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Abstract

Any efficient and realistic Avatar system requires the ability that the operator can
look through the Avatar’s eyes. For a realistic remote experience any movement of
the operator’s head should result in an identical movement of the Avatar’s head.
However, latencies and limitations in degrees of freedom are problematic. To tackle
this issue we have developed view synthesis methods with decreasing reliance on
depth: From a first approach that estimates depth monocularly to a synthesis
method with no depth estimation at all. Our first approach processes single input
images without given depth. We introduce a pipeline that (i) estimates depth
and (ii) renders the image at a novel view point, which is the input for a CNN
that (iii) produces the output image. We use a fully differentiable point cloud
renderer to backpropagate gradients to the estimated depth map. Compared to
state-of-the-art, we achieve better results while being more than twice as fast.
Our second approach, called FaDIV-Syn addresses the problem that view synthesis
methods are often limited by their depth estimation stage, where incorrect depth
predictions can lead to large projection errors. This often leads to a state where
the quality of depth estimation is the bottleneck in performance of the whole
pipeline. Hence we present a multi-source view synthesis network that is totally
independent to depth features and can further process high resolution images in
real-time. Multiple source frames are warped into the target frame for a range
of assumed depth planes. The resulting tensor representation is fed into a U-
Net-like CNN with gated convolutions, which directly produces the novel output
view. We therefore side-step explicit depth estimation, which improves efficiency
and performance on transparent, reflective, and feature-less scene parts. FaDIV-
Syn can handle both interpolation and extrapolation tasks and outperforms state-
of-the-art extrapolation methods on the large-scale RealEstate10k dataset. In
contrast to comparable methods, it is capable of real-time operation due to its
lightweight architecture. We further demonstrate data efficiency of FaDIV-Syn by
training from fewer examples as well as its generalization to higher resolutions and
arbitrary depth ranges under severe depth discretization.
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1 Introduction

Novel view synthesis aims to estimate images from novel viewpoints of a scene
captured from one or more reference views. It has applications in virtual reality,
3D movies, or any other field where free choice of viewpoint is desired. The task
is challenging as scene geometry and surface properties are not given, but have to
be inferred from the available views. Additionally, viewpoint changes induce both
occlusions, where foreground objects occlude previously visible backgrounds, and
disocclusions, which uncover previously invisible backgrounds. In the latter case,
the disoccluded content has to be guessed from its context. The view synthesis
task is related to Multi-View Stereo (MVS), which aims to recover scene geometry
only, and image inpainting, which tries to fill missing pixels with realistic content.

This thesis is motivated by avatar scenarios, in which a human operator teleop-
erates a remote robot. For convincing immersion, the operator wears VR glasses
to perceive the world from the robot’s point of view. Often there is a large dis-
tance between the avatar and the operator. A given head movement can cause a
number of latency sources. These could be for example: (i) network latency or
(ii) joint speed limitations of the avatar’s head. There may also be joint limits
on the side of the robot. That means the robot does not have the possibility to
execute the transmitted movement, because it would come to collisions or me-
chanical restrictions. If the above problems are not counteracted, this will result
in strange-looking effects in the images seen, which will significantly limit the VR
experience. Since this thesis is motivated by real world scenarios, we train and
evaluate all proposed methods on the large RealEstate10k dataset [1].

Our first approach processes on single images and builds upon SynSin [2]. The
inference pipeline consists of three different stages: (1) depth estimation, (2) pro-
jecting and rendering, and (3) refining. As we do not require ground truth depth,
we can use the RealEstate10k dataset for both training and evaluation. Similar to
Wiles et al. [2], we build a fully differentiable pipeline. Like recent approaches [3,
4, 5, 6] we train our depth predictor self-supervised. Often a spatial transformer
network [7] is used to reproject a second view, which provides an implicit quality
measure of the estimated depth. The CNN is therefore trained to predict depth
that minimizes a photometric reprojection error.

The resulting single view approach is related to monocular depth estimation
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1 Introduction

approaches, because the renderer assumes depth which is then used to render the
scene from a different perspective. This depth image must be predicted by a
CNN from a single image without other information such as sparse pointclouds.
Our main contribution is to show how monocular depth estimation techniques can
improve the depth prediction stage, and further the optimization of end-to-end
losses for the disparity network. In comparison, SynSin [2] only uses end-to-end
losses, which are backpropagated through the entire pipeline. We achieve state-
of-the-art performance with an pipeline that is more than twice as fast and less
complex than SynSin.

In our second approach (FaDIV-Syn), we focus on the problem setting of real-
time view interpolation and extrapolation from two RGB images, which show the
scene from roughly the same direction—as, for example, when captured from a
stereo camera. We note, though, that our method is applicable to more input
views.

Many stereo [8, 9, 10, 11] and view synthesis methods [1, 12, 13] use Plane Sweep
Volumes (PSV) [14], which warp the input views on a range of planes defined in
the target camera and thus pre-transform the input data under the assumption
of a range of discrete depths. Usually, a disparity or depth map is estimated
from the PSV, which is then used to project the input views into the target frame
correctly [13] or to generate representations such as multi-plane images [1, 12].
However, this approach creates a bottleneck: Imprecise or wrong depth estimates,
which occur especially on uniform, transparent, or reflective surfaces, will result
in loss of information and lead to failures later on in the synthesis pipeline.

Our proposed method is related to Image-Based Rendering approaches, but for-
goes the geometry estimation step by operating on the PSV directly to compute
the output RGB image, without computing explicit depth. To this end, we learn
an RGB generator network which processes the PSV to directly synthesize the
novel view and equip it with operations such as group- and gated convolutions [15,
16], which are suitable for detecting layer-wise correspondences, masking of irrele-
vant areas, and blending. Unlike most Image-Based Rendering (IBR) approaches,
FaDIV-Syn has no explicit blending or inpainting stage, which allows distribution
of the blending and inpainting operations throughout the learned network at ap-
propriate abstraction levels. Only a single forward pass is required for this second
approach. In summary, our contributions include (1) a real-time view synthesis
network operating on plane sweep volumes, and (2) a detailed evaluation on the
large-scale RealEstate10k dataset [1], where we outperform comparable methods
in accuracy and runtime.
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2 Fundamentals
This section describes the methods, techniques and losses used in this thesis.

2.1 Convolutions

2.1.1 Vanilla Convolutions
A neural network that processes images can fulfill different tasks such as classifica-
tion, segmentation, or novel view synthesis. In any of these tasks a neural network
needs some kind of feature extraction, which the network either produces in a
self-supervised manner or traditionally includes hand-craftet features. Convolu-
tional neural networks have become very popular in machine learning based image
processing algorithms. Preprocessing an input image with convolutions allows a
neural network to extract features that project the input image into a different
(and often higher dimensional) feature-space. This representation can then be
used to fulfill the certain task more efficiently.

In deep learning the network’s feature extraction is seperated into multiple con-
volutional layers L1, ..., Ln, where L1 processes the raw input image and Li, i ∈
(2, ..., n) gets the output of Li−1 as input. A convolution basicly consists of a
weight tensor Wf with a kernelsize k = (kw, kh). Further, a common convolutional
filter has the depth of the number of input feature maps (or channels) C and
calculates a pixel x, y in the lth output feature map as:

W l
f ~ Ix,y :=

k′w∑
i=−k′w

k′h∑
j=−k′h

W l
k′w+i,k′h+j · Ix+i,y+j, (2.1)

where ~ is the convolution operator, k′ = (k′
w, k

′
h) = (kw−1

2
, kh−1

2
), W l

f ∈ Rkw×kh×C

denotes the weight tensor of the convolutional filter for the lth output feature map
and I are the input feature maps.

2.1.2 Gated Convolutions
Since the weights of a vanilla convolutional layer are fixed, once a network is
trained, the layer can not adapt its behaviour regarding to global or local context.
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2 Fundamentals

Hence the network learns to work around this limitation by filtering out abstract
features in multiple convolutional layers. Often activation functions such as Sig-
moid or ReLU are used for bringing in non-linear behaviour.

Yu et al. [16] use gated convolutions as proposed by Dauphin et al. [15], in order
to allow a convolutional layer to adapt itself to local (or global) features. Adaptive
behaviours have also been observed at human neurons [17]. Gated convolutions
have shown promising results in image inpainting [16]. Instead of estimating Wf~I

(see Section 2.1.1), a gating layer calculates the non-linear output

GC(Wf ,Wg, I) = σ1(Wf ~ I)� σ2(Wg ~ I), (2.2)

where � denotes the elementwise multiplication, ~ is the convolution operator,
Wg is the weight tensor of the gating feature extraction and σ is an activation
function. Note that σ2 is the Sigmoid function in [16], but we also allow different
activation functions such as ReLU in our approaches. The formula shows that the
gating feature extraction can explicitly modify the output features.

2.2 Geometries and Rendering
All proposed methods in this section assume a pinhole camera model [18] with a
given camera matrix K and camera pose TC W for each frame, where W is the
world coordinate system.

2.2.1 Homography Warping
In the following we assume that all pixels of an image I are on the same plane
P . If we consider two cameras Ca and Cb looking at the points of a plane pi ∈ P ,
then we have two representations P a, P b of the same plane P . With a known
transformation Ta b and plane distance d, we can define the inverse homography
matrix [19] Ha b that projects each pixel pbi to the corresponding pixel pai in camera
Ca. We do so, by calculating

pai =
zbi
zai

Ka · Ha b ·K−1
b · pbi , (2.3)

where Ka, Kb are the corresponding camera matrices and zai , z
b
i denote the z-

coordinates in cameras Ca, Cb. The inverse homography matrix is defined as:

Ha b := R− tnT

d
, (2.4)
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2.2 Geometries and Rendering

where n is the normal vector of the plane, d is the plane distance and R, t is the
rotation, translation of Ta b , which is the transformation matrix from camera a to
b. Following this, we can compute a coordinate grid to sample the planar Image Ib
at the viewpoint of Ia. Note that the computation can be vectorized and processed
over multi-dimensional tensors simultaneously on a GPU.

2.2.2 Spatial Projection
We consider two cameras Ca, Cb, which obtain images Ia, Ib and a depth map
Za that corresponds to the pixels of Ia. For convenience we define a function π

that transforms from homogenous to Cartesian coordinates. In the following we
describe the steps to reproject the pixels pbi ∈ Ib into camera Ca:

1. Backproject each coordinate grid pixel gai = (xa
i yai 1)T with given depth

zai into a spatial point sai , where

sai = K−1gai z
a
i . (2.5)

2. Calculate

g̃a7→b
i = (x′ y′ z)T = Kπ( Ta b (s

a
i

T 1)T ) (2.6)

to transform and project this point into the new camera Cb, where Ta b =

Tb w
−1 Ta w is the homogenous transformation matrix from camera Ca to Cb

and K is the camera matrix with shape 3×3. The projected grid location is
then given by

ga7→b
i = (xb

i ybi )
T = (

x′

z

y′

z
)
T = π(g̃a7→b

i ). (2.7)

3. Reprojection: With the resulting coordinate grid Ga7→b = {ga7→b
i } we can

sample the corresponding pixel of Ib for each pixel in Ia.

Steps 1 to 3 can be executed completely vectorized. However, if we want to
project from image Ia to camera Cb, we need to invert the sampling operator. In
this case, due to discretization and occlusion effects, more than one pixel may fall
on the same grid location. A possible solution is z-buffering, which only accepts
the pixel with the smallest z-coordinate in camera Cb. Z-buffering requires to
iterate through the coordinate grid Ga7→b once.
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2 Fundamentals

2.2.3 Spatial Transformer Networks

Spatial Transformer Networks, introduced by Jaderberg et al. [7], were designed
to spatially manipulate data in images. This manipulation is done in a completely
differentiable way. A Spatial Transformer Network consists of a localization net-
work, that estimates the parameters θ for the transformation, a grid generator,
which creates the coordinate grid G, and a sampler, which performs the transfor-
mation with respect to the estimated coordinate grid G. Throughout this thesis
we use Spatial Transformer Networks for two purposes:

1. To spatially project images into different camera views based on given trans-
formations and depths. Here our grid generator follows steps 1-2 in Sec-
tion 2.2.2.

2. To warp planes using the inverse homography. Applying the inverse homog-
raphy (see Section 2.2.1) immediately gives us the coordinate grid to sample
a textured plane Pb in a different camera Ca.

Since all transformations are given, we do not require a localization network.

2.2.4 Differentiable Pointcloud Renderer

We use the pointcloud renderer PR, which was introduced by Wiles et. al. [2] and
implemented as open source in PyTorch3D [20]. Their neural pointcloud renderer
allows to implement techniques such as z-buffering and splatting in a completely
differentiable way.

