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Abstract. Autonomous robot soccer requires effective multi-agent planning and
execution, which ultimately relies on successful skill execution of individual team
members. This paper addresses the problem of ball-manipulation for an individ-
ual robot already in possession of the ball. Given a planned pass or shoot ob-
jective, the robot must intelligently move the ball to its target destination, while
keeping it away from opponents. We present and compare complementary ball-
manipulation skills that are part of our CMDragons team, champion of the 2015
RoboCup Small Size League. We also present an approach for selecting the ap-
propriate skill given the state of the world. To support the efficacy of the approach,
we first show its impact in real games through statistics from the RoboCup tour-
nament. For further evaluation, we experimentally demonstrate the advantages of
each introduced skill in different sub-domains of robot soccer.

1 Introduction

The RoboCup Small-Size League (SSL) is a multi-robot domain consisting of teams
of six robots that play soccer in a highly dynamic and adversarial domain. Overhead
cameras track the positions of the ball and each robot, which are fed into a centralized
computer shared by both teams [8]. Each team must autonomously coordinate their
robots and manipulate the ball to score more goals than the opponent and win. Both
team coordination and individual skills are important aspects of this problem. This pa-
per addresses the latter, focusing on planning and execution for opponent-aware ball
manipulation.

To plan tractably in a domain as complex and time-sensitive as robot soccer, one can
separate the team planning aspect of the problem –e.g., to whom and where the robot
controlling the ball should pass– from the execution of the plan –e.g., how to pass/move
the ball to the chosen teammate– [3]. This paper focuses on the individual’s plan and
the execution of it: we address the problem of a robot that is tasked with moving the
ball to a specific target location under opponent pressures. This location is assumed to
be given by a separate team planner, but the robot can evaluate different methods of
achieving its task, given its ball-manipulation skills.

To manipulate the ball, most teams in SSL have converged to similar mechanisms:
a kicker to impart momentum on the ball, and a dribbler bar to dribble the ball (see
Figure 1). Their ball-manipulation skills thus depend on these mechanisms, and the
optimal skill depends on the state of the opponents: kicking the ball to its target is a
highly accurate method of moving the ball, provided no opponents are nearby to steal
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Fig. 1: CMDragon’s robot, with a ball touching its dribbler bar (horizontal black cylinder). The
dribbling bar can be spun to put backspin on the ball for semi-control.

the ball before the kick, or to intercept it before it reaches its destination. Alternatively,
the robot can dribble the ball to a better location before kicking, which is less reliable
in the absence of opponents, due to the risk of losing the ball while dribbling, but may
be better than directly kicking it if there are opponents nearby.

This paper illustrates the effect of different skills, by using the mechanisms above in
different complementary ways to create opponent-aware ball-manipulation plans. First,
we specify four macro-skills that the robot can take: align to shoot the ball, align to
shoot using the dribbler, move the ball to a more beneficial location using the dribbler,
and kick the ball. We define in detail the algorithms and physical limitations of these
skills. Then, we use a skill decision algorithm to select among these skills depending
on the state of the opponents.

We provide evidence of the efficacy of our approach using two methods: statistics
gathered from the RoboCup 2015 competition, and in-lab experiments. The RoboCup
statistics provide evidence of the effectiveness of the approach in real competitive
games. To collect experimental data in a more controlled setup, we ran repeated exper-
iments of various soccer scenarios that illustrate the advantages of each of the defined
skills. These experiments show that the various skills are successful in different scenar-
ios, which supports the need for an opponent-aware decision process among the skills,
as well as within each skill.

Research into accurate dribbling has been previously studied as a way of maintain-
ing control over the ball while navigating. Researchers have used modified potential
fields to avoid non-moving obstacles along with constraints on motion to dribble in
the RoboCup Middle-Size League [4]. Similar to our omnidirectional soccer robots, re-
searchers have analyzed the kinematics and control needed for dribbling a ball along a
path [6]. The only research that models the dynamics of a multi-body environment uses
a physics-based robot motion planner [9]. The downfall of this approach is the enor-
mous computational cost of modeling and predicting every robot in the environment.
Our work is unique in that it focuses on developing a method of ball-manipulation with
opponent awareness while still being computationally feasible in real-time.

