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Abstract. Autonomous industrial robots need to recognize objects ro-
bustly in cluttered environments. The use of RGB-D cameras has pro-
gressed research in 3D object recognition, but it is still a challenge for
textureless objects. We propose a set of features, including the bounding
box, mean circle fit and radial density distribution, that describe the
size, shape and colour of objects. The features are extracted from point
clouds of a set of objects and used to train an SVM classifier. Various
combinations of the proposed features are tested to determine their influ-
ence on the recognition rate. Medium-sized objects are recognized with
high accuracy whereas small objects have a lower recognition rate. The
minimum range and resolution of the cameras are still an issue but are
expected to improve as the technology improves.
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1 Introduction

As industrial robots become increasingly autonomous there is a need for so-
phisticated perception capabilities. In controlled industrial settings where the
environment is well described, perception tasks are simplified since assumptions
can be made about the location of objects. As a result of assuming the object
location is known, object recognition may not be required and object detection
may be sufficient. However, with mobile robots, the same simplifications cannot
be made since there is more uncertainty about the environment. Although the
general locations of objects are known, the robot can no longer rely on being
precisely localized in the environment. To compensate for this, there is a greater
emphasis on performing complex perception tasks such as object recognition.

The availability of low cost RGB-D cameras has progressed research in 3D
object recognition significantly. However, industrial objects pose a challenge for
existing object recognition approaches due to their nature. Objects such as pro-
files, nuts, screws and bolts tend to be textureless, of homogeneous colour and,
in some cases, quite small. Many are simple geometric shapes made of metal or
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plastic and often do not have particularly distinguishable features. There are also
similarly shaped objects with only size or colour differentiating them. Existing
state of the art 3D recognition algorithms rely on having sufficiently detailed
point clouds of objects in order to extract features such as surface normals,
colour gradients etc. For small objects, this is a challenge due to the minimum
range of RGB-D cameras and their resolution.

RoboCup@Work [9] and RoCKIn@Work [4] are both robotic competitions
which focus on mobile manipulation challenges relevant for small and medium
sized industrial factory settings. In larger, traditional factories, machinery, ser-
vice areas and robots can be fixed for long term production where the factory
layout and production process is not expected to change frequently. In small fac-
tories settings, specifically Factories of the Future [1] which can adapt quickly
and dynamically to meet production demands, a particular service area may
serve multiple purposes through the production process. Service areas are loca-
tions where manipulation and perception tasks are performed. They are general
purpose areas which may be shared with humans. As such, service areas can be
cluttered and the location of objects on them not precisely known.

In RoboCup@Work, several tasks involve grasping objects that are placed
on service areas among other objects. The objects need to be recognized and
transported to different locations based on the task specification. In some cases,
objects need to be inserted into containers or cavities. Some examples of the
industrial objects used in the competition can be seen in Figure 1.
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black profile

(b) Small grey
profile

(c) Large
black profile

(d) Large grey
profile

(e) Bolt

(f) Bushing (g) Small nut (h) Large nut (i) Bearing
box

(j) Bearing

(k) Axis (l) Distance
tube

(m) Motor (n) Blue con-
tainer

(o) Red con-
tainer

Fig. 1: Object set used in the RoboCup@Work competition [3]



Currently, this is the exact set of objects used, and there are no variations
among each type.

The task of object recognition usually involves an offline training phase and
an online recognition phase. In the training phase, representative samples of
the objects are collected. For 3D recognition systems, this is typically point
clouds of the objects taken from several views. Descriptive features are then
extracted from the samples and used to train a classifier or save templates.
During the recognition phase, an unknown object is segmented from the scene
and the identical features are extracted from it. The features are then fed into the
classifier or template matcher which returns the identifier of the best matched
object from the previously trained objects.

As seen in Figure 2, the point clouds generated by the RGB-D camera are
noisy and does not capture all the small details of the objects. The small size and
inadequately descriptive point clouds make the task of recognizing such objects
a challenging one. For example, the large aluminium profile is only 10 cm x 4
cm x 4 cm, and the distance tube is 1 cm high with a radius of 1.6 cm. They
are quite small in the field of view of the camera and the number of points that
represent the object is quite low in some cases. In this paper, we focus on the
extraction of descriptive features for textureless objects and test the approach
using the objects in Figure 1.

The paper is structured as follows: We review related work in Section 2,
describe our approach in Section 3 and finally present the results in Section 4.

2 Related Work

Object recognition using 3D point clouds can be broadly categorized into global
and local feature-based methods. Global feature descriptors are computed for
the entire object point cloud whereas local descriptors are calculated for indi-
vidual points in the cloud. For example, the Point cloud library (PCL)[12] has
implementations for local descriptors such as Point Feature Histogram (PFH),
Radius-based Surface Descriptor (RSD), Signatures of Histograms of Orien-
tations (SHOT) and global descriptors such as Viewpoint Feature Histogram
(VFH), Ensemble of Shape Functions (ESF) and Global Fast Point Feature His-
togram (GFPFH). These descriptors calculate relationships between points such
as distances, angles of surface normals etc. and build histograms to represent the
distribution of these relationships for each object. During the recognition phase,
the stored descriptors are compared with descriptors calculated on the unknown
scene and object using methods such as nearest neighbour search.

LINEMOD[5] is an example of a template-based recognition method. It pro-
vides a framework for combining different modalities to create a template. In the
original implementation, colour gradients and surface normals were combined to
form templates. The templates are later used to recognize and localize objects
in an unknown scene.

In [15], a global descriptor called Viewpoint oriented Colour-Shape Histogram
is described. The shape descriptors are based on the relationship between points



and the centroid of the point cloud. Four features (two distances and two angles)
for each point are measured and used to build the histogram.

In [7], the authors use colour descriptors, edge descriptors and shape descrip-
tors as features for their fruit classifier. The shape descriptors include compact-
ness, symmetry, local convexity and smoothness defined by Karpathy et al.[8],
and image moment invariants defined by Hu [6].

Mustafa et al,[10] describe a multi-view object recognition system for a con-
trolled industrial setting. They construct shape descriptors using 2D histograms
of measures such as Euclidean distance, angles and normal distance between
pairs of texlets (which describe local properties of a textured surface). Appear-
ance descriptors are constructed using 2D histograms of the H and S components
of texlet colour in the HSV colour space. Although they achieved a good recog-
nition rate, small-sized objects were the cause of some of the miss-classifications.

The feature descriptors used in most of the methods tend to be bottom-up
approaches. They try to capture a signature for objects using the distribution
of features measured at the point level. In this paper, we describe global feature
descriptors without using relations for individual points. Instead we try to cap-
ture the most salient features for an object by means of fitting bounding boxes,
circles etc. Although some level of detail is still required in the point clouds, very
small details are of less importance.

3 Approach

3.1 Segmentation

The service areas for RoboCup@Work tasks are flat surfaces on which objects
are placed with a minimum distance of 2 cm between them [3]. The robot is
positioned in front of the service area such that the arm-mounted 3D camera
has a full or partial view of the workspace. A previously developed pipeline is
used to detect the plane of the workspace, segment the points above the plane
and cluster them based on Euclidean distance [2]. These point cloud clusters,
which represent the objects on the workspace, form the input for the object
recognition component developed here.

3.2 Data Collection

A set of point clouds for each object is collected for training and testing using
the segmentation method explained above. Figure 2 shows some of the point
clouds collected using an Asus Xtion PRO Live1 RGB-D camera.

The objects are placed in various positions and orientations on the workspace
while building the dataset. The camera is mounted on a stand at the approx-
imate height and distance from the workspace as an arm-mounted camera on
the robot. This allows the subsequently extracted features to be representative
of all positions and orientations within the workspace. Hence, during runtime,

1 https://www.asus.com/3D-Sensor/Xtion PRO/



(a) Axis (b) Large nut (c) Large black profile

Fig. 2: Sample point clouds for a) Axis b) Large nut and c) Large black profile

the camera needs only to be approximately positioned in front of the workspace.
The point clouds are translated to be centred at the origin and rotated such that
the x, y and z axes align with the first three principal axes (retrieved using prin-
cipal component analysis (PCA)) of the point cloud. This renders the extracted
features invariant to the original pose of the object. Since the perceived colour
of the objects is partially dependent on the lighting, it is expected that the point
clouds are collected in the environment in which the objects will be used.

The set of point clouds used for training and testing are available online2

3.3 Features

Size and colour are the most salient features observable in point clouds. Addi-
tionally, circularity and the distribution of mass about the longitudinal axis also
allow us to differentiate between a large set of various objects. Keeping this in
mind, the following features are extracted from each object point cloud:

Bounding box The oriented bounding box of the points is calculated and
returns the length, width and height of the point cloud and hence describes the
size of the object.

Colour Since the colour of the objects are more or less homogeneous, only the
mean and median colour are calculated. The red, green and blue channels of the
colour component of each point are represented as a single floating point number
as in PCL. The median and mean colour of the point cloud are calculated using
this floating point representation.

