecessor. Thus, all feature responses can be calculated
in parallel.

The original random fern training method differs from the training of a random forest.
The most important distinction is the selection of the best split criterion which is done ran-
domly as for extremely randomized decision trees. Furthermore, Ozuysal et al. developed
random ferns for the application of keypoint recognition with dozens of ferns and hundreds
of classes which is about one order of magnitude larger than the typical parameter settings
that we observe for the applications in the scope of this master’s thesis.
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We base our random fern training method on random forest training such that decisions
trees are constructed with the shape and the constraints of random ferns. Hence, our
random fern training does not differ significantly from random forest training. Instead of
selecting the test criterion which maximizes the impurity score for each node, we select
the test criterion which maximizes the “common good” for all nodes in the same tree level.
This implies that random ferns have to be trained in breadth-first order while random
forests can also be trained in depth-first order. Furthermore, we have to evaluate the
same set of feature candidates when growing the fern by one level.

Criminisi [7] claims that random ferns typically require deeper trees to achieve a compa-
rable segmentation accuracy of random forests but have a lower risk of overfitting to the
training data.

3.2. Visual Features for Random Forests
Tests in decision nodes are not restricted to a specific feature type and each node can differ
with respect to the parameters. Despite the name “random forest”, the tests are usually
deterministic. The only requirement is a boolean return value which is used to traverse
the decision tree during training and prediction.

This master’s thesis focuses on image segmentation and classification applications as
published by Schroff et al. [41], Shotton et al. [43], Stückler et al. [50]. The selection of
features is inspired by Lepetit et al. [28, Section 5.3] and leads back to the theory of visual
object detection published by Viola and Jones [54].

We implement two types of RGB-D image features as proposed by Stückler et al. [50, Sec-
tion III.B.]. They resemble the features in [52, 43] but use depth-normalization and region
averages; Shotton et al. [43] avoid the use of region averages to reduce the computational
complexity.

For a given query pixel q, the image feature fθ is calculated as the difference of the aver-
age value of the image channel ϕi in two rectangular regions R1, R2 in the neighborhood
around q by

fθ(q) :=
1

|R1(q)|
∑
p∈R1

ϕ1(q)−
1

|R2(q)|
∑
p∈R2

ϕ2(q). (3.9)

Extent size wi, hi and relative offset oi of the rectangular region Ri, i ∈ {1, 2} in the
image is normalized by the depth of the query pixel d(q) such that

Ri(q) := R

(
q +

oi
d(q)

,
wi

d(q)
,

hi
d(q)

)
. (3.10)

This leads to the property of using smaller regions and offsets for pixels that have a larger
distance to the camera (eg. pixels in the background). Figure 3.3 depicts an example of
an image feature at three different query pixels in an image.
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Figure 3.3.: Example of a visual feature at three different query pixels. The feature re-
sponse value for a query pixel q is calculated from the difference of average
values in two offset regions. The relative offset locations oi and region extents
wi, hi are normalized with the depth d(q) at the query pixel.

3.2.1. Parameters
Each visual feature fθ has a set of parameters θ that consists of eleven scalar values

1. Feature type (either “color” or “depth”),
2. Region 1 offset x,
3. Region 1 offset y,
4. Region 1 extent width,
5. Region 1 extent height,
6. Region 2 offset x,
7. Region 2 offset y,
8. Region 2 extent width,
9. Region 2 extent height,

10. Channel 1,
11. Channel 2,

which are randomly selected during training.
The feature type parameter specifies which of the two visual features is used. The first

feature type (“color”) operates only on the values of the three color channels, while the
second feature type (“depth”) only uses information of the depth channel. Both feature
types share the remaining set of feature parameters that describe the offset and region
extent of both queried image regions (cf. Figure 3.3). The following two sections describe
both feature types in more detail.

3.2.2. Color Feature
The three color channels of a RGB-D input image are converted into CIE Lab color space in
a pre-processing step. Each of the two region averages is calculated on one image channel,
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Figure 3.4.: Example of a RGB-D image captured by a Microsoft Kinect camera. Left:
Color channels of the image. Right: Visualization of the depth channel. Dif-
ferent colors indicate various depths, where red and orange indicate a low
distance to the camera. Green and blue indicate higher distance. Black is
used to visualize missing depth information.

which is specified by parameter channel 1 and channel 2, respectively. Note that the two
regions do not need to be calculated on the same image channel. In fact, comparisons
on the same image channels are less frequently selected during training than comparisons
on two different image channels as shown by a frequency analysis on a typical dataset
depicted in Figure A.1 in Appendix A.

Random forest implementations need not be aware of semantic interpretation of a color
image channel. The feature can easily be extended to use more than three image channels,
such as an additional channel that contains the output of a Sobel or Canny edge detector.

3.2.3. Depth Feature
Depth information of a RGB-D input image could be treated as fourth channel in the
image. The advantage of such an approach would be the usage of a generalized feature
implementation that calculates the difference of two image regions without a conditional
branch on the feature type. This approach is used by Toby Sharp [52]. However, depth
information of RGB-D cameras, such as the Microsoft Kinect depth sensor, do not guar-
antee to deliver defined values for every pixel in the image. This can happen, for instance,
if parts of the scenery are only visible for one of the two cameras. The distance to these
regions cannot be measured and thus remains undefined. Undefined values are usually en-
coded as Not a Number (NaN) or zero depth. Figure 3.4 depicts an example of a RGB-D
image with partially missing depth information.

When calculating the depth region average, we need to take care of undefined depth
values. The approach used by Stückler et al. [50] the generation of a second depth image
channel that is used to read the number of valid depth values in a region.

Parameter channel 1 and channel 2 are unused and always set to zero for depth features.

3.2.4. Integral Images
The color and depth features as presented in Sections 3.2.2 and 3.2.3 require the calculation
of the region sum of an image channel. A naïve implementation requires n ·m memory
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integral image channel

a b

c d

region

Figure 3.5.: Example of a region sum calculation that uses an integral image. The sum of
a rectangular region (center) can be calculated by four memory accesses and
three arithmetic operations: Region sum = d− c− b+ a.

transactions and n ·m arithmetic operations to calculate the sum of a n×m region.
The training of random forests requires to calculate many different region averages in

the same image channel. We adopt the idea of Viola and Jones [54] and calculate integral
images (closely related to summed area tables [8]) in a pre-processing step while loading
the images. This reduces the computational complexity of region sum calculation to four
memory transactions and three arithmetic operations as illustrated in Figure 3.5.

Numerical Limitations

The integration of images can result in large values. Consider the case of a depth channel
with an average depth of 2.0 m. The largest value in an integrated 640× 480 pixel image
would be approximately 640 · 480 · 2 m = 614 400 m, which requires at least 19 bit for
representation. Single precision floating points (IEEE 754) have a total precision of 24 bit.
Given that the place before the decimal point already requires at least 19 bit, there are at
most 5 bit left to represent the value after the decimal point. Depth precision is limited
to at most 2−5m = 0.03125m in this case. If the region is small and the depth difference
between two corners of the rectangular falls below that value, the calculated region sum is
rounded to 0 and the depth information is lost. Hence, we avoid the use of 32 bit floating
points for integral depth channels. Instead, we use 32 bit unsigned integers to represent
fixed point values with a granularity of 1 mm. Integer overflows for 640× 480 pixel depth
channels occur at an average depth of at least 232

640·480mm ≈ 14 m. For our experiments
in 8 bit RGB color space, we use integer numbers for the integral image. In case of the
three channels in CIE Lab color space, we measure that storing the values of the integral
images in single precision floating point leads to a higher segmentation accuracy than using
fix-point values with limited precision. Our implementation performs image integration
in double precision with the Kahan summation algorithm [25] to reduce the propagated
error while calculating the sums.

Note that the memory requirements to store the integrated color channels is four times
as large since we have to use 32 bit instead of 8 bit RGB values.
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Figure 3.6.: Example of an image and the according ground truth from the NYU Depth
v2 dataset. Left: RGB color image. Right: Manually labeled ground truth.
Different colors are used to label four classes. Black pixels indicate “void”.

3.3. Measuring Image Segmentation Accuracy
Besides the focus of this master’s thesis on acceleration of random forests, we are also
interested in the segmentation accuracy of random forests. For all of our experiments we
output the confusion matrix, average class accuracy and pixel accuracy. The following
sections explain the special classes “void” and “background” as well as how average class
and pixel accuracy is measured.

3.3.1. Void and Background Pixels
Depending on the dataset, the label images (“ground truth”) can contain “background” or
“void” pixels [12]. “Void” pixels indicate that the actual class of the pixel is unknown and
can be either background or any other label. “Void” pixels can be used to mask regions of
an image that are difficult to classify and should not influence the accuracy measure. Two
common cases are the border pixels between two objects and pixels that humans cannot
classify or would be too difficult for the learning algorithm. Figure 3.6 shows an example
of a RGB image and the according ground truth. Black pixels in the ground truth indicate
“void” and are excluded in training and testing.

Datasets with small foreground objects and large background areas tend to yield high
accuracies even if the classifier has a bias on the background class. Naïve classifiers which
always select the background class would, for example, yield an accuracy of 90 % for images
with 90 % of background.

We calculate three variants for each accuracy measure:

1. Treating “background” and “void” as usual classes

2. Excluding background pixels

3. Excluding “void” pixels

The following two sections explain how we measure class and pixel accuracy with respect
to the three variants that include or exclude “void” and “background” pixels.
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3.3.2. Average Per-Class Accuracy Measure
Per-class accuracy is the percentage of correctly labeled pixels for a given class. Average
per-class accuracy is equivalent to the diagonal average in a confusion matrix which has
been normalized, such that all values of one label add up to 1.

The first variant of the average per-class accuracy in which “background” and “void”
are treated as usual classes, is invariant to the total number of pixels in each class. Hence,
large classes are not favored over small classes. However, a classifier that always selects a
specific class would have an accuracy of 100 % for that class.

The second variant excludes background pixels. The per-class average in this case is
calculated using the accuracy of all classes except the background class.

The third variant excludes “void” pixels. The actual prediction for a pixel that is marked
as “void” in the ground truth is disregarded and does not influence the accuracy measure.

3.3.3. Pixel Accuracy Measure
The pixel accuracy measure is defined by the number of all correctly classified pixels over
the total number of pixels in the image. Hence, large classes (such as large background
areas) have more impact in the pixel accuracy measure.

The second variant excludes background pixels and is calculated as the ratio of all cor-
rectly classified pixels over all pixels that are either non-background or correctly classified.
This variant has been used for the dataset of Stückler et al. [50] that defines specific
semantics for background pixels.

The third variant excludes “void” pixels and is calculated as the ratio of all correctly
classified non-void pixels over all non-void pixels.

3.4. Speed-up Measures
Toby Sharp [52] compares the CPU and GPU implementation by comparing the elapsed
time spent in training and testing on CPU and GPU, respectively. We think that the
consideration of only the simple speed-up factor can lead to misinterpretation, especially
if a powerful GPU is compared to a significantly older CPU generation. CPUs optimized
for many floating point operations per second that accept, for instance a higher power
consumption, can also bias the interpretation of the GPU–CPU speed-up factor.

On the other hand, a GPU might significantly reduce the required processing time
of a CPU while being more expensive in acquisition or during runtime due to a higher
power consumption. Depending on the application, it might be less expensive to acquire
additional CPUs rather than one GPU. Thus, we extend our results with two additional
measures,

1. Speed-up factor normalized over acquisition costs,
2. Speed-up factor normalized over power consumption,

as proposed by Van Essen et al. [53].

3.5. The CUDA GPU Programming Framework
Our GPU implementation is based on the CUDA programming toolkit in version 5.5.
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Figure 3.7.: Comparison of computing throughput of various CPUs and GPUs [37]. Left:
Theoretical floating point operations per second. Right: Maximal memory
throughput in gigabytes per second.
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Figure 3.8.: Schematic diagram of a CPU (left) and GPU (right) [37]. More space on a
GPU is devoted to ALUs. CPUs contain larger areas for caches and control
logic, such as branch prediction.

GPUs and CPUs have different strengths and weaknesses. GPUs tend to be more
efficient for computationally intensive applications, that can be parallelized by hundreds
or thousands of independent threads. The gap between computing power and memory
bandwidth, as depicted in Figure 3.7, is due to the fact that relatively more space (i.e.
transistors) on a GPU is devoted to integer and floating-point units than on a CPU [37]
as can be seen on the schematic high level view of a CPU and GPU on Figure 3.8.

3.5.1. GPU Programming Model
The CUDA toolkit can be used as a C, C++ or Fortran language extension. There are
wrappers for other programming languages such as Python and Java or the Microsoft
.Net platform.

NVIDIA uses the notions “device” and “host” to distinguish between GPU and CPU,
respectively. The CUDA enabled C/C++ compiler nvcc is used to compile to the Parallel
Thread eXecution (PTX) instruction set [57]. PTX instructions describe a low-level virtual
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Figure 3.9.: Left: Schematic diagram of threads, thread blocks and the grid [37]. The
two-dimensional grid in the depicted example consists of 2× 3 thread blocks.
Each block consists of 3× 4 threads. Right: Schematic diagram of the CUDA
memory hierarchy. Global memory is used to share data across several blocks.
Threads in one block can share memory in the per-block shared memory space.
Data in shared memory space is not persistent across several kernel launches.
Threads have access to their own registers and local memory. Per-thread local
memory and registers are neither persistent nor accessible by other threads.

machine that is independent of the exact GPU hardware. The CUDA driver translates
PTX instructions into GPU specific code when the programming is loaded at runtime.

The CUDA programming model was designed so that a programmer does not need to be
aware of specific hardware details. A programmer implements so called “kernel” functions,
that can be executed in parallel by many threads on the GPU. Dedicated scheduling
hardware on the GPU takes care of distributing the threads to the available computing
units. Multiple threads execute the same code but act on different data. NVIDIA uses the
term Single Instruction, Multiple Threads (SIMT) akin to the Single Instruction, Multiple
Data (SIMD) class in Flynn’s taxonomy [14]. Multiple threads are logically grouped into
one-, two- or three-dimensional blocks. Several blocks are grouped into a one-, two- or
three-dimensional grid as depicted in the left hand side of Figure 3.9.

GPUs consist of one or many streaming multiprocessors. Each streaming multiprocessor
of the Fermi architecture contains its own scheduling units, special function units, control
units, registers and caches [57].

A streaming multiprocessor has several CUDA cores that perform the actual computa-
tions. The Fermi architecture defines 32 cores per streaming multiprocessor which results
in a peak performance of 32 floating point and 32 integer operations per cycle and per
streaming multiprocessor for devices of compute capability 2.0.

The scheduling unit assigns units of 32 threads, called warps, at a given point in time.
All threads in a warp are executed in parallel, if the execution path does not diverge.

3.5.2. GPU Memory
The right hand side of Figure 3.9 depicts the three-level memory hierarchy and its relation
to threads, blocks and grids.
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Registers and Local Memory Space

Every thread has access to local memory and registers that are not persistent and cannot
be read by other threads. The compiler decides whether a variable is put into register
or local memory. The latter case can happen since the number of registers is a limited
resource. Local memory resides in global device memory space with the same latency and
bandwidth characteristics. This means that latency and bandwidth of registers and local
memory differ by two orders of magnitude if data is not cached. However, reads and writes
are cached in L1 cache such that the use of local memory does not always entail a runtime
performance penalty [30].

Shared Memory Space

Threads in one block have access to the per-block shared memory. Access to shared
memory is not as fast as to local memory, but significantly faster than access to global
memory. Shared memory consists of 16 or 32 banks for devices of compute capability 1.x
and compute capability 2.x/3.x, respectively. Each bank has a bandwidth of 32 bit per
clock cycle for devices of compute capability 1.x/2.x and 64 bit per clock cycles for devices
of compute capability 3.x [37]. The programmer has to manually synchronize access to
shared memory by using provided methods in the CUDA framework. Data in thread-local
and shared memory is not persistent after threads terminate. The programmer can use
shared memory to share data between threads in the same block. Shared memory can be
used, for instance, to implement software-managed caches [47] or to rearrange data, such
that the data can be written more efficiently to global memory [39].

Global Memory Space

Global memory is the slowest memory space. Data in global memory is persistent, until
manually released by the programmer or the CUDA driver at program termination.

Access to global memory space has to be manually synchronized by the programmer.
CUDA offers atomic operations for 32-bit or 64-bit integers in global and shared memory.

However, not all atomic operations are available for older devices before compute capability
2.x.

Texture Memory Space

One-, two- or three dimensional arrays in global memory can be mapped to textures.
Using texture memory has potential benefits over accessing global memory directly. Ded-
icated hardware on the device is used to cache data of texture space and perform address
calculations. Higher bandwidth can be achieved, even if memory access is not strictly
coalesced. Texture memory and texture cache perform best if the access pattern shows
two-dimensional locality. Texture cache misses cause a global memory access. However,
the global memory access is cached by the L2 cache. Accordingly, using texture memory
does not reduce latency for an uncached memory access [37].