With splatting we can spread the information of a projected pixel in a prede-
fined neighbourhood with radius r, which leads to denser projected images. Each
target grid pixel keeps a z-buffer with a fixed number of maximum stored values
K, where K = 1 represents a hard z-buffer. For values K ≥ 2 each target grid
pixel is influenced by the K nearest points. The degree of influence of a surround-
ing projected pixel is proportional to the eucledean distance d2(· , ·) to the grid
location. According to these distances, each z-buffer is sorted and accumulated
using a blending hyperparameter γ ∈ [0, 1]. For further implementation details we
refer to Wiles et al. [2].
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2.3 Losses

2.3 Losses
2.3.1 L1 and Mean Squared Error

The L1 loss and the Mean Squared Error (MSE) are the two most common losses
in pixelwise image comparison. For two images I1, I2 with size N ×M we define:

L1(I1, I2) :=
N∑

n=0

M∑
m=0

| I1(n,m)− I2(n,m) |, (2.8)

MSE(I1, I2) :=
1

NM

N∑
n=0

M∑
m=0

(I1(n,m)− I2(n,m))2. (2.9)

2.3.2 Perceptual Loss

The Perceptual loss, as used by Shih et al. [21], aims on estimating an index for the
perceptual similarity of two images. It is motivated to give a quality measure closer
to human perception. We therefore use a VGG-19 Network [22] Ψ, pretrained on
ImageNet [23], to hierarchically compare the activations in different layers of both
the generated and the ground truth image. Due to this learned convolutional
preprocessing we no longer have a direct pixel-to-pixel comparison. Furthermore,
the pixel-wise influence decreases more the deeper we are in the layers. We define
the Perceptual loss as:

Lperceptual(I1, I2) :=
L∑
l

wl

NΨl

|Ψl(I1)−Ψl(I2)|, (2.10)

where Ψl(•) is the activation of the lth layer, wl is the weighting of the lth layer
and NΨl

are the number of elements in the lth layer.
If we spatially project images in novel view synthesis, slight errors must be

expected due to noisy or incorrect depth. Hence a pixelwise loss can lead to blurry
effects (especially in edge regions) if used for training. Adding the Perceptual loss
to the training can counteract this problem and thus lead to higher quality images.

2.3.3 Image Quality Metrics

We use different metrics to evaluate the performance of our proposed methods.

1. Peak Signal-To-Noise Ratio (PSNR)
The peak signal-to-noise ratio is commonly used to estimate the quality of

7



2 Fundamentals

generated novel views. It is defined as:

PSNR := 10 · log10(
MAX I√

MSE
) = 20 · log10(MAX I)− 10 · log10(MSE). (2.11)

Since we process normalized images with values in range [0, 1], we set MAX I =

1 and simplify the equation to

PSNR := −10 · log10(MSE). (2.12)

In general PSNR measures the ratio between the maximum possible value
and the noise which affects the quality. In terms of generating novel views
we therefore interpret lack of performance as noise in images.

2. Structural Similarity Metric
In order to estimate the image quality we also utilize the Structural Similarity
Metric (SSIM) as proposed by Zhou Wang et al. [24]. Different to pixelwise
losses as L1, PSNR, or MSE it compares window cutouts with size N × N

to estimate a quality factor SSIM (I1, I2) ∈ [0, 1]. In this bachelor thesis we
have chosen a window size N = 11 to be comparable with others. The SSIM
loss is formulated as:

SSIM (x, y) :=
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
xσ

2
y + C2)

, (2.13)

where x, y are two corresponding image cutouts with size 11 × 11, µ is the
mean value, σ is the standart deviation and σxy is the covariance. Note that
C1 and C2 are small constant values for numerical stability. In evaluation
we adapt our SSIM implementations to SynSin [2] or 3D-Photo [21] for a
fair comparison.

3. Learned Perceptual Image Patch Similarity (LPIPS)
The LPIPS metric, introduced by Zhang et. al. [25], is similar to the Per-
ceptual loss as described in Section 2.3.2 and is motivated to give a quality
measure closer to human perception. The LPIPS metric is defined as:

LPIPS(I1, I2) :=
∑
l

1

HlWl

∑
h,w

||wl � (y1l,h,w − y2l,h,w)||
2

2
, (2.14)

where l is the layer, wl is the layer weighting and ylhw denotes the activations
at position (h,w) in layer l. The activations y are estimated by a pretrained
CNN. Often a Alex-Net [26] or a VGG-16 network [22] is used. For a fair
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2.3 Losses

comparison, we adapt to the implementations of either SynSin [2] or 3D-
Photo [21].

2.3.4 GAN Losses
A Generative Adversarial Network (GAN), first introduced by Goodfellow et al.
[27], basically consists of a generator network G and a discriminator network D,
that aims on detecting generated images or areas. The generator tries to outsmart
the discriminator, while the discriminator tries to recognize the generated images
of the generator. Hence both networks influence each other in training time. In
order for the discriminator to learn recognizing generated images, it is simultane-
ously trained with real images. In this thesis we build upon the implementation
of a multiscale discriminator from Siarohin et al. [28], which is similar to the im-
plementation of Isola et al. [29].

There are different ways to generate GAN losses [30, 27, 31]. In the classical
approach [27] D and G play a minimax max game with the value function V (D,G):

minGmaxD V (D,G) = Ex∼pdata [log D(x)] + Ez∼pz [log(1−D(G(z)))], (2.15)

where pdata is a pool of real images and pz is a pool of input values for the generator.
The higher the output D(x), the more certain the discriminator is that x is real.
While D tries to minimize D(G(z)), G tries to maximize D(G(z)), since generator
G targets to create realistic output.

Figure 2.1: A typical GAN architecture extracted from [16].

In this thesis we have chosen to implement a Least-Square-GAN (LSGAN),
which is more robust against vanishing gradient problems and further generates
higher quality images than regular GANs [31]. For a given input z and a corre-
sponding ground truth image Iz, the discriminator tries to assign D(G(z)) = 0

(fake) and D(Iz) = 1 (real). Our LSGAN loss is seperated into a discriminator
and a generator part:

LD
GAN (z, Iz) =

∑
s

((D(Isz )− 1)2 + (D(G(z)s)− 0)2), (2.16)

9



2 Fundamentals

LG
GAN (I) =

∑
s

(D(G(z)s)− 1)2, (2.17)

where s is the certain scale of the image. Note that LGAN is averaged over the num-
ber of output features accumulated across all scales. For further implementation
details we refer to Mao et al. [31].

2.4 Augmentation

Original Augmented Original Augmented

Figure 2.2: RealEstate10K [1] images augmented using color jitter (see Section 2.4).

When training a neural network overfitting problems often occur. This can be
caused by a too small dataset or a network with too many parameters. To achieve
a higher generalization on unseen data, we use image augmentation techniques,
whereby given images in the training set are slightly modified to represent a new
unseen image with similar properties. However, it is important that the augmen-
tation does not change the data such a way that the network is no longer able to
perform the intended task. For example, if we project an image spatially and use
this projection as the basis for a refinement, we should not distort edges or rotate
images.

Therefore, it is important that the augmentation methods are (1) transformation-
invariant and (2) can always be applied to both the source images and the tar-
get image in the same way. In this work we limit ourselves to the color jitter
augmentation (see Figure 2.2), which was introduced by He et al. [32] for the
reimplementation of ResNet. Color jitter manipulates the following values:

1. brightness → [0.8,1.2]

2. contrast → [0.8,1.2]

3. saturation → [0.8,1.2]

4. hue → [-0.1,0.1]

10



2.5 Batch Normalization

The jittering values are uniformly chosen within our predefined interval1. They are
applied equally to the entire image, as well as to corresponding input and ground
truth images.

2.5 Batch Normalization
Batch normalization, introduced by Ioffe and Szegedy [33], has found wide applica-
tion in deep learning approaches. A Batch Normalization layer (BN layer) tackles
the problem that the input distribution of a layer changes during training, since
the parameters of the previous layer change [33]. Neural networks often struggle
learning this, and training can be much slower. If this problem is not addressed, a
very small learning rate is often necessary in training. A BN layer normalizes the
activations of a n-dimensional input xi in a minibatch B = {xi, i ∈ [0, ..., b]} of a
layer as follows:

yi = γx̂i + β (2.18)

x̂i =
xi − µB√
σ2
B + ε

, (2.19)

where ε is a small constant for numerical stability, σ2
B is the variance, µB is the

mean activation across the mini-batch and γ, β are parameters that need to be
learned. γ and β allow to scale and shift the normalized activations x̂i. Note that
after normalization the distribution of values of x̂ have the expected value 0 and
a variance of 1, if all elements xi ∈ x in the minibatch are sampled from the same
distribution [33].

Besides a faster and more stable training, batch normalization has also shown
regularizing effects. During inference, a BN layer uses the mean statistics µ̃B :=

E(µB) and σ̃2
B :=

m

m− 1
E(σ2

B) accumulated during training with m mini batches.

1We use the PyTorch color jitter implementation: https://pytorch.org/vision/stable/
transforms.html#torchvision.transforms.ColorJitter
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3 Related Work

Novel view synthesis has been a long-standing problem in computer vision. There
are already a number of approaches that differ mainly in the initial situation. For
example, there are approaches that work on single or multiple images, consider
depth as given or not given or require certain forms of annotation like segmenta-
tions. Most approaches at least assume given camera extrinsics and intrinsics. In
general, a variety of approaches have already emerged, differing in the way they
are implemented.

Image Based Rendering (IBR). In contrast to classical rendering of 3D scenes
using textured geometry, IBR methods aim to render novel views by combining
input images in the target pose [34, 35, 36, 37, 38, 13, 39, 40, 41, 42, 43]. To
be able to project the input images correctly, IBR methods still require geometry,
often in the form of depth maps, which are either available or estimated.

Recent approaches use blending to combine the images [34, 35, 36, 42]. Hedman
et al. [35] learn the blending operation end-to-end. Going further, Riegler and
Koltun [42] use a recurrent blending decoder in order to deal with a varying num-
ber of input images. In later work [43] heuristic input image selection is replaced
with a fully-differentiable synthesis block. Penner and Zhang [34] introduce soft
visibility volumes, which encode occlusion probabilities and thus avoid early deci-
sions, but require a larger number of input views to compute. Kalantari, Wang,
and Ramamoorthi [13] synthesize novel views in light field datasets. A lightfield is
a camera matrix with N ×M many cameras, which all have the same orientation
and camera intrinsic. Thus, for example, an 9× 9 lightfield consists of 81 different
cameras. They use the corner cameras to predict depth in the target view, which
is then used to warp the input views. Nguyen et al. [39] introduce RGBD-Net,
which first estimates depth using a multi-scale PSV, warps the input images into
the target frame, performs explicit blending, and refines the warped image using
a depth-aware network.

Our FaDIV-Syn approach also works directly on the input images, but does not
compute or require depth explicitly. Blending is learned implicitly by the network,
together with detection and inpainting of extrapolated/disoccluded regions.
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3 Related Work

Geometry-Based Approaches. Recent approaches [44, 45, 2, 46] use depth fea-
tures to spatially project pixel information and refine these projections to an output
view. Wiles et al. [2] and Chen, Song, and Hilliges [47] process on single input
images, estimating monocular depth in an end-to-end fashion. Wiles et al. [2] im-
plement a differentiable point cloud renderer that allows z-buffering and splatting.
Chen, Song, and Hilliges [47] predict depth in the target view using a transforming
auto-encoder, that explicitly transforms latent code before entering the decoder.
Similarly, Olszewski et al. [48] learn implicit voxel representations and transform
encoded representations explicitly. Srinivasan et al. [46] predict RGB-D light fields
from a single RGB image. They estimate precise scene geometry, render it to the
target frame, and predict occluded rays using a second CNN.

Extreme View [45] predicts depth probabilities along camera rays in multiple
input images and unites them in the target camera pose. They discretize the
number of possible depth values and therefore reduce the depth estimation problem
to a classification problem. A more recent approach [49] learns novel view synthesis
without target view supervision by performing two synthesis steps, initially to an
arbitrary target pose and from there to a pose where ground truth is available.

In contrast to these methods, FaDIV-Syn does not feature an explicit geometry
representation. We argue that explicit geometry—besides requiring more effort to
compute—forces early resolution of ambiguities, which can lead to loss of infor-
mation.

Monocular Depth Estimation Almost all single view synthesis approaches re-
quire some kind of monocular depth estimation (if no given depth is used). Here it
is problematic that monocular depth estimation is an ill-posed problem. However,
using deep-learning methods, it has been possible in the past to estimate fairly
good depths from monocular images [3, 4, 5, 6, 50].

Godard et al. [3] train a disparity network on estimating depth self supervised.
They use a Spatial Transformer Network [7] in order to reproject the target image
into the source images. Since their pipeline is completely differentiable, the dis-
parity network can then be trained self-supervised using photometric losses only.

Nevertheless networks struggle to determine a correct scale. This problem can
be countered by predicting scale invariant depth as Eigen, Puhrsch, and Fergus [51]
propose. In combination with preprocessed keypoint depth, Tucker and Snavely
[52] then estimate a scale factor for the whole predicted depth map.

Our single view approach estimates depth monocularly as well, but does not
assume given keypoint depth to determine the correct scale.
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GAN Based Approaches Recently, GAN-based approaches [27] have shown
great progress in generating images [29, 53, 54, 2]. Yu et al. [16] use GAN losses
in order to train a model, that can fill large inpainting areas. Image inpainting
deals with the problem of filling in missing areas of the image. In most novel view
synthesis approaches, disocclusions must be reconstructed in some form. Often the
pixel neighbourhood is not sufficient to reconstruct the actual content. A GAN
approach can help to ensure that such inpainting areas are filled with realistic
content.

Multiplane Images (MPIs). A Multiplane Image (MPI) consists of multiple
depth planes, which store RGB and alpha values. Once computed for a set of input
images, novel views can be synthesized very efficiently by warping and blending
the individual layers. This is memory and time efficient, since the MPI has to be
calculated only once. Note that a MPI is only a representation for a static scene,
and if the scene changes slightly, a new MPI must be estimated.

One can attempt to predict MPIs from single input images [55, 52]. Tucker
and Snavely [52] train a network to estimate scale-invariant depth and require
additional sparse point clouds to recover scale. Multiview approaches [12, 1, 56]
use information from additional camera poses to place surfaces at the correct MPI
layer. Plane sweeping [1] or warping [12] at different depths creates a suitable
representation for the network. Mildenhall et al. [56] blend the layers of multiple
MPIs to generate novel views with local light fields. Recently, Attal et al. [57]
extended the key idea of multiplane images to multisphere images, to synthesize
360◦ images in real-time, although at lower resolution.

While inspired by MPI approaches, FaDIV-Syn bypasses MPI generation and
instead determines a novel view from multiple warped planes directly and is ap-
plicable for dynamic scenes in real-time.

Layered Depth Images (LDIs) A Layered Depth Image (LDI) [58] represents
an efficient data structure for rendering scenes from another viewpoint. Instead of
storing a 2D array of depth pixels, a 2D array of Layered Depth Pixels is stored.
Each Layered Depth Pixel stores a set of pixels including its color and depth
information, where each pixel represents the location where a camera ray meets a
surface in the scene. These surfaces can be occluded in the camera pose, where
the LDI is stored in. Hence disocclusions, resulting from camera movement, can
be filled by the occluded depth pixels stored in the data structure.

Recent approaches [59, 21, 60] build on Layered Depth Images [58]. Snavely,
Tucker, and Tulsiani [59] train a CNN to predict a two-layered LDI, where the
network learns to predict occluded pixels. Shih et al. [21] use an LDI representation
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to turn a single image into a 3D photo by inpainting color and depth of the occluded
areas. The key idea is that they inpaint disoccluded depths and colour areas.
This can be done by (1) disconnecting the LDI across edges or discontinuities (2)
inpainting the background regions and (3) merging these generated contiguous
2D regions back into the LDI. The 3D LDI representation can then be used to
generate numerous novel views in a time efficient way. However, this approach can
only be used for static scenes, as the LDI estimation is quite slow. Unlike this,
our FaDIV-Syn approach is motivated for non-static scenes and therefore allows a
significantly faster calculation time.

Neural Rendering. Very recently, view synthesis approaches based on Neural Ra-
diance Fields (NeRF) [61] have been introduced, which employ a neural network
as a learnable density and radiance function over the scene volume. Novel views
can be synthesized using classical volume rendering techniques. The sub-sequent
improvements [62, 63, 38, 64] show impressive results on a variety of scenes. How-
ever, with the exception of Wang et al. [38], NeRFs have to be trained on the target
scene, making them unsuitable for dynamic scenes, and are typically given more
than two input images. While methods designed for dynamic scenes exist [64, 65,
66, 67], they require offline training or processing phases as well.

RealEstate10k Dataset. The RealEstate10k dataset [1] was made for novel view
synthesis and is already utilized by many approaches [1, 52, 12, 2, 21, 45] for eval-
uation. It consists of more than 70k high-resolution indoor/outdoor scenes with
different camera movements, extracted from real estate YouTube videos. Thus,
on the one hand, there is a high degree of diversity and on the other hand, there
are no longer any hard restrictions for camera movement, as in lightfield datasets.
The videos have been automatically annotated with camera intrinsics and camera
trajectories using ORB-SLAM2 [68] and bundle adjustment. Monocular SLAM
cannot recover global scale, so the sequences have been scaled so that the near
geometry lies at approximately 1.25 m [1].
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4 Single View Synthesis with
Self-Supervised Depth

Input Depth Rendered Generated

Figure 4.1: Example sequence of an image generated along the camera trajectory.

Our single view approach is similar to Wiles et al. [2], as it no longer requires
ground truth depth. We therefore introduce a disparity network D, which esti-
mates depth monocularly, and a refinement network R that generates the output
view. The approach is motivated by the fact that dense and consistent depth
is more valuable than patchy sensor depth, as present in Sun3D [69] or similar
RGB-D datasets. Moreover, depth sensors are not always available.

A well-known problem of monocular depth estimation is that networks struggle
with the correct scale estimation. Tucker and Snavely [52] therefore use sparse
pointclouds, in order to approximate the correct scale. At the same time their
network is trained to estimate scale invariant depth [51]. Our method, however,
assumes only one RGB input image, and we note that sparse pointclouds can
easily be embedded into our approach for more precise depth maps. Furthermore,
the pipeline requires given camera instrinsics and camera poses. Given a source
camera CS with its camera pose TS W and the obtained source Image IS, we target
to generate a novel view at the target pose TO

W of camera CO.
Similar to SynSin [2] our forward pass is seperated into different stages:

1. Estimate pseudo disparity dIS = D(IS).

2. Convert pseudo disparity to depth: zI(dI) =
z̃

dI
−(z̃−minz), where z̃ denotes

a constant heuristic parameter, which is further explained in Section 4.1.
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4 Single View Synthesis with Self-Supervised Depth

3. Project the pixels of IS regarding to the depth dIs into the target camera
frame CO using the homogeneous transformation Matrix TS O = TW

S
−1 TW

O .
The projection IS→O = PR(IS, zIS , TS O ) is performed with a differentiable
Pointcloud Renderer PR as described in Section 2.2.4.

4. Finally the fully convolutional refinement network R inpaints missing ar-
eas and further refines areas that are corrupted due to the projection and
splatting effects (see Section 4.2).

4.1 Disparity Network
We argue that the disparity network is the bottleneck of the whole pipeline, since
an incorrect depth prediction can lead to a bad initial state for the refinement
network. Hence we focus on improving the depth estimation compared to Wiles et
al. [2]. Inspired by Godard et al. [3], we use an encoder/decoder architecture, where
the encoder is of a ResNet18 [70] pretrained on ImageNet [23]. Further, the decoder
is designed to allow training the disparity network in multiple scales. This has
shown great results in recent monocular depth estimation methods and prevents
the disparity network from getting stuck in local minima [3]. We train the disparity
network without direct depth supervision. Inspired by recent monocular depth
estimation approaches [3, 4, 5, 6] we alternatively target to generate depth that
minimizes a photometric reprojection error, which is described in Section 4.4.1.

For a given input image IS we predict a disparity map dIS = D(IS), where each
disparity pixel dIS(x, y) corresponds to the RGB pixel IS(x, y) in the input image.
Instead of estimating the depth zI as:

zI(dI) =
minz

dI
, or (4.1)

zI(dI) =
1

10dI + 0.01
(4.2)

as proposed by Wiles et al. [2], we found a more stable and softer formula

zI(dI) =
z̃

dI
− (z̃ −minz), (4.3)

where z̃ is a heuristic parameter that optimizes the distribution so that the net-
work has a larger value range for close pixels. Figure 4.2 shows a comparison of
the distributions. Note that the our distribution can take any values in range
(minz, inf), as dI is normalized to (0, 1) by a sigmoid activation. In training we
add a very small constant to dI for numerical stability. The heuristic parameter
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Figure 4.2: Comparison of our depth distribution, with z̃ = 6.0 and minz = 0.2 (red)
and the depth distribution proposed in [2] (blue).

z̃ is set so that the network has half of the value range dI ∈ [0.5, 1.0) available to
represent depth values z with

minz < z ≤ z̃ +minz

and the other half dI ∈ (0, 0.5) to represent depth values

z > z̃ +minz.

The larger z̃ is chosen, the steeper the distribution becomes. An intuitive ap-
proach, would be to set z̃ to the average distance within the dataset. Thereby
our disparity network has a wider value range to display the near geometry, where
small errors in depth have larger impacts. However, since there is no ground truth
depth in the RealEstate10k dataset, we heuristically set z̃ = 6.0 (see Figure 4.2).

4.2 Refinement Network
The refinement network has the task of inpainting disocclusion areas and further
to refine other areas that are corrupted due to incorrect depth or splatting. In
order to investigate the effect of different architectures we evaluate two different
refinement networks:

1. 9 ResNet blocks including two down/upsampling layers similar to SynSin [2]
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Figure 4.3: Modified from [2]. ResNet blocks that perform (a) bilinear upsampling (b)
avarage pooling (downsampling) or (c) identity (no changes in resolution).
Yellow boxes denote layers that inject noise to the batch normalization [2].

2. A U-Net architecture [71] with four down/upsampling layers, transposed
convolutions and gated convolutions [15].

Note that the disparity network is trained end-to-end and thereby a U-Net archi-
tecture with a receptive field, that covers large areas is not suitable for training,
since photometric pixel errors spread too much throughout the refinement net-
work in backpropagation. Consequently the pipeline is always pretrained with the
9-block ResNet architecture, which has a significantly smaller receptive field.

ResNet Architecture. Our ResNet architecture is nearly the same as the refine-
ment network of Wiles et al. [2]. It uses identity, downsampling and upsampling
blocks as shown in Figure 4.3. Wiles et al. [2] use a refinement network with eight
blocks, including four identity, two downsampling and two upsampling blocks. Ex-
cept for another single identity block at the beginning, our network is the same.
For further implementation details we refer to Wiles et al. [2].

U-Net Architecture. Our U-Net architecture, as shown in Figure 4.4, has a
larger receptive field than the ResNet. We achieve this by using two more down-
sampling layers and a dilated convolution the middle. The downsampling is done
by strided convolutions and the upsampling is performed using transposed convo-
lutions. Each downsampling block performs a gated convolution (see Figure 4.4),
which reduces the number of features by factor 2.

We input the rendered image in combination with a binary mask, that classifies
the inpainting areas. This has recently shown good results in combination with
gated convolutions for image inpainting [16], as the network can learn to adapt
its behaviour in mask areas. As shown in Table 4.6 the U-Net is more than three
times faster than our ResNet architecture for an image size of 256×256.
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4.3 Pointcloud Renderer

Input k1 c1 k2 c2 Output

Rendered + Mask 3 32 3 64 initial
G(initial) 3 64 3 128 down1

G(down1) 3 128 3 256 down2

G(down2) 3 256 3 512 down3

G(down3) 3 512 3 1024 down4

G(down4) 3 512 3 512 dilated
Up(dilated,G(down3)) 3 512 3 256 up1

Up(up1, G(down2)) 3 256 3 128 up2
Up(up2, G(down1)) 3 128 3 64 up3
Up(up3, G(initial)) 3 64 3 32 up4

up4 1 3 − − pred

Figure 4.4: Left: Detailed network architecture of our U-Net refinement network. Right:
Single downsampling layer of our U-Net including a gated convolution [15].

4.3 Pointcloud Renderer
We set the following parameters for our differentiable pointcloud renderer (see
Section 2.2.4):

• K = 64, which is the z-buffer size,

• r = 2.5, which is the splatting radius, and

• γ = 1.0, which is the blending hyperparameter.

Figure 4.5 shows examples of images rendered with these parameters.

Input Depth Rendered Input Depth Rendered

Figure 4.5: Example sequences of images rendered from the input image and estimated
depth, along the camera trajectory. All images are extracted from the SynSin
RealEstate test set of Wiles et al. [2].
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4.4 Training

Figure 4.6: Our full training pipeline, including reprojection loss, L1 loss, Perceptual
loss and smoothness loss, as described in Section 4.4.1 (Spatial Transformer
Network image modified from [7]).

Wiles et al. [2] have shown impressive results when training their whole pipeline
with only end-to-end losses. Unlike SynSin we seperate our losses into three dif-
ferent kinds:

• End-to-end losses that train the whole pipeline,

• Disparity losses that only train the disparity network, and

• GAN losses that only affect the refinement network R (finetuning only).

The training pipeline is visualized in Figure 4.6.

4.4.1 Losses

1. End-to-end Losses

As shown in Figure 4.6 the whole pipeline is trained with L1 and Perceptual loss
(see Section 2.3.2). Since we use a differentiable pointcloud renderer, all gradients
can be propagated between the refinement network R and the disparity network D.
The L1 loss ensures good reconstructions in homogeneous surfaces. Nevertheless,
blurred edges are usually the result, since noisy depth causes errors in the projec-
tion. In these regions the spatial location of projected edges does not perfectly
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correspond with the ground truth, which is disadvantageous for a pixelwise loss.
We therefore use a higher weighted Perceptual loss, which results in significantly
better reconstructions in edge regions. Due to the convolutional preprocessing by
a VGG-19 [22] network, the spatial environment is more important than pixelwise
correspondence as in L1 loss.

2. Disparity-only Losses

Wiles et al. [2] limit their training to end-to-end losses only. However, we believe
that gradients in the disparity network can be distorted by the refinement network
as follows:

1. Due to the receptive field of R edge regions are influenced by surrounding
pixels as well.

2. Incorrect depth predictions can be refined by R, so that essantial gradients
are eliminated.

3. Large inpainting areas cause weak reconstructions and might therefore in-
fluence surrounding areas, where the predicted depth was correct.

Masking the Losses. To eliminate the influence of large inpainting areas on the
disparity network, we seperate the end-to-end losses into a D and R part. While
R continues to be trained with the end-to-end losses as described above, we create
a binary mask m to manipulate the losses for D. Given a rendered image IR from
the pointcloud renderer we define the mask m as:

m(IR, x, y) :=

{
1.0 if IR(x, y) contains a pixel
0.0 otherwise

(4.4)

The straight-forward way would be to directly mask the prediction IO and
ground-truth ĨO before calculating the losses. To include small inpainting regions
we modify the mask m as follows. We predefine a maximum inpainting kernelsize
k = (5, 5) and define the eroded mask m̂ as:

m̂(m,x, y) :=

{
1.0 if N 5×5(x, y,m) = 1

0.0 otherwise
,with (4.5)

N 5×5(x, y,m) :=
1

5× 5

2∑
i=−2

2∑
j=−2

m(x+ i, y + j), (4.6)
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where N 5×5(x, y,m) is the averaged sum across a 5 × 5 neighbourhood of the
center pixel (x, y). Note that this is equivalent with eroding the image with an
5 × 5 kernel for one iteration. To keep the thickness of inpainting areas that are
larger than 5× 5 pixel we dilate the mask m̂ for one iteration. Hence our eroded
and dilated mask m̃ can be defined as:

m̃(m,x, y) :=

{
1.0 if ∃−2<i,j<2 : N 5×5(x+ i, y + j,m) = 1

0.0 otherwise
(4.7)

Figure 4.7 visualizes the difference between the raw mask m, the eroded mask m̂

and the eroded & dilated (E/D) mask m̃. For acceleration we have implemented a
GPU version of erosion and dilation [72], which are based on simple convolutions
and thresholding.

We can then use m̃ to mask the losses:

Lm̃
1 (IO, ĨO) = L1((1− m̃)IO, (1− m̃)ĨO) (4.8)

Lm̃
perceptual(IO, ĨO) = Lperc((1− m̃)IO, (1− m̃)ĨO). (4.9)

Rendered Raw Mask m Eroded Mask m̂ E/D Mask m̃

Figure 4.7: Steps to create the mask m̃, which we use for our proposed loss masking.

Reprojection Loss. In order to tackle the negative influence of a trained refine-
ment network, as described above in Section 4.4.1, we follow Godard et. al. [3]
and additionally generate raw gradients for D. As supervision is not possible, we
formulate a photometric reprojection loss that implicitly gives a quality measure
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of the generated depth. We do so by using the predicted depth to reproject the
target frame ĨO into the source frame’s camera pose, as shown in Figure 4.6. The
projection is performed using a Spatial Transformer Network as decribed in 2.2.3.
However, since this loss is generated directly on the output of the disparity net-
work, it can only be improved by a more accurate depth prediction (self-supervised
learning). Following Godard et al. [3] we formulate the reprojection loss as

Lreproj(IS, IÕ→S) = λwSSIM(IS, IÕ→S) + (1− λw)L1(IS, IÕ→S), (4.10)

where SSIM denotes the Structural Similarity loss (see Section 2.3.3), λw ∈ [0, 1]

is the weighting ratio, which we set to 0.85, and IÕ→S is the target image ĨO
reprojected into the source frame IS regarding to the predicted source depth zS.
Similar to Godard et al. [3] we mask the output so that gradients at pixels (x, y)

where

Lreproj(IS, ĨO)(x, y) ≤ Lreproj(IS, IÕ→S)(x, y) (4.11)

are eliminated. This guarantees that only sufficiently large camera movements
generate gradients. Furthermore, objects that move with the camera are masked
out. This is important since the reprojection loss assumes a camera moving in a
static scene and hence non-static objects can cause wrong gradients that lead to
instabilities and artifacts.

The reprojection loss is estimated in three scales s ∈ [1, 0.5, 0.25]. Following
Godard et al. [3] we first bilinearly upsample the disparities to s = 1 and therefore
calculate all losses with the original input image resolution. The scale s = 1 is
weighted with w1 = 0.5 and scales s ∈ [0.5, 0.25] are weighted with w2,3 = 0.25 in
training.

Smoothness Loss. Often image areas which are homogenous in color also have
low frequency disparity changes. To keep the disparity consistent with the edges
in the image, we use a smoothness loss

Lsmooth(I, d) =| ∂x
d

d
| e−|∂xI|+ | ∂y

d

d
| e−|∂yI|, (4.12)

where d is the dispartity and d

d
is the mean normalized disparity as proposed by

Wang et al. [50]. Thereby gradients at d(x, y) are strongly penalized if gradients
at I(x, y) are small and lightly penalized if the gradients at I(x, y) are large. By
normalizing the disparity we avoid a consequent shrinking of the estimated depth
[50].
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Consequently we train the refinement network with

LR(IO, ĨO) = λ1L1(IO, ĨO) + λpLperceptual(IO, ĨO), (4.13)

and the disparity network with

LD(IS, dS, IO, ĨO, IÕ→S) = λ1Lm̃
1 (IO, ĨO) + λpLm̃

perceptual(IO, ĨO) (4.14)
+ λrLreproj(IS, IÕ→S) + λsLsmooth(IS, dS).

4.4.2 Finetuning

In the finetuning phase, we fix all parameters of the disparity network. Therefore,
we have two options to train the refinement network R:

1. Train R from scratch, or

2. Finetune R, so that it can optimize itself to the fixed weights of D.

When training R from scratch we can also utilize our U-Net architecture, which
has a larger receptive field.

3. GAN Loss

Many view synthesis approaches use a discriminator in order to generate GAN
losses (see Section 2.3.4). However, we believe that GAN losses can be harmful
for the disparity network, since there is no direct supervision. Furthermore, one
benefits from GAN losses mainly in large inpainting areas [16]. Therefore, we
limit the use of a discriminator to finetuning only, where we fix the weights of the
disparity network. Here, we use a least-square discriminator DIS [31], and train
both the refinement network and the discriminator as described in Section 2.3.4.
Hence during finetuning the refinement network is trained with

LR(IO, ĨO) = λ1L1(IO, ĨO) + λpLperceptual(IO, ĨO) + λgLGAN(IO). (4.15)

4.4.3 Data Loading

Both the training and the evaluation are carried out on the RealEstate10k dataset.
In training we distinguish between two different data loading methods.
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End-to-end Training. When training the whole pipeline, we first select a random
scene and a random source image in this scene. Then, similar to Wiles et al. [2],
we select images from a range of [−30, 30] frames apart the source image. Only im-
ages that meet a translation-threshold λtranslation= 0.15 m and a rotation-threshold
λrotation= 5 ◦ are candidates for the random election of the target image. This en-
sures that there is always enough distance between the source and target image,
which increases the likelihood that suboptimal depth will lead to gradients, that
improve disparity, in larger homogeneous areas. If no image meets the thresholds,
we randomly choose one.

Finetuning. During finetuning the parameters of the disparity network are fixed.
Hence we can also synthesize views at smaller distances and we can further increase
the frame offset range to [−40, 40], to have even more variance in the training set.
In total, we select 70% as before but in the interval [−40, 40] and the remaining 30%
from a near environment (with a maximum of 8 frames apart) without rotation
and translation thresholds.

4.5 Evaluation
In this section we evaluate our single view approach and compare the different
variations. Furthermore, we compare selected models with Wiles et al. [2]. For
each training setup the RealEstate10k dataset is subdivided into approximately
54K/13.5K/7K training/validation/test sequences. We stop the training when the
network gets worse on the validation set or does not improve for a given time.
Additionally, we set an upper limit of approximately 100k train iterations when
training the whole pipeline. During finetuning we increase this limit to 200k
iterations. All networks are trained with 2 NVIDIA TITAN RTX GPUs. The
training takes approximately 4.5 days for 100k iterations.

We evaluate our models with the official test-set published by Wiles et al. [2].
To remain comparable with SynSin [2], we train with an image size of 256× 256.
We train the full pipeline with batchsize 36 and finetune with batchsize 60.

4.5.1 Full Model

Our full model is trained end-to-end, and thus without GAN losses (see Sec-
tion 4.4.1). In our evaluation we always change a parameter and compare to this
reference model. During initial testing we have determined the optimal weighting
of the losses and parameters as:
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• ResNet refinement network with 9 blocks and a final tangent hyperbolic
(tanh) non-linearity,

• learning-rate = 0.0001,

• λperceptual = 4.0, which is the weighting of the Perceptual loss,

• λ1 = 1, which is the weighting of the L1 loss,

• λsmooth = 0.00005, which is the weighting of the smoothness loss,

• λreproj = 2, which is the weighting of the reprojection loss,

• γ = 1, K = 64, r = 2.5, which are the parameters for the pointcloud
renderer,

• z(d) =
z̃

d
− (z̃ − minz), which is our depth distribution for the disparity

output. We set z̃ = 6.0 and minz = 0.2.

Furthermore, we train the disparity network in multiple scales s ∈ [1, 0.5, 0.25]

and with loss masking as described in Section 4.4.1.

4.5.2 Results
Masking vs. No-Masking

To investigate the utility of our loss masking (see Section 4.4.1), the no-masking
variation is trained like our full model but without masking. In Table 4.1 the
full model is compared with the no-masking model. The full model that uses
loss masking performs better than the no-masking model. We further made the
observation, that our proposed loss masking leads to faster learning, as shown in
Figure 4.8 and Table 4.1. One reason might be that the large inpainting areas have
a negative influence on the gradients in the disparity network. This effect seems
to be stronger in the beginning, where the refinement network lacks in inpainting
performance.

In terms of L1 loss a single wrongly predicted pixel affects pixels in the neigh-
bourhood with the size of the receptive field of R. In Perceptual loss, this effect
increases even more with the receptive field of the VGG-19 network. Conclusively
it makes sense to eliminate the influence of large inpainting areas to the disparity
network.

Table 4.1 clearly shows that the full network has a larger lead at the beginning,
which becomes smaller towards the end.
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4.5 Evaluation

Model PSNR↑ SSIM↑ LPIPS↓ Model PSNR↑ SSIM↑ LPIPS↓

full (25K) 21.30 0.712 1.349 full (100K) 21.84 0.730 1.262
no-masking (25K) 21.08 0.708 1.393 no-masking (100K) 21.73 0.726 1.278

Table 4.1: Comparison of our full model and a variation that is trained without our
proposed loss masking. We show the results on the SynSin RealEstate
test set after 25K and 100K training iterations.
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Figure 4.8: PSNR (left) and SSIM loss (right) of the full network that uses loss masking
and the no-masking model. The full model shows better performance on the
train (solid) and validation dataset (dotted).

Depth Distribution

In order to investigate the utility of our proposed depth distribution z(d) =
z̃

d
−

(z̃ −minz), we train two variations that are trained like the full model, but with
different depth distribution:

• naïve depth distribution → z(d) =
0.2

d

• SynSin depth distribution [2] → z(d) =
1

10d+ 0.01

The comparison in Table 4.2 shows that the naïve model performs worst. Fur-
ther, the SynSin depth model achieves only slightly worse results than the full
model. During the training, however, we noticed some drops in performance of
the SynSin depth network, as shown in Figure 4.9. We believe that this could
be due to the fact that the SynSin depth distribution uses the whole value range
d ∈ [0.1, 1.0] for depth values z < 1.0m and therefore only a small value range (of
approximately 10%) to display all z ≥ 1.0m. This is a poorly chosen distribution,
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Figure 4.9: Comparison of the training (solid) and validation (dotted) progress of our
depth distribution compared to the depth distribution proposed by Wiles
et al. [2].

as objects rarely appear close to the camera in the RealEstate10k dataset. Fur-
ther, in the annotation process the close geometry was set to 1.25 m to reconstruct
the global scale. Consequently, when training with the SynSin depth distribution,
small changes in the disparaty network have a larger impact on the output and
thus also on the stabiliy of the training. Our proposed depth distribution, how-
ever, has approximately 88% of its value range to display depth values z > 1.0m
and is therefore more stable throughout the training.

We conclude that we have found a more stable depth distribution, which is more
suitable for the RealEstate10k dataset, compared to SynSin [2].

Model PSNR↑ SSIM↑ LPIPS↓

full(our depth) 21.84 0.730 1.262
SynSin depth 21.82 0.730 1.263
naïve depth 21.80 0.728 1.269

Table 4.2: Comparison of different depth distributions on the SynSin RealEstate
test set [2].
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Smoothness Loss

To check whether the smoothness loss weighting is too small, we train a high-
smooth variation with λsmooth = 0.001, which is 20 times higher compared to our
full model. As shown in Table 4.3, the results are quite similar, but the full model
performs slightly better than the high-smooth network.

The comparison of the generated depth maps in Figure 4.10 shows that the
high-smooth-model is slightly better at representing the edges in the image. We
believe that the refinement network can adapt to both similarly, which is why
there are only minor differences in the results. Note that our smoothness loss is
based on the assumption that gradients in the color image are also gradients in
the disparity image. However, this is not always correct, as for heavily textured
surfaces. Therefore, the smoothness loss should not be weighted too heavily. We
conclude that λsmooth = 0.00005 is a well chosen weighting.

Model PSNR↑ SSIM↑ LPIPS↓

full 21.84 0.730 1.262
high-smooth 21.83 0.730 1.263

Table 4.3: Comparison of our full model with our high-smooth model, on the
SynSin RealEstate test set.

Input High-Smooth Full Input High-Smooth FullInput High-Smooth Full Input High-Smooth FullInput High-Smooth Full Input High-Smooth FullInput High-Smooth Full Input High-Smooth Full
Input High-Smooth Full Input High-Smooth FullInput High-Smooth Full Input High-Smooth FullInput High-Smooth Full Input High-Smooth Full

Figure 4.10: Predicted depth of our high-smooth model compared with the full model
on the SynSin RealEstate test set.
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4 Single View Synthesis with Self-Supervised Depth

4.5.3 Comparison with State of the Art

Full Pipeline (end-to-end) Results

Since we do not project extracted features, we evaluate against the SynSin(RGB)
version [2], which has a similar complexity (two CNNs). Table 4.4 shows that
our pipeline performs better than SynSin(RGB) in all three quality metrics. As
our refinement network is similar to Wiles et al. [2], we mainly explain our better
performance with more precise depth maps generated by our disparity network.
Figure 4.14 and Figure 4.15 show depth maps from SynSin and depth maps gen-
erated by our pipeline.

Model PNSR↑ SSIM↑ LPIPS↓

ours(full) 21.84 0.73 1.26
SynSin(RGB) 20.92 0.68 1.67

Table 4.4: Comparison of our full model with SynSin(RGB) on the SynSin
RealEstate test set [2]. Both networks have a similar complexity.

Finetuning Results

Our U-Net refinement network has a larger receptive field than our ResNet refine-
ment network and is not suitable for training the disparity network in an end-to-
end fashion. Therefore, we use a pretrained disparity network and train a U-Net
refinement network (see Figure 4.4) from scratch. Furthermore, the disparity net-
work parameters are fixed. The U-Net refinement network is trained adversarially,
as described in Section 2.3.4 and Section 4.4.2. We weight the GAN losses with
λg = 1. The discriminator is trained with a learning rate of 0.001. To investigate
the effect of GAN training we additionally train a UNet without GAN losses.

Finetuning the pipeline with our U-Net network gave great results as shown in
Table 4.5. Both U-Nets perform better than the ResNet which was trained only
in end-to-end mode (see full-e2e in Table 4.5). Since we downsample four times
instead of just two times we enhance the receptive field without losing throughput
in inference. Furthermore, our UNet-GAN performs a bit better than U-Net in
all metrics. It is thus shown, that our supervised training setup can benefit from
additional GAN losses.

Comparing against the full SynSin model [2], which projects features instead of
RGB shows that we achieve better results in PSNR and same results for SSIM and
LPIPS. Note that SynSin(full) uses an additional feature extractor network, that
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4.5 Evaluation

enhances the complexity and reduces the throughput of the whole pipeline. We be-
lieve that our pipeline could generate similar improvements, as from SynSin(RGB)
to SynSin(full), by adding a feature extractor CNN as well.

In conclusion we achieve better results than SynSin(full), with a pipeline that
is (i) less complex, (ii) uses only two instead of three CNNs and (iii) is faster (see
Section 4.5.4).

Model PSNR↑ SSIM↑ LPIPS↓

ours(full-e2e) 21.84 0.730 1.262
ours(U-Net) 22.53 0.740 1.183
ours(U-Net-GAN) 22.57 0.742 1.182
SynSin(full) 22.31 0.74 1.18
SynSin(RGB) 20.92 0.68 1.67

Table 4.5: Our evaluation results on the SynSin RealEstate test set compared with
both SynSin variations. Wiles et al. [2] published their results with an
accuracy of only two decimal places. Note that SynSin(full) projects
features, which are extracted with an additional CNN.
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4.5.4 Inference Time
Table 4.6 gives an overview for the inference times of the individual submodules
within the different pipelines. The feature network is only used by SynSin(full) and
therefore creates a higher complexity and additional processing time. Our disparity
network is a bit faster than SynSin’s. Nevertheless, as shown in Table 4.6, both are
very fast. The renderer is slowest for SynSin(full) since 64 extracted feature-maps
have to be projected. Unlike this our model projects RGB information and hence
only three feature-maps. Furthermore, we achieve a clear advantage through our
renderer parameters K=64 (z-buffer size) and r=2.5 (splatting radius), which we
choose to be significantly smaller than SynSin (K=128, r=4). This can be seen in
Table 4.6 at the comparison of our models to SynSin(RGB).

A significant limitation is that the renderer throughput drops enormously when
enhancing the image size. With an image size of 768×768, our renderer already
takes approximately 170ms for rendering, which is almost five times as long as for
512×512. Therefore we can only process image resolutions of 512×512 in real-
time. Our ResNet refinement network is a bit slower compared to SynSin, since
we use an additional block at the beginning (see Section 4.2). The U-Net network
has more parameters than all ResNet refinement networks, but is more than twice
as fast on a GPU.

Overall, we achieve even better results than SynSin(full) (see Table 4.5) with
our finetuned U-Net pipeline that is almost three times as fast.

Timings [ms] (Torch)

Feature Disparity Renderer Refinement
∑

Model 2562 5122 2562 5122 2562 5122 2562 5122 2562 5122

Full(ours) - - 2.55 4.34 4.64 34.5 16.18 40.3 23.4 79.1
U-Net(ours) - - 2.55 4.34 4.64 34.5 5.21 17.3 12.4 56.1
SynSin(RGB)[2] - - 2.95 5.02 8.08 48.3 14.56 36.7 25.6 90.0
SynSin(full)[2] 10.9 23.1 2.95 5.02 17.5 87.9 14.64 37.3 46.0 153.3

Table 4.6: Inference times (in PyTorch) of our models (Full, U-Net) and the SynSin
models (SynSin(RGB), SynSin(full) [2]). We measure timings of the dif-
ferent networks: Feature (only SynSin(full)), Disparity and Refinement
on a single NVIDIA RTX 3090 GPU. Further, we measure the point-
cloud renderer on a single NVIDIA TITAN V GPU. We show timings
for the training resolution 2562:=256×256 and the generalized resolu-
tion 5122:=512×512.
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4.5.5 Qualitative Results
Large Inpainting Areas. Extreme camera movements often cause large inpaint-
ing areas. Inpainting these areas is a very challenging task, as the pixel information
have to be guessed by the network. As Figure 4.11 shows our U-Net architecture
performs better than the ResNet refinement network in large inpainting areas. We
believe that this is mainly due to the larger receptive field of the U-Net. The
receptive field of the ResNet is often not sufficient to inpaint anything at all, as
shown in Figure 4.11.

Input Depth Rendered U-Net-GAN Full(ResNet) Target

Figure 4.11: Example sequences for large inpainting areas along the trajectory. Our U-
Net (finetuning) is compared with the full model that uses the ResNet re-
finement network. All sequences are extracted from the SynSin RealEstate
test set [2].
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Small Camera Movements. Our pipeline achieves excellent results for small
camera offsets (see Figure 4.12). When the camera moves slightly, often no in-
painting areas occur. However, the refinement network must still correct areas
which are corrupted due to splatting. If one only intends to synthesize smaller
distances, it is probably more useful to project the pixels directly, i.e. without
splatting. Figure 4.12 visualizes example sequences with small camera movements.

Input Depth Rendered U-Net-GAN Full(ResNet) Target

Figure 4.12: Example sequences for small camera offsets along the trajectory. Our U-Net
(finetuning) is compared with the full model that uses the ResNet refine-
ment network. All sequences are extracted from the SynSin RealEstate test
set [2].
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Medium-Large Camera Movements Towards the Scene. Inpainting areas es-
pecially occur when the camera moves backwards (see Figure 4.11). When the
camera moves towards the scene, large inpainting areas rarely occur since the
renderer uses splatting to cover regions with an insufficient point density (see Sec-
tion 2.2.4). However, the network must learn to improve the quality in such areas.
This is comparable to the super resolution task [73], where the resolution of images
is to be improved. As Figure 4.13 shows, our pipeline generates impressive results
on the SynSin RealEstate test set [2] for medium to large offsets, where the camera
moves closer to the scene.

Input Depth Rendered U-Net-GAN Full(ResNet) Target

Figure 4.13: Example sequences for medium to large camera movements along the tra-
jectory but always towards the scene. Our U-Net (finetuning) is compared
with the full model that uses the ResNet refinement network. All sequences
are extracted from the SynSin RealEstate test set [2].
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Depth: Ours vs. SynSin Figure 4.14 and Figure 4.15 show a comparison of
depth maps generated with our pipeline and depth maps generated with the
pipeline of Wiles et al. [2]. As the figures show, we generate significantly bet-
ter and smoother depth maps. At the SynSin depth maps one can clearly see that
gradients in the colour image often also represent gradients in the depth image.
This is especially wrong in planar regions with a lot of texture.

Almost all SynSin depth maps have incorrect values at the image borders (see
yellow borders in Figure 4.14 and Figure 4.15). We explain our better depth
estimation mainly with the introduced losses (see Section 4.4.1), the way we train
our networks, and the optimized architecture of our disparity network.

Input SynSin [2] Input Ours

Figure 4.14: Depth generated by SynSin(full) [2] (left) and our pipeline (right). All of
our images are extracted from the SynSin RealEstate test set.
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Input SynSin [2] Input Ours

Figure 4.15: Depth generated by SynSin(full) [2] (left) and our pipeline (right). All of
our images are extracted from the SynSin RealEstate test set.

39



4 Single View Synthesis with Self-Supervised Depth

4.5.6 Limitations
Due to the relatively small receptive field of the ResNet refinement network, large
inpainting areas are problematic and often cause blurred regions, as shown in Fig-
ure 4.11. Our U-Net network has a larger receptive field but still significantly fewer
parameters than ordinary inpainting networks as, for example, introduced by Yu
et al. [16]. In inpainting regions the content has to be guessed by the context and
therefore often does not correspond with the target image (see Figure 4.16). Since
this approach consists of several processing stages (depth-estimation, rendering,
refining), real-time with high-resolution images (as in our second approach FaDIV-
Syn) becomes problematic. The latency of our U-Net pipeline is about 12.4 ms for
an image resolution of 256×256 and 56.1 ms for 512×512.

Furthermore, this approach can only process individual images and thus forgoes
other available cameras that are especially helpful when estimating depth.

We focused on improving the quality of the monocular estimated scene geome-
try with a simultaneous shrinking in complexity and improvement of the latency.
However, monocular depth estimation remains an ill-posed problem, which is the
reason why our disparity network often struggles in estimating the correct scale.
Incorrect scaling for given camera motions lead to incorrect projections and hence
errors in prediction, as illustrated in Figure 4.16.

Input Depth Rendered U-Net-GAN Full(ResNet) Target

Input Depth Rendered U-Net-GAN Full(ResNet) TargetInput Depth Rendered U-Net-GAN Full(ResNet) TargetInput Depth Rendered U-Net-GAN Full(ResNet) TargetInput Depth Rendered U-Net-GAN Full(ResNet) TargetInput Depth Rendered U-Net-GAN Full(ResNet) TargetInput Depth Rendered U-Net-GAN Full(ResNet) Target

Figure 4.16: Limitations of our pipeline: The upper image visualizes an incorrect scale
estimation and the lower image shows that inpainting areas often do not
corresponds with the target image.
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5 Fast Depth-Independent View
Synthesis (FaDIV-Syn)

Input 1 Input 2 Inter-/Extrapolated
Figure 5.1: FaDIV-Syn inter- and extrapolates images from two views. Input images

from RealEstate10k [1] test set. This figure is animated—if the videos are
not visible we refer to our supplementary material.

Our first approach deals exclusively with single view synthesis. For an avatar,
however, a stereo camera pair is usually available, and even more cameras can be
easily added. One could extend the previous approach to multiple input cameras,
but this is not very real-time-capable due to the multilevel processing. Further-
more, the computed depth in the input images would have to correspond pairwise
to be of real use. Unfortunately it is not trivial to extract corresponding depth in
a multiview setup as appearing in RealEstate10k. Choi et al. [45] estimate depth
probabilities instead of a fixed depth value for each camera ray. When combining
the depth probabilities of multiple input images, they search for intersecting rays
to predict depth in the target image. Since their depth estimation is very time
consuming, real-time processing becomes problematic. Hence we decided to de-
velop a new approach which is totally independent of depth and is based on image
warping only.

The key idea of FaDIV-Syn is to preprocess and transform the input images
into the target frame without losing information. Of course, the transformation
requires depth information. Instead of estimating depth, we sample multiple depth
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5 Fast Depth-Independent View Synthesis (FaDIV-Syn)

variants (see Section 5.0.2) and present the resulting possibilities to the network.
The induced representation is well-suited for the view synthesis task.

While in principle FaDIV-Syn can operate with any number of input images,
we present and evaluate the method for two input images (in the following called
I1 and I2) and one output image (IO). For both input cameras, we sample N

depth planes and for each plane we assume that the entire image lies on it. When
projecting these planes into the target view, one could, for N → ∞, determine
each pixel’s 3D position by searching for correspondences in the warped planes
(see Figures 5.2 and 5.3). When performing the correspondence estimation and
merging task with a learned network, we can reduce N to a small number, since
the network can learn to interpolate between planes with adjacent depth levels.

Hence we introduce FaDIV-Net that is fully convolutional and processes the
warped planes (P1, P2) of both input frames. Since we strongly discretize the
number of depth planes a perfect correspondence occurs only rarely. However, the
network can learn to recognize the best two planes and approximate the correct
solution with surrounding textures, as visualized in Figure 5.2.
Our entire forward pipeline consists of the following steps:

1. Choose a target frame ĨO, two input frames I1,2 and their corresponding
camera poses TO

W , T1 W , T2 W and camera intrinsics K.

2. Align N predefined depth planes in the target frame pose as described in
Section 5.0.1.

3. Use the aligned depth planes P i
1,2 ∈ P , with i ∈ N<N and assume they are

textured with the entire images.

4. Warp the textured planes into the target frame using the inverse homography
matrix (see Section 2.2.1) and the transformations T1 O and T2 O .

5. Concatenate the warped planes in their channel dimension so that P̃ has
shape (2 ·3 ·N)×H×W, where P̃ are the concatinated warped planes of both
input images.

5. Run the foward pass of FaDIV-Net: F (P̃ ) = IO, where F directly predicts
the output image IO from the given plane sweep volume P̃ .

5.0.1 Plane Sweep Volume and Alignment
Planar geometry is especially well-suited for camera-to-camera projection, since
the resulting warping operation can be done efficiently. A naïve approach might
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Figure 5.2: The FaDIV-Syn architecture. (a) Input images (gray) are projected into the
target camera (black) for each depth plane (red/green) defined in the target
frame. For a particular surface in the scene (blue circle), there will be a
depth plane where the projections most closely align (green). This plane
corresponds to the true object depth. (b) The resulting projected images are
stacked and fed into the view synthesis network (c), which directly predicts
the target image.

be to define depth planes in both input images I1 and I2. This corresponds to
computing two PSVs and then attempting to merge them. However, this is not
a well-designed representation, since corresponding elements might be on very
different depth planes (see Figure 5.4).

Instead, we define the planes in the target image IO (see Figure 5.2), as it is
commonly done in plane sweeping multi-view stereo approaches [14]. For each
plane i, we define P

(i)
k ∈ P as the image resulting from projecting Ik onto the

plane, and then into IO. Using this representation, we can define a “hard-wired”
view synthesis method f :

f(I1, I2, p) =

{
P

(D(p))
1 (p) if p visible in I1, I2

g(I1, I2, p) otherwise ,
(5.1)

D(p) = arg max
j

Q(P
(j)
1 , P

(j)
2 , p), (5.2)

where p = (x, y) is a pixel in the target image IO, g is an inpainting method, D
is the (internal) depth estimate, Q is a correspondence quality estimator, and j

denotes the plane with optimal correspondence. Note that only images in P of
the same depth need to compared. If the planes were not aligned (Figure 5.4), we
would need to compute arg maxj(maxi(Q(P

(j)
1 , P

(i)
2 , p)), which is obviously more

complex and harder to learn. Furthermore, we achieve a higher generalization
to any camera setup, since the alignment creates a pose-invariant representation.
Figure 5.3 shows an exemplary PSV where the idea presented in Equation (5.1)
will be immediately apparent. Since perfect Q and g are not known, we will learn
a CNN approximating f .
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1.35 m 2.20 m 4.00 m 7.60 m

Figure 5.3: Plane sweep volume (PSV). Shown are four planes of the Figure 5.1 scene
with α-blended projections of the two input images. Note that RealEstate10k
has only estimated global scale, so the given plane distances are only accurate
up to scale.

Figure 5.4: When defining depth planes depending on the individual camera’s coordinate
system (compare against Figure 5.2), correspondences end up on different
depth planes, making the representation harder to process.

Plane Alignment. Given a plane L
(j)
O = (0 0 1 −dj)

T defined in the target
frame IO, we can find the plane in frame Ii as:

L
(j)
i = TO

i
−T · L(j)

O

T
, (5.3)

where TO
i is the homogenous transformation between output and input frame i.

We warp images efficiently using the inverse homography matrix, as described in
Section 2.2.1.

5.0.2 Depth Discretization

In real world scenarios, the depth relative to the camera lens can take any positive
value d ∈ R>0. For increasingly distant objects, the spatial error of projected pixels
caused by wrong depth decreases. Therefore, it is legitimate to set a maximum
depth. Our main network uses only 17 depth planes, where we distribute the
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planes uniformly in disparity space for the depth range [0.3,8] m and one additional
background plane at 16 m. Compared to related work [12, 1], this discretization
is quite severe. The RealEstate10k dataset, in turn, contains a large number of
drone-captured scenes with very large distances but also close geometry, which
makes the task even more difficult.

5.0.3 Generator Network

Figure 5.5: FaDIV-Net base architecture without group convolution stage. Yellow blocks
denote Conv2D+BN+ReLU, red blocks show gating, and blue blocks trans-
posed convolutions. For a more detailed description, we refer to Table 5.1.

When projecting an image according to a known depth map, the disocclusion areas
requiring inpainting are those where no pixel from the image is mapped to. When
considering a PSV, disocclusion areas are no longer trivial to determine. Thus, our
network must learn to distinguish between (1) areas of sufficient correspondences
in the warped planes, (2) areas of no correspondence but sufficient correspondence
in different planes and (3) areas of disocclusion and occlusion. Hence the network
must learn under the constraint of geometric consistency to fuse and correct suf-
ficiently corresponding areas from warped planes and recognize inpainting areas
to fill them with realistic content. In contrast to Thies et al. [41], who also learn
implicit blending, we avoid early decisions in a depth estimation stage, which may
lead to quality degradation later in the pipeline.

Our main network is based on a U-Net [71] architecture as shown in Figure 5.5.
It consists of four downsampling and four upsampling blocks with skip connec-
tions and a dilated convolution in the middle. For upsampling we use transposed
convolutions. Each downsampling block consists of two convolutions with batch
normalization and ReLU activation. The second convolution has a stride of two
for downsampling. Afterwards, we split the feature dimension in half and multiply
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the two parts to realize gating, as explained in Section 2.1.2. Since the network is
supposed to process high-resolution input images of dimension 2×N×3×H×W, we
send the entire input at the first gated convolution through a bottleneck. This way,
the network can eliminate non-corresponding and combine corresponding areas.

Gated Convolutions. Gated convolutions [15] have recently shown promising
results in image inpainting [16]. Inpainting areas especially occur at the image
edges or in disocclusion areas, where information is available in none of the input
frames. The Equation (2.2) in Section 2.1.2 shows that gating directly influences
the actual feature extraction and can thus adapt it to the context. Gating layers
can thus help the network especially with performing masking-like operations (e.g.
when recognizing corresponding depth planes), performing blending, or determin-
ing inpainting areas [16].

5.0.4 Extended Architecture
Aligning the depth planes allows us to further extend the network. The align-
ment ensures that corresponding areas only appear in corresponding planes (see
Figure 5.2). Hence we preprocess the corresponding planes by a gated group con-
volutional planes (GGC) before they enter the base network. This can be done
under the assumption that other planes are initially irrelevant to the considered
pair. Grouping saves processing time and makes it easier for the network to com-
prehend the context of the task to be learned. Additionally, the alignment allows
us to pre-compute a pairwise correspondence metric between the planes. We con-
catenate a Structural Similarity [24] map to each corresponding plane pair, which
can be used by the network as an aid. Especially gated convolutions can help the
network to understand the connections between the similarity maps and the task
to be accomplished in these areas, as Yu et al. [16] showed in the context of image
inpainting. Furthermore, one can enhance the receptive field of the network in
the group convolutional part if necessary, which is more time-efficient than in the
base network. A detailed description of the extended architecture can be found in
Table 5.1.

5.0.5 Training
The network is trained in a supervised manner from a triple (I1, I2, ĨO) with known
camera poses and intrinsics. We define the loss function

L(IO, ĨO) = λ1L1(IO, ĨO) + λpLperceptual(IO, ĨO), (5.4)
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Input k1 c1 k2 c2 Output

P 3 102 3 204 groupconv
G(groupconv) 3 112 3 112 bottleneck
G(bottleneck) 3 112 3 224 down1

G(down1) 3 128 3 256 down2

G(down2) 3 256 3 512 down3

G(down3) 3 256 3 1024 down4

G(down4) 3 512 3 512 dilated
Up(dilated,G(down3)) 3 512 3 256 up1

Up(up1, G(down2)) 3 256 3 224 up2
Up(up2, G(down1)) 3 224 3 112 up3

Up(up3, G(bottleneck)) 3 112 3 32 up4
up4 1 3 − − pred

Table 5.1: FaDIV-Full-17 architecture. Each row shows two convolutional layers,
where k is the kernel size and c is the number of output features.

where the Perceptual loss is based on a VGG-19 [22] network, as described in
Section 2.3.2.

We train the network with a batch size of 20 and the Adam optimizer with
β1,2 = (0.4, 0.9) on two NVIDIA RTX 3090 GPUs with 24 GiB RAM. Training
takes four days for images of 288p resolution. Higher resolution training at 576p
is only possible with a batch size of six and takes up to three weeks.

For 288p images, we train the networks for 300k-350k iterations and for 576p
images we increase the number of iterations accordingly to adjust to the smaller
batch size. Within this range, we use early stopping based on the validation score
to select the model for evaluation. Furthermore, we train all our models with a
learning rate of 1e-4, and a final tangent hyperbolic (tanh) non-linearity unless we
explicitly specify it with ”lin” (linear).