2 Problem

In the robot soccer problem, each robot in the team must be able to effectively perform
the individual skills selected by the team. In this paper, we assume that a robot ρ at
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location pρ, currently in possession of the ball, must move the ball from its current
location pb to a target location pt, chosen by a separate team planner [7]. Thus, the
robot needs to decide how to best move the ball to pt.

Our robots can manipulate the ball via two mechanisms: (i) a kicker enables the
robots to impart momentum on the ball and thus perform shots or passes, and (ii) a
dribbler bar enables the robots to impart backspin on the ball, and thus drive while
maintaining contact with the ball. Kicking the ball enables the robots to move the ball
quickly, but without protecting it. Dribbling the ball enables them to move the ball while
guarding it; however, this method of moving the ball is slower, and it sometimes fails
due to the robot losing control of the ball.

Due to the hardware design of the robots, the robot must have the ball immediately
in front of it to be able to dribble it or kick it –i.e., the robot must face in direction
φ = (pb − pρ), and be at a distance of approximately rρ + rb from the ball, where
rρ and rb are the radius of the robot and ball, respectively. Furthermore, the robots are
only capable of kicking in the forward direction φ. Thus, to execute a pass or a shot,
the robot must be facing both the ball and the target location pt.

To intelligently decide how to move the ball to pt, the robot must know (i) how to
use its dribbler and kicker effectively, and (ii) how to evaluate the probability of success
of different ways of using them. The use of the kicker and evaluating how likely it is for
a pass or a shot to be successful has been researched previously [2], and we use similar
techniques here. The following sections focus on our approach to using the dribbling
bar effectively, and how to best choose among different dribbling and kicking skills.

3 Individual Skills

This section covers the opponent-aware ball manipulation skills. First, possession and
alignment are defined, which formulate the robot’s requirement to remain in control
of the ball and to align to the target. Next, we describe the Skill Decision Algorithm,
which is an opponent-aware algorithm that implements the skills in an intelligent way.
Lastly, we detail the two new dribbling skills used in the Skill Decision Algorithm.

3.1 Possession and Alignment

Robot, ρ, has two conflicting objectives when in possession of the ball: aligning with
the ball towards its target (alignment), and maintaining possession of the ball from
the opponents (possession). In the previous CMDragon team, the focus was purely on
alignment which we define as

A =
φ

|φ|
·
(pt − pρ)
|pt − pρ|

< εa ∧ |pb − pρ| < εd (1)

such that it is aligned with the target angle by less than cos−1 (εa) and close enough to
the ball within some εd [1].

However, opponents introduce a threat that removes any guarantee on possession,
and, by only considering alignment, the ball is often stolen. This can be contributed to
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two factors: the arc travel time of ρ and the opponent’s proximity to the ball. Figure 2
demonstrates where the arc distance to alignment can take longer than the opponent’s
distance. In our simplified example, the opponent is very close in proximity to ρ and
has an easy opportunity to gain possession of the ball by heading directly to it.

dT

dρ

φ

ρ ρ2T

Fig. 2: ρ drives to a position near the ball
that aligns to pass to ρ2 while T drives di-
rectly to take the ball.

Mexit

dT
dρ

Menter

ρ T ρ2

Fig. 3: Variables used to determine if ρ
should drive directly to the ball since T is
threatening to take possession.

We define the objective of possession by describing dρ and dT as our robot’s and
the closest opponent robot’s distance to the ball respectively, Menter as a proportional
gain added to dρ, and Mexit as a constant distance from the ball. Shown in Figure 3, a
possession threat (P) is then defined to be true if

P = dρ + (dρ ∗Menter) > dT ∨ dT < Mexit (2)

Our approach always maintains possession before considering alignment. If there is a
possession threat then ρ drives directly to the ball and dribbles the ball. ρ is free to just
align itself if there is no threat.

3.2 Skill Decision Algorithm for Individual Skills

Based on the robot’s manipulation mechanisms, we have created four skills that can be
used to move the ball to its target:

kick (K): Kicks the ball to pt. The quickest method of moving the ball to the target.
align-non-dribbling (A¬D): aligns behind the ball by moving to the location pb +

(pb−pt)rρ
|pb−pt|

, where rρ is the radius of the robot. Shown in Figure 4.
dribbling-rotate (DR): Dribbles the ball by approaching the closest location pb +

(pρ−pb)rρ
|pρ−pb|

while facing the ball. It then quickly rotates to align to pt. Shown in
Figure 5.

dribbling-move (DM ): Dribbles the ball by approaching it directly, and then moves
the ball by pushing it toward pt, while avoiding obstacles. Shown in Figure 6.

The Skill Decision Algorithm (SDA), used by ρ at each time step, is shown in Al-
gorithm 1. The team-goal’s evaluation,E(pt), is determined by multiple factors includ-
ing: open angle, opponent interception time, and pass/shoot distance, which combines
to create a probability of succeeding [2]. If E(pt) is less than or equal to a threshold
δ then the skill DM is chosen to improve the current state, i.e., to improve the E(pt).
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If greater than δ then SDA checks alignment, A, with pt. If A then SDA kicks the ball
to pt. Otherwise, SDA checks if there is a possession threat, P, since aligning might
lose the ball. If P then SDA uses the skill DR to grab the ball, protecting it, while still
quickly aligning itself to kick to pt. Otherwise, SDA uses the more robust A¬D skill to
align itself around the ball.

Algorithm 1 Skill Decision Algorithm. Input: Team goal success probability, aligned
with ball and target, and possession threat. Output: Skill.

function SDA(E(pt), A, P)
if E(pt) <= δ then . Low success probability

s = DM . Move the ball to target location
else . Higher success probability

if A then . Checking alignment
s = K . Kick if aligned

else
if P then . Check if an opponent is near

s = DR . Dribble the ball before an opponent steals it
else

s = A¬D . We have time to align nicely
end if

end if
end if

return s . Skill to execute
end function

ρ
T ρ2

pt

ρ
T ρ2

pt
ρ T ρ2

pt

Fig. 4: Align-non-dribbling: drives around the ball to align to pass to target, pt, defined by the
circle.

3.3 Dribbling-Rotate

DR’s priority is to align to pt as quickly as possible. DR dribbles the ball while main-
taining an inward force to compensate for the centrifugal forces of the ball in order to
maintain control as shown in Figure 7. It faces in the direction φ that provides the nec-
essary centripetal force to maintain the ball on the dribbler of the robot: facing slightly
inwards while turning provides a component of the normal force from the robot that
always points towards the center of the circumference. Given the robot drives forward
with speed s while gradually changing its orientation with speed ω, forming a circle of
radius R, the constraint s = ωR holds in this case. The necessary angle offset φ can be
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ρ T
ρ2

pt
ρ
T

ρ2
pt ρ

T
ρ2

pt

Fig. 5: Dribbling-rotate: dribbles the ball and then turns to align to pass target, pt

ρ T ρ2

P 1 P
2

P 3

pt ρ T ρ2

P 1

P 2

pt ρ
T ρ2

P 1

pt

Fig. 6: Dribbling-move: dribbles the ball and pushes it along the path to pt while avoiding ob-
stacles.

obtained analytically by noticing that all the forces in Figure 7 need to cancel out in the
rotating reference frame. Therefore, we obtain the pair of equations:

|fN | sinφ = |fC |
|fN | cosφ = |fF | (3)

Then, given the acceleration of gravity g, the coefficient of friction of the carpet µ, and
the mass of the ball m (which cancels out in the end), we obtain:

|fN | cosφ = mω2R

|fN | sinφ = µmg (4)

Solving these equations for φ gives the result for the desired heading:

φ = tan−1(
ω2R

µg
) (5)

We estimated µ by starting from measurements of when the robot kicks the ball. Then
we locally optimized to the value that gives the best dribbling performance.

fN

fF

fCR

φ

Fig. 7: Robot dribbling ball while facing slightly inwards. There exists an angle φ for which the
forces are balanced.
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3.4 Dribbling-Move