Constant Memory Space

A small part, 64 kB for devices of compute capability 1.x–3.x, of global device memory is
reserved for constant memory. Data in constant memory is read-only. Streaming multi-
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processors contain a dedicated cache for constant memory, which is read-only and shared
by all functional units.

Unified Address Space

Global memory, shared memory and thread-local memory are addressable in the same
memory space since PTX version 2.0. Hence, the programmer need not know the memory
space of the variables.

Transferring Data between Host and Device Memory

Data in device memory space cannot be accessed by host code running on the CPU.
Vice versa, device code cannot access host memory that was allocated with malloc()
or cudaMalloc(). The programmer has to copy data between host and device memory
space explicitly. However, since CUDA 4.0 it is possible to allocate host memory with
cudaMallocHost() or cudaHostMalloc(). In contrast to malloc() or cudaMalloc, it
allocates page-locked memory (also known as “pinned memory”) that can directly be
accessed from device code.

Streams

Recent hardware generations allow the programmer to transfer data from host to device,
device to host or device to device asynchronously. The programmer creates multiple
streams and passes it as argument when launching kernels and memory transfers. If
no stream is specified as argument, the default stream is used and actions are executed
sequentially. Depending on the hardware, one or many memory transfers can be executed
while a kernel is running. If a kernel launch and a memory transfer happen to be in different
streams, they can be scheduled by the hardware to run in parallel. The programmer has
to synchronize manually and has to be aware of exact semantics [37].

Hiding Memory Latency

Latency of uncached global memory accesses is at least one magnitude larger than the
execution of arithmetic operations.

The latency of an global memory access on the Fermi GPUs amounts between 400 and
800 clock cycles, while an arithmetic operation takes approximately 20 clock cycles.

The memory latency penalties for CPUs are similar. We use mem-latency [49] to mea-
sure the CPU memory latency which is 90 ns (≈ 225 clock cycles) on an Intel Core i7–920
with memory clocked at 1066 MHz.

Hiding that latency can be crucial to use all of the available processing power of CPUs
and GPUs. Modern CPUs are equipped with a large L1 cache and L2 cache that trans-
parently helps to mitigate the performance penalties. Nevertheless, manually optimizing
for CPU cache hit rate is still important for memory-bound algorithms [11].

Hiding memory latency is possible, if other operations can be executed while an oper-
ations stalls for memory access. The following notions and principles are necessary to
understand to be able to efficiently optimize memory throughput of GPU code.
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Address offset [B] 128 160 192 224 256

Thread index 0 … 31

Figure 3.10.: Example of efficient global memory access (best-case). Each of the 32 threads
request 4 bytes of memory (green, dotted rectangles). Addresses are consec-
utive such that the memory transfer can be coalesced by the GPU. Only one
transfer of 256 B is necessary (green area).

Address offset [B] 128 256

Thread index 0 1

384

…

160 192 224 288 320 352

Figure 3.11.: Example of inefficient global memory access (worst-case). Each thread re-
quests 4 bytes of memory (green, dotted rectangles). Addresses are not
consecutive, so memory transfer cannot be coalesced. Every thread causes a
separate memory transfer (gray areas) of the smallest possible word (32 B in
the example).

Efficient Global Memory Access

Global memory has a limited bandwidth. The bandwidth is only fully saturated if several
bytes, forming a word, are transferred at once in one transaction. Memory throughput is
wasted if not all bytes of a transferred bytes are payload, for instance if only single bytes
are transferred.

To make full use of all available bandwidth, i.e. reduce the number of memory transac-
tions, the programmer is required to design the kernels in such a way that global memory
accesses follow a certain pattern. Dedicated GPU hardware detects if several threads in
a warp access memory at consecutive addresses. Instead of inhibiting a separate memory
transfer for every thread, the requested addresses are coalesced and data is transferred in
the largest possible word (128 B in the example).

Figure 3.10 shows an example for memory accesses that can be coalesced into a single
transfer of 256 B by the GPU. Figure 3.11, in contrast, shows the worst-case scenario for
memory accesses by multiple threads. Coalescing is not possible and a total of 32 transfers
with the smallest possible word (32 B in the example) are necessary.

Avoiding Shared Memory Bank Conflicts

Addresses of shared memory access do not need to be contiguous in order to achieve
maximal throughput [39]. However, the access pattern has to be designed to avoid bank
conflicts in order to maximize the throughput.

The GPU transparently maps addresses in shared memory space to the rows in the
shared memory banks. The word size (i.e. row size) of shared memory banks depends on
the hardware platform and is either 32 bits for compute capability 1.x/2.x or 64 bit for
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0

1

2

31

…

0

128

256

shared memory banksaddress [B]

Figure 3.12.: Example of one possible mapping from shared memory address space to the
32 shared memory banks. Successive 32 bit words are mapped to successive
banks as indicated by the coloring. The words at address 0 and 128 map to
the same bank but in different rows.

compute capability 3.x.
Banks are organized such that successive words (either 32 bit or 64 bit) are mapped to

successive banks. Figure 3.12 shows an example for the mapping with 32 banks and 32 bit
words.

Each bank can read or store one word per two cycles. Hence, the maximum total shared
memory bandwidth can be only achieved if all banks are used in parallel. If two or more
threads read data from the same address (i.e. the same bank), the value is broadcast to the
threads. If two or more threads write data to the same address, the value of one thread is
written. The winning thread is undefined.

If two or more threads access the same bank for reading or writing, but at different rows
(i.e. different addresses), a bank conflict occurs. The GPU has to serialize the memory
transactions which results in loss of memory performance.

A common case of shared memory bank conflicts is column-wise access of a matrix by
multiple threads. Ruetsch and Micikevicius [39] elaborate on a matrix transpose example
that requires such accesses and discuss strategies how to avoid bank conflicts.

CUDA enabled GPUs contain a hardware event counter for bank conflicts. Programmers
can use the profiler of NVIDIA [10] to retrieve the number of bank conflicts that happened
during the execution of a kernel.

Partition Camping of Global Memory

Global memory is distributed over several chips, called partitions. Partitions in global
memory are comparable to banks of shared memory. A similar effect such as bank con-
flicts can be observed when load and store operations to global memory are not equally
distributed but happen to occur only on one or a few partitions. Aji et al. [1], Ruetsch
and Micikevicius [39] call this effect “partition camping” and measure up to seven-fold
speed-ups by mitigating partition camping in certain use cases.
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Effective Memory Throughput [GB/s]
Kernel Optimization Variant GTX 280 GTX 480 Tesla K20c
Simple Copy 120 136 139
Shared Memory Copy 85 209 267
Naïve Transpose 3 26 50
Coalesced Transpose 23 64 98
Bank Conflict Free Transpose 23 140 129
Coarse-grained Transpose 23 144 139
Fine-grained Transpose 98 138 129
Diagonal 78 133 124

Table 3.1.: Effective memory bandwidth of the transpose matrix sample application
shipped with the CUDA SDK. Compiled with CUDA 5.0 and measured on
a GeForce GTX 280, GeForce GTX 480 and Tesla K20c for comparison. Ma-
trix size: 2048× 2048 (64× 64 tiles), tile size: 32× 32, block size: 32× 8. We
set the number of repetitions to 5000 in order to achieve stable results. The
“Diagonal” variant is optimized to avoid Partition Camping, while the “Bank
Conflict Free Transpose” is only optimized to avoid Bank Conflicts [39]. The
results show that partition camping avoidance is important on a GTX 280 but
does not improve bandwidth on the newer GPUs GTX 480 and Tesla K20c.

To the best of my knowledge, there is no official NVIDIA documentation available that
describes partition camping and how to avoid it. We run the transpose matrix sample
application (cf. [39]), shipped with the CUDA 5 Software Development Kit (SDK), on a
GeForce GTX 280, GeForce GTX 480 and Tesla K20c. Table 3.1 shows that optimizing
for partition camping (kernel variant “diagonal”) does not improve the effective memory
throughput on the GTX 480 and Tesla K20c. In fact, we measure a small slowdown in
comparison to the “bank conflict free transpose” variant that is optimized to avoid bank
conflicts but does not attempt to avoid partition camping. According to rumors [26],
GPUs of the Fermi architecture mitigate “partition camping” by hashing global memory
addresses.

Occupancy

Occupancy is defined as the ratio of active warps over the maximum number of warps
supported on a streaming multiprocessor. The maximum number of supported warps
depends on the hardware platform and can be looked up in the CUDA C Programming
Guide [9, Table 9. Feature Support per Compute Capability].

The maximum number of active warps depends on the kernel resource consumption.
Limited resources are shared memory and the number of registers. The CUDA compiler
attempts to minimize register consumption to increase the maximum number of active
threads. The CUDA Software Development Kit is shipped with an occupancy calculator
that programmers can use to calculate the theoretical occupancies.

Note that higher occupancy does not guarantee higher performance. Compute-bound
algorithms do not benefit from an increased occupancy if all cores are already busy at any
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given point in time.
Increasing the occupancy can have a negative impact. This can happen if the number

of instructions increases or more memory transactions are necessary due to register spill.
Volkov [55] measured a 60 % performance increase for the multiplication of two large
matrices in the CUBLAS library, while occupancy decreased from 67 % to 33 %.

Thread-Level Parallelism (TLP)

Thread-level parallelism hides memory latency by scheduling many threads in parallel. If
an instruction of a thread is waiting for a memory transaction to complete, instructions
of another thread are executed in the meantime. Thread-level parallelism requires more
threads to be ready for execution than currently active threads. The maximum number
of resident threads is limited by hardware resources and can be looked up in the CUDA
C Programming Guide [9, Table 9. Feature Support per compute capability].

Instruction-Level Parallelism (ILP)

Parallelism can be increased by reordering instructions such that operations that depend
on each other are interleaved with independent operations.

Listing 3.1 shows an example with instructions that are not optimized to improve
instruction-level parallelism. The instruction in Line 2 of Listing 3.1 depends on the
result of Line 1 and has to wait until Line 1 finishes.

Listing 3.2 is an reordered version of the code in Listing 3.1. Independent instructions
are reordered into blocks without changing the semantics of the program. The three
instructions of Line 1–3 can be put into the execution pipeline without waiting for the
previous memory transaction to finish.

Listing 3.1: Original instruction order
1 x = x + a
2 x = x + b // s t a l l s
3 y = y + a
4 y = y + b // s t a l l s
5 z = z + a
6 z = z + b // s t a l l s

Listing 3.2: Reordered instructions
1 x = x + a
2 y = y + a // no l a t e n c y s t a l l
3 z = z + a // no l a t e n c y s t a l l
4 x = x + b
5 y = y + b // no l a t e n c y s t a l l
6 z = z + b // no l a t e n c y s t a l l

3.6. Memory-Efficient n-Dimensional Array Calculations
One strategy for implementing algorithms on GPU is to use n-dimensional arrays as data
abstraction layer. Goal is to design n-dimensional arrays such that the algorithm can be
reformulated into mathematical operations on the arrays. Massively parallel hardware,
such as a GPU, show good performance if the operations can be split into many indepen-
dent subtasks. Such a design contrasts with the object oriented design paradigm where,
for instance, the programmer uses nested lists or sets of objects instead of n-dimensional
arrays. Still, a list of elements with scalar properties (i.e. a struct) can easily be mapped
to a matrix where rows correspond to elements and columns correspond to properties. A
nested list of structures (i.e. a list of lists) can be mapped to a three-dimensional array
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row-major order

column-major order

Figure 3.13.: Example for the mapping of a matrix to linear address space. Upper half:
The 4×4 matrix is mapped in row-major order. Lower half: The 4×4 matrix
is mapped in column-major order. Colors indicate the order of serialization.

and so forth.
Our random forest implementation on GPU strongly depends on n-dimensional arrays,

such as matrices. We extracted a library from Matrix library for CUDA in C++ and
Python [42], called ndarray, to implement multi-dimensional arrays on CPU and GPU.
The interface is similar to the ndarray class in NumPy [33].

3.6.1. Row-major and Column-major Array Order
Multi-dimensional arrays have to be layout in a one-dimensional structure in memory.
Two possible strategies are available for a two-dimensional array. Row-major order stores
elements of one row consecutively in memory. Column-major order, in contrast, stores
all elements in a column consecutively in memory. Row-major order is the default array
ordering in languages such as C, Java or Python, while column-major order is the default
ordering in computer languages such as FORTRAN or MATLAB. Figure 3.13 shows an example
for row-major and column-major order in two-dimensional space. Both variants have
benefits and disadvantages, which depends on the specific use case, such as the order of
iteration. A user of our multi-dimensional array library ndarray can choose at compile-
time which order to use for a specific array.

Row-major and column-major order can be generalized to higher dimensions. Given a d
dimensional array of size N1×N2×· · ·×Nd, we denote N1 as first and Nd as last dimension
of the array. In row-major order, elements in the last dimension are contiguous in memory.
Locality of elements decreases with decreasing order of dimension. The opposite is true
for column-major order, where elements of the first dimension are contiguous in memory
and elements of the last dimension have minimal locality in memory.

Using an n-dimensional array to store data is not only relevant for implementing algo-
rithms on GPU but is also relevant for parallelization on CPU. Consider the case that
multiple threads iterate over a list of objects. Caching and memory pre-fetching improve
if the objects are mapped to a matrix and are stored in column-major order. Intel recom-
mends to prefer structure of arrays over an array of structures to help the compiler use
vector instructions [24, Section 5.3].
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Main focus of this master’s thesis lies on the acceleration of random forests. We assume
the reader to be aware of the random forest machine learning algorithm, which we covered
in Section 3.1.

In this section we introduce our implementation and the acceleration of random forests
on CPU and GPU. Section 4.1 starts with general notes on the implementation of visual
features as introduced in Section 3.2. In Section 4.2 we continue with random forests
training on CPU and GPU. Section 4.3 introduces our implementation of the prediction
with random forests on CPU and GPU.

4.1. Implementation of Visual Features
Visual features for object-class image segmentation, as used for the implementation in
the context of this master’s thesis, are calculated using the neighborhood of a pixel in
the image. The feature response is calculated as the difference of two region averages
that are offset around the query pixel. If at least one of the two regions lies partially or
entirely outside the image, we use NaN to indicate an undefined value. NaNs have the
advantageous property to propagate in floating point operations, i.e. arithmetic operations
yield NaN if at least one NaN is involved in the calculation. The result of a comparison
with NaN is defined to be always false.

The two region offsets and extents are normalized by the depth of the query pixel. If
the depth information is missing at the position of the query pixel (cf. Section 3.2.3), the
two regions cannot be normalized and the feature response is also set to NaN. Depending
on how the decision node test is implemented, the decision tree is traversed in the same
manner for undefined feature responses. Undefined values yield a negative test in our
implementation and always flow to the right child. Hence, decision forests in our imple-
mentation can learn to treat pixels differently which are close to an image boundary or
have no valid depth.

4.2. Accelerating Random Forest Training
The first step of this work is to implement the algorithm to train forests on CPU. This is
necessary to later evaluate the speed improvement gained by implementing the algorithm
on GPU. We base our CPU implementation on the random decision forest implementation
in the Tuwo Computer Vision Library [32]. We refactor, parallelize and heavily optimize
the implementation to make better use of the CPU cache. We then add our implementation
for the normalized color and depth feature as described in Section 3.2.

28



4. Accelerating Random Forests

4.2.1. Breadth-first Training
Decision trees can be trained in depth-first or breadth-first order. Apart from the change
in the generated sequence of random numbers, decision trees that are trained in depth-first
order have the same structure as trees that are trained in breadth-first order. Training
a decision tree in depth-first order means that the current branch of the tree is grown
recursively until the stopping criterion is reached. In contrast, training in breadth-first
order grows the tree by splitting nodes in the currently bottommost level before proceeding
with the next level. The original implementation in Tuwo executes training in depth-first
order. We refactor that part of the code to grow the trees in breadth-first order, for two
reasons. Firstly, training of random ferns requires decision trees to be trained in breadth-
first order. Hence, our implementation can be adopted for training of random ferns with
only a few modifications. Secondly, training in breadth-first order gives us a higher degree
of freedom with respect to the generation of random feature candidates. We can choose
to generate a new set of feature candidates for every node or only once per tree level. The
latter variant saves training time for deep trees with several thousands of nodes. We will
see in Section 5.3 that this approach does not influence segmentation accuracy, given that
we generate a sufficient amount of feature candidates.

4.2.2. Random Forest Training on CPU
Before we started optimizing, we expected that about 20 % of the code accounts for 80 %
of the runtime according to the Pareto principle1. We used Google Performance Tools
[19] to profile our application and found that even a smaller fraction of code accounts for
the vast majority of execution time. The following section focuses on optimization efforts
concerning these parts of the code.