Point cloud size The number of points in the object point cloud is indicative
of the size of the object but is also dependent on the distance of the object from
the camera. However, since the distance of the camera from the objects does not
change drastically, this feature is also considered.

2 https://github.com/sthoduka/atwork object dataset



Circularity Although the bounding box captures the size of the object, it
treats every object as a rectangular cuboid. Since cylindrical objects such as
nuts, bearings and bushings are common in industrial settings, the circularity of
an object is an important feature as well.

– Mean circle radius: In order to measure the circularity of an object, a
circle is fit on the x-y plane of the point cloud based on the mean squared
distance of all points from the centre. The radius of this circle is indicative
of the size of the object.

– Radial density distribution: Points are projected onto 36 equal segments
of the circle to form a radial histogram. This distribution describes how
round an object is. As seen in Figure 4, cylindrical objects (such as the nut)
have a more uniform distribution whereas the distribution for longitudinal
objects (such as the bolt) is more skewed along the principal axis. The radial
density is calculated as ∑N

j=1
kj

max k

N
(1)

where N is the number of bins in the histogram k.
A comparison of the radial density distribution for objects that are circular
and non-circular in the X-Y plane is shown in Figure 3.

– Outlier/inlier error ratio: The outlier error to inlier error ratio is calcu-
lated as ∑No

j=1
dist(poj)

No∑Ni

k=1
dist(pik)

Ni

(2)

where po and pi are the points outside and inside the circle, No and Ni are
the sizes of each set of points and dist(x) is the distance of point x from the
circumference of the circle. This ratio measures the hollowness of the object,
with objects such as the nuts having a higher ratio compared to the motor.

Distribution of mass along principal axis Almost all of the longitudinal
objects have an identical cross-section along their principal axis with the excep-
tion of the bolt and the axis. In order to differentiate these objects from the
rest, the same circularity features, radius, radial density and outlier-inlier ratio,
are calculated on eight slices along the principal axis. This adds an additional
24 features to the set.

Centre of mass offset Another feature considered is the offset between the
centre of mass and the geometric centre of the object. This offset is higher for
objects such as the bolt and axis which are not symmetric about the y-z plane.
Figure 5 visualizes the bounding box, the circle fit on the x-y plane and the
circles fit on the slices. The thickness of the visualized circles is proportional to
the radial density. Although the small black profile and the bolt are very similar



Fig. 3: Radial density distribution on the X-Y plane for cylindrical and non-
cylindrical objects

(a) Motor (b) Large nut (c) Bolt

Fig. 4: Radial density distribution for a) Motor b) Large nut and c) Bolt

(similar bounding box, colour, mean circle radius etc.), the cap of the bolt is
clearly identifiable by the larger circle compared to the similar-sized circles in
the profile. Figure 6 shows the distribution of circle radii for the end slices and
the remaining slices in the middle for the two objects. The larger range of radii
for the bolt at the ends is likely to improve the classification between these two
objects.

3.4 Training

A set of point clouds was collected for all objects in Figure 1 and was split into
training and test data. A total of 34 features was extracted from the training data
set. Various combinations of features, as described in Section 4, were considered
in order to compare the impact of the different features on the classification rate.
The feature set was standardized and used to train a multi-class support vector
machine (SVM) classifier [11] with a radial basis function kernel.



(a) Axis (b) Small black profile (c) Bolt

Fig. 5: Bounding box and mean circle features for a) Axis b) Small black profile
and c) Bolt

(a) Circle radius for end slices (b) Circle radius for middle slices

Fig. 6: Differences in slice circle radii for small black profile and bolt

3.5 Testing

In order to test the classifier, feature vectors are calculated on the test data
and input to the classifier which returns a list of probability estimates for each
object. The object with the highest probability is selected and a threshold is
applied to increase the confidence of classification. If the probability is below
the threshold, the object is said to be unclassified.

4 Results

In order to test the effectiveness of different features on the classification rate,
the features were split into four categories described in Table 1. Six different
combinations of feature categories were used to create different classifiers. The
results of the different classifiers are presented in Table 2. A probability threshold
of 0.5 was used to discard low-probability classifications (indicated as unclassi-
fied objects). Although using the probability threshold reduces the overall true
positive rate, it lowers the false positive rate as well. However, the consequence
of an incorrect classification is not as easy to fix as not recognizing an object
at all. For example, if the robot does not recognize an object, it can attempt to



Table 1: Feature categories

Category Description Features

A Bounding Box length, width, height
B Colour median and mean colour
C Point cloud size number of points
D Mean Circle centre of mass offset, radius, radial

density, outlier-inlier ratio for the x-
y mean circle and circles along the
principal axis

Table 2: Overall classification results using different combinations of features.

