20th RoboCup International Symposium, Leipzig, Germany, July 2016.

RAFCON: a Graphical Tool for
Task Programming and Mission Control

Sebastian G. Brunner*!, Franz Steinmetz*!, Rico Belder', and Andreas Domel!

'Robotics and Mechatronics Center (RMC) of the German Aerospace Center (DLR),
Oberpfaffenhofen-Wessling, Germany
firstname.lastname@dlr.de

Abstract. There are many application fields for robotic systems in-
cluding service robotics, search and rescue missions, industry and space
robotics. As the scenarios in these areas grow more and more complex,
there is a high demand for powerful tools to efficiently program hetero-
geneous robotic systems. Therefore, we created RAFCON, a graphical
tool to develop robotic tasks and to be used for mission control by re-
motely monitoring the execution of the tasks. To define the tasks, we
use state machines which support hierarchies and concurrency. Together
with a library concept, even complex scenarios can be handled gracefully.
RAFCON supports sophisticated debugging functionality and tightly in-
tegrates error handling and recovery mechanisms. A GUI with a powerful
state machine editor makes intuitive, visual programming and fast pro-
totyping possible. We demonstrated the capabilities of our tool in the
SpaceBotCamp national robotic competition, in which our mobile robot
solved all exploration and assembly challenges fully autonomously. It is
therefore also a promising tool for various RoboCup leagues.

1 Introduction

Managing the heterogeneous modules (e. g. navigation, vision, manipulation etc.)
of a robot is challenging, as the scenarios in common robotic application fields
like household and industries grow more and more complex. In this work, we
thus focus on how complex tasks can be programmed and how all subsystems
of a robot orchestrated at a central instance using visual programming and
hierarchical state machines.

For solving complex tasks, one approach is to semantically specify the robot
and its environment in a planning domain on which a task planner can be used
to infer all steps for reaching a certain goal, which is also specified in the plan-
ning domain. PDDL [13] is a common solution for such planning problems and is
often used in service robotic scenarios [12]. Such planners often suffer from over-
or under-constraint models and fail if a real world failure cannot be represented
in their environment model [4]. Furthermore, they have a much higher compu-
tational footprint. Therefore, