
Gradient Vector Griding: An Approach to
Shape-based Object Detection in RoboCup

Scenarios

Hamid Moballegh, Naja von Schmude, and Raúl Rojas

Institut für Informatik, Arbeitsgruppe Künstliche Intelligenz,
Freie Universität Berlin, Arnimallee 7, 14195 Berlin, Germany
moballegh@gmail.com,{schmude,rojas}@inf.fu-berlin.de

http://www.fumanoids.de

Abstract. This paper describes a new method of extraction and cluster-
ing of edges in images. The proposed method results a graph of detected
edges instead of a binary mask of the edge pixels. The developed algo-
rithm contains a sequential pixel-level scan, and a much smaller second
and third pass on the results to determine the connectivities. It is there-
fore significantly faster than Canny edge detector, performing both edge
detection and grouping tasks. The method is developed for a RoboCup
scenario, however it can also be applied to any other image as long as
the prerequisites are met. The paper explains the idea, discusses the
prerequisites and finally presents the implementation results and issues.

1 Introduction

The vision system is the most important module of a robot to perceive its envi-
ronment in RoboCup competitions. The task of the vision system is to analyze
an incoming image for detecting important structures or areas (features) and
combine these features to meaningful objects according to the needs of the other
modules of the control software. As vision-based measurements are often used in
closed loop control of the robots, a realtime performance is required. Due to the
fact that on-board CPU power is strongly limited, high-performance and very
specialized algorithms are needed.

Common approaches use image segmentation by color to deal with the ob-
ject extraction[11, 2]. The reason is that the relevant objects like goals, robots
and the ball can be distinguished by their color. Acceptable detection rates can
however only be achieved in presence of a constant and well conditioned lighting.
Moreover, almost all color-based object recognition methods require a manual
or automatic calibration, which makes them hard to use[5–7].

Shape-based approaches are rare but are getting more popular in RoboCup
because the RoboCup rules change more and more from the highly specialized
scenario to a more general one[8, 9]. Therefore object recognition can’t rely only
on the color of the objects in the future, but needs to take the shape of the objects
into account. Many methods have been introduced to detect RoboCup field

86 Hamid Moballegh, Naja von Schmude, and Raúl Rojas

objects based on their shapes. A majority of these methods focus on the field lines
since the uncertainties of other landmarks are prohibitively large[9]. Different
techniques have been proposed to extract the field lines. Some examples are the
use of kernels[10], Hough transformation[1, 10] and edge detection techniques[8].

In this paper we introduce a shape-based object detection scheme, which
results a directed graph of detected edges. The graph isn’t build on pixel basis
but on cell basis; that means the image is overlaid with a grid formed of equal
sized cells. A number of graph nodes is calculated for each cell. The nodes are
then connected corresponding to the connectivity in the 8-neighborhood of each
cell. This is similar to the technique suggested by A. Farag and E. Delp[4]. The
algorithm allows adjusting the maximum curvature of the result paths. The idea
of griding is inspired by the Histogram of Oriented Gradients (HOG) introduced
by Dalal and Triggs[3]. However the final implementation differ greatly from the
original work.

The paper is structured as follows: At first the four steps of the method are
described. Several techniques are explained to increase the performance of the
method as well as to improve the quality of the results. Finally achieved results
from the algorithm are presented and the implementation issues are discussed.

2 Object Detection using Gradient Vector Griding

The main idea of the Gradient Vector Griding (GVG) method is to reduce
computation cost by reducing the image dimension to a much smaller grid. An
important prerequisite for the method is that the information loss according
to this stage remains small. This is provided in RoboCup case. For each cell,
one or more features are calculated from the original image, where each feature
represents an edge passage through the cell. These features are the so-called
edge representers (ER). This is unlike HOG where a histogram of orientations
is extracted for each cell. The next stage finds connected edges passing through
neighboring cells; the connectivity is calculated. In the last step, complete edge
traces are extracted out of the cell connectivity graph.

Figure 1 shows the basic implementation of the GVG algorithm. All stages
are explained in detail in the next subsections.

2.1 Gradient Vector Calculation

Like every shape based object recognition method, the procedure begins with
the calculation of the gradient vector for each pixel in the image. Sobel operators
can be used to compute the components of the gradient vector in each pixel. The
better alternative is Robert’s cross operator described in equations 1 to 4. Note

Gradient Vector Griding 87

Fig. 1. Stages of Gradient Vector Griding

the gradient vector provided by this method is 45° rotated.

Gx :

[
1 0
0 −1

]
(1)

Gy :

[
0 1
−1 0

]
(2)

|G| =
√
G2

x +G2
y or |G| = |Gx|+ |Gy| (3)

θ = arctan(Gx/Gy) +
π

4
(4)

Sobel operators are less sensitive to noise, however the accumulation in the next
stage of the algorithm makes the Robert’s cross version pretty noise tolerant.

There are two important points to consider when calculating the gradient
vector for GVG. First, it is necessary to calculate the direction in a -180° to
180° range, i.e. using the function arctan 2(y, x) instead of arctan(y/x). This
prerequisite is discussed in detail in the next subsection. The second point is that
the method requires the edge direction which is perpendicular to the gradient
direction. The following convention is used in the algorithm to convert gradient
vector V to edge vector E, which is a simple 90° rotation.

E =

[
0 −1
1 0

]
V (5)

88 Hamid Moballegh, Naja von Schmude, and Raúl Rojas

If Robert’s cross operator is used for differentiating, edge directions should be
calculated as follows, which is a rotation of 135°.

E =

[
−
√
2
2 −

√
2
2√

2
2 −

√
2
2

]
V (6)

2.2 Position and Direction Accumulation

A selective accumulation method is used to calculate a set of ERs for each cell.
As mentioned above, an ER should refer to an edge passing through the cell. In
the case that the cell contains a single linear edge (shown in figure 2(a)), the ER
is simply extracted by averaging the position and edge vectors of the pixels inside
the cell belonging to the edge. As the complexity of the cell contents increases,
simple averaging fails as shown in figure 2(b). It is then required to distinguish
between multiple edges using a more general clustering algorithm.

(a) Single Edge Case (b) Multiple Edge Case

Fig. 2. Average gradient direction and position in a cell. Averaging fails when multiple
edges appear inside a cell (b) but works in the single edge case (a).

The problem cannot be solved in general form without a noticeable increase
in the amount of calculations. We noticed that a partial solution should be
enough for RoboCup use. Figure 3 presents some examples commonly observed
in RoboCup scenario. Samples are overlaid with edge direction vectors. An often
observed case is a field line or a side pole included with both side edges inside a
single cell. The other but less frequent observation is a more or less 90° corner
as a result of either an intersection between two lines or a part of a rectangular
object. Thanks to 360° representation of the gradient direction, it is possible
to separate the edges in a majority of the cases based only on the direction

Gradient Vector Griding 89

information. Note that the edges of an object such as a field line form two
complement directions although they are parallel in the image.

Fig. 3. Common examples of multiple edge distribution in RoboCup scenario.

The algorithm described in figure 5(a) is developed based on this idea. As
a matter of optimization it is preferred to have a one-pass algorithm so that
it can also be implemented without an entire image buffering. The algorithm
functions as follows: The image is scanned pixel by pixel. Two ERs are used in
this implementation. Each ER contains a position, an orientation accumulator
and a pixel counter. An edge pixel is joined to the first ER when its gradient
orientation is closer than a certain distance to the average orientation of the ER.
Otherwise it is compared to the second ER, and in the case of no match it is
ignored. An empty ER will obviously be filled with the first edge pixel met. The
angle distance is defined in equation 7.

|θ1 − θ2| =

|θ1 − θ2 + 360| θ1 − θ2 < −180
|θ1 − θ2 − 360| θ1 − θ2 > 180

|θ1 − θ2| otherwise

. (7)

As a further optimization to the algorithm it is possible to replace the polar
representation of the gradient vector with a cartesian one, i.e. using directly the
edge vector (ex, ey) instead of its orientation θ.

The implementation of angle distance thresholding will then be replaced with
thresholding the inner product V1 ·V1 = |V1||V2| cos θ = ex1

ex2
+ ey1

ey2
of the

vectors V1 and V2 as shown in equation 8.