Interpolation. The first interesting problem setting is interpolation, i.e. when
the target camera pose is roughly between the two input frames. For this, we
randomly choose a target image ĨO and source frames ∆t before (I1) and after
(I2) it. ∆t is uniformly sampled from the interval [4, 13]. Note that extrapolation
areas occur, since the camera never moves perfectly on a straight line. We train
and evaluate with a resolution of 518×288 (288p). All processing steps in the
pipeline can be performed on the GPU, where the homography warping takes less
than 1 ms to warp 34 rgb-textured-planes in 288p and approximately 1.5 ms for 34
rgb-planes in 540p.
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5 Fast Depth-Independent View Synthesis (FaDIV-Syn)

Extrapolation. In order to investigate whether FaDIV-Syn is also suitable for ex-
trapolation, we add extrapolation triplets to the training. Extrapolation is much
more difficult to learn, since the network must now inpaint in disoccluded areas.
Further, it must learn to detect those disocclusion areas in the warped planes. To
learn such extrapolations we use an alternative data loading method that addi-
tionaly provides extrapolation sequences to the network. Here we randomize the
triplet positions as follows:

1. Frame 1 index: i1 = x

2. Frame 2 index: i2 = i1 + n, n ∈ [3, 4, 5]

3. Target frame index: iO = i2 +m, m ∈ [5, 6, 7].

Note that the skip values n,m are chosen uniformly and x is a random position
within a RealEstate10k scene. Extrapolation and interpolation triplets are mixed
80:20 during training and training is started from a pre-trained interpolation net-
work. Accordingly, we only train 200k-250k iterations.

Shih et al. [21] evaluated different state-of-the-art extrapolation approaches,
with a resolution of 1024×576. For a fair comparison, we introduce a variation
of our FaDIV network called FaDIV-Big. FaDIV-Big has one more downsampling
layer and a larger Gated-Group kernel size, where k1 = 7 and k2 = 5, as shown
in Table 5.2. In our evaluation, we follow the setup of Shih et al. [21] to be
comparable.

Input k1 c1 k2 c2 Output

P 7 102 5 204 groupconv
G(groupconv) 3 112 3 112 bottleneck
G(bottleneck) 3 112 3 224 down1

G(down1) 3 128 3 256 down2

G(down2) 3 256 3 512 down3

G(down3) 3 256 3 1024 down4

G(down4) 3 512 3 2048 down5

G(down5) 3 1024 3 1024 dilated
Up(dilated,G(down4)) 3 1024 3 512 up1

Up(up1, G(down3)) 3 512 3 256 up2
Up(up2, G(down2)) 3 256 3 224 up3
Up(up3, G(down1)) 3 224 3 112 up4

Up(up4, G(bottleneck)) 3 112 3 64 up5
up5 1 3 − − pred

Table 5.2: FaDIV-Big-17 architecture. Each row shows two convolutional layers,
where k is the kernel size and c is the number of output features. The
second block (bottleneck) contains one convolution (k1,c1) and two con-
volutions (k2, c2).
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5.1 FaDIV-Syn Evaluation

5.1 FaDIV-Syn Evaluation
We evaluate our method on the challenging RealEstate10k dataset. Since some of
the YouTube videos cannot be downloaded anymore, we only managed to obtain
74.5k video clips. We split the official train split further into 54k training and 13.5k
validation sequences. All our tests are done using the official test split, except the
extrapolation experiments, where we use the data provided in [21]. We train
and evaluate with a resolution of 518×288 (288p) unless otherwise mentioned. For
both modes (interpolation and extrapolation), we evaluate the quality of generated
images with the PSNR, SSIM [24], and LPIPS [25] metrics.

Reference Network: FaDIV-full-17

FaDIV-full-17 is the reference network and uses the extended network architecture,
as described in Section 5.0.4. We set the following parameters:

• λp = 3.0, which is the weighting of the Perceptual loss,

• λ1 = 1, which is the weighting of the L1 loss,

• learning-rate = 0.0001,

• |Pi| = 17, which are the number of planes per view,

• Final non-linear tanh activation at the output,

• Gated-Group-Convolutions (GGC) as described in Section 5.0.4,

• RGB only ⇒ No similarity maps given (see Section 5.0.4).

49
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5.1.1 (Gated) Group Convolutions
We compare a FaDIV-17 network with gated group convolutions (GGC) and group
convolutions without gating (no-GGC). Furthermore, we implemented a variation
that uses structural-similarity maps as input for all plane pairs (GGC+SSIM), as
described in Section 2.3.3. Note that all networks share the same base network
(including gated convolutions). To save time, we perform this experiment on a 35%
fraction of the real dataset and train only for 200k-250k iterations. As Table 5.3
shows, the gated variant gives better results on the test dataset. Appending pre-
estimated Structural Similarity [24] maps in the input performs a little better for
image triplets with further distances ∆t. We conclude that similarity maps are
helpful, but this effect is less pronounced for closer image triplets.

∆t = 2 ∆t = 5 ∆t = 10

Variant PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

no-GGC 35.358 .9626 .0182 32.087 .9388 .0334 28.408 .8923 .0631
GGC 36.150 .9658 .0158 32.523 .9417 .0307 28.594 .8944 .0605

GGC+SSIM 35.860 .9661 .0170 32.541 .9436 .0314 28.748 .8984 .0609

Table 5.3: Evaluation of gated group convolutions (GGCs).

5.1.2 Interpolation Results
We achieved the best interpolation results with a FaDIV-Net with tanh activation
(see Table 5.4). Again, we noticed that the SSIM variant shows an increasingly
better performance for further image distances (especially for LPIPS).

In order to push the boundaries of view interpolation inference speed, we inves-
tigate a very fast variation with only 13 depth planes and tanh activation (full-13).
Comparing the results shows that FaDIV-full-13 still has very good performance
but cannot match the results of a FaDIV network with 17 planes. Averaged across
all metrics and image distances we obtain a performance decrease of only −3.79%.

∆t = 2 ∆t = 5 ∆t = 10

Variant PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

full-17-lin 36.120 .9669 .0159 32.418 .9420 .0321 28.526 .8940 .0620
full-17 36.485 .9684 .0155 32.799 .9452 .0304 28.820 .8983 .0606
full-17-ssim 36.024 .9662 .0151 32.662 .9450 .0295 28.870 .9006 .0590

full-13 34.848 .9635 .0172 31.666 .9376 .0326 28.056 .8881 .0634

Table 5.4: Interpolation results on RealEstate10k.
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5.1.3 Generalization and Data Efficiency
Data Efficiency. To investigate the dependency of FaDIV-Net on available train-
ing samples, we train on smaller fractions of the full RealEstate10k training dataset,
and evaluate on the full test set. The dataset size is reduced by randomly choosing
scenes until the specified size is met (35%, 5%, 1%, and 0.1%).

As Table 5.5 shows, all sizes from 35% to 1% give sufficiently good results, where
35% even performs similarly or slightly better than our model trained on the full
dataset. We note that training was stopped after 350k iterations, so it is possi-
ble that training further on the full dataset may yield advantages. However, we
conclude that 35% of RealEstate10k still contains enough scene and pose variance
to prevent the network from overfitting. This is to be expected, since the triplet
sampling during training greatly augments the number of training samples. If we
train on 5% of the data, we loose only -2.1% in performance compared to the full
training set. The 1% network maintains its performance for SSIM and PSNR but
starts losing significant performance in LPIPS. Finally, the 0.1% network loses
significant performance in all metrics and seems to be outside of the boundary
for satisfactory results. As Figure 5.6 shows, we observed significant drops in
validation performance for the 1% and 0.1% training split.

Starting with 35%, we observe that the validation score is actually better than
the training score (see Figure 5.6), which is caused by batch normalization: The
average parameters used during evaluation seem to work more robustly than the
on-line statistics computed for each batch during training. As Table 5.5 shows,
FaDIV-Net already achieves very good results with only the base-network archi-
tecture (Section 5.0.3).

Overall, we conclude that from 35% on there are no indications of overfitting at
all. Furthermore, FaDIV-Net has very good generalization ability and thus already
reaches a similar level of performance with significantly fewer data.

Tr
ai

n ∆t = 2 ∆t = 5 ∆t = 10

Model PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

0.
1% full-17-lin 31.91−11.7% .9361−3.19% .0381+140% 28.03−13.5% .8825−6.32% .0712+122% 24.70−13.4% .8129−9.07% .1257+103%

1% full-17-lin 34.93−3.31% .9607−0.64% .0191+20.1% 31.38−3.20% .9320−1.06% .0360+12.2% 27.60−3.24% .8789−1.69% .0695+12.1%

5% full-17-lin 35.19−2.58% .9616−0.55% .0173+8.81% 31.92−1.54% .9366−0.57% .0327+1.87% 28.20−1.16% .8874−0.74% .0631+1.77%

35
% base17-lin 35.85−0.76% .9655−0.15% .0161+1.26% 32.27−0.45% .9403−0.18% .0314−2.18% 28.41−0.42% .8918−0.25% .0615−0.81%

full-17-lin 36.15+0.08% .9658−0.11% .0158−0.63% 32.52+0.32% .9417−0.03% .0307−4.36% 28.59+0.24% .8944+0.05% .0605−2.42%

10
0% full-17-lin 36.12+0.00% .9669+0.00% .0159+0.00% 32.42+0.00% .9420+0.00% .0321+0.00% 28.53+0.00% .8940+0.00% .0620+0.00%

Table 5.5: Data efficiency experiment. The Train column shows the training
dataset size relative to the full RealEstate10k train split.
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Figure 5.6: PSNR on the different training (solid) and validation (dotted) splits of the
RealEstate10k dataset during generator network training.

Generalization to higher resolutions. We also evaluate full-17 and the SSIM
variant on higher-resolution images. The networks are trained for image sizes of
512×288 and are afterwards tested for image sizes of 1024×576. The comparison
of the networks in Table 5.6 and Table 5.7 shows that FaDIV-Syn generalizes
surprisingly well for higher resolution images. Furthermore, it seems that using
Structural Similarity maps gives a positive contribution to maintaining quality.
This high quality can also be seen in Figure 5.10.

Si
ze

∆t = 2 ∆t = 5 ∆t = 10

Variant PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

28
8p full-17 36.485 .9684 .0155 32.799 .9452 .0304 28.820 .8983 .0606

+SSIM 36.024 .9662 .0151 32.662 .9450 .0295 28.870 .9006 .0590

57
6p full-17 35.713 .9575 .0236 31.303 .9254 .0496 26.993 .8677 .1017

+SSIM 35.360 .9552 .0230 31.315 .9265 .0484 27.134 .8728 .0993

Table 5.6: Interpolation results for generalization at inference time to a higher
resolution (576p). All models are trained with 288p and have 17 depth
planes.
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5.1.4 Extrapolation

Ours Shih et al. [21]

Figure 5.7: Extrapolation results of our method (left) compared with ground truth (cen-
ter) and Shih et al. [21] (right).

Shih et al. [21] evaluated an array of related methods for extrapolation tasks. In
order to test view synthesis accuracy, they generated 1500 random triplets from the
test dataset. Note that these experiments were carried out at 1024×576, double
the resolution of our previous experiments. As Table 5.7 shows, we outperform
current state-of-the-art methods on RealEstate10k. It is interesting that FaDIV-
Syn learns to recognize inpainting areas even in disocclusion areas, as can be seen
in Figures 5.1 and 5.8.

FaDIV-17 (17 planes). Table 5.7 shows that all our models outperform state-
of-the-art results in LPIPS and PSNR. Our SSIM results are better than [56,
12, 45], however [1, 21] report better SSIM results. The last row of Table 5.7
shows our results on smaller images with 512×288, which is interesting but not
directly comparable. For a direct comparison with [21], we refer to Section 5.1.8
and Figure 5.7. As shown in Table 5.7, FaDIV-Syn also generalizes to higher
resolutions for extrapolation tasks. We outperform state-of-the-art results (LPIPS
and PSNR) with a network that has never been trained on images with a resolution
of 1024×576. By finetuning to 576p, we only improve the results slightly.

The largest errors mainly occur in scenes with landscapes where objects are
very far away from the camera. Unlike [1, 12] we use significantly fewer depth
planes, where the last plane is at a distance of 16 m. Therefore, it is very chal-
lenging for FaDIV-Net to correctly generate the target view for scenes with large
distances. We conclude that a larger depth range or techniques such as depth
plane resampling [39] would probably help in these cases.