Random forests in the Tuwo Computer Vision Library [32] are single-threaded and
individual trees are trained independently (cf. Section 3.1). Thread Building Blocks [51]
or OpenMP [34] can be easily applied to parallelize training of individual trees. This is
efficient if the number of trees is larger or equal to the number of available CPU cores.
However, computing power is wasted if we only train few trees, but many CPU cores
are available. This is the case for the computer vision applications mentioned in [43, 50].
Efficient parallelization of single tree training is a goal of this work.

Profiling indicates that training time is dominated by evaluating the best splits (Line 8
of Algorithm 1). Calculating the best split for a single node scales linearly with the
number of samples, the number of random features and the number of random thresholds
(cf. Toby Sharp [52, Section 5.1]). This holds only true if the number of samples and
evaluated features is large. Otherwise, the overhead of parallelization and maintenance of
data structures becomes relatively large.

The split evaluation is a three-level nested loop over a set of random features F, a set of
random thresholds per feature T and the set of all training samples D. Algorithm 3 shows
a straight-forward feature evaluation implementation. The theoretical runtime complexity
of Algorithm 3 is O(F · T · |D|).

While Algorithm 3 is straight-forward to implement, CPU cache usage is not optimal.
Large datasets do not fit into cache and the CPU fetches data from main memory for every

1https://en.wikipedia.org/wiki/Pareto_principle

29

https://en.wikipedia.org/wiki/Pareto_principle


4. Accelerating Random Forests

Algorithm 3 Naïve implementation of the feature evaluation
Require: D samples
Require: F ∈ RF×P random feature candidates
Require: T ∈ RF×T random threshold candidates for each feature

1: for all f ∈ 1..F do
2: for all θ ∈ Tf do
3: initialize new histogram
4: for all d ∈ D do
5: calculate feature response
6: update histogram
7: calculate impurity score according to histogram
8: return histogram with best score

evaluated feature. Main memory accesses are one or two magnitudes slower than loading
data from CPU cache [11]. We confirm this assumption by profiling the application. The
profiling result shows that the CPU stalls and waits for memory while feature responses
are calculated (Line 5 of Algorithm 3).

To optimize our CPU implementation, we concentrate on optimizing the cache hit rate
to improve the feature response calculation which we found to be the remaining bottleneck
of random forest training.

Algorithm 4 Feature evaluation optimized for the CPU cache
Require: D samples
Require: F ∈ RF×P random feature candidates
Require: T ∈ RF×T random threshold candidates for each feature

1: initialize histograms for every feature and threshold
2: for all d ∈ D do
3: for all f ∈ 1..F do
4: calculate feature response
5: for all θ ∈ Tf do
6: update according histogram
7: calculate impurity scores for all histograms
8: return histogram with best score

We reformulate Algorithm 3 and avoid the iteration over the dataset in the inner loop.
This yields Algorithm 4 which iterates over the dataset in the outermost loop (Line 2).
Note that the theoretical complexity of O(F · T · |D|) is the same for both algorithms, as
we only reordered the execution. However, the CPU needs to fetch every instance d in
the dataset D only a single time. Feature responses are calculated while an instance (d)
is loaded. We observe an increased cache hit rate for Line 4 in the profiling output.

The disadvantage of Algorithm 4 is a more complex data structure that is necessary
to accumulate the histograms. Accessing the histogram data structure in Line 6 happens
often as it is executed in the innermost loop. Again, profiling shows a large overall penalty
due to a decreased cache hit rate, if the memory accesses are scattered with low locality.

To increase the cache hit rate, we need to structure the histogram counters such that
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the data locality increases with the access frequency. Histogram counters for a given
feature over all thresholds are updated most often because it is executed in the innermost
loop. We layout the histogram data structure in a way that all counters for a given
feature and threshold are located at consecutive memory addresses. This makes caching
and pre-fetching more efficient. As already mentioned, the implementation becomes more
complicated as a re-aggregation step in Line 7 is required. However, profiling confirms
that the re-aggregation step marginally affects overall runtime performance because it is
only executed once. The speed improvements due to higher cache hit rates outweigh the
overhead of re-aggregation by far.

Sorting of Samples

Cache hit rate of the feature response calculation increases, if two consecutive instances
di, di+1 ∈ D belong to the same image. We measure an improved cache hit rate if we
pre-sort the entire dataset by image. The sorting need not be perfect, therefore it suffices
to sort fixed-sized blocks of the dataset, which scales linearly in the size of the dataset.

Parallelization

We can easily parallelize Algorithm 4 since the calculations in Line 3-6 do not depend
on each other. We use TBB [51] to partition the dataset D and run the calculations in
parallel on all available CPU cores. The implementation leverages the entire computing
power of the CPU even if only a single decision tree is trained.

4.2.3. Theoretical Computing Boundaries
We estimate the percentage of the theoretical computing power of a CPU that is used
by our implementation. To simplify the calculation, we calculate a lower bound estimate
of the time to evaluate the best split criterion by only considering the histogram update
step of the split evaluation for the root node. The CPU executes the histogram update
|D| · F · T times (Line 6 of Algorithm 4).

Listing 4.1 shows the simplified source code of the histogram update. GCC 4.6.3 compiles
the code of Listing 4.1 to eight x86 assembly instructions [18] with optimization flags set
to “-O3 -march=native”.

Listing 4.1: Simplified implementation of histogram update
1 extern double histograms [ 2 ] ;
2 void updateHist ( double featResp , double thresh ) {
3 int o f f s e t = ( int ) ( featResp < thresh ) ;
4 histograms [ o f f s e t ]++;
5 }

We set the parameters to |D| = 106 samples from 500 images, F = 2000 random features
and T = 50 thresholds. Split evaluation of the root node takes 115 s on a quadcore Intel
Core i7–9202 clocked at 2.67 GHz. We see in the profiling output that only one instruction
is executed per cycle. Pipelining and vectorization are not used because either the compiler

2Hyperthreading is disabled
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is not capable to optimize the code using vectorization instructions, or the CPU stalls while
waiting for memory.

We therefore neglect pipelining and vectorization features of the CPU and estimate the
total execution time for Line 6 of Algorithm 4 as

estimated total time =
total instructions

instructions per second (4.1)

=
8 · |D| · F · T
4 · 2.67 GHz (4.2)

=
8 · 106 · 2000 · 50
4 · 2.67 · 109 Hz ≈ 75 s . (4.3)

Under the constraint that neither pipelining nor vectorization are used, we estimate
75 s as lower boundary of the computation. According to this simplified estimate, our
CPU implementation has a computing resource efficiency of at least 75 s

115 s ≈ 65.2 %. Given
that we use a lower bound estimate and leave out the feature response calculation, we
assume our implementation to be close to the theoretical computing boundaries of the
CPU. Our implementation can be further improved by using vector instructions. However,
we anticipate the overall speed-up to be less than one order of magnitude since vector units
of current CPUs can operate on at most four 64 bit floats per clock cycle [13].

Lower Bound Estimate on GPU

We calculate a similar estimate for the GPU with one instruction per cycle. NVCC com-
piles the code of Listing 4.1 to 24 instructions3. The Nvidia GeForce GTX 480 has 480
CUDA cores and is clocked at 700 MHz4.

Hence, our lower bound estimate is

estimated total time =
total instructions

instructions per second (4.4)

=
24 · |D| · F · T
480 · 700 MHz (4.5)

=
24 · 106 · 2000 · 50
480 · 700 · 106 Hz

≈ 7 s . (4.6)

The lower bound estimate for the Nvidia GeForce GTX 690 with 3072 CUDA cores and
a base clock rate of 915 MHz5 is

estimated total time =
24 · 106 · 2000 · 50
3072 · 915 · 106 Hz

≈ 0.9 s . (4.7)

Given the constraint of one instruction per clock cycle, we anticipate a speed-up of one
or two order of magnitudes by accelerating random forest training on GPU. In practice,
the actual speedup depends on additional factors such as memory throughput, caching
effects, memory limits and GPU occupancy (cf. Section 3.5).

In the following section, we introduce the acceleration of random forest training on GPU.
3According to the disassembly output of Nsight
4http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-480/specifications
5http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-690/specifications
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4.2.4. Random Forest Training on GPU
Evaluation of the optimized random forest training on CPU (Section 4.2.2) shows that
the vast majority of training is spent for the evaluation of the best split feature. This
is to our benefit when accelerating random forest training on GPU. We can restrict the
implementation efforts to the relatively short feature evaluation algorithm presented in
Section 4.2.2. We do not need to change the remaining CPU implementation. The code
to manage the decision tree structure, for instance, is the same for the CPU and the GPU
accelerated version.

For our GPU implementation we choose the CUDA framework. For basic concepts
and notions of CUDA we refer to Section 3.5 and the CUDA C Programming Guide [9].
The CUDA framework allows us to keep most of the object oriented parts of the Tuwo
Computer Vision Library [32]. We decide at runtime whether a calculation is offloaded
on GPU or is executed on CPU. This allows us to easily measure and compare the speed
difference. During development and testing, we execute the code on both GPU and CPU
to ensure that the calculated results do not differ.

NVIDIA has not published sufficient details about the GPU architecture in order to
optimize the runtime analytically. Instead, we use an experimental approach and carefully
follow the basic optimization concepts as presented in Section 3.5. In general, we primarily
optimize the code for efficient global memory accesses. In a second step we refactor the
code to avoid shared memory bank conflicts if profiling indicates such events.

Degrees of freedom exist for various choices, such as the layout of data structures, which
GPU memory spaces to use (cf. Section 3.5.2) or how to transfer data between CPU and
GPU. The exact implementation of the algorithm is tightly coupled with these choices.
Changing the order of a two-dimensional matrix from row-major to column-major (cf.
Section 3.6.1), for instance, would either require a change in the order of iteration or the
use of shared memory to ensure coalesced memory access patterns.

In our experimental approach, we implement multiple variants and benchmark the run-
time on a small subset of the training dataset. Benchmarking the implementations with
the entire training dataset is not feasible because the training takes too long and would
hinder the development process.

Split evaluation can be divided into the following four phases that are executed in
sequential order.

1. Random Feature Candidate Generation
2. Feature Response Calculation
3. Histogram Aggregation
4. Impurity Score Calculation

Each phase depends on results of the previous phase. We cannot execute two or more
phases in parallel in consequence. However, the CPU can prepare data for the launch of
the next phase, while the GPU is busy executing the current phase.

Passing results from a phase to its following phase can be a bottleneck since the com-
puting resources of the GPU are not used at this time. Copying data between CPU and
GPU amongst the phases would block the computation and slow down the whole training.
In case that a node contains few samples and the entire split evaluation takes only a few
milliseconds, the relative overhead to copy data between host and device would be large.
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Hence, our design decision is to keep the data entirely in GPU memory, such that no
memory copy is required. Note that results of each phase have to be stored in global
device memory, as it is the only memory space on GPU that is persistent across multiple
kernel launches (cf. Section 3.5.2).

Changing the layout of these data structures requires a subsequent performance bench-
mark of both affected phases. This is important since such changes can improve writing
of results in one phase while the reads slow down in the following phase, or vice versa.
When we do not change the data structures, we optimize and benchmark each phase
independently. This simplifies and speeds up development.

Each phase is implemented in a separate kernel function, while we extract common code
to device methods. NVCC inlines device methods resulting in no performance penalty of
a function call.

The following sections introduce the GPU implementation of the four training phases.

Random Feature Candidate Generation

Evaluation of our CPU implementation indicates that a significant amount of training
time is used for generating random feature candidates. Profiling shows that the total time
for feature generation increases per level as the number of nodes increases and the time
for generating features remains constant.

We subdivide the random feature candidate generation into two parts. The first part
randomly generates feature parameters. In the second part, we randomly sample a fixed
number of threshold candidates (cf. Section 3.1.1).

We assume the number of feature candidates F to be much larger (eg. hundreds or
thousands) than the number of parameters T (eg. dozens). Hence, we decide to use one
thread on the GPU per generated feature candidate. As the number of feature candidates
F can exceed the maximum number of threads per block with a maximum of 1024, 1536
and 2048 for compute capability 1.2/1.3, 2.x and 3.x, respectively [37], we need to launch
several thread blocks.

Generation of random numbers is implemented by the CUDA library CURAND. We do
not observe a significant overhead or bottleneck of random number generation.

Random Parameter Generation

The first step in the feature candidate generation is to randomly select feature parameter
values. We describe the features used for this master’s thesis in Section 3.2. We generalize
the depth and color feature parameters by using a set of 11 scalar one-byte values, listed
in Section 3.2.1. The parameter generalization allows us to store F feature candidates in
a F × 11 matrix. We can either use row-major or column-major order.

Threshold Sampling

The second step in the feature candidate generation is the selection of one or many thresh-
olds per feature candidate. Random threshold candidates can either be obtained by ran-
domly sampling from a distribution or by sampling feature responses of training instances.
Stückler et al. [50] implement the former approach, by uniformly sampling from an inter-
val, which is known in advance for the given feature and image channel. Tuwo Computer
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Training time [ms]
Features Feature Generation Feature Sorting Total

40 000 13.3 3.0 16.3
20 000 6.6 2.7 9.3
2 000 1.5 2.6 4.2

200 1.1 2.5 3.6
20 0.9 2.2 3.1

Table 4.1.: Training time for feature candidate generation on a GeForce GTX 480. Ran-
dom feature generation scales linearly for many feature candidates. However,
the timings indicate a relatively large constant overhead for feature sorting.

Vision Library [32] implements the latter approach, which is more flexible if features or
image channels are changed. Since our implementation is based on Tuwo, we stick to the
approach of sampling thresholds from feature responses of training instances.

We design the data structure such that the T threshold candidates for every feature
candidate are stored in a F ×T matrix. Again, the matrix can be in row-major or column-
major order.

All T thresholds for a given feature are sampled by the same GPU thread that generates
the feature parameter. Splitting parameter generation and threshold sampling into two
separate kernels would require an extra read of feature parameters from global memory.
Instead, the number of feature parameters is sufficiently low to be kept in registers.

Training Time

The number of feature candidates is fixed during training. Thus, the random feature can-
didate generation has a constant runtime. Random feature candidate generation scales
linearly in the number of feature candidates in theory. Table 4.1 shows timings of genera-
tion and sorting of random feature candidates. Feature generation scales linearly for many
features (i.e. 20000 versus 40000). In case of few features (i.e. 20 versus 200) it does scale
sub-linearly. We assume a constant overhead for setting up random number generation
on GPU. The measurements also indicate that feature sorting does not scale linearly with
respect to the number of features in the range between 20 and 40000 features.

After the feature candidate generation is finished, we store the result in two matrices,
i.e. 11 feature parameters for the F features in a F × 11 matrix and the T thresholds for
every feature in a F × T matrix. We pass the pointers of the two matrices to the next
training phase, which is the feature response calculation.

Feature Response Calculation

When we optimized the CPU implementation, we saw that training time could be signifi-
cantly improved by re-arranging the loops in order to improve caching (cf. Section 4.2.2).
We apply a similar optimization strategy on the GPU. Spatial locality of image channel
accesses is at least as important on GPU as on CPU. Measurements show a significant
speed increase for the GPU version of Algorithm 3 in comparison to the GPU version of
Algorithm 4.
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Figure 4.1.: Two-dimensional grid layout of the feature response kernel for D samples and
F features. Each block contains n threads. The number of blocks in a row,
X, depends on the number of features. X =

⌈
F
n

⌉
. Feature responses for a

given sample are calculated by the threads in one block row. The arrow (red
dashes) indicates the scheduling order of blocks.

Experimenting with various variants shows that it is most efficient to use one thread to
calculate the feature response for a given feature and a given training sample.

The GPU schedules thread blocks by using a row-major order of the grid [39]. Execution
order is determined by calculating the Block ID bid. In the two-dimensional case, it is
defined as

bid = blockIdx.x+ gridDim.x︸ ︷︷ ︸
blocks in row

·blockIdx.y︸ ︷︷ ︸
sample ID

. (4.8)

The number of features can exceed the maximum number of threads in a block with a
maximum of 512 and 1024 threads for compute capability 1.x and 2.x/3.x, respectively,
such that we need to split feature response calculation into several thread blocks. We
use the x coordinate in the grid for the feature block to ensure that all features are
evaluated before the GPU continues with the next sample. The y coordinate in the grid
assigns training samples to thread blocks. Figure 4.1 shows the thread block layout for the
feature response calculation. A row of blocks calculates all feature responses for a given
sample. A column of blocks calculates the feature responses for a given feature over all
samples. The dotted red arrow indicates the order of thread block scheduling. Threads
reconstruct their feature id f using block size, thread and block ID, by calculating

f = threadIdx.x+ blockDim.x︸ ︷︷ ︸
threads in block row

· blockIdx.x︸ ︷︷ ︸
block index in grid row

. (4.9)

Section 4.2.4 describes that the 11 scalar feature parameters are stored in a F × 11
matrix. We use column-major order, such that the feature generation kernel as well as the
feature response kernel read and write parameters with coalesced global memory access.

Attributes for samples are stored in a D × 4 matrix for D samples and parameters
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• Image number (32-bit integer),
• Depth (32-bit float),
• Image x offset (32-bit integer),
• Image y offset (32-bit integer).

Threads in a row of blocks access the same elements in the sample matrix, in a non-
coalesced pattern. Using constant memory space would reduce the number of memory
transactions in theory, as data is broadcast to all threads that access the same address.
However, accessing sample data in global memory is cached and multiple threads accessing
the same address already leads to a high cache hit rate. This is presumably the reason why
we do not observe a performance difference by storing sample data in constant memory.
We avoid the use of constant memory as it is limited to 64 kB for compute capability
1.x-3.x [9] and would restrict scalability with respect to number of samples.

After sample data and feature parameters are loaded, the kernel calculates a single
feature response for either a depth feature or color feature.

To measure runtime overhead of region average calculation, we modify the feature re-
sponse kernel to calculate the sum of all parameters instead of the actual region averages.
Using all parameters in the calculation prevents the compiler from removing memory
loads and stores that we actually want to measure. Feature response calculation for 2000
features and 20000 samples takes 62 ms on a GeForce GTX 480. The modified version,
without region averages, takes only 16 ms which lets us estimate the overhead to 46 ms.
Note that this experiment does not entirely factor in pipelining effects where the GPU
executes arithmetic instructions while other operations are stalled on memory access.

Feature calculation is described in detail in Section 3.2. It consists of accessing image
data at four pixels per region in an integrated channel of an image. It is followed by simple
arithmetic operations to calculate the region sums and their difference.

We conduct a second experiment by modifying the original feature response kernel in
a different way. Instead of fetching data from the image, we return a dummy value
calculated as sum of the x and y region offset and the image channel number. Again, this
is necessary to prevent the compiler from removing feature response calculation entirely.
Feature response calculation of this modified variant takes 18 ms. This is 2 ms more than
the variant that loads all parameters and stores the result to global memory. Despite
the fact that both measurements can only serve as rough estimates, we conclude that
accessing image data constitutes the majority of feature responses calculation runtime. In
the following section we present the technique that we use to optimize image data accesses
in order to reduce the runtime of feature response calculation.

Images in Texture Memory

Image data in our early experiments was stored in global memory. We tested interleaving
of image channels as well as storing image channels consecutively in memory. We achieve
the best results by mapping images to texture memory which reduces runtime by 35 % in
our tests. The speed improvement is due to a high texture cache hit rate. Image accesses
of feature response calculations for a given sample have inherently high two-dimensional
spatial locality. This suits the texture cache well since it is explicitly designed for access
patterns with two-dimensional locality. Texture cache is a limited resource and its size
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Figure 4.2.: Training time (left) and texture cache hit rate (right) of feature response
kernel with respect to various region offsets. Feature response calculation
for 2000 features, 2000 samples per image, 10 images and maximum region
extent of 20 px m × 20 px m on a GeForce GTX 480. Texture cache hit rate
(right) decreases and causes longer training times (left) for feature response
calculation.

depends on the hardware in the range between 6 kB and 8 kB [37]. A texture cache of
8 kB can store, for instance, a patch of size 45 px × 45 px in a 32 bit image channel6. If
the region offsets are too large, the GPU can only cache a subset of accessed pixels in
the neighborhood of a query pixel. Figure 4.2 depicts training time penalty incurred by
increasing the maximum region offset.

Increasing texture cache hit rate is our primary optimization goal to improve feature
response calculation which we cover in the following section.

Sorting Features and Samples

We mentioned in Section 4.2.2 that sorting the samples improves cache hit rate of our
CPU implementation. We measure a similar effect when samples are sorted on the GPU.
We use Thrust – Parallel Template Library [23] to sort feature candidates in ascending
order by

1. Feature Type,
2. Channel 1,
3. Channel 2,
4. Region 1 offset y,
5. Region 1 offset x.

Sorting by feature type reduces branch divergence in the feature response calculation.
This is important since the GPU does only execute threads in parallel that follow exactly
the same execution path.

Sorting by feature type and the two channels increases the probability that the same
channels are accessed in consecutive region average calculations. Improving spatial locality
helps to increase the hit rate of the texture cache and the L2 cache.

6
√

8 kB
32 bit/px2 ≈ 45.3 px
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Sorting Training time Texture cache L2 cache
Features Samples [ms] Hit rate [%]

Yes No 122.6 19.1 54.3
No Yes 72.4 10.4 97.7
Yes Yes 62.2 22.2 96.7

Table 4.2.: Training time and texture cache hit rate of feature response calculation for
2000 features, 2000 samples per image, 10 images, maximum offset of 120 px m
and maximum region extent of 20 px m×20 px m on a GeForce GTX 480. Sort-
ing features leads to a significantly increased texture cache hit rate. Sorting
samples by image ID leads to a significant increase of L2 cache hit rate for read
requests from texture cache.

Additionally sorting by the y and x coordinate (in that order) of the first region offset
helps to increase two-dimensional locality in the feature response calculation. We do not
measure a speed improvement by adding the second offset as sort criterion.

We adjust random feature generation such that features are already sorted by feature
type, channel 1 and channel 2. We do not generate features such that they are already
sorted by the additional criteria region 1 offset y and offset x because we found that parallel
feature generation would become too complex to implement for an arbitrary number of
feature candidates. Our implementation idea was to layout a two-dimensional grid of cells,
which is used by individual threads to sample an offset from. However, it is not possible
to perfectly fit the grid for any feature candidate generation parameterization such as
the number of features or the maximum region offset. An imperfectly fitted grid would
result in a biased distribution of offsets, which is why we neglect this idea and follow the
approach to sort the samples afterwards.

Table 4.2 shows profiling measurements of the feature response kernel with and without
sorting of samples and features. The results show that both sorting samples by image ID
and sorting features increases cache hit rate and reduces training time. Sorting samples
is only necessary once before training a tree. However, sorting features is required after
new random features are generated. Parallel sorting on GPU, as implemented in Thrust –
Parallel Template Library [23], takes 2.6 ms for 2000 features on a GeForce GTX 480. Sort-
ing time is constant with respect to number of features, while feature response calculation
time depends on the number of samples. Hence, the relative overhead of sorting increases
when the number of samples decreases. We implement a heuristic to only sort features
when the expected speed improvement is larger than the cost of sorting. We measure the
break-even point of speed gain and sorting cost at about 10000 samples. Features are not
sorted in this case, which is possible as the selection of the best feature is invariant to the
order of feature evaluation.

Multiple Samples per Thread Block

The fact that we sample hundreds or thousands of pixels per image leads to the idea to
exploit the spatial locality between samples to increase texture cache hit rate. Uniformly
sampling 2000 pixels from each training image, for instance, means that we randomly draw
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Samples Features Training time Texture cache L2 cache
per thread block per thread block [ms] Hit rate [%]

1 128 55.0 22.1 97.8
4 32 51.5 26.0 97.3
8 16 50.5 28.2 97.2
16 8 50.2 30.2 97.5
16 16 49.3 35.2 97.3
32 8 48.9 35.2 97.6
32 4 50.2 31.3 97.7

Table 4.3.: Training time and texture cache hit rate of feature response calculation for
2000 samples per image, 10 images, 2000 features, maximum offset of
120 px m and maximum region extent of 20 px m× 20 px m on a GeForce GTX
480. Feature response values are stored to a D × F matrix for D samples and
F features in row-major order. Training time decreases with more samples
per thread block, because texture cache rate increases. Performance peaks at
32 samples and 8 features per thread block.

√
2000 ≈ 44.7 samples per row and per column. For a 640 px×480 px image, this translates

to an average horizontal distance of 640 px√
2000

≈ 14.3 px and an average vertical distance of
480 px√
2000
≈ 10.7 px. In this case, average distance between two samples is lower than distance

of two queried regions around a query pixel for a maximum offset of 120 px m.
We modify the feature response kernel to calculate feature responses for multiple samples

in one thread block. The occupancy calculator of NVIDIA predicts highest theoretical
occupancy for either 128 or 256 threads per block. Table 4.3 shows that texture cache
hit rate increases as expected and training time decreases, if one thread block calculates
feature responses for several samples. We measure peak performance at 32 samples and 8
features per thread block.

The test setup with 10 images and 2000 samples per image does not necessarily reflect
average real world behavior of random forest training. As a tree is grown and gets deeper,
every node contains less samples. This implies that the number of samples per image
is reduced with respect to tree depth, given uniform sampling. Table 4.4 shows training
time and cache hit rate for the same total number of samples7 but distributed across 100
images. Performance peaks at 4 samples and 32 features per thread block.

The effect becomes more visible when we further reduce the number of samples per image.
The average distance between two samples increases in this case, given that samples are
distributed uniformly.

Table A.1 in Appendix A shows that texture cache and L2 cache hit rate decrease
significantly, if more samples are calculated per thread block. Performance again peaks at
4 samples and 32 features per thread block.

7200 samples
image · 100 images = 2000 samples

image · 10 images = 20000 samples
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Samples Features Training time Texture cache L2 cache
per thread block per thread block [ms] Hit rate [%]

1 128 57.5 24.9 92.8
4 32 56.8 22.7 92.4
8 16 61.7 17.8 93.1
16 8 66.6 14.1 92.1
16 16 61.9 20.0 91.7
32 8 69.7 14.9 88.0
32 4 75.8 10.9 88.4

Table 4.4.: Training time and texture cache hit rate of feature response calculation for
200 samples per image, 100 images, 2000 features, maximum offset of
120 px m and maximum region extent of 20 px m× 20 px m on a GeForce GTX
480. Feature response values are stored to a D × F matrix for D samples and
F features in row-major order. Training time increases with more samples
per thread block, because texture cache rate decreases. Performance peaks at
4 samples and 32 features per thread block.

Column-major Order

Calculating feature responses for several samples per thread block has a second positive
effect besides the increase of cache hit rate. Until now we assumed to write feature
responses in row-major order to the D × F result matrix for D samples and F features.
However, as we will see, histogram aggregation benefits if feature responses are stored in
column-major order.

Given that feature responses are calculated for multiple samples per thread block we
can swap the x and y thread indices in a block, in order to achieve coalesced writes to the
D × F matrix in column-major order.

Table A.2 in Appendix A shows that 4 samples per thread block suffice to achieve the
maximum global memory store efficiency [10] of 100 %. Tables A.3 and A.4 in Appendix A
show that calculating 128 features and only one sample per thread block is penalized due
to a suboptimal global memory store efficiency of 25 %.

We choose to use a fixed configuration for the feature response kernel with 32 features
and 4 samples per thread block. It achieves optimal global memory store efficiency for
both row-major and column-major order of the result matrix. Texture cache hit rate and
training time is a good compromise for both cases, with few and many samples per image.

Future work could investigate a dynamic thread block configuration. We anticipate a
possible improvement by selecting the best configuration depending on parameters such
as sampling depth and maximal region offset.

After the feature response calculation is finished, we pass the memory address of the
feature response matrix to the next training phase.

Histogram Aggregation

Before we can calculate impurity scores we have to aggregate feature responses into per-
class histograms. Feature responses are real-valued which means that finding the best
threshold is a sub-problem of finding the best split criterion. We follow the approach of
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Stückler et al. [50], Toby Sharp [52] and use multiple quantization levels as described in
Section 3.1.1, instead of trying to find the best threshold analytically. For each feature,
each class, and each quantization level (i.e. threshold) we need two counters for the left
child and the right child. We maintain per-class histogram counters in a four-dimensional
matrix of size F × T × C × 2 for F features, T quantizations levels (thresholds) and C
classes.

Our CPU implementation aggregates histogram values directly after feature response
values are calculated (cf. Algorithm 4). Splitting feature response calculation and his-
togram aggregation into two kernels makes it possible to have different orders of iteration.

CUDA allows us to implement histogram counter updates in a simple function, without
taking the detour of a vertex shader as proposed by Scheuermann and Hensley [40], Toby
Sharp [52].

Algorithm 5 outlines the histogram aggregation phase on GPU.

Algorithm 5 Histogram aggregation on GPU
Require: F ∈ RD×F feature responses for D samples and F features
Require: T ∈ RF×T random threshold candidates for each feature
Require: C ∈ {1..C}Dclass for each sample

1: H ← 0F,T,C,2 ▷ initialize histogram counters
2: for all f ∈ 1..F do
3: for all θ ∈ Tf do
4: for all d ∈ 1..D do
5: c ← Cd ▷ class c of sample d
6: if Fd,f ≤ θ then
7: Hf,θ,c,0 ← Hf,θ,c,0 + 1 ▷ increment left histogram counter
8: else
9: Hf,θ,c,1 ← Hf,θ,c,1 + 1 ▷ increment right histogram counter

Histogram Counters in Shared Memory

Updating the histogram counter in H (Line 7 and Line 9 of Algorithm 5) is executed
F · T · D times. Accordingly, updating H directly in global memory for every sample,
every feature and every threshold is computationally too demanding.

Note that we iterate over all samples in the innermost loop in our algorithm. This
allows us to keep the histogram counters in shared memory. Every thread block needs to
allocate at least a matrix of size C × 2 to store left and right counter values for C classes.
As shared memory is a limited resource, we can only keep histogram counters for one
feature and one threshold in shared memory. We implement iteration over features and
thresholds as thread blocks in a two dimensional grid on GPU as depicted in Figure 4.3.
Each thread block slices samples into partitions such that all threads in the block can
aggregate histogram counters in parallel.

Iteration over features and samples in the histogram aggregation kernel is in the trans-
posed order of the iteration in the feature response calculation. In consequence, reading
feature responses from global memory would be a bottleneck if the feature responses would
be stored in row-major order. We saw in Section 4.2.4 that we were able to design the fea-
ture response calculation phase such that the result can be stored in column-major order
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Figure 4.3.: Thread block layout of the histogram aggregation kernel for F features and
T thresholds. One thread block per feature and per threshold. X threads in
block aggregate histogram counters for D samples in parallel. Every thread
iterates over at most

⌈
D
X

⌉
samples.

without a significant performance penalty. This leads to a significant performance gain in
the histogram aggregation phase since feature responses in global memory are fetched in
a coalesced pattern with maximal read efficiency.

Summing up counters in shared memory amounts for the majority of execution time.
We tested several variants that were inspired by Xu et al. [60]. We saw a significant
performance drop when using atomic updates, which are necessary to handle concurrent
counter updates. To avoid atomic operations entirely, every thread gets a distinct region
in shared memory. For X threads and C classes, we need to allocate X · C · 2 counters.
The downside of this method is an increased consumption of shared memory and the
requirement of an additional reduction phase to reduce the X × C × 2 counters to a final
sum matrix of size C×2 for every feature and every threshold. Our implementation of the
final reduction is inspired by the sum kernel in Thrust – Parallel Template Library [23].
Figure 4.4 shows our first approach of histogram aggregation and sum reduction. Every
thread increments a dedicated counter for each class in the first phase. Bank conflicts do
not occur in this phase as we use thread block sizes that are a multiple of 16 such that
counters of any two threads are mapped to different banks (cf. Section 3.5.2).

In a subsequent phase, we iterate over all C classes and reduce the counters of every
thread in O(logX) steps, where X is the number of threads in a block. Every thread
calculates the sum of two counters in a step. The structure of reductions, as depicted
in Figure 4.4, is a binary tree in upside down order. Note that threads read and write
counters such that no bank conflicts occur.
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class 0 class 1 

…0 1 2 3 C

Figure 4.4.: Reduction of histogram counters. Every thread sums to a dedicated left and
right counter (indicated by different colors) for each class (first row). Counters
are reduced in a subsequent phase. Final counter pairs (thick border) are
copied to global memory in a coalesced pattern. The lightning bolds indicate
shared memory bank conflicts when copying final counters from shared to
global memory.

We wait until the loop over all classes finished computing of the final left and right
counter. This last step can be executed in parallel by 2 ·C threads that copy the left and
right counter of C classes. The GPU thereby minimizes global memory write transactions
since the threads write in a coalesced pattern. However, reading counter data from shared
memory causes bank conflicts, as indicated by lightning bolts in Figure 4.4. The reason
is the distance between each left and right counter pair which is a multiple of 16. All C
threads access the same bank when reading the left counters. Accordingly, all C threads
also access the same bank when reading the right counter.

Figure 4.5 shows an improved version that avoids bank conflicts. Final counters are
written to shared memory at consecutive addresses by reusing memory locations that are
no longer in use after the reduction of the previous class is finished. Profiling shows that
no more bank conflicts occur with this variant, which results in a significant performance
increase.

Measurements depicted in Table 4.5 show that the histogram aggregation kernel training
time scales linearly with respect to the number of feature candidates and the number of
thresholds. Contrastingly, Table 4.6 shows that the training time does not scale linearly
with respect to number of samples. The reason is the overhead to reduce the histogram
counters, which scales with the number of classes.
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class 0

Figure 4.5.: Reduction of histogram counters without bank conflicts (cf. Figure 4.4). The
last reduction step stores counters in shared memory, such that no bank con-
flicts occur when copying to global memory.

