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Abstract. The ability to detect people in domestic and unconstrained
environments is crucial for every service robot. The knowledge where
people are is required to perform several tasks such as navigation with
dynamic obstacle avoidance and human-robot-interaction. In this paper
we propose a people detection approach based on 3d data provided by
a RGB-D camera. We introduce a novel 3d feature descriptor based on
Local Surface Normals (LSN) which is used to learn a classifier in a
supervised machine learning manner. In order to increase the systems
flexibility and to detect people even under partial occlusion we introduce
a top-down/bottom-up segmentation. We deployed the people detection
system on a real-world service robot operating at a reasonable frame
rate of 5Hz. The experimental results show that our approach is able
to detect persons in various poses and motions such as sitting, walking,
and running.
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1 Introduction

Domestic service robots such as the Care-O-bot 3 [5] and PR2 [3] are deployed
more and more in realistic, unconstrained, and unknown environments such as
offices and households. In contrast to artificial environments the real-world is
populated with humans which are walking, sitting, and running. In order to in-
teract in such environments with humans in a safe manner a service robot must
be aware of their positions, movements, and actions. Therefore, a robust peo-
ple detection system is crucial for every domestic service robot. An appropriate
sensor type providing perceptual information about the environment is required
to detect people in a robust and reliable manner. Quite recently, a new type of
cameras has been become available, namely RGB-D cameras such as the Mi-
crosoft Kinect1 and Asus Xtion2. Those cameras provide a 3d point cloud and
additional RGB values at the same time. The low-cost and the high frequency
of 30Hz makes the Kinect very attractive for the robotics community. Hence,

1 www.xbox.com/kinect
2 www.asus.com



the people detection approach described in this paper proposes to use and pro-
cesses RGB-D data provided by a Kinect sensor. Previous contributions in the
field of people detection are based on range data provided by laser range find-
ers. In [1] Arras et al. proposed a system which segments a complete scan into
smaller clusters, extracting geometric features, and then classifies the cluster in
human or non-human. The classifier has been created in a supervised machine
learning manner with methods such as AdaBoost and SVM. This principle has
been extended in [7] by mounting two additional laser range finders on different
height in order to retrieve a more sophisticated view on the scene. Spinello et
al. [11] extended this idea by extracting a fixed set of 2d vertical scan lines from
a full 3d point cloud. The detection is performed in each layer separately. The
layers are later fused with a probabilistic voting scheme. Other approaches are
based on vision as a primary modality. They apply well-known techniques such
as implicit shape models [13], haar-like features [14], or histogram of oriented
gradients [12] for feature extraction. However, all these approaches operate only
in 2d space. First approaches operating in 3d are described by Satake et al. [9]
where template matching (depth templates) is used to detect the upper body
of humans. In [2] and [8] the 3d point cloud is first reduced to a 2.5d map in
order to keep the computational effort low. The classification itself is again based
on different 2d features and a machine learning classifier. The approach which
comes close to our approach has been introduced by Spinello and Arras [10].
In a hybrid manner the detection is based on a combination of 3d depth and
2d image data. Inspired from a histogram of oriented gradients (HOG) detector
Spinello proposes a novel histogram of oriented depths (HOD) for the detection
in 3d. Both information (HOG and HOD) are fused which yields in a robust and
later GPU-optimized people detection system.

In contrast to [10], our approach uses only the 3d point cloud provided by a
Microsoft Kinect camera. The data is split into smaller clusters using a layered
sub-division of the scene and a top-down/bottom-up segmentation technique. A
random forest classifier is used to label the resulting 3d clusters either as human
or non-human. Inspired from [6], we extended the idea of using local surface nor-
mals (LSN) and composed a new feature vector based on a histogram of local
surface normals plus additional 2d and 3d statistical features. An overview of
the complete processing pipeline is depicted in Figure 1. The major contribution
of our approach is a novel feature descriptor based on local surface normals and
the capability to robustly detect persons in various poses/motions, even if they
are partially occluded like sitting behind a table or desk.

2 People Detection using Local Surface Normals

In this section we introduce our 3d people detection approach using Local Surface
Normals (LSN). The approach consists of four phases as shown in Figure 1,
namely Preprocessing, Top-Down Segmentation, Classification, and Bottom-Up
Segmentation.