FaDIV-19 (19 planes). In order to investigate whether we can improve the
performance with more planes, especially in larger depth ranges, we train a FaDIV-
full19+1 model with 19 depth planes, and one additional downsampling layer.
Insteat of distributing the first 16 planes between [0.3, 8]m we expand the range

53
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to [0.4, 11]m. Furthermore, we add three background planes at 16 m, 32 m and
96 m. We train FaDIV-full-19+1 for 576p explicitly and just like the other networks
to be comparable.
As shown in Table 5.7 FaDIV-full-19+1 outperforms all FaDIV-17 networks in SSIM
and PSNR and all state-of-the-art methods in PSNR and LPIPS. Only FaDIV-17-
BIG achieves slightly better LPIPS values. Furthermore, FaDIV-19 reduces the
lead of Zhou et al. [1] and Shih et al. [21] in SSIM.
We conclude that a few more planes at larger distances are helpful and give a
reasonable performance boost. However, they are not necessary and FaDIV already
achieve very good results with 17 planes and a maximum plane distance of 16 m.

To investigate how well a FaDIV-19 network generalizes to higher resolutions
and whether we can train longer without overfitting, we finetune a FaDIV-full-19
network for 600k extrapolation iterations. This is significantly longer than the
training time of other networks trained on 288p. The training is done on an image
resolution of 512×288 and the evaluation is measured on 1024×576. We found that
adding a 5th downsampling layer harms the generalization ability of the network.
Hence FaDIV-19 keeps the original architecture with four downsampling layers.
The last row of Table 5.7 shows that the FaDIV-19(600k) network generalizes very
well to higher resolutions and achieves better PSNR and SSIM results than all our
networks with 17 planes. We have thus shown that FaDIV-Syn still benefits from
more training iterations and consequently we have not yet detected any overfitting.

Note that both FaDIV-19 networks are a bit slower than FaDIV-full-17, but still
significantly faster than FaDIV-17-BIG, as can be seen in Table 5.8.

Method 576p SSIM↑ PSNR↑ LPIPS↓

Stereo-Mag [1] X 0.8906 26.71 0.0826
PB-MPI (32 Layers) [12] X 0.8717 25.38 0.0925
PB-MPI (64 Layers) [12] X 0.8773 25.51 0.0902
PB-MPI (128 Layers) [12] X 0.8700 24.95 0.1030
LLFF [56] X 0.8062 23.17 0.1323
Xview [45] X 0.8628 24.75 0.0822
3D-Photo [21] X 0.8887 27.29 0.0724

FaDIV-17-BIG X 0.8800 28.13 0.0634
FaDIV-17 X 0.8790 28.13 0.0674
FaDIV-17 0.8750 27.96 0.0695
(FaDIV-17 tested on 288p) (0.8990) (29.25) (0.0426)

FaDIV-19+1 X 0.8866 28.44 0.0647
FaDIV-19(600k) (0.8840) (28.55) (0.0682)

Table 5.7: Extrapolation results on RealEstate10k [1]. All methods without Xare
trained with 288p, but evaluated on 576p.
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5.1.5 Inference Time
Table 5.8 shows the inference time of the different models on a single NVIDIA
RTX 3090 GPU. The fastest model that uses the extended network architecture
(see Section 5.0.4) is FaDIV-full-13, as it only operates on 13 depth planes. FaDIV-
BIG was designed to be comparable with non-real-time approaches. Nevertheless,
it is still fast on large images, as we mainly enhanced the receptive field in the
group convolution layers.

In addition to results on vanilla PyTorch, Table 5.8 also shows inference times
in TensorRT [74], which already boosts performance for float32 precision without
losing accuracy. We achieve a throughput of approx. 30 fps for our full models
on 540p. TensorRT offers possibilities to quantize the weights of neural networks
to float16 or even int8. Our test shows that float16 quantization retains almost
100% accuracy and leads to a significant performance boost: We can achieve up
to 85 fps on 960×540 images and more than 300 fps for 512×288 resolution. In
comparison, the approaches beating our SSIM score, 3D-Photo and Stereo-Mag,
take 2-3 min and 93 ms per 540p image.

Timings [ms] Relative Metrics [%]

Torch TRT-32 TRT-16 TRT-16

Model 288p 540p 288p 540p 288p 540p SSIM ↑ PSNR ↑ LPIPS ↓

base-17 11.5 37.6 9.5 29.8 3.3 11.8 100.00 99.99 99.92

full-13 11.6 38.1 9.8 30.8 4.2 15.0 100.03 99.99 99.90

full-17 14.7 48.9 11.3 35.8 4.8 18.3 99.98 99.99 100.04

big-17 24.5 78.0 19.5 62.9 8.0 26.2 99.98 99.99 100.03

full-19+1 18.1 57.6 13.4 42.2 5.4 19.9 99.93 100.00 100.78

full-19 16.3 54.2 12.1 39.8 5.2 19.3 99.93 99.95 100.96

Table 5.8: Inference times (ms) of generator networks on NVIDIA RTX 3090. We
show native PyTorch as well as TensorRT (TRT) [74] float32/float16
versions. We also analyze the quantized model quality relative to the
float32 models (relative metrics). The times do not include PSV gener-
ation (1.5 ms @ 540p).
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5.1.6 Qualitative Results

Input 1 Input 2 Extrapolation

Input 1 Input 2 ExtrapolationInput 1 Input 2 ExtrapolationInput 1 Input 2 Extrapolation

Figure 5.8: Extrapolation on the RealEstate10k test set.

Continuous Depth. The fixed depth planes do not constrain FaDIV-Syn. This
effect can especially be seen on straight lines across different depths, which are
preserved by our approach (see Figure 5.1 and Section 5.1.8). We conclude that
FaDIV-Net does not directly propagate information from the warped planes, but
uses them as an orientation.

Occlusions & Disocclusions. Figures 5.1 and 5.8 show examples of disocclusions.
FaDIV-Syn can handle disocclusions in both interpolation and extrapolation tasks.
FaDIV-Syn separates the pixel information into different depth planes, detects
correspondences in these and fuses the planes together. As Figures 5.1 and 5.9
show, FaDIV can handle and represent occlusions.
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Reflections and Transparency. Often methods that use depth have problems
representing transparencies and reflections, since there is often more than one
depth value at a certain pixel location. FaDIV-Syn is designed in such a way
that there is not only one depth for each pixel, but a multitude of information
in the different depth planes. This allows recognition of the correct position of
both the surface and the reflection on it, as shown in Figure 5.9. Examples for
transparencies can be found in Figures 5.1 and 5.7.

Input 1 Input 2 ExtrapolationInput 1 Input 2 ExtrapolationInput 1 Input 2 ExtrapolationInput 1 Input 2 Extrapolation
Figure 5.9: FaDIV-Syn is able to represent multiple planes of depth at one location and

thus handles reflections correctly. The input images are extracted from the
RealEstate10k test set.

Moving Objects. The RealEstate10k dataset does not only contain static scenes.
While dynamic scenes are more difficult for view synthesis (and indeed, one could
argue that the problem is ill-posed), FaDIV-Syn nonetheless shows interesting
behavior on such scenes. For example, the network has learned to interpolate
between different positions of moved objects (see Figure 5.10). This behavior
would be hard to achieve using a pipeline which estimates depth first, or only
blends pixel information.
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Input 1 Input 2

Prediction at 512×288 Prediction at 1024×576

Figure 5.10: Interpolation from two reference views. The lower right video shows the
results of a full-17-ssim network trained on 288p but evaluated on 576p.
This figure is animated—if the video does not play, we refer to our supple-
mentary material. The input images are extracted from the RealEstate10k
test set.

5.1.7 Limitations
Our approach sometimes results in blurred objects under large camera movements.
One example is the fountain shown in Figure 5.8. We believe that one reason for
this is that we have only trained with smaller camera offsets for extrapolation.
Furthermore, we expect that semi-supervised techniques such as [49] could be
used to increase the robustness of the method against arbitrary target poses, since
the supervision offered by RealEstate10k only covers inter- and extrapolation on
smooth camera trajectories. Additionally, the supported depth range is currently
limited and could be extended as discussed in Section 5.1.4. Finally, the inference
time is limited by the network itself, where compression techniques [75] could be
applied to reduce network runtime even further.
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5.1 FaDIV-Syn Evaluation

5.1.8 Additional Results

Input FaDIV-BIG FaDIV-Full Ground Truth 3D Photo
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Input FaDIV-BIG FaDIV-Full Ground Truth 3D PhotoInput FaDIV-BIG FaDIV-Full Ground Truth 3D PhotoInput FaDIV-BIG FaDIV-Full Ground Truth 3D PhotoInput FaDIV-BIG FaDIV-Full Ground Truth 3D Photo

Input FaDIV-BIG FaDIV-Full Ground Truth 3D PhotoInput FaDIV-BIG FaDIV-Full Ground Truth 3D PhotoInput FaDIV-BIG FaDIV-Full Ground Truth 3D PhotoInput FaDIV-BIG FaDIV-Full Ground Truth 3D PhotoInput FaDIV-BIG FaDIV-Full Ground Truth 3D PhotoInput FaDIV-BIG FaDIV-Full Ground Truth 3D PhotoInput FaDIV-BIG FaDIV-Full Ground Truth 3D PhotoInput FaDIV-BIG FaDIV-Full Ground Truth 3D PhotoInput FaDIV-BIG FaDIV-Full Ground Truth 3D Photo

Figure 5.11: Extrapolation comparison of our FaDIV-BIG-17 (high quality) and FaDIV-
Full-17 (fast) networks against ground truth and 3D Photo [21]. The input
frame closer to the target frame is marked in green for easier comparison.
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Input FaDIV-BIG FaDIV-Full Ground Truth 3D Photo
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Figure 5.12: Extrapolation comparison of our FaDIV-BIG-17 (high quality) and FaDIV-
Full-17 (fast) networks against ground truth and 3D Photo [21]. The input
frame closer to the target frame is marked in green for easier comparison.
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Input FaDIV-Full FaDIV-Full-Generalized Ground Truth 3D Photo
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Figure 5.13: Extrapolation comparison of FaDIV-Full-17 trained on 540p (Full) and

288p (Full-Generalized) against ground truth and 3D Photo [21]. The
Generalized-Full network runs inference in 540p. The input frame closer
to the target frame is marked in green for easier comparison.
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5 Fast Depth-Independent View Synthesis (FaDIV-Syn)

Figure 5.14: Interpolation using our fast FaDIV-Full-17 network. In every block, the top
row (green) shows the ground truth trajectory from RealEstate10k (test),
while the bottom row (blue) presents the interpolated result corresponding
to the ground truth camera poses.
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5.1 FaDIV-Syn Evaluation

Figure 5.15: Interpolation using our fast FaDIV-Full-17 network. In every block, the top
row (green) shows the ground truth trajectory from RealEstate10k (test),
while the bottom row (blue) presents the interpolated result corresponding
to the ground truth camera poses.
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6 Conclusion

We have presented two different methods to synthesize novel views. While our first
method goes the conventional way of (i) depth estimation, (ii) rendering and (iii)
refining, our second approach (FaDIV-Syn) decouples the pipeline from costly and
time-consuming depth computations and contributes an approach that processes
on PSVs directly.

We introduced a single view approach that builds upon SynSin [2] and further
optimized the architectures and losses to achieve better performance in a more
efficient way. We have shown a detailed evaluation and outperform SynSin with
a pipeline that has fewer processing stages. We are therefore capable of real-time
processing images with a size of 512×512. Further research in this direction could
focus on improving the scale estimation of the disparity network, which is the
most challenging task in the pipeline. Possible approaches could be to make use
of sparse point clouds, as proposed in [52] or a second disparity network decoder
that is trained to estimate a scale more precisely.

For multiple source views we introduced FaDIV-Syn, a fast depth-independent
novel view synthesis method. We demonstrated state-of-the-art performance in
extrapolation on the RealEstate10k dataset. Our model trained with 288p gener-
alizes well to higher resolutions and even outperforms state-of-the-art results on
576p. Furthermore, our method is real-time-capable with 85-300 fps depending on
output resolution. We think direct usage of the PSV for RGB view synthesis is
a promising approach especially for real-time applications and further research in
this direction is warranted. This research could investigate self supervised tech-
niques, as proposed in [49], which allows to decouple the network from synthesizing
only views inside strict camera trajectories. Furthermore, it could be profitable to
warp planes with learned features instead of RGB information only, as Wiles et al.
[2] do. Instead of assuming fixed depths of the planes, one could also attempt to
learn them self-supervised.

A direct comparison of both approaches is problematic, as FaDIV-Syn has more
favourable prerequisites. However, if we extend our single view approach to several
input images, indeed one could predict better depth, but the pipeline would still
not be real-time capable on 540p unlike FaDIV-Syn. We believe that with FaDIV-
Syn we have made an important contribution to the novel view synthesis problem.
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