Skipping Classes without Samples

The binary reduction of counters (Figure 4.5) has a constant runtime overhead per class.
We can entirely skip reduction of counters for classes without samples, as all counters are
already zero in this case and would not change during reduction. Every thread maintains
a thread-local bit set to store the list of classes with a positive number of samples. During
the loop over all classes in the reduction phase, we use the

int __syncthreads_or(int predicate);

function, which is available since compute capability 2.x in the CUDA framework, to
communicate this information across threads. The function returns a non-zero value if
and only if predicate is a non-zero value for any of the threads. We set predicate to 1
if a thread counts one or more samples for a given class, or 0 otherwise. We skip counter
reduction if __syncthread_or() returns 0, which means that no thread counted a sample.

Result of the histogram aggregation phase is the four-dimensional counter matrix of size
F × T ×C × 2 for F features, T thresholds and C classes. The matrix is stored to global
memory in row-major order.

Impurity Score Calculation

Computing impurity scores from the four-dimensional counter matrix is the last of the
four training phases that we execute on GPU.

We implement the score kernel in a straightforward method. We use 128 threads per
block, any of which computes the score for a different pair consisting of feature and thresh-
old. Each thread loads C · 2 counters from the four-dimensional counter matrix in global
memory, calculates the impurity score and writes the resulting score back to global mem-
ory. Table 4.7 shows that the more complex normalized information gain score function
implies a significant performance overhead in double precision mode when compared to
the simple information gain score function.

45



4. Accelerating Random Forests

Features Thresholds Training time [ms]
2 000 50 82.7
2 000 25 41.6
1 000 50 42.3
1 000 25 21.5

500 50 20.7
500 25 10.5
200 50 8.5
200 25 4.3

Table 4.5.: Histogram aggregation kernel execution times for different number of feature
and threshold candidates. Measured on a GeForce GTX 480 with 5 classes
and 20000 samples from 10 images. Training time scales almost linearly with
respect to number of features and number of threshold candidates.

Features Training time [ms]
30 000 119.6
20 000 82.7
10 000 50.6
1 000 12.6

100 8.1

Table 4.6.: Histogram aggregation kernel execution times for different number of samples.
Measured on a GeForce GTX 480 with 5 classes, 2000 feature candidates, 50
thresholds and 10 images. Training time does not scale linearly with respect to
number of samples. The reason is the constant time overhead for the reduction
of histogram counters.

We tested different variants to make use of shared memory in order to read counter data
in a coalesced pattern. We did not measure a significant performance benefit, while code
complexity increased drastically. Since the impurity score calculation only accounts for a
small fraction of the total training time on GPU, we did not spend more effort to evaluate
possible optimizations.

We store the calculated scores in a T × F matrix for T thresholds and F features. The
score matrix is finally transferred from device to host memory space which finishes the
training phase on GPU.

Limitation of Global Memory

Global memory on GPUs is a limited resource. In this section we introduce the techniques
that we use to scale our training implementation to large datasets that do not fit in device
memory.
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Training time [ms]
Impurity score function Double precision Single precision
Normalized information gain 1.23 0.57
Information gain 0.81 0.57
NoOp 0.38 0.38

Table 4.7.: Score kernel execution times for different impurity score functions (cf. Sec-
tion 3.1.1). Measured on a GeForce GTX 480 with 2000 feature candidates, 5
labels and 50 thresholds. Execution time significantly decreases in double pre-
cision mode for the more complex normalized information gain score function.
NoOp is a simple dummy function that just calculates a sum of the counters.
We use it to estimate an upper bound for the memory access overhead of the
score kernel.

Slicing of Samples Training arbitrarily large datasets with many samples can exceed
storage capacity of global memory. The feature response matrix of size D × F (cf. Sec-
tion 4.2.4) scales linearly in the number of samples D and the number of feature candidates
F . We cannot keep the entire matrix in global memory if D or F is too large. For instance,
training a dataset with 500 images, 2000 samples per image, 2000 feature candidates and
double precision feature responses (64 bit) would require 500 · 2000 · 2000 · 64 bit ≈ 15 GB
of global memory for the feature response matrix in the root node split evaluation.

To circumvent this limitation, we split samples into partitions and sequentially compute
feature responses and aggregate histograms for every partition. The maximum possible
partition size depends on the available global memory of the GPU.

Image Cache The memory consumption of a 640 px×480 px RGB-D image is 640·480·5·
32 bit ≈ 5.86 MB for its three integrated color and two integrated depth channels. Hence,
we might not be able to keep all images of a large dataset in global memory. We implement
an image cache with Least Recently Used (LRU) strategy that keeps a fixed number of
images in global memory. The slicing of samples takes care that a partition does not require
more images in memory than fit into cache. The experimental results in Chapter 5 show
that training with more images than fit into cache can cause a significant performance
penalty. This is due to the fact that during training images are regularly evicted and
later transferred back from host to device. As an alternative, our implementation can
sample the dataset such that only a subset of images are used and no costly, regular image
transfers occur during training.

Hiding Memory Latency

We need to regularly transfer data from host to device and vice versa during training.
Before the evaluation of a node split, we need to transfer the current feature candidate
parameters. During the evaluation we need to transfer sample data for every partition of
the samples. If the image cache cannot hold all images in memory, we also need to transfer
images from host to device. At the end, the final scores need to be transferred from device
to host memory.

47



4. Accelerating Random Forests

Recent GPUs are able to partially hide latency caused by such host to device or device
to host memory transfers.

Streams The GPU can execute memory transfers and kernels concurrently when they
belong to different streams (cf. Section 3.5.2). We use two streams to perform some
memory transfers and kernels in parallel. We execute the training of multiple trees in
separate host threads. For instance, feature parameters for one tree can be transferred
from host to device while histogram aggregation is running for a different tree.

Memory Pooling During profiling we saw that calls to cudaMalloc(), cudaFree(),
cudaHostMalloc() and cudaHostFree() cause the entire GPU to pause processing. To
avoid frequent memory allocations, we use memory pooling in our n-dimensional array
implementation. Memory is reused that is already allocated but no longer in use. Due
to the structure of random decision trees, evaluation of the root node split criterion is
guaranteed to require the largest amount of memory. Child nodes always contain less or
equal samples than the root node, which means that all data structures have at most the
size as the structures used for calculating the root node split. Given this fact, we are able
to train a tree without a single reallocation of memory.

After the training of all decision trees in the random forest is finished, we can store the
tree and use it for prediction.

4.3. Accelerating Random Forest Prediction
The following section introduces our implementation and the acceleration of random forest
prediction on CPU and GPU.

The first step of prediction is to load all decision trees of a random forest. We assume that
we can keep the entire decision tree data structures in main memory throughout prediction.
Prediction is performed in a loop over all pixels of the input image. Each decision tree
in the random forest is then used sequentially to retrieve the probability distribution over
all classes for the given pixel, as outlined in Section 3.1.2. The probability distributions
which we retrieved from every tree in the forest are averaged and then returned to the user.
To measure segmentation accuracy, we take the class labeling with highest probability and
compare it with the label in the ground truth. We count the mismatches of predicted label
and the label in the ground truth for the input pixel. The corresponding loss function is
called misclassification rate or 0-1 loss [15].

Histogram Bias Stückler et al. [50] found that unbalanced class pixel occurrences in the
image, such as frequent background pixels in the AIS Bonn Large-Objects dataset, can
degrade segmentation accuracy significantly. The reason is the histogram adjustment by
prior class distribution of Equation (3.7). A single pixel from a frequent class, that reaches
a leaf during training, can outweigh multiple pixels from a less frequent class. In order to
counter that effect, we subtract a fraction of all pixels from the class histogram of each
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leaf node lk by a user-specified parameter ρ, called “histogram bias”, by

pρ(c | lk) :=


p′ρ(c | lk)∑
c′∈C p

′
ρ(c

′|lk)
if p′ρ(c | lk) > 0

0 otherwise,
(4.10)

where

p′ρ(c | lk) := max
(
0, p(c | lk)− ρ

∑
c′∈C

p(c′ | lk)

)
with 0 ≤ ρ ≤ 1. (4.11)

4.3.1. Random Forest Prediction on CPU
Fast prediction is important for real-time applications as presented by Lepetit et al. [28]
and Shotton et al. [43]. To accelerate prediction on CPU, we use multiple threads to
process each image. After images are loaded from disk, we convert the image colors to
CIE Lab space and calculate the integral image in a pre-processing step. Calculating image
integrals is expensive with respect to processing time [52]. We accelerate it by calculating
the integral for each of the five image channels in parallel with separate threads.

The main loop in the prediction iterates over every pixel in the image and traverses each
decision tree in the forest until it reaches a leaf. We parallelized this loop by slicing the
image into n partitions that are processed by n threads in parallel. This uses all of the
available computing power of the CPU. Prediction time depends on the complexity of the
feature but scales linearly with the number of trees, depth of the trees and the number
of pixels in the input image. For typical parameters of three trees with a depth of 15
levels, we measure about 0.3 s to perform a dense prediction of a 640 px × 480 px image
on a quadcore Intel Core i7–920. This is not sufficient for real-time applications. Toby
Sharp [52] was able to accelerate random forest prediction by a factor of about 100 on a
GPU. This result inspired us to follow the same path and accelerate our implementation
on GPU.

4.3.2. Random Forest Prediction on GPU
In the previous section we mentioned that individual pixels of an image can be processed
independently for prediction. Similar to the slicing of the image in the CPU implementa-
tion, we slice the image in patches such that pixels in each patch are processed in parallel
by a block of threads on the GPU. In contrast to a CPU, the threads in a block on GPU
share the same texture and L2 cache. This is why we design the code such that a block
of threads processes pixels that are spatially close to each other.

Table 4.8 shows that we achieve best performance by using 128 threads to classify an
image block-wise with patches of size 8 px × 16 px. Spatial locality and cache hit rate
correlate and thus are both maximized for queries in the feature response calculation (cf.
Section 4.2.4).

The work of Toby Sharp [52] inspired us to traverse the decision tree in a branch-less
loop. We also followed the idea to map the tree data structure to a two-dimensional
texture in GPU memory. However, we use the CUDA framework instead of Direct3D
which lets us avoid the use of shaders. As afore mentioned in Section 3.2.3, the Microsoft
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Patch size Time Texture cache L2 cache Occupancy
[px× px] [ms] Hit rate [%] [%]
16× 16 4.18 82.5 89.1 58.6
8× 8 5.03 81.5 87.9 31.4
32× 8 4.47 79.9 87.9 60.6
16× 8 4.08 80.5 87.3 60.3
8× 16 3.95 80.6 90.1 58.4
8× 32 4.04 82.2 91.9 56.3

Table 4.8.: Random forest prediction runtime for a 640 px × 480 px RGB-D image with
different patch sizes. Execution times are per-tree averages. We use a random
forest trained on the AIS Bonn Large-Objects dataset with a maximal tree
depth of 15 levels. Processing the images with patches of size 8 px × 16 px
shows best performance because of a high occupancy, texture and L2 cache hit
rates.

Kinect camera does not guarantee to deliver a valid distance measure for every pixel in the
depth channel. Hence, in contrast to Toby Sharp, we cannot generalize to a single type of
features as we need a different implementation for depth and color features. Shotton et al.
[43], who use the implementation of Toby Sharp, do not encounter that problem because
they only use depth information and query single pixels instead of region sums.

We reuse the code of random forest training and map an image to a two-dimensional
layered texture in global memory. We store tree data as two-dimensional structure in
global memory and map it also to a two-dimensional layered texture, where we use a
dedicated layer for each tree. Nodes are serialized in breadth-first order. Deep trees with
thousands of nodes can exceed the size limits of a layered texture which is 8192 and 16384
nodes for compute capability 1.x and 2.x/3.x, respectively. In this case we map the nodes
to several layers in the texture. Figure 4.6 shows an example of a tree with six nodes that
is mapped to a layer in the two-dimensional texture. Only the left child node ID is stored
since the right child node always directly follows the left child, due to breadth-first order.
A negative left child node ID indicates a terminating leaf node. Leaf nodes do not store
parameters but contain the per-class probability distribution (histogram) as determined
during training.

Every thread processes trees of the random forest sequentially and traverses the decision
tree from root to leaf in a loop as outlined in Algorithm 6. All threads access a tree level
at the same time which increases spatial locality and cache hit rate. We avoid branches
in the loop by expressing the node index update (Line 6 of Algorithm 6) as

node idx ← left node idx + v, (4.12)

where v is 0 if the feature response is less or equal than the threshold (left child) or 1
otherwise (right child).

Integration of the image channels is performed on CPU as we do not anticipate a signif-
icant speed increase on GPU (cf. [52, Section 5.1]).

Our implementation scales linearly in the number of trees in the forest, maximum depth
of the decision trees and the number of pixels in the image. Feature complexity and
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Figure 4.6.: Mapping of a binary tree with six nodes (left) to a layer in the 2-dimensional
texture on GPU (right). Every node is mapped to a row in breadth-first order.
Decision nodes contain left child node ID, threshold and feature parameters.
Leaf nodes are indicated with a negative child ID and contain the class dis-
tribution as determined during training. Empty cells indicate unused values,
such as missing feature parameters in leaf nodes.

Algorithm 6 Random forest prediction on GPU
1: for all levels in tree do
2: if leaf node reached then
3: return leaf node histogram
4: Load feature parameters from current node
5: Calculate feature response
6: Update current node index depending on feature response and threshold
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choice of parameters have significant impact on overall runtime performance. Larger region
offsets, for instance, lower the cache hit rate which causes additional global memory fetches.

Combined class probabilities of all leaf nodes are returned in a C ×W ×H array for C
classes and an image of size W ×H.

4.4. Accelerating Random Ferns
The work of Rodrigues et al. [38] inspired us to evaluate random ferns, a random forest
variant, that we introduced in Section 3.1.3. Rodrigues et al. use random ferns for a
6D pose estimation of shiny objects on RGB images. They chose to use random ferns
because of two reasons. Firstly, the split criteria (questions) of a random forest with l
levels have an exponential memory consumption with a complexity of O(2l). Random
ferns, in contrast, only contain l questions. Secondly, the split criteria of a random fern
have the form of a list where each element does not depend on its predecessor. This is an
advantageous property for parallelization of random fern prediction as the entire list of
questions is known in advance and results can be computed in parallel.

The following sections present our method to implement random fern training and ran-
dom fern prediction. We do not implement random fern prediction on CPU as experi-
mental results of random forest prediction indicate the GPU being predominant with a
speed-up factor of over a magnitude.

4.4.1. Random Fern Training
Random ferns are specialized random forests where the nodes in a level share the same
split criterion.

In contrast to the original random fern training method [36], we base our random fern
training on our random forest implementation and change the best split criterion selection
such that decision trees with the shape and restrictions of random ferns are constructed (cf.
Section 3.1.3). Our method requires the training to proceed in breadth-first order which
we fortunately already implement for random forest training as mentioned in Section 4.2.1.
To select the same split criterion for all nodes in a level, we only need to change that part
of the code which retrieves the impurity scores and selects the best split criterion. Instead
of selecting an individual split criterion for each node, we combine the scores over all nodes
in the level and select the split criterion that maximizes the common good.

In our first approach we selected the split criterion s′ that maximizes the average over
all impurity scores as defined by

s′ = arg max
s∈S

1

|N |
∑
n∈N

Is(n), (4.13)

where N is the set of nodes in the current level, S is the set of evaluated split criteria and
Is(n) is the impurity score of node n and split criterion s. However, we observe a poor
segmentation accuracy of random ferns that are trained with this method.

Instead, we use s∗ which is the average score weighted by the number of samples in a
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node as defined by

s∗ = arg max
s∈S

∑
n∈N Qn · Is(n)∑

n∈N Qn
= arg max

s∈S

∑
n∈N

Qn · Is(n), (4.14)

where Qn is the number of training samples assigned to node n. All other parts of random
fern training remain unchanged and are identical to the training of random forests.

4.4.2. Random Fern Prediction on GPU
Since a random fern is a random forest, we can reuse our random forest implementation for
random fern prediction. However, we thereby do not leverage the properties of a random
fern to accelerate the prediction.

In Section 4.3.2 we presented the strategy to map the random forest data structure to
a texture in GPU memory. This approach is not efficient if it is applied as-is for random
ferns. The same split criterion is duplicated for all nodes in a level. Thus, we do not
achieve higher texture cache hit rates when loading the parameters. In our random fern
implementation we change the random forest texture mapping (see Figure 4.6) to use two
independent textures instead. The first texture only stores the left child node offsets for
decision nodes while the second texture stores the histograms of all leaf nodes. The feature
parameters for the split criteria are stored in an one-dimensional array since we only need
to store one test per level. Since the array has only a size in memory of O(l) for l levels
in the fern, we place this array in constant memory on GPU. Constant memory has the
advantageous property that values are broadcast to all threads which are accessing the
same location in memory (cf. Section 3.5.2). This happens while the threads for each pixel
in the patch traverse the tree from root to leaf.