V1 ·V2 > |V1| |V2| cos(thr) (8)

⇔ ex1
ex2

+ ey1
ey2

>
√
e2x1

+ e2y1

√
e2x2

+ e2y2
cos(thr) (9)

90 Hamid Moballegh, Naja von Schmude, and Raúl Rojas

This saves the dynamic calculation of the arctan 2 function needed in the polar
presentation. According to the CPU documentation, 32 bit multiplication can be
performed in one cycle. However the normalization of the vectors |V1| and |V2|
could cause performance problems, because the square root has to be calculated.

This can also be optimized away using the z component of the cross product
V1 × V2 = |V1||V2| sin θn, where n represents the normal vector to V1 and
V2. As the vectors are defined in R2, we use zero as z component of Vi, so the
calculation of the cross product results in

V1 ×V2 =

 ex1

ey1

0

×
 ex2

ey2

0

 =

 0
0

ex1
ey2
− ey1

ex2

 . (10)

We can now write |(V1 ×V2)z| = |V1||V2| sin θ = |ex1ey2 − ey1ex2 |. As tan θ =
sinθ/ cos θ, the sinus and cosine function can be replaced with the cross and
inner product described above.

tan θ =

|(V1×V2)z|
|V1||V2|
V1·V2

|V1||V2|
=
|(V1 ×V2)z|

V1 ·V2
=
|ex1

ey2
− ey1

ex2
|

ex1ex2 + ey1ey2

(11)

To avoid the division, we multiply the tangents with the cosine part and the
final angle thresholding of the vectors is then given in equation 12.

|(V1 ×V2)z| < V1 ·V2 tan(thr) (12)
⇔ |ex1ey2 − ey1ex2 | < ex1ex2 + ey1ey2 tan(thr) (13)

Using this technique, vector angle thresholding is done with only four integer
multiplications having a great impact on the performance of the algorithm.

The grid structure can be chosen overlapped, i.e. each cell also covers half
of every neighboring cell. This increases the smoothness of the results but is
computationally more expensive.

2.3 Connection Graph Extraction

A list of ERs is produced through a single image scan. A connection graph should
be calculated by scanning the grid and comparing ERs of neighboring cells. The
graph is implemented using an extra field in the cell structure pointing to the
following neighbor ER called “outbound” and a boolean field indicating that the
ER is added to the trace called “inbound”.

The algorithm is shown in figure 5(b). Upon two conditions two neighbor
ERs are marked as connected. The first condition verifies that both ERs are
in the same direction. This condition is however not enough as it also holds
true for separate parallel edges. Therefore the second condition verifies that
the vector connecting the ERs is also in the same direction as both ERs. By
adjusting the thresholds the maximum accepted curvature of the edge trace can
be determined. Both conditions can be optimized using the technique described

Gradient Vector Griding 91

(a) Cond1 does
not hold. Cond2
does not hold.

(b) Cond1 does
not hold. Cond2
holds.

(c) Cond1 holds.
Cond2 does not
hold.

(d) Cond1 holds.
Cond2 holds.

Fig. 4. Examples of connected and unconnected neighbors.

in the last section. Note that for the second condition the edge direction should be
used. Figure 4 demonstrates different examples of neighboring ERs. A connection
is only accepted in example 4(d).

The internal loop of the algorithm breaks as soon as a connection is found.
This guarantees that every node in the connection graph has an out degree of at
most one. It is encouraged also to reduce the in degree of the nodes to at most
one. This is implemented by refusing a connection if the destination node has
already been connected by checking its inbound property.

It is theoretically not guaranteed that the connection graph becomes free
from loops, however if a loop exists it should be the result of an uninterrupted
semi-circular edge in the image which does not usually appear in RoboCup
images.

2.4 Edge Trace Extraction

The final stage of the algorithm produces an array of edge traces. Each compo-
nent of the array is a connected ER chain. The algorithm is demonstrated in
figure 5(c). It searches the graph for source nodes, which are simply ERs with
the inbound property not set. Upon a match, the trace is followed using the
outbound pointers and the matching ERs are pushed in the trace.