DM ’s priority is to keep possession while driving towards pt and avoiding all opponents
and teammates. The priority of alignment naturally occurs as ρ drives toward pt as
shown in Figure 6. In Algorithm 2, DM determines if ρ has the ball by checking: (i)
if it is in front of ρ, Bfront, (ii) close to ρ, Bclose, and (iii) located somewhere on ρ’s
dribbler, Bondribbler. If ρ loses the ball then DM drives directly to the ball to regain
possession. The path used to drive to pt is generated by a Rapidly-exploring Random
Tree (RRT) where the opponents and teammates are obstacles, as defined in [5]. The
path is made of multiple intermediate locations, (P 1, P 2, ..., Pn−1,pt). After any point
Pn, DM is always slightly turning ρ’s forward direction towards the next point Pn+1

by some empirically tuned γ. This maintains control of the ball while dribbling and
moving. If the turning angle goes beyond a threshold, α, then DM stops and rotates in
place with the ball. α was empirically tuned by testing the limits of turning before the
dribbler lost the ball (α = 40◦ for our experiments). If there is a turning threat such
that an opponent, in close proximity, is in the direction ρ is turning, then it turns in
the opposite direction to protect the ball from being stolen [7]. DM is complete once it
arrives at pt.

Algorithm 2 Dribbling-Move. Input: State of the world, robot, ball, and target. Out-
put: Location and angle.

function Dribbling −Move(W , R B, pt)
Rb = Bloc −Rloc
Bfront = Rb.x > 0
Bclose = Rb.x < MaxRobotRadius+ (2 ∗BallRadius)
Bondribbler = |Rb.y| ≤ DribberWidth
Blost = ¬(Bfront ∨Bclose ∨Bondribbler)
{P 1, P 2, ...,pt} = RRT (pt,W )
T = TurningThreat(W )

if Blost then
{P 1, P 2, . . . ,pt} = RRT (B,W )

else if |Rangle − P 1
angle| > α ∨ |Rloc − P 1| < Dmin then

θ = P 1
angle

if T then
θ = P 1

angle + 180◦

end if
return {Rloc, θ}

end if
θ = Rangle + (Rangle − P 1

angle) ∗ γ
return {P 1, θ}
end function
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4 Results

4.1 RoboCup

In this section, we analyze the semi-final and the final game of the 2015 RoboCup
Small-Size league, shown in the Table 1. We used the new skills (DR, DM ) and SDA
during these games in the tournament. The data was collected by analyzing the log files
of the games. For our purposes, we defined a successful pass if it got to its intended
target, and a P as described earlier in this paper. In the tables, the second column is
the number of times a skill succeeded in passing the ball while the third column is the
success of those passes actually reaching the teammate. This distinction is important
since the skill might pass around the P but the teammate fails or the ball is intercepted.

The semi-final game is divided into two parts since for roughly half the game only
A¬D was used. In the first part, there were 14 passes with P and only 3 were successful
using only A¬D. In the second part, we used SDA with the rule that dribbling was
only allowed on the offensive side of the field. Therefore, on the defensive side, A¬D
+ P was used 6 times, succeeding 1 time. On the offensive side, DR passed 11 times
and succeeded 4 times with no clear improvement. DM did improve with 7 successful
passes out of 10 times. Interestingly, DM was never used when not under pressure by
an opponent, which was the major cause of the low value of E(pt) (< 0.1). Therefore,
DM started in a situation with a vastly low probability of success and under P, but still
it succeeded 7 times in getting away from the opponents and finding a better pass.

Semi-Final game against STOx’s
Skill (Success/Total) (Success/Total)
First Part Total # of Uses P + Pass
A¬D 17/32 3/14
Second Part
A¬D 9/28 1/6
DR 11/15 (∀P) 4/11
DM 10/17 (∀P) 7/10

Final game against MRL
Skill (Success/Total) (Success/Total)

Total # of Uses P + Pass
A¬D 10/29 3/13
DR 23/36(∀P) 11/18
DM 10/23 (∀P) 6/10

Table 1: Semi-Final and Final game in 2015 RoboCup Small-Size league. Statistics for the three
maneuvering skills.

In the final game, we used SDA for the entire game with the same offensive restric-
tion to dribbling. Again, we see poor performance forA¬D + P with 3 successful passes
out of 13. DR performed much better in this game with 11 successful passes out of 18,
and DM performed well again with 6 successful passes out of 10.

Real games only provide sparse amounts of information on the benefit of the added
skills because they are short and unreproducible. Still, they provide evidence on the
algorithm’s performance in real-world conditions against unknown opponents for which
they were designed to handle. The results show that A¬D is very unsuccessful when
there is a possession threat, and by implementing more intelligent ball-manipulation
skills we could improve the success rate against unknown opponents. Based on our
review of the competition games there were clear times when DR was better than DM

and vice versa. To better understand our analysis of the game, we introduce passing
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with marking to challenge our robot with situations often found in soccer, specifically
those with possession threats.

4.2 Passing with marking

Passing with marking is a sub-domain of soccer that uses marking to induce a state
where the probability of successfully passing is lowered due to the proximity of the
opponent(s), i.e., a possession threat. The domain starts with one robot ρ being marked
by a close opponent Taker, T , at some distance dT . ρ is placed closest to the ball while
T blocks the initial pass. As T ’s distance to the ball, dT , decreases, it is more likely to
gain possession or block the pass. The objective is for ρ to pass to ρ2 before T steals the
ball or kicks it out of bounds. We define stealing the ball as when T has the ball within
a robot radius plus a ball radius for at least 1 second. This constraint ends stalemates
where both robots are driving into the ball and not moving. The domain is defined by
a bounded area, and the teammate ρ2 moves within this area to get open for the pass
defined by its own team objective [7].

We devised two scenarios of the passing with marking: EXP1 where ρ is facing
the ball and T , shown in Figure 8, and EXP2 where ρ faces away from T with the
ball near its dribbler, shown in Figure 9. We ran both EXP1 and EXP2 in a physics-
based simulation. For each test, we used only one of the approaches to see if the skill
could pass the ball to ρ2 using only that approach. We also devised two opponents that
change the performance of the approaches. The Drive to ball opponent heads for the
ball and tries to grab a hold of it. The Clear ball opponent attempts to kick the ball out
of bounds, which usually involves it heading towards either the right or left side of ρ to
kick it away.

EXP1 induces a state where T is blocking the initial pass and as dT decreases it
has a higher chance of stealing the ball away from ρ. This is clearly demonstrated in
Table 2 where for both opponents the non-dribble approach A¬D often fails to pass to
its teammate. However, A¬D does surprisingly better than DR against the Drive to ball
for two reasons. First, DR fails at this task because as ρ approaches the ball so does
T , and they often get stuck in a stalemate as DR’s forward velocity pushes against T .
Second, A¬D’s success is due to luck as it kicks the ball immediately off of T and on
occasion can get the rebound and pass to ρ2. As dT increases, the ball bounces less and

ρ T ρ2
pt

Fig. 8: (EXP1) Used in the simulation eval-
uation, it is a passing with marking domain
where T is facing off against ρ, who must
kick to ρ2.

ρ T ρ2
pt

Fig. 9: (EXP2) Used in the simulation eval-
uation, it is a passing with marking domain
where ρ must get around the ball to align
itself to kick to ρ2.



10

A¬D does not get as lucky as shown in Table 2. DM performs the best against Drive
to ball since when it gets into the stalemate position it can sometimes rotate in place
with the ball and move to a better passing position. The rotation in place allows DM to
succeed where DR failed. Both DR and DM did very well against clear ball because
the same stalemate position did not arise as often since T is trying to get to the side of
the ball in order to kick it out of bounds. This gave our approaches the opportunity to
dribble without getting stuck.

Physics-based Simulation EXP1 (Success/100)
Opponents

Approach Drive to ball
dT={260,360,460,860}mm

Clear ball
dT=260mm

A¬D 15 11 2 1 3
DR 4 2 0 14 89
DM 35 48 53 97 84

Table 2: Passing with marking for 100 episodes on each approach where the experiment EXP1 is
shown in 8.