53



5. Experimental Results
In Chapter 4 we introduced our methods to accelerate random forest training and pre-
diction on CPU and GPU. In this section we discuss the results of experiments that we
conduct on two different RGB-D datasets. We describe the two datasets in Section 5.1.
In Section 5.2 we present the parameters that we use for random forest training and pre-
diction on the two datasets. Section 5.3 evaluates the effect of our strategy to generate a
new set of feature candidates only once per level during training. In Sections 5.4 and 5.5
we show experimental results concerning the runtime of random forest training and pre-
diction, respectively. We will see that we achieve a significant training and prediction
speed-up by accelerating the random forests on GPU. Section 5.6 presents the results of
experiments that measure segmentation accuracy with random forests and variants that
we trained on the two datasets. Section 5.7 closes with the results on the acceleration of
prediction using random ferns.

5.1. Datasets
We conduct our experiments on two RGB-D datasets that we describe in the following
sections.

5.1.1. AIS Bonn Large-Objects dataset
The AIS Bonn Large-Objects dataset was presented by Stückler et al. [50]. It contains
1533 RGB-D images for training and 500 RGB-D images for testing from 40 scenes. The
images were taken with a Microsoft Kinect camera in VGA resolution (640 px × 480 px).
Each image contains a densely labeled ground-truth with four classes. Training images
are sliced into three partitions with 514, 507 and 512 images, respectively. Stückler et al.
[50] train one tree on each partition.

The original dataset contains RGB-D images with a raw depth channel, i.e. unprocessed
depth data with missing depth values as delivered by the Microsoft Kinect depth sensor.
We adopt the scheme of the NYU Depth v2 dataset [45] to derive a variant of the AIS Bonn
Large-Objects dataset where we reconstruct missing depth values from the neighborhood.
The depth filling method is based on Levin et al. [29] and was originally used to colorize
grayscale images. Missing values are estimated by depth values from the neighborhood.
Neighboring pixels with a similar luminosity (i.e. the gray value) in the corresponding
color channels have a higher influence. The runtime of this depth filling implementation
is dominated by solving a system of linear equations (cf. Levin et al. [29]) and takes about
10 s per 640 px× 480 px image on an Intel Core i7–920.

We also use a second depth filling method as proposed by Jörg Stückler which we call
“simple depth filling”. Simple depth filling runs sufficiently fast to be used for prediction in
real-time applications. The computational complexity is low as the method simply iterates
over an image four times and uses neighboring pixels
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1. to the right,
2. to the left,
3. to the top,
4. to the bottom,

to reconstruct a missing depth value. The method guarantees that the depth channel of an
image has no missing values afterwards, if and only if the original depth channel contains
at least one valid depth. Filling an image in VGA resolution with a size of 640 px× 480 px
takes less than 2 ms per image on an Intel Core i7–920 using a single thread.

Figure 5.1 shows three example images of the AIS Bonn Large-Objects dataset including
a visualization of the raw depth channel with missing values and the depth filling by
colorization according to Levin et al. [29]. Figure 5.2 demonstrates the difference between
the more sophisticated depth filling by colorization and the simple depth filling by using
an example of the AIS Bonn Large-Objects dataset. The example shows that simple depth
filling quality is low if the raw depth channel contains large blocks of missing depth values.

The ground truth labelings of the dataset contain large background areas, depicted
in black. Stückler et al. [50] propose to exclude background pixels when measuring the
segmentation accuracy. When not specified otherwise, we use the pixel accuracy that ex-
cludes background pixels to report segmentation accuracy on the AIS Bonn Large-Objects
dataset (cf. Section 3.3). In the average per-class accuracy, the background class is explic-
itly included if not stated otherwise.
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Color channels Filled depth Ground truthRaw depth

Figure 5.1.: Three RGB-D example images of the AIS Bonn Large-Objects dataset. First
column: Color image channel. Second column: Visualization of the raw depth
channel. Black is used to indicate missing depth information (NaN). Third
column: Visualization of the depth channel filled by colorization. Fourth col-
umn: Manually created ground truth with the classes “palette” ( . ), “barrel”
( . ), “canister” ( . ) and “human” ( . ). Black indicates background.

56



5. Experimental Results

Sophisticated depth fillingSimple depth filling

Raw depthColor channels

Figure 5.2.: Comparison of the two depth filling variants for an example image of the
AIS Bonn Large-Objects dataset. Top left: Color channels of the RGB-D
image. Top right: Visualization of the raw depth channel. Black indicates
missing depth. Bottom left: Visualization of the depth channel that was filled
with a simple method using neighboring pixels. Simple depth filling contains
artefacts in the top and bottom left where depth information is missing in
larger areas in the raw depth channel. Bottom right: Visualization of the
depth channel that was filled with the more sophisticated method proposed
by Silberman et al. [45].
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5.1.2. NYU Depth v2 dataset
We use the NYU Depth v2 dataset, introduced by Silberman et al. [45], as the second
dataset for our experiments. It contains 1449 densely labeled pairs of aligned RGB-D
images from 464 indoor scenes. Silberman et al. define four semantic classes “Ground”,
“Furniture”, “Props” and “Structure” that we use as class labels in our experiments. The
dataset has been split into disjunct training and test sets with 795 and 654 images, respec-
tively [46]. Figure 5.3 shows three example RGB-D images of the dataset. The dataset
includes an additional set of depth images where missing values of the raw depth images
have been filled using the colorization scheme proposed by Levin et al. [29]. As afore
mentioned, we adopt this method for the AIS Bonn Large-Objects dataset to conduct
experiments with the same depth filling scheme on both datasets.

When not specified otherwise, we use the accuracy measure that excludes “void” pixels
to report segmentation accuracy on the NYU Depth v2 dataset (cf. Section 3.3).
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Color channels Filled depth Ground truthRaw depth

Figure 5.3.: Four RGB-D example images of the NYU Depth v2 dataset. First column:
Color image channel. Second column: Visualization of the raw depth channel.
Black is used to indicate missing depth information (NaN). Third column:
Visualization of the filled depth channel. Fourth column: Manually created
ground truth with the classes “floor” ( . ), “prop” ( . ), “furniture” ( . ) and
“structure” ( . ). Black pixels indicate “void” where the class is unknown.
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5.2. Parameters
Random forest training requires a set of parameters such as the number of trees to grow,
the number of feature candidates to generate or the stopping criterion. The parameter
values depend on the dataset and are a possible subject to an optimization method such
as extensive parameter search.

To produce comparable results in our experiments with the AIS Bonn Large-Objects
dataset, we adopt the parameters used by Stückler et al. [50].

For the NYU Depth v2 dataset we leverage our accelerated training implementation to
train several random forests per day in order to search for an optimal set of training param-
eters with respect to segmentation accuracy. We use Hyperopt [4] for this optimization
task, which implements an informed search over the hyper-parameter space to optimize
a given loss function. We perform cross-validation with random splits on the training set
and use a loss function L(AF ,D) that depends on the measured average per-class accuracy
AF ,D for random forest F on the dataset D and is defined by

L(AF ,D) := 1−AF ,D. (5.1)

We estimate the variance of the loss using the results of each fold in the cross-validation.
We cancel the cross-validation earlier, after three or four folds, if it is unlikely that the
current parameters will yield a lower loss than the currently lowest loss. To reject the
hypothesis that the current trial can yield a lower loss, we use a Student’s t-test with
a significance level of α = 0.005. Table 5.1 shows the parameter space that we use for
the hyper-parameter search. Figure 5.4 depicts the loss function development during the
parameter search with Hyperopt. We stop searching after 160 successful trials with a loss
at about 0.34. A more extensive parameter search could be conducted in future work.

The resulting random forest training parameters for both datasets are shown in Table 5.2.
If not explicitly stated otherwise, we conduct the experiments in the following section with
these parameters.

Parameter Lower bound Upper bound
Number of trees 3 3
Samples per image 10 7500
Random feature candidates 10 7500
Threshold candidates 10 60
Minimum sample count 1 1000
Maximum tree depth [levels] 5 20
Box radius [px m] 1 127
Region size [px m] 1 127

Table 5.1.: Search space used for parameter optimization on the NYU Depth v2 dataset
with Hyperopt [4].
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Figure 5.4.: Development of the loss function during hyper-parameter search with Hyper-
opt. We stop the parameter search after 160 trials.

Parameter AIS NYU
Number of trees 3 3
Samples per image 2000 4537
Random feature candidates 2000 5729
Threshold candidates 50 20
Minimum sample count 100 204
Maximum tree depth [levels] 15 18
Box radius [px m] 120 111
Region size [px m] 10 3
Histogram bias ρ 0.2 0

Table 5.2.: Random forest training parameters used for our experiments. Parameters for
the AIS Bonn Large-Objects dataset are chosen to be consistent with Stückler
et al. [50]. Parameters for the NYU Depth v2 dataset are the result of our
hyper-parameter search with Hyperopt [4].
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5.3. Random Feature Candidate Generation per Tree Level
Before we start with the experimental results on random forest training, we discuss a
particular feature of our implementation that we use to improve training runtime for
random forests with deep trees and many nodes.

The number of nodes in a decision tree grows exponentially with the depth of the
decision tree. Random forests use binary decision trees such that we can estimate the
average number of nodes n in a level by n = O(2l), where l is the level in the tree.

The default training strategy for a random forest is to generate a set of random feature
candidates and thresholds for every node in the decision tree. We observe that deep trees
with more than ten levels contain thousands of nodes. The training time per-node in
the tree exponentially decreases per tree level since the total number of training samples
per level remains constant or only decreases marginally and are distributed over an expo-
nentially increasing number of nodes. Feature candidate generation scales linearly in the
number of features and thresholds (cf. Section 4.2.4). As those parameters do not change
while growing a tree, feature generation has a constant per-node runtime which results in
a relatively large total training overhead.

Given that the number of generated random features and thresholds is sufficiently large ,
we assume that segmentation accuracy is not influenced significantly if we do not generate
a new set of features for every node. Instead, we generate a new set of feature and
thresholds candidates only once per level while a decision tree is trained. We can easily
implement per-level feature generation since we train the trees in breadth-first order (cf.
Section 4.2.1).

The results in Table 5.3 confirm that segmentation accuracy does not differ significantly
on the AIS Bonn Large-Objects dataset, even if we generate a new set of random feature
candidates only once per tree level.
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Dataset Feature Generation Pixel accuracy [%] Class accuracy [%]
AIS Per-Node 64.1± 1.1 70.3± 2.0
AIS Per-Level 63.8± 0.7 70.4± 1.2
NYU Per-Node 68.2 65.0
NYU Per-Level 68.1 65.1

Table 5.3.: Segmentation accuracy with feature candidate generation per-level and per-
node. Class accuracy for the AIS Bonn Large-Objects dataset is calculated
without the background class. There is no significant difference of segmentation
accuracy on the AIS Bonn Large-Objects dataset between the two variants.
We also include the segmentation accuracies for the NYU Depth v2 dataset.
However, the results on the NYU Depth v2 dataset need to be interpreted
carefully as we did not carry out an extra hyper-parameter search with feature
candidate generation per-node.

5.4. Random Forest Training on GPU
In this section we present the experimental results of random forests training time on the
two datasets AIS Bonn Large-Objects dataset and NYU Depth v2 dataset. Section 4.2
introduced our method to accelerate random forest training on CPU and GPU. Direct
comparison of our results with the results of Toby Sharp [52] is not possible for three
reasons. Firstly, Toby Sharp uses different visual features that are computationally less
expensive as they require fewer arithmetic operations and memory accesses and need not to
distinguish between the two feature types for color and depth information. Secondly, Toby
Sharp trains on every pixel of the images of the Microsoft Research recognition database
(MSRC) [59] which only contains RGB images without depth. In contrast, Stückler et al.
[50] and Shotton et al. [43] use only a fraction of pixels for training. Thus, we optimize the
implementation for the training with a subset of pixels per image rather than training with
all pixels. Lastly, the implementation of Toby Sharp is not available and the publication
does not specify all parameters that are used for training, such as the number of threshold
candidates.

To estimate the computational efficiency of our implementation on GPU, we compare
the runtime with our manually optimized implementation on CPU. Section 4.2.3 gave an
estimate for the theoretical computing limits of the CPU. We anticipate that the potential
improvement of our CPU implementation is less than one order of magnitude.

We train random forests with three trees and the parameters as stated in Section 5.2
on CPU and GPU. We measure training time on the fastest CPU that is available in our
laboratory, a hexacore Intel Core i7–X980 (Extreme Edition) clocked at 3.33 GHz. We use
two different high-end GPUs to measure the acceleration of random forest training. The
first GPU is a NVIDIA Tesla K20c with 2496 CUDA cores, clocked at 705 MHz, 5 GB
of GDDR5 memory with a peak memory bandwidth of 208 GB/s. The second GPU is
a NVIDIA GeForce GTX TITAN with 2688 CUDA cores, clocked at 837 MHz, 6 GB of
GDDR5 memory with a peak bandwidth of 288 GB/s.

Table 5.4 shows the training time for the AIS Bonn Large-Objects dataset and the
NYU Depth v2 dataset on CPU and on both GPUs. On the GTX TITAN our GPU
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i7–X980 Tesla K20c GTX TITAN
Dataset Train [min] Train [min] Speed-up Train [min] Speed-up
AIS 84 4.8 18 3.8 22
NYU 665 54.9 12 24.1 28

Table 5.4.: Comparison of random forest training time on a hexacore Intel Core i7–X980
CPU, a NVIDIA Tesla K20c and a NVIDIA GeForce GTX TITAN GPU to
train a random forest with three trees on the AIS Bonn Large-Objects dataset
and NYU Depth v2 dataset. Times are without loading and sampling of images.

Accelerator Introduction Price [$] TDP [W]
Core i7–X980 Mar 2010 999 130
Tesla K20c Nov 2012 3 199 225
GTX TITAN Feb 2013 999 250

Table 5.5.: Date of introduction, price at introduction and TDP for the Intel Core i7–X980
CPU, the NVIDIA Tesla K20c and the NVIDIA GeForce GTX TITAN GPU
that were used to train a random forest.

implementation trains a random forest 22 times faster for the AIS Bonn Large-Objects
dataset and 28 times faster for the NYU Depth v2 dataset.

Speed-up factors are the state-of-the-art measure to assess the quality of a GPU im-
plementation in current scientific publications. The speed-up factor highly depends on
the two hardware platforms in comparison and the quality of the CPU implementation.
To make the comparison as fair as possible, we use the strongest CPU available in our
laboratory and manually optimize and parallelize our CPU implementation to make effi-
cient use of the CPU resources (cf. Section 4.2.2). A speed-up of factor 10, for instance,
would not justify the effort to implement the algorithm on GPU if the acquisition costs
or the power consumption of a GPU are 10 times as high. Such an implementation would
be inefficient from an economical point of view. Thus, in Section 3.4 we introduced two
additional measures that normalize the speed-up factor over acquisition costs and over
power consumption as proposed by Van Essen et al. [53].

Table 5.5 depicts the date of introduction, price at introduction and the TDP for the
CPU and the two GPUs that we use for our experiments on the acceleration of random
forest training.

The price at introduction of the GeForce GTX TITAN equals the price at introduction
of the Intel Core i7–X980. Thus, the speed-up factor normalized over acquisition costs
remains the same for the GeForce GTX TITAN. The Tesla K20c had a price at introduc-
tion of $3199 such that the speed-up factor of 18 and 12 for the AIS Bonn Large-Objects
dataset and NYU Depth v2 dataset, respectively, is normalized to 18 · $999

$3199 ≈ 5.6 and
12 · $999

$3199 ≈ 3.7, respectively.
Van Essen et al. use the TDP to normalize the speed-up over the power consumption.

We apply the idea on our results. Table 5.6 depicts the comparison of power consumption
of the CPU and the two GPUs. The TDP of the two GPUs is about twice as high as
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i7–X980 Tesla K20c GTX TITAN
Dataset PC [Wh] PC [Wh] Factor PC [Wh] Factor
AIS 182 17.9 10 15.7 12
NYU 1441 205.8 7 100.4 14

Table 5.6.: Comparison of power consumption (PC) for random forest training on a hexa-
core Intel Core i7–X980 CPU, a NVIDIA Tesla K20c and a NVIDIA GeForce
GTX TITAN GPU. Power consumption is estimated as the factor of training
time from Table 5.4 and the TDP as depicted in Table 5.5.

the TDP of the Intel Core i7–X980. Thus, the speed-up factors reported in Table 5.4
are normalized by about a factor of two. The NVIDIA system managment interface tool
(nvidia-smi) reports the true power consumption of the Tesla K20c. We measure an
average power draw of 109.7 W while training the AIS Bonn Large-Objects dataset and
an average power draw of 63.8 W while training the NYU Depth v2 dataset. The power
consumption of training with the NYU Depth v2 dataset is significantly lower since the
GPU is more often idle when images are transferred from host to device. The measurement
indicates that the TDP of 225 W is at least a factor of two higher than the actual power
draw on the Tesla K20c. Unfortunately, the power draw metric is not available on the
GTX TITAN and it is not possible to measure the power draw on current CPUs. Thus,
we can only use this information to estimate the magnitude of uncertainty for the reported
speed-up factors over power consumption in Table 5.6, which is at least a factor of two.
Nevertheless, we conclude that our implementation on GPU significantly reduces time and
costs of random forest training.