Fig. 1. The processing pipeline is divided into four phases (blue boxes). Each phase con-
sists of several sub-components (orange boxes) which perform the actual computation
of the input data.

2.1 Preprocessing

A single point cloud from the Kinect sensor consists of ≈ 300.000 points. In
order to keep the overall processing time reasonable we carefully reduced the
raw input data in the preprocessing phase.

Region of Interest (ROI). A major disadvantage of the Kinect camera is the
increasing depth discretization error for large distances. Beyond 5m the depth
values are very noisy and shaky. Therefore, the ROI is defined as 0.5m <=
depth <= 5.0m and 0.0m <= height <= 2.0m. The height has been choosen
because people usually appear in this range. The ROI steps already reduces (de-
pending on the actual scene) the point cloud to ≈ 110.000 points in average.

Subsampling. The remaining points provided by the ROI step are further re-
duced by a subsampling routine to make the point cloud more sparse, i.e. a 3d
grid with a predefined cell size is overlayed over the full point cloud. The points
inside each box are merged to a single new point. An increased cell size will yield
to a sparse point cloud. We have used a cell size of 3cm x 3cm x 3cm which still
maintains the desired accuracy for the normal estimation and simultaneously
reduces the point cloud to ≈ 16.000 points in average.

Local Surface Normals (LSN). In the classification phase (see Section 2.3)
we propose a feature vector which consists of a histogram of local surface nor-
mals. A local surface normal is computed through fitting a plane to the k-nearest
neighbors of the target point. A more detailed description of the algorithm can
be found in [6]. Before the preprocessed point cloud is forwarded to the segmen-
tation phase, for all remaining points the local surface normals are computed.
In case the normals would be calculated after the segmentation, the accuracy
of the normal estimation for those points which lie on the border of a cluster
would be significant lower. A reasonable part of the neighborhood might already
belong to another cluster.



2.2 Top-Down Segmentation

The segmentation of large 3d point clouds is a (computational) costly and com-
plex exercise. Segmentation approaches such as region growing or graph-based
approaches are known to have a huge computational complexity. Therefore, such
approaches are not feasible in robotics where reasonable performance is crucial.

Layering. We propose a basic top-down segmentation technique (see Figure 2).
The general idea is decompose the point cloud into a fixed set of different 3d
height layers and then start to segment each layer separately in smaller clusters.
In detail, the layering and segmentation algorithm can be explained as follows:
Let P = {p1, ..., pN} be a point cloud with pi = (x, y, z) and N which is equal
to the number of points in the point cloud. Then P is split into a fixed number
of 3d layers L = {l1, ..., lM} with

M =
(Zmax − Zmax)

SH

where Zmin and Zmax are the minimum and maximum height values of the prede-
fined ROI and SH is the desired slice height. For each layer lj the minimum and
maximum height is calculated. For instance, assuming a predefined slice height
of 20cm then the first layer l1 contains only points with 0.0m <= pi(z) <= 0.2m.
The remaining layers l2, ...lM will be established according to this principle. As
experimentally validated we consider a slice height of 25cm as optimal (see Sec-
tion 3).

(a) schematic layer-
ing

(b) layering result (c) schematic seg-
mentation

(d) segmentation re-
sult

Fig. 2. Images (a) and (b) show the layering process, where each point cloud is divided
into a set of 3d layers according to a manually defined slice height. For the layering,
we have applied a slice height of 25cm. Each layer is segmented into clusters using a
Euclidean Clustering approach (see Image (c) and (d)). The different colored points
indicate either the different height layers or the segmented 3d clusters.

Clustering. The actual segmentation generates for each layer lj a sequence
of small clusters C = {c1, ..., cO}, where each cluster cj,k contains a subset of
points located in lk. The segmentation applies an Euclidean clustering technique
which is less parameterizable. Only a distance threshold thresEuclDist has to be



defined which defines whether a target point is added to the cluster or not.
Furthermore, thresEuclDist also determines whether there are many small clus-
ters (thresEuclDist ← 0 ) or only a few large clusters (thresEuclDist → ∞). As
mentioned, we have used a grid-size of 3cm for subsampling. According to this
dimensions and a certain amount of noise, we set thresEuclDist = 2×grid size in
order to ensure that two persons which stand close to each other are not merged
to a single cluster. The proposed fine-grained clustering has the advantage over
a clustering without prior layering when one object is partially occluded by an-
other object. For instance, if a person is sitting at a table, our approach creates
several smaller clusters for both objects. Instead, the pure Euclidean clustering
would create a single cluster which consists of a table and the person, because the
person is sitting very close to the table or has put the arms on it. Furthermore,
the user-defined slice height plays also an important role for the performance of
the segmentation. A reasonable small height ends up in really tiny clusters with
few local surface normals which are not sufficient for a robust classification. On
the other hand, a large slice height creates also large clusters (where two or more
objects would get merged to a single cluster) which would alleviate the specific
advantage of the proposed segmentation stage.