EXP2 induces a state where ρ has to get around the ball in order to align itself to
pass to ρ2, while T puts pressure from the back as it tries to steal the ball. In Table 3,
A¬D did the worst out of the three approaches, and its small success against Drive to
ball is because T would sometimes get stuck behind ρ and remain behind it. DR and
DM both did well against Drive to ball. DM was the best because it simply rotated in
place first to align itself and it did so in the opposite direction of T . This meant that
T was often circling around on the backside of ρ, giving it a clear pass. However, the
rotating in place was DM ’s downfall against Clear ball since T would stay on facing
direction until ρ rotated to a side and then T would kick it away. The reason DR did
the best against Clear ball was because, as it circled around, it created more distance
between itself and T . For the same reason, it performed better as dT increased where
DM remained relatively the same.

Physics-based Simulation EXP2 (Success/100)
Opponents

Approach Drive to ball
dT=590mm

Clear ball
dT={590,690}mm

A¬D 21 4 8
DR 84 48 85
DM 96 22 18

Table 3: Passing with marking for 100 episodes on each approach where the experiment EXP2 is
shown in 9. Total is success plus failed.

We do not have a way of automating experiments on real-robots, and robots wear
with use so it is not cost effective to run hundreds of experiments on the real-robots. We
did run the EXP1 with the Clear ball opponent on our real-robots. Each approach was
tested 10 times, and the results in Table 4 are slightly different than our simulated exper-
iment.A¬D did very poorly as predicted by simulation but the performances ofDR and



11

A¬D1

DM1

A¬D2

DM2

A¬D3

DM3

Fig. 10: (A¬D): ρ rotates around the ball to pass but loses it as the opponent kicks it away. (DM ):
ρ, using Algorithm 2, goes directly to the ball, slides past the opponent to the right, and passes to
the teammate. ρ was 75mm and T was 355mm away from the ball in their initial positions. T
was running Clear ball.

Real-robot experiment (Success/10))
Opponents

Approach Clear ball
dT = 355mm

A¬D 0
DR 2
DM 5

Table 4: Passing with marking using real-robots with 10 episodes each.

DM were not as expected. This difference can be attributed to factors on the complex-
ity of executing skills in a stochastic environment with noisy actuators and perception.
DM still performs well on passing to the teammate. DR would often continuously cir-
cle while T blocked the pass and the ball was eventually stolen. An example run of
A¬D and DM is shown in Figure 10.

5 Conclusion

We set our goal of improving the CMDragon team by better understanding the failing
points of the previous team’s approach to ball-manipulation. Possession threats, or lack
of opponent awareness, stood out as a major downfall as purely aligning to the target
led to opportunities for opponents to steal. The second major issue was passing even
when the probability of success given to the robot, from the planner, was low. Since the
previous team only had one option, the best they could do was to kick the ball and hope
for luck.

Our solution to possession threats was to drive directly to the ball and dribble it. If
the probability of success was high enough then we used DR to quickly turn to the pt
and pass. For the low probability, our solution was to use DM to move the ball to the
target location to get a better evaluation for a pass. We then combined these skills into
the Skill Decision Algorithm that defined when each skill should be chosen in order to
best serve the individual and the team.
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The results show an improvement in pass success using our method in both the real
games and simulation experiments. Future work includes learning the possession threat
parameters for individual teams during the game. There might also be more sophisti-
cated parameters for choosing which skill to execute in the Skill Decision Algorithm.
This can be seen in our simulated experiments, which showed that there exists certain
scenarios where one approach outperforms the other. Further, our results indicate that
one skill is not enough to solve the complexity of outmaneuvering an opponent, and
that a combination is best suited to solve the problem.

The problem with having the planner plan every skill for each robot is not feasible
for many real-time domains. The planner gives its best goal with what it can feasibly
plan, but the robot itself must execute the skill to accomplish the goal. We demonstrate
in this paper that increasing the sophistication of the individual robot skills improves
the performance of the team. The robot can choose to execute the team goal differ-
ently based on the current state of the world. And by changing its skill, the robot can
improve its probability of success. For multi-robot teams in adversarial environments,
the individual robot must have sophisticated skills that can handle different scenarios
with complex opponents. A team is therefore successful when the individual robot can
choose skills that improve the team goal and/or improve itself in the environment.
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