5.4.1. Breakdown of Random Forest Training Time
Figure 5.5 depicts the breakdown of time spent for training per level in the decision trees
on the AIS Bonn Large-Objects dataset with filled depth and the NYU Depth v2 dataset.
The vast majority of training is spent for the evaluation of the best split criterion as
depicted with blue circles. The plot shows the time for the feature response calculation,
histogram aggregation, impurity score calculation and the transfer of images between host
and device.

There is a small gap between the cumulated time of the three training phases and the
total split evaluation time (blue circles). This gap represents the overhead that is necessary
to maintain data structures on the CPU and the time to generate feature candidates once
per level.

In the following sections we evaluate the results with respect to the various training
phases.

Feature Response Calculation

The plot shows constant feature response calculation time per level (green area). Figure 5.6
illustrates a more detailed analysis of the feature response calculation phase. We see that
feature response calculation on the GPU scales almost linearly in the number of samples,
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Figure 5.5.: Breakdown of random forest training time per tree level for the various train-
ing phases. Measured on a NVIDIA GeForce GTX Titan. Left: Random
forest trained on AIS Bonn Large-Objects dataset with filled depth. Right:
Random forest trained on NYU Depth v2 dataset.

which is the expected behavior of an ideal implementation. Note that the plot on the
right side shows a cutoff below 200 samples. The reason is that we set a minimum of 204
samples per node as stopping criterion. Still, there are a few measurements with less than
200 samples. The reason is that we process the feature response calculation in slices (cf.
Section 4.2.4). In seldom cases, the number of samples can be smaller than the configured
minimum, if it happens to be the remainder of the slices.

Histogram Aggregation

Figure 5.5 indicates that histogram aggregation (red area) scales linearly on the levels
lower than five. However, the total histogram aggregation time per level increases on
levels above five. The analysis on training time with respect to the number of samples
as depicted in Figure 5.7 confirms that histogram aggregation scales almost linearly with
many samples. However, a constant runtime overhead is clearly visible for less than 103

samples. Note that both axes in the figure are in logarithmic scale. The constant overhead
is caused by the sum reduction which is the final step of the histogram aggregation phase
(cf. Section 4.2.4). Levels above five have an increasing amount of nodes which are small
and contain less than 1000 samples. Since histogram aggregation gets less efficient for
such nodes, the total histogram aggregation time per level increases.

Impurity Score Calculation

We use the normalized information gain in double precision as impurity score function.
Runtime does not depend on the number of samples but on the number of feature and
threshold candidates. Since these numbers are constant throughout training, we measure
an average per-node time for impurity score calculation of 1.57± 0.25 ms on the AIS Bonn
Large-Objects dataset (cf. Section 4.2.4). The total time per level increases for deep trees
as the number of nodes per level increases exponentially.

Image Transfers

Figure 5.5 depicts the accumulated time per level in the tree, that is spent to transfer the
RGB-D images from host to device, depicted in light blue. It explains the reason for the
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Figure 5.6.: Feature response calculation time with respect to the number of samples. Mea-
sured on a NVIDIA GeForce GTX Titan. Left: Random forest trained on AIS
Bonn Large-Objects dataset with filled depth. Right: Random forest trained
on NYU Depth v2 dataset. Feature response calculation scales almost linearly
on both datasets.
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Figure 5.7.: Histogram aggregation time with respect to the number of samples. Measured
on a NVIDIA GeForce GTX Titan. Left: Random forest trained on AIS
Bonn Large-Objects dataset with filled depth. Right: Random forest trained
on NYU Depth v2 dataset. Histogram aggregation time scales almost linearly
for more than 103 samples. We observe a constant overhead for sum reduction
(cf. Section 4.2.4) that causes non-linear scaling in the range between 102 and
103 samples.
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large runtime difference between training the AIS Bonn Large-Objects dataset and the
NYU Depth v2 dataset. We notice that the total time to transfer images is about zero
throughout training the AIS Bonn Large-Objects dataset. This is because the two tested
GPUs have a sufficient amount of memory to hold all training images. The right plot shows
the training of the NYU Depth v2 dataset. The relative overhead of image transfers starts
to increase at tree level five and dominates training on deeper levels. The reason is that
the 6 GB of main memory on the GeForce GTX TITAN is not sufficient to hold all 795
images of the NYU Depth v2 dataset in memory. Instead, we set the image cache size to
670 images. The feature response calculation phase of the best split evaluation requires
to have all images in device memory that belong to the training samples in the particular
node. Unfortunately, we observe that the training samples distribute over a large fraction
of images. Thus, we need to transfer a large fraction of images for the split evaluation
for every node in the tree. Since the number of nodes increases with the tree level, the
total time of image transfers increases with the number of levels and makes training less
efficient, especially for deep trees. The Tesla K20c GPU is equipped with 5 GB of memory
and thus can only hold a smaller amount of images when training the NYU Depth v2
dataset. This explains that training time is more than twice as long as on the GeForce
GTX TITAN.

We use different CUDA streams (cf. Section 3.5.2) to reduce image cache transfer latency.
This is possible since the GPU only accesses images during the feature response calculation.
While the histogram aggregation and impurity score calculation is running on the GPU,
the images for the next feature response calculation can be already transferred to the GPU.
Hiding the latency is only partially possible on levels above five since the time spent for
histogram aggregation is significantly lower than the time to transfer images as depicted
in Figure 5.5. Nevertheless, our experiments show that image transfer latency can entirely
be hidden on the upper levels if the cache size is sufficiently large.

Random forest training on the CPU is affected even more by the large size of the NYU
Depth v2 dataset. We measure a cache miss rate of 30.1 % and 13.8 % on the NYU Depth
v2 dataset and AIS Bonn Large-Objects dataset, respectively, when training a single tree
with two levels on the CPU. The higher cache miss rate on the NYU Depth v2 dataset
causes the CPU to transfer data from main memory to L2 cache and L1 cache more often
which slows down the training.

5.4.2. Discussion of the Results
We presented an implementation that trains random forests efficiently on GPU. We achieve
a speed-up factor of up to 22 on the AIS Bonn Large-Objects dataset and 28 on the NYU
Depth v2 dataset. The measurements show that even if we normalize the speed-up factor
over power consumption or acquisition costs, the random forest training implementation
on GPU clearly saves time and costs.

Feature response calculation and histogram aggregation amount for the majority of
training time with 44.1 s (22.4 %) and 136.7 s (69.4 %), respectively, in case of the AIS
Bonn Large-Objects dataset. It scales linearly in the number of samples while histogram
aggregation scales linearly with many samples but gets less efficient with fewer samples.
Hence, our training implementation efficiently scales if more training instances (pixels)
are sampled from the dataset or the user configures to evaluate more random feature
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candidates.
Toby Sharp measures only about 2 % for feature response calculation while histogram

aggregation amounts for 96 % of total training time [52, Figure 9]. We assume three
causes for these large differences. Firstly, Toby Sharp implements features that have a
lower computational complexity than ours (cf. Section 3.2). Secondly, he samples every
pixel of the training images which presumably yields a higher cache hit rate. Lastly, he
implements the histogram aggregation with Direct3D using a vertex shader but states
that he anticipates a significant benefit by using CUDA instead.

5.5. Random Forest Prediction on GPU
In this section we present and discuss the experimental results of our implementation for
random forest prediction as introduced in Section 4.3. Prediction in the scope of this
master’s thesis means a dense pixel-wise classification of an image.

Table 5.7 compares the prediction time for a 640 px × 480 px image on a Intel Core
i7–X980 CPU to the prediction time on a NVIDIA GeForce GTX 675M mobile GPU and
Tesla K20c GPU. For the measurements, we separate image loading and pre-processing,
such as image integral calculation, from the actual pixel-wise classification. The timings do
not include loading and pre-processing of the images since loading and integral calculation
is only implemented on CPU. We use five threads to integrate the five channels of an
RGB-D image in parallel which takes 4.8 ms on an Intel Core i7–920 and 3.9 ms on an
Intel Core i7–X980.

The prediction runtime depends on a large variety of parameters such as the number
of trees, depth of the decision trees, size of the images, complexity and choice of the
implemented features, number of classes, optimizations of the compiler and the specific
hardware. For the AIS Bonn Large-Objects dataset and the NYU Depth v2 dataset, we
measure a CPU-GPU speed-up factor of up to 33, depending on the GPU.

5.5.1. Discussion of the Results
We presented an implementation for random forest prediction that performs dense pixel-
wise classification of an image in VGA resolution in real-time speed on a GeForce GTX
675M, which is a mobile GPU available for notebooks.

Toby Sharp measures a speed-up factor of about 100 on a NVIDIA GeForce GTX 280

i7–X980 GeForce GTX 675M Tesla K20c
Dataset Pred. [ms] Pred. [ms] Speed-up Pred. [ms] Speed-up
AIS 343 35.1 10 10.3 33
NYU 393 44.4 9 13.9 28

Table 5.7.: Comparison of random forest prediction time on an hexacore Intel Core i7–
X980 CPU, a NVIDIA GeForce GTX 675M mobile GPU and a Tesla K20c
GPU. We use random forests with three trees trained on the AIS Bonn Large-
Objects dataset and NYU Depth v2 dataset.
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compared to an Intel Core 2 Duo [52, Figure 10]. He measures classification time of about
23.1 ms for a 640 px× 480 px image with eight trees on the GPU. In contrast to our setup,
Toby Sharp evaluates on a dataset with RGB images that do not contain a depth channel.
The trees are only trained to a depth of eight levels (256 nodes). Furthermore, the feature
implementation has a significantly lower computational complexity which explains the
difference to our results.

5.6. Segmentation Accuracy
Despite that the acceleration of random forests is the main focus of this master’s thesis, we
also measure segmentation accuracy on the two datasets. Our fast implementation allows
us to train and predict with both datasets and many variants. We present the measured
segmentation accuracies in this section.

5.6.1. Information Gain versus Normalized Information Gain
In Section 3.1.1 we introduced the two impurity score functions information gain and
normalized information gain where we did not measure which function leads to a higher
segmentation accuracy.

We train five random forests with different random seeds to measure the average segmen-
tation accuracy and the according standard deviation for both impurity score functions.
Table 5.8 shows the resulting comparison of a random forests trained with information
gain score and a random forests trained with normalized information gain score. Training
with normalized information gain score does only marginally run slower than training with
information gain score. However, random forests trained with normalized information gain
show a significant increase of average pixel accuracy. We also observe a different shape
of the random forest when trained with the normalized information gain instead of the
information gain. The random forest trained on the AIS Bonn Large-Objects dataset with
normalized information gain contains 4361 decision nodes and 2802 leaf nodes. The ran-
dom forest trained with information gain is significantly larger and contains 5831 decision
nodes and 3670 leaf nodes.

Score Function Training [s] Pixel accuracy [%] Class accuracy [%]
Information gain 195.0 61.9± 0.3 71.4± 1.4
Normalized information gain 196.1 64.2± 0.5 72.5± 0.8

Table 5.8.: Comparison of random forest training time and segmentation accuracy with
respect to the score function used for training. Random forest trained on the
AIS Bonn Large-Objects dataset with raw depth. Note that we do not include
results on the NYU Depth v2 dataset as it would require to re-evaluate the
hyper parameters.
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5.6.2. Depth Filling
In Section 5.1 we presented two different depth filling methods. We measure the influ-
ence of these methods on the segmentation accuracy by training five random forests with
different seeds for each of the three depth filling variants and for both datasets. Segmen-
tation accuracy is measured for every random forest in combination with the three depth
filling variants applied on the test set. Thus, there are nine combinations of depth filling
on the training and test set. The results are depicted in Table 5.9 and Table 5.10 for
the AIS Bonn Large-Objects dataset and the NYU Depth v2 dataset respectively. On
the AIS Bonn Large-Objects dataset we achieve the highest segmentation accuracy when
the random forest is trained with simple depth filling and tested on images that were
pre-processed with the more sophisticated depth filling. The results with the NYU Depth
v2 dataset (Table 5.10) have more reliable evidence as the standard deviations are sig-
nificantly lower than the results with the AIS Bonn Large-Objects dataset. We see that
depth filling significantly improves the segmentation accuracy. The more sophisticated
depth filling yields the best results but only if the random forest was also trained with
images that were pre-processed with that depth filling variant.

We observe particularly low segmentation accuracies and high standard deviations if the
random forests are trained with filled depth images but tested with raw depth images. The
feature response for pixels in the image that have no valid depth is NaN since the offset
and region size cannot be normalized in this case (cf. Section 4.1). Such pixels always
traverse to the right-most leaf node in the random decision trees as the comparison with
the threshold always yields false. Hence, it is crucial that pixels without valid depth exist
in the training set so that the path in the tree to the right-most leaf node is constructed
appropriately. Otherwise, pixels without valid depth are assigned to the class of the right-
most leaf node which is as if a class label is assigned randomly. This explains the low
segmentation accuracy and high standard deviation for the combination of training with
depth filling and testing with raw depth.

Figure 5.8 shows an example for the prediction of an image in the NYU Depth v2 dataset.
The example shows that misclassifications are more frequent if depth information is miss-
ing. We conclude that depth filling is an important pre-processing step that improves
segmentation accuracy significantly.
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Depth filling
Training Prediction Pixel accuracy [%] Class accuracy [%]
Raw Raw 64.2 ± 0.5 72.5± 0.8
Raw Simple 56.5± 0.3 72.0± 0.7
Raw Sophisticated 60.2± 0.5 73.5± 0.8
Simple Raw 61.3± 1.5 70.5± 0.8
Simple Simple 62.4± 0.6 75.7± 0.8
Simple Sophisticated 64.2 ± 0.5 76.5 ± 0.8
Sophisticated Raw 59.3± 1.3 67.1± 0.8
Sophisticated Simple 60.0± 0.6 73.0± 0.3
Sophisticated Sophisticated 63.7± 0.5 74.5± 0.1

Table 5.9.: Comparison of segmentation accuracy for all combinations of training and pre-
diction with the three depth filling variants on the AIS Bonn Large-Objects
dataset.

Depth filling
Training Prediction Pixel accuracy [%] Class accuracy [%]
Raw Raw 64.2± 1.2 60.3± 0.6
Raw Simple 65.3± 0.3 62.6± 0.3
Raw Sophisticated 66.0± 0.1 62.0± 0.2
Simple Raw 58.7± 3.5 56.6± 2.0
Simple Simple 67.7± 0.0 64.7± 0.0
Simple Sophisticated 67.3± 0.0 63.7± 0.0
Sophisticated Raw 63.6± 0.2 58.9± 0.3
Sophisticated Simple 66.9± 0.1 64.1± 0.1
Sophisticated Sophisticated 68.1 ± 0.0 65.1 ± 0.1

Table 5.10.: Comparison of segmentation accuracy for all combinations of training and
prediction with the three depth filling variants on the NYU Depth v2 dataset.
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Figure 5.8.: Example of random forest predictions with the raw depth and filled depth
version of the NYU Depth v2 dataset. Top left: Color channels. Top right:
Ground truth. Middle left: Visualization of the raw depth channel. Black
color indicates missing depth. Middle right: Visualization of the filled depth
channel. Bottom left: Prediction with raw depth (Pixel accuracy: 87.0 %).
Bottom right: Prediction with filled depth (Pixel accuracy: 91.4 %). Black in
the bottom row indicates “void” in the ground truth. Raw depth causes more
frequent misclassifications in areas where depth information is missing.
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Figure 5.9.: Relative color feature frequency per tree level. Left: AIS Bonn Large-Objects
dataset. Right: NYU Depth v2 dataset. The relative frequency of the depth
feature fd equals to 1−fc(l) where fc is the relative color feature frequency in
the tree level l. Color features are selected more frequently for the AIS Bonn
Large-Objects dataset while depth features are selected more frequently for
the NYU Depth v2 dataset.

Dataset Color space Pixel accuracy [%] Class accuracy [%]
AIS RGB 61.4± 1.1 71.8± 0.8
AIS CIE Lab 63.7± 0.5 74.5± 0.1
NYU RGB 67.7± 0.0 64.7± 0.0
NYU CIE Lab 68.1± 0.0 65.1± 0.1

Table 5.11.: Comparison of segmentation accuracy for images in RGB and CIE Lab color
space. We use random forests trained on the AIS Bonn Large-Objects dataset
with filled depth and the NYU Depth v2 dataset.