3 Implementation and Experimental Results

The algorithm was implemented as the low level part of the vision software
for participation in RoboCup 2010. Two ERs are calculated per cell. The grid
contains 40× 30 non-overlapping cells, each covering 256 pixels of the captured
image.

To achieve the required frame rate and still have enough CPU power free for
other processes running, the following optimizations are applied to the algorithm.

92 Hamid Moballegh, Naja von Schmude, and Raúl Rojas

(a) Position and direction
accumulation algorithm.

(b) Connection graph extrac-
tion algorithm

(c) Edge extraction algo-
rithm

Fig. 5. Algorithms

Gradient Vector Griding 93

Quarter resolution scan Color digital cameras usually provide images with a
so called “Bayer pattern”. A VGA image contains therefore 640× 480 single
channel values. This is 1/3 of the information recorded in common RGB pat-
tern. The remaining values are interpolated in such representations. Hence
it is possible to skip every other pixel and every other image line without a
distinct loss of information.

Over horizon skip The only objects which partly appear over the horizon are
the landmarks and other robots. To detect and calculate the position of
these objects it is always enough to find the lowest point belonging to them.
Therefore there is no need to detect objects over the horizon. As the camera
is equipped with a wide angle lens, the horizon is projected as a curve in
the captured image. This can however be estimated with a horizontal line
touching the actual projection in the top-most point. There are different
methods to calculate the horizon in the image. Two solutions currently used
in FUmanoids are IMU sensors and field range detection. Upon detection of
the horizon, scanning the image can vertically begin from this line.

Out of circle skip Fish eye optics used in FUmanoid robots project the image
inside a circle. The rest of the imaging surface is covered with black pixels.
This effect can be observed in figure 6. It is possible to skip these pixels by
calculating the horizontal extents for each image line.

Random line skip Apart from the fish-eye optics deformation, the camera pro-
vides a perspective view of the field. Therefore much more information is
available from near objects, observed in the lower area of the image, than
from far ones appearing in the upper area. Due to this fact it is possible
to ignore more and more lines as the scan gets closer to the bottom of the
image. This is done by comparing a uniformly distributed random number
with a dynamic threshold calculated form the scan lines Y coordinate. The
following formula is used to skip a line:

r < Y/640 (14)

Here r is a random real number between 0 and 1 and Y is the vertical
component of the scan line coordinate.

Implementation results are summarized in table 1 on two available processor
platforms. The first platform is Gumstix Verdex Pro which is equipped with a
600 MHz PXA270 and the second platform is a Gumstix Overo with a 720 MHz
OMAP3 3530 processor. Each row of the table shows the optimization added
to the last state. The last row shows the highest optimization level achieved by
applying all described techniques.

A standard test procedure is used for this performance measurement. The
robot is placed upright on one of the penalty points directed to the goal placed on
the other side of the field as shown in figure 6(c). Two parameters are measured,
which together show the performance of the algorithm. These are processed
frame rate and CPU usage. Since the camera delivers a limited number of frames
per second and the CPU is also capable of performing a limited amount of
processing, there are two possible scenarios.

94 Hamid Moballegh, Naja von Schmude, and Raúl Rojas

(a) Visualization of the ERs.

(b) Extracted edges overlaid on the test image.

(c) Typical results of the test case.

Fig. 6. Implementation results of GVG

Gradient Vector Griding 95

1. A frame can be entirely processed before the next frame is available. In this
case the processor goes idle and the CPU shows less than 100% of usage.
Frame rate remains constant in this mode and CPU usage is used as the
indicator of the performance.

2. A new frame gets available while the last frame is still being processed. This
leads to a frame buffer overflow, which is in turn handled with dropping
frames. CPU is never idle in this case and the usage indicator shows always
100%. Frame rate is then used as the performance indicator.

Gumstix Overo Gumstix Verdex
Frame rate CPU usage Frame rate CPU usage

(FPS) (%) (FPS) (%)
No optimization 12 100 10 100
Quarter res. scan 18 100 14 100
+Over horizon skip 20 100 17 80
+Out of circle skip 26 80 17 75
+Random line skip 26 65 17 60

Table 1. GVG Implementation Results

Using the Canny algorithm from the OpenCV implementation as edge detection,
the described test procedure shows the results listed in table 2. Compared to
the GVG, the Canny edge extraction is slower by a factor of 10. The Canny
algorithm also only results a bitmap of the edges and doesn’t perform any edge
grouping, so this has to be done additionally. Therefore we can conclude that
the GVG algorithm significantly outperforms the standard Canny procedure in
the RoboCup scenario.