Features
True Positive

Rate
False Positive

Rate
Unclassified

A, B 0.88 0.04 0.08
A, B, C 0.9 0.03 0.07
A, B, C, D 0.89 0.03 0.08
A, B, D 0.89 0.03 0.08
B, C, D 0.86 0.04 0.1
B, D 0.86 0.04 0.1

A - Bounding box, B - Colour, C - Point cloud size, D - Mean circle

view the object from a different angle to try again. If the robot were to transport
an incorrect object, it can cause a cascade of errors in subsequent tasks. The
true positive rates for individual objects are presented in Table 3. In addition,
the classification results using the local and global descriptor object recognition
pipelines from PCL are presented for comparison. Signature of Histograms of
OrienTations (SHOT) [13, 14] with colour is used as the local descriptor and
Ensemble of Shape Functions (ESF) [16] is used as the global descriptor. The
poor performance of these methods is likely due to the small sizes of the clouds,
making finding keypoints and the calculation of normals and surface properties
harder. Since ESF does not consider colour, misclassifications between objects
with only colour differences were considered correct.



Table 3: True positive rates for individual objects.

Object A, B
A, B,

C
A, B,
C, D

A, B,
D

B, C,
D

B, D SHOT ESF

Small black profile 0.99 0.99 1.0 0.99 0.95 0.95 0.73 0.5
Small grey profile 1.0 1.0 0.96 0.95 0.81 0.8 0.65 0.41
Large black profile 1.0 1.0 1.0 1.0 1.0 1.0 0.42 0.33
Large grey profile 1.0 1.0 1.0 1.0 1.0 1.0 0.06 0.51
Bolt 1.0 0.97 0.98 0.98 0.87 0.85 0.68 0.68
Bushing 0.88 0.89 0.89 0.89 0.83 0.84 0.52 0.16
Small nut 0.31 0.32 0.48 0.5 0.42 0.43 0.47 0.0
Large nut 0.99 0.99 0.97 0.97 0.96 0.96 0.98 0.77
Bearing box 1.0 1.0 1.0 1.0 1.0 1.0 0.17 0.23
Bearing 0.74 0.73 0.65 0.65 0.58 0.61 0.34 0.02
Axis 0.66 0.8 0.75 0.77 0.76 0.78 0.1 0.1
Distance tube 0.78 0.91 0.77 0.75 0.74 0.74 0.0 0.8
Motor 0.8 0.89 0.93 0.92 0.93 0.91 0.75 0.24
Red container 0.99 1.0 1.0 1.0 1.0 1.0 0.25 0.3
Blue container 1.0 1.0 1.0 0.99 0.99 0.99 0.94 0.4

A - Bounding box, B - Colour, C - Point cloud size, D - Mean circle, SHOT - Signature
of Histograms of OrienTations, ESF - Ensemble of Shape Functions

The larger objects, such as the profiles, containers and bolts, are recognized
with high accuracy. The small nut, bearing and distance tube have low classifica-
tions rates, likely due to their similarity. The misclassifications show that these
are often confused with each other.

Introducing the mean circle features improves the recognition rate of the
small nut, but marginally decreases the rate for the distance tube and bearing.
The mean and median colour successfully classifies the identically shaped profiles
and containers.

It is surprising that the point cloud size significantly increases the recognition
rate of objects such as the axis and distance tube. It is, however, the least
generalisable feature since it is dependent on the camera resolution and distance
between the object and camera.

It is observed that adding more features is not always better. Adding irrele-
vant features increases the likelihood that the classifier over-fits to the training
data. This makes the classifier less generalisable and it performs poorly on new
data. A minimal set of features that are able to distinguish between objects
should be selected.



5 Conclusions and Future Work

The proposed features and classifier are able to identity some of the objects
with a high accuracy, but perform poorly for some of the smaller objects. The
features, although designed based on the objects defined for RoboCup@Work,
are sufficiently general that they can be applied to objects of the same class
as those presented here. However, if variations of the some object classes (such
as profiles) are present, an additional classification method may be required to
distinguish between variants. It is trivial to add more features to the classifier
if there is a need. However, care must be taken not to over-fit the classifier
to the training data. The addition of 2D image features such as corners, edges
and contours is a possible improvement to this method. With the continuous
improvement of RGB-D cameras, the quality of the point clouds are expected to
improve as well. Consequently, the performance of the method is also likely to
improve.
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