5.6.3. RGB versus CIE Lab
In Section 3.2.2 we stated that the color image is transformed to CIE Lab color space
in a pre-processing step after loading the image. We conduct an experiment to measure
how segmentation accuracy compares between the CIE Lab and RGB versions of the two
datasets. We train five random forests to measure average segmentation accuracies and
standard deviations for each variant on both datasets. The results depicted in Table 5.11
show that the conversion to CIE Lab increases the segmentation accuracy for both datasets
significantly. Segmentation accuracy measured with the AIS Bonn Large-Objects dataset
is more affected than the NYU Depth v2 dataset. Figure 5.9 shows that color features are
more frequent for the AIS Bonn Large-Objects dataset while the depth feature is more
frequent for the NYU Depth v2 dataset. We assume this to be the reason why a change
of the color representation has a larger effect on segmentation accuracy for the AIS Bonn
Large-Objects dataset.

5.6.4. Segmentation Accuracy on the NYU Depth v2 dataset
Table 5.12 depicts the segmentation accuracy measured with the random forest that we
trained with the optimized parameters as reported in Table 5.2. Our random forest outper-
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Method Pixel accuracy [%] Class accuracy [%]
Silberman et al. [45] 59.6 58.6
Couprie et al. [6] 63.5 64.5
Our Random Forest 68.1 65.1

Table 5.12.: Comparison of segmentation accuracies with the NYU Depth v2 dataset. We
compare the pixel accuracy and average per-class accuracy of the random
forest with state-of-the-art methods of Silberman et al. [45] and Couprie et al.
[6].

forms state-of-the-art methods of Silberman et al. [45] and Couprie et al. [6] with respect
to average pixel accuracy as well as average per-class accuracy.

5.6.5. Discussion of the Results
The fast implementation for random forest training and prediction enables us to quickly
train and test random forests with a variety of different pre-processing steps. In Sec-
tion 5.6.1 we saw with the AIS Bonn Large-Objects dataset that the normalized informa-
tion gain yields a higher segmentation accuracy than the information gain. Future work
could further evaluate the effect of the two different impurity score functions on other
datasets and in combination with the change of other training parameters. Section 5.6.1
showed that depth filling improves segmentation accuracy and is a pre-processing step
that should be applied when training from RGB-D images that can contain missing depth
information. The results of Section 5.6.3 showed that the transformation from RGB to
CIE Lab color space significantly increase segmentation accuracy. Section 5.6.4 showed
that our random forest with optimized parameters outperforms the segmentation accuracy
of state-of-the-art methods. The extensive hyper-parameter search with Hyperopt [4] was
feasible because of the accelerated random forest implementation.

5.7. Random Fern Prediction on GPU
In Section 4.4.2 we described our implementation to accelerate random fern prediction on
GPU. It is similar to the prediction of random forests but we use two textures for the left
child node indices and the leaf node histograms. The list of feature parameters is stored
in constant memory on GPU.

In Table 5.13 we present the prediction time and the segmentation accuracy of random
ferns in comparison to a random forest on the AIS Bonn Large-Objects dataset. We
evaluate the prediction on a NVIDIA GeForce GTX 675M mobile GPU. The results show
that prediction of random ferns runs about 25 % faster. However, segmentation accuracy
of the random fern with 15 levels is clearly inferior to a random forest trained with the
same parameters. We observe that the training of deeper ferns improves segmentation
accuracy accuracy. However, since the prediction scales linearly with the number of trees
and the depth of the tree, the prediction of a random fern with 22 levels runs slower than
the prediction of a random forest with 15 levels while the random forest achieves the best
segmentation accuracy.
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Dataset Method Depth Pred. [ms] Pixel accuracy [%] Class accuracy [%]
AIS Ferns 15 25.8 53.0 61.9
AIS Ferns 22 38.0 60.9 69.0
AIS Forest 15 35.1 62.9 70.4
NYU Ferns 18 27.3 66.0 61.1
NYU Ferns 25 33.6 66.5 61.6
NYU Forest 18 44.4 68.1 65.1

Table 5.13.: Comparison of random fern and random forests average prediction runtime
and segmentation accuracy with the AIS Bonn Large-Objects dataset and the
NYU Depth v2 dataset.

Similar results are observed for the NYU Depth v2 dataset. Prediction runtime of a
random fern is about 40 % faster compared to a random forest with the same parameters.
As for the AIS Bonn Large-Objects dataset, the segmentation accuracy is significantly
lower, even if we train the fern with 25 levels.

5.7.1. Discussion of the Results
In this section we presented the experimental results of random fern prediction. The
results indicate that our implementation classifies an image up to about 40 % faster with
random ferns. However, our random ferns yield a significantly lower segmentation accuracy
that we partially compensate by training deeper ferns. The original speed advantage is
thereby vastly countervailed. We expect that the segmentation accuracy of random ferns
can be increased by improving our method to train random ferns. Furthermore, random
fern training parameters could be optimized with an extensive parameter search in future
work by conducting a hyper-parameter search with Hyperopt [4]. Nevertheless, we do
not anticipate speed-ups of more than 50 % since the results indicate a large fraction of
prediction runtime to be spent in the feature response calculation of our visual features.
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6. Conclusion
This master’s thesis addresses the acceleration of random forests for object-class segmenta-
tion of RGB-D images. Popularity of RGB-D datasets is rising since cameras with depth
sensor such as the Microsoft Kinect or the Asus Xtion PRO LIVE have become available
at low price.

Training of random forests requires a lot of computing power if the dataset is large.
Training is infeasible if computing power is not available, too costly or requires too much
time. Thus, academic institutes without availability of large computing clusters have not
been able to conduct extensive experiments with random forests on large RGB-D datasets.

In this master’s thesis we present an implementation of random forests which accelerates
training and prediction on CPU and GPU. We have implemented the visual features as
proposed by Stückler et al. [50]. Feature responses for each pixel are calculated on-the-fly
during training and prediction as the difference of two rectangular regions in the respective
neighborhood of each pixel. Offset and size of the regions are normalized by the depth
information in the RGB-D image.

The experimental results in Chapter 5 show that the time for random forest training
is dominated by the evaluation of the best split criterion for the nodes in the decision
trees. This evaluation is accelerated with the CUDA framework by using the massively
parallel computing power of GPUs. The GPU implementation is designed to efficiently
utilize GPU memory by using efficient access patterns, textures and shared memory.

Random forest prediction is accelerated by mapping the random forest data structure
to a texture in GPU memory. This technique was inspired by Toby Sharp [52] and is used
for real-time human body part detection from single depth images in the Microsoft Xbox
gaming platform [43]. In contrast to their implementation, we use visual features with a
significantly higher computational complexity that combine color and depth information
and use image region sums instead of single pixel differences.

We evaluate the implementation on two RGB-D datasets, namely the AIS Bonn Large-
Objects dataset [50] with 1533 images from 40 scenes and the NYU Depth v2 dataset [45]
with 1449 images from 464 scenes. Random forest training runs up to 28 times faster
on GPU compared to our optimized CPU implementation. Our experimental results
also indicate that the power consumption is significantly lower on GPU which makes the
acceleration on GPU attractive from an economical point of view.

We train a random forest on the AIS Bonn Large-Objects dataset in less than four
minutes with a single GPU which previously took about one day on a CPU. Our fast
training implementation has allowed us to perform an informed search with Hyperopt [4]
in the space of training parameters in order to optimize segmentation accuracy on the
NYU Depth v2 dataset. A random forest trained with accordingly optimized parameters
outperforms the segmentation accuracy of state-of-the-art methods on the NYU Depth v2
dataset proposed by Silberman et al. [45] and Couprie et al. [6]. We achieve an average
pixel accuracy of 68.1 % and an average per-class accuracy of 65.1 % while Couprie et al.
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6. Conclusion

[6] reports 63.5 % and 64.5 %, respectively.
Random forest prediction runs in real-time speed on a single mobile GPU. Dense pixel-

wise classification of an image in VGA resolution takes in average about 35 ms and 45 ms
with the AIS Bonn Large-Objects dataset and NYU Depth v2 dataset, respectively.

We have also developed an implementation for training and prediction of random ferns.
Random ferns are a specialization of random forests which use the same split criterion in
each level of a decision tree. This is an advantageous property that we use to further speed-
up prediction. The experimental results show a reduction of prediction time by up to 40 %.
The disadvantage is a lower segmentation accuracy of random ferns in comparison to the
accuracy achieved by random forests with the same training parameters. The lowered
accuracy is partially compensated, for instance, by training deeper ferns. However, this
also slows down prediction and countervails the original speed advantage of random fern
prediction. One reason for the low prediction speed-up of random ferns is presumably
the large fraction of runtime that is spent for feature response calculation which remains
unchanged by using ferns instead of forests.

Our accelerated implementation forms a basis for scientific progress on computer vision
applications that use random forests. We have shown that our implementation saves
costs and time, a prerequisite for economically efficient research in the future such as the
exploration of improved visual features.

Our random forest implementation CURFIL [56] is published on GitHub as open source
software under the MIT license. Source code and documentation including examples can
be downloaded from

https://github.com/deeplearningais/curfil.

To the best of my knowledge, this is the first random forest implementation of its kind
that is publicly available.

6.1. Future Work
As future work, we expect that our implementation is used to evaluate random forests on
other RGB and RGB-D image datasets. The fast implementation can be used to quickly
conduct a hyper-parameter search even if only a few GPUs are available. Random forests
with optimized parameters can achieve better results than the currently leading methods
as we have seen in the case of the NYU Depth v2 dataset.

An interesting question is whether more sophisticated visual features or additional image
channels help to increase the segmentation accuracy. Additional image channels could be,
for instance, the result of filters that are applied on the original image such as an edge
detection or a histogram of gradients.

Furthermore we expect that segmentation accuracy can be further improved by using
the probabilistic output of the random forest prediction as input for a subsequently applied
machine learning method.

Our implementation certainly enables efficient research that has not been feasible before.

:wq!
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Glossary
ALU Arithemtic Logical Unit. 19

CART Classification And Regression Tree. 7

CIE Lab CIE Lab (CIELAB) is a color space specified by the International Commission
on Illumination (French: Commission internationale de l’éclairage, hence CIE). The
three coordinates represent lightness (L) and the color as a position (a, b) in a two-
dimensional space. In contrast to RGB, CIELAB can represent all colors that a
human eye can perceive and is specified device-independently. v, 14, 16, 49, 74, 75

CPU Central Processing Unit. 1–3, 5, 11, 18, 19, 22, 27–35, 38, 42, 48–50, 52, 54, 63–65,
68, 69, 77, 79

CUDA NVIDIA’s general purpose parallel computing platform and programming model
implemented by GPUs (formerly: Compute Unified Device Architecture). 3, 5, 18–
22, 24, 25, 32–34, 42, 45, 49, 63, 68, 69, 77, 79

FPGA Field Programmable Gate Array. 3

GCC The GNU Compiler Collection. 31

GPU Graphics Processing Unit. 1–3, 5, 11, 18–20, 22–28, 32–39, 42, 44–50, 52–54, 63–65,
68–70, 75, 77–79

HLSL High Level Shader Language. 3

HOG Feature descriptors used in computer vision for the purpose of object detection. 3

L1 cache First-level cache of RAM on CPUs and GPUs. L1 caches are usually faster but
smaller than L2 caches. 21, 22, 68

L2 cache Second-level cache of RAM on CPUs and GPUs. L2 caches reside logically
between L1 and RAM or between L1 and L3 if an L3 cache is available. 21, 22,
38–41, 49, 50, 68, 87

LRU Least Recently Used. 47

MSRC Microsoft Research recognition database. 63

NaN Not a Number. 15, 28, 56, 59, 71

NVCC The CUDA C/C++ Compiler. 32, 34
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Glossary

PTX Parallel Thread eXecution. 19, 20, 22

RGB Additive color model in which the three channels red, green, and blue light are added
together. The name comes from the initials of red, green, and blue. v, 3, 16, 17, 52,
63, 70, 74, 75, 78, 80

RGB-D RGB image with an additional channel that contains depth information per pixel.
The depth represents the distance to the visible object. iii, vi, 2, 3, 13–15, 47, 50,
54, 56–59, 66, 69, 75, 77, 78

SDK Software Development Kit. 25

SIMD Single Instruction, Multiple Data. 20

SIMT Single Instruction, Multiple Threads. 20

TDIDT Top-Down Induction of Decision Trees. 6

TDP Thermal Design Power. 64, 65

VGA resolution A standardized resolution with a width and height of 640 px×480 px. iii,
2, 54, 55, 69, 78

Weka Data Mining Software Package in Java [20]. 3, 4
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A. Appendix

The following plots and tables serve as supplementary results that have been mentioned
in this master’s thesis but were extracted to avoid distraction.
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Figure A.1.: Relative feature frequency per (channel 1, channel 2) pair. Comparisons on
the same image channels are less frequently selected in training than compar-
isons on two different image channels. Left: Random forest trained on AIS
Bonn Large-Objects dataset with raw depth. Right: Random forest trained
on NYU Depth v2 dataset. See Section 3.2.2.
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Samples Features Training time Texture cache L2 cache
per thread block per thread block [ms] Hit rate [%]

1 128 6.6 19.4 76.9
4 32 6.2 12.6 78.5
8 16 7.2 12.6 76.3
16 8 10.2 8.2 62.7
16 16 10.5 11.6 62.4
32 8 13.8 7.3 44.1
32 4 14.8 5.3 44.9

Table A.1.: Training time and texture cache hit rate of feature response calculation for
20 samples per image, 100 images, 2000 features, maximum offset of
120 px m and maximum region extent of 20 px m× 20 px m on a GeForce GTX
480. Feature response values are stored to a D×F matrix for D samples and
F features in row-major order. Training time increases with more samples
per thread block, because texture cache rate decreases. Performance peaks at
4 samples and 32 features per thread See Section 4.2.4.

Samples Features Training time Texture L2 Global memory
per

block
per

block
[ms] cache hit rate [%] store efficiency [%]

1 128 61.9 21.8 97.3 25
4 32 51.7 27.0 96.6 100
8 16 49.2 30.3 97.1 100
16 8 47.8 31.2 97.7 100
16 16 46.8 37.1 97.7 100
32 8 48.8 34.1 97.6 100
32 4 50.6 28.0 97.7 100

Table A.2.: Training time, cache hit rate and global memory store efficiency of feature
response calculation 2000 samples per image, 10 images, 2000 samples,
maximum offset of 120 px m and maximum region extent of 20 px m× 20 px m
on a GeForce GTX 480. Feature response values are stored to a D × F ma-
trix for D samples and F features in column-major order. Training time
decreases when texture cache hit rate increases. Performance peaks at 16 sam-
ples and 16 features per thread block. Using 128 features and only one sample
per thread block is penalized due to inefficient global memory writes. See
Section 4.2.4.
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Samples Features Training time Texture L2 Global memory
per

block
per

block
[ms] cache hit rate [%] store efficiency [%]

1 128 70.0 22.2 91.0 25
4 32 66.7 19.6 92.0 100
8 16 67.8 16.0 93.0 100
16 8 71.9 12.1 92.6 100
16 16 67.3 14.4 92.4 100
32 8 76.1 9.0 89.4 100
32 4 78.6 7.8 89.6 100

Table A.3.: Training time, cache hit rate and global memory store efficiency of feature
response calculation 200 samples per image, 100 images, 2000 samples,
maximum offset of 120 px m and maximum region extent of 20 px m× 20 px m
on a GeForce GTX 480. Feature response values are stored to a D × F ma-
trix for D samples and F features in column-major order. Training time
decreases when texture cache hit rate increases. Performance peaks at 4 sam-
ples and 32 features per thread block. Using 128 features and only one sample
per thread block is penalized due to inefficient global memory writes. See
Section 4.2.4.

Samples Features Training time Texture L2 Global memory
per

block
per

block
[ms] cache hit rate [%] store efficiency [%]

1 128 7.8 22.8 75.3 25
4 32 9.1 13.0 77.2 100
8 16 11.8 8.8 76.8 100
16 8 14.1 6.8 64.6 100
16 16 10.5 6.4 65.7 100
32 8 16.1 4.0 47.0 100
32 4 15.2 4.5 44.9 100

Table A.4.: Training time, cache hit rate and global memory store efficiency of feature
response calculation 20 samples per image, 100 images, 2000 samples,
maximum offset of 120 px m and maximum region extent of 20 px m× 20 px m
on a GeForce GTX 480. Feature response values are stored to a D × F ma-
trix for D samples and F features in column-major order. Training time
decreases with increasing number of samples per thread block. The reason is
a decreasing texture cache hit rate, since sampling is dense and two samples
are not likely to lie close to each other. Performance peaks at one sample and
128 features per thread block, even though it is penalized due to inefficient
global memory writes. See Section 4.2.4.
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