2.3 Classification of 3d Clusters

The previous segmentation phase produces a list of 3d clusters. In the classifica-
tion phase we want to assign a label to each cluster (human or non-human). We
approached the two-class classification problem with a supervised machine learn-
ing technique. We evaluated the performance of three popular machine learner
on different datasets recorded in different environments, namely AdaBosst, SVM
and Random Forests [4]. The results showed that for all datasets the Random
Forest classifier outperforms both other machine learning techniques.

Feature Calculation. As a feature vector for the Random Forest we propose a
histogram of local surface normals (HLSN). The use of such a feature vector can
be motivated as follows: households and offices contain to a large extend walls,
tables, desks, shelfs, and chairs. More precisely, a reasonable part of daily envi-
ronments consists of horizontal and vertical planes. Whereas the human body
has a more cylindrical appearance. With a histogram of LSNs we can express
this property to distinguish between human and non-human clusters. We com-
pute a fix-sized histogram over the normals for all points in a cluster which is
the input for a feature vector. However, the Random Forests algorithm expects
a one dimensional input vector. Therefore, a separate histogram for each normal
axis (x, y and z) is established. In addition, the width and the depth of a cluster
is added to the feature vector, which helps to decrease the false positive rate.

Classifier. Learning the Random Forest classifier requires a large-set of train-
ing samples. As in other fields the collection of positive and negative training
samples is a time consuming task, especially when many samples (> 1000) are
required and the annotation of each sample has to be done manually. Therefore,
we integrated a procedure to capture positive and negative training samples au-



tomatically. Negative samples have been collected with a mobile service robot.
We established a map of our University building which at least consisted of an
office, laboratory, long corridor and an apartment. For each room a navigation
goal has been manually annotated. An automatic procedure generated a random
order in which the rooms should be visited. The robot started to navigate au-
tonomously through all the environments and simultaneously segmenting each
incoming point cloud. Each extracted cluster has been labeled as negative ex-
ample. During the whole run we ensured that there has been no person in the
field-of-view (FOV) of the robot. This process guarantees that the samples are
indeed collected in a random manner. The positive samples have been collected
with a static mounted Kinect camera. The camera was placed in a laboratory
where people are frequently walking and sitting around. We defined a ROI which
does not contain any object and consequently provides an empty point cloud.
In case the person passed the ROI, the segmentation stage extracted the related
clusters and labeled them as positive samples.

2.4 Bottom-Up Segmentation

In the last phase we obtain a sequence of 3d clusters which are classified as
human. However, those “part-based” detections have to be assembled and as-
sociated to one respective person. A graph-based representation based on the
cluster’s center is created. The advantage is that not the whole data points of
a cluster have to be processed which keeps the computational effort low. Each
center point is then connected to its two nearest neighbors as long as the Eu-
clidean distance between those points does not exceed a certain threshold. Each
cluster has always a maximum height (equal to the predefined slice height) which
allows us to derive the threshold, because the center points of two neighboring
clusters can only have a maximum distance of 2 × slice height. When all the
points in the queue have been processed the overall graph can be split in its
connected components, which builds the actual person detection. Due to false
positive detection when classifying the extracted 3d clusters, we consider a suc-
cessful person detection only, if at least three clusters belong to one person (at
least ≈ 45cm of the persons body must visible).

3 Experimental Evaluation

In order to evaluate the proposed people detection system we performed several
experiments with different objectives as described below.

3.1 Experiment Objectives

Objective 1. Investigate the impact of the predefined slice height on the clas-
sification error.
The segmentation is based on separating the point cloud into several fix-sized



layers. The amount of layers depends on the chosen slice height. In this experi-
ment we investigated the impact of the predefined slice height on the resulting
classification error. The experiment was executed several times with different
slice heights ranging from 10cm to 100cm (= half of the maximum perceivable
height). Every range value below 10cm results in very few points which is not
sufficient to represent a comprehensive distribution. Thus one requirement for
the people detection approach is the ability to detect people even if they are
partially occluded. In each experiment the slice height is constantly increased
by 5cm (when starting at the minimum). A 10-fold cross-validation was applied.
In order to evaluate the segmentation behavior against occlusion, synthetic gen-
erated occlusion (e.g., a cupboard) was added to the data. The experiment was
repeated three times with different amount of occlusion, namely no occlusion,
50%, and 70% (see also Figure 3). Moreover, Gaussian noise was added to the
synthetic data in order to achieve approximation to the Kinect data.

(a) No occlusion (b) 50% occlusion (c) 70% occlusion

Fig. 3. Different occlusion levels.

Objective 2. Investigate the actual people detection performance.
In order to assess the detection rates under different circumstances we defined
two categories, namely poses and motions. For the pose category we evaluated
the detection rate for persons sitting on a chair and for persons which where
partially occluded (at least 30% of the whole body). For the motion category
we evaluated three different natural motions: not moving, random walking, and
random running. We executed the experiment with ten subjects in three different
environments. In our RoboCup@Home laboratory, a real German living room,
and the entrance of our University where people frequently enter and leave the
building. The test procedure (or test cases) looked as follows:

1. Standing pose: the persons were asked to position themselves in various
random positions and usual body postures.

2. Sitting pose: the persons were asked to sit down on a chair and position
themselves in various random positions and usual sitting postures.

3. Partially occluded pose: the persons were asked to stand behind a cup-
board of 80 cm height and to move up and down in a natural way.



4. Not moving motion: it is identical to the test for standing person and
only mentioned for completeness.

5. Random walking motion: the test was execute at the entrance of our Uni-
versity. Many people were entering and leaving the building. Even sometimes
in small groups.

6. Random running motion: the persons were asked to run in a jogging
manner through the FOV of the camera in various paths.

For each of the ten persons and the corresponding posture/motion 200 frames
have been evaluated. To avoid manual annotation a simplified change detection
was applied. Initially the point cloud size (after ROI building) of ten subsequent
frame has been averaged and stored. In the evaluation phase the size of the
recent acquired point cloud is compared to the stored size. If the difference is
above certain threshold, the person has entered the cameras FOV. This simpli-
fied evaluation was applied for the test cases 2, 3 and 6. In case of test case 1 and
4, we waited until the person reached a new position and then evaluated each
time five frames. For test case 5, each frame had to be manually annotated since
the number of persons in the FOV was varying between one and five during the
whole test.

Objective 3. How does the people detection system behave in a scenario-like
setting.
So far the people detection system has been evaluated stand-alone. However,
we are interested in how the system behaves when it is integrated on a real-
world domestic service robot. We have integrated the system on our Care-O-bot
3 robot and performed a more scenario-like evaluation, where an autonomous
mobile service robot tries to find a predefined number of persons in the envi-
ronment. The scenario is basically derived from the “Who is who?” test in the
RoboCup@Home competition where five people are spread around in the apart-
ment. As an initial knowledge, the robot has a map of the environment and a set
of room poses for each part of the apartment (e.g., living room or kitchen). In
our test implementation a script first generates random positions in the map for
five persons (also defining whether the person should sit or stand). In case the
proposed position is blocked (e.g., a wall or table) the person will be assigned to
stand/sit next to the generated pose. When all persons are placed at the gen-
erated positions, the robot generates a random path through all available room
poses. The rest of the experiment consists of executing a drive & search behavior
which we have implemented for the RoboCup@Home competition.

3.2 Experiment Results

Objective 1. Figure 5 depicts the cross-validation error with respect to the
actual slice height. In case of no occlusion of the actual person the classification
decreases with an increasing slice height. Above 50cm the error converges to an
error rate of ≈ 15%. However, occlusion causes a major increase of the error rate
when applied to an increased slice height. The reason is that the segmentation
with high slice height creates clusters which might contain parts of the human



and part of the object which causes the occlusion. We used the experiment to
determine a good (minimized error rate) slice height. Thereby, we calculated the
mean curvature for all three error curves and identified the global minima. A
slice height of 25cm yielded in the minimum averaged error of 15.49%.

Objective 2. As shown in Table 1 our system shows a quite robust performance
at least for standing person. In Figure 4 some detections for person poses are
shown. The performance is independent from the actual distance to the person
and is only limited by the predefined maximum distance of 5 meters. However,
we observed a degrading detection rate when the person is sitting. The detection
rate is significant lower, namely 74.94%. This is due to the fact that the training
was only performed with standing persons. Therefore, only the head and the
upper body can be detected. The horizontal leg parts can not be detected.

Poses Detection Rate Motions Detection Rate

standing 87.29% not moving 87.29%

sitting 74.94% rnd. walk 86.32%

part. occl. 82.35% rnd. run 86.71%

Table 1. Detection rates for different human poses and motions.

(a) bending (b) random pose (c) partially occluded + sit-
ting

Fig. 4. Detections for various person poses

In case the Random Forest would have trained also with sitting person, there
would be clusters whose normal distribution would be similar to horizontal planes
(because the upper leg is parallel aligned). Of course, this would cause a very high
false positive rate. However, when a person is sitting, the upper body is still vis-
ible and sufficient for a quite robust detection with the model trained only with
standing persons. Although, it is significant lower than detecting standing per-
sons. Persons which were partially occluded, e.g. behind a table or a cupboard,
can be detected similar robust to standing person, because only a minority of
the lower body is occluded. For different motion speeds, only slightly different
results could be observed. It does not matter in which speed the person is moving
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Fig. 5. Error rates of the segmentation in the presence of occlusion.

or even standing still, since the detection is done frame by frame. Only the pose
configuration is different for the different motions. In general, the experiment
showed that people are detected in various pose configurations and speeds with
an average detection rate of 84.15%. A short video showing the people detection
can be found on: http://www.youtube.com/watch?v=d0O4nQE8Qko.

Objective 3. In total ten runs of the described experiment were executed (see
Table 2). In all cases the robot was able to find at least the two standing persons
and always one sitting person. The missed detections where caused by a occlusion
through another person or when the person was sitting in an arm chair and only
a small part of the shoulder and head was visible. Beside the successful and
missing detections, there were quite a lot false positive detections. In each run
at least one false positive detection occurred. Due to the fact that a detected
person (in this cases a false detection) is approached only once and then stored,
the false detections do not effect the overall performance so much. Only the
time for approaching the false detection for the first time is gone. However, in
other scenarios this effect could result in a worst performance. Nevertheless, the
integration of the people detection component into a higher level behavior was
able to successfully detect the majority of people in the environment. Standing
people could be detected with a rate of 86.67% and sitting person with 75.00% in
this experiment. Astonishingly, the detection rates from this experiment almost
reflect the results acquired in the experiment for the second objective.

4 Conclusion

We presented an approach to detect the 3d position of people in 3d point clouds
using a feature vector which is composed of a histogram of local surface nor-



Run TP standing TP sitting FN standing FN sitting FP

1 3 2 0 0 2

2 3 1 1 1 2

3 2 2 1 0 1

4 3 2 0 0 2

5 2 1 1 1 2

6 2 2 1 0 1

7 2 1 1 1 1

8 3 2 0 0 2

9 3 1 0 1 2

10 3 1 0 1 1

Table 2. Result of 10 executed runs with auto-generated person positions (three stand-
ing and two sitting). TP = true positives, FN = false negatives, FP = false positives.

mals. The preliminary segmentation is based on a top-down/bottom-up tech-
nique which supports the detection of partially occluded persons, e.g. standing
behind a desk or cupboard. The information gained from the local surface nor-
mals enables our system to detect a person in various poses and motions, e.g.,
sitting on other objects, bended to the front or side, walking fast/slow. With the
presented approach we are able to detect even multiple people up to a distance
of 5m with a detection rate of 84%. Future improvements will cover a reduction
of false positive detections by extending the existing feature set with additional
geometrical and statistical features. The proposed approach covered only the
detection of people in 3d, a 3d tracking system would also enhance the overall
system performance. We further aim an implementation on GPU, in order to
improve the processing performance towards a real-time system. Another step
would be the integration of color information into the detection process, which
is provided simultaneously with the point cloud data by the Kinect sensor.
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