Gumstix Overo Gumstix Verdex
Frame rate CPU usage Frame rate CPU usage

(FPS) (%) (FPS) (%)
Canny 2.7 100 1.5 100

Table 2. Canny Implementation Results

Figure 6(a) shows the visualization of the ERs for a typical image captured by
the robot. Despite the rough grid a relatively high level of detail is detected. In
figure 6(b) the result of the edge trace extraction is demonstrated for field lines.

96 Hamid Moballegh, Naja von Schmude, and Raúl Rojas

4 Conclusion

In this work we introduced an edge detection and grouping method based on gra-
dient vector directions. The method was described and some key ideas to increase
the performance of the method in each stage were presented. Implementation
results and issues were given and discussed in the paper. It was shown as well
that the new algorithm outperforms the Canny edge detector in the RoboCup
scenario.

The developed method was successfully used as the pixel-level processor in
the vision system of the RoboCup team FUmanoids in 2010. The results provided
by this method facilitated robust object recognition as well as rapid localization
of the robot. The team won the second place of the Humanoid Kid-Size compe-
tition.

References

1. Bais, A., Sablatnig, R., Novak, G.: Line-based landmark recognition for self-
localization of soccer robots. In: Proceedings of the IEEE Symposium on Emerging
Technologies. pp. 132–137 (2005)

2. Bandlow, T., Klupsch, M., Hanek, R., Schmitt, T.: Fast image segmentation, object
recognition and localization in a robocup scenario. In: RoboCup-99: Robot Soccer
World Cup III, LNCS, vol. 1856, pp. 111–128. Springer Berlin / Heidelberg (2000)

3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. IEEE
Computer Society Conference on Computer Vision and Pattern Recognition 1,
886–893 (2005)

4. Farag, A.A., Delp, E.J.: Edge linking by sequential search. Pattern Recognition
28(5), 611–633 (1995)

5. Gunnarsson, K., Wiesel, F., Rojas, R.: The color and the shape: Automatic on-line
color calibration for autonomous robots. In: RoboCup 2005: Robot Soccer World
Cup IX, LNCS, vol. 4020, pp. 347–358. Springer Berlin / Heidelberg (2006)

6. Heinemann, P., Sehnke, F., Streichert, F., Zell, A.: Towards a calibration-free robot:
The act algorithm for automatic online color training. In: RoboCup 2006: Robot
Soccer World Cup X, LNCS, vol. 4434, pp. 363–370. Springer Berlin / Heidelberg
(2007)

7. Mayer, G., Utz, H., Kraetzschmar, G.: Towards autonomous vision self-calibration
for soccer robots. In: Proceedings of the 2002 IEEE/RSJ Intl. Conference on In-
telligent Robots and Systems (2002)

8. Röfer, T., Jüngel, M.: Fast and robust edge-based localization in the sony four-
legged robot league. In: RoboCup 2003: Robot Soccer World Cup VII, LNCS, vol.
3020, pp. 262–273. Springer Berlin / Heidelberg (2004)

9. Schulz, H., Liu, W., Stückler, J., Behnke, S.: Utilizing the structure of field lines
for efficient soccer robot localization. In: Ruiz-del Solar, J., Chown, E., Plöger,
P. (eds.) RoboCup 2010: Robot Soccer World Cup XIV, LNCS, vol. 6556, pp.
397–408. Springer Berlin / Heidelberg (2011)

10. Strasdat, H., Bennewitz, M., Behnke, S.: Multi-cue localization for soccer playing
humanoid robots. In: RoboCup 2006: Robot Soccer World Cup X, LNCS, vol. 4434,
pp. 245–257. Springer Berlin / Heidelberg (2007)

11. Wasik, Z., Saffiotti, R.: Robust color segmentation for the robocup domain. In:
Proc. of the Int. Conf. on Pattern Recognition (ICPR). pp. 651–654 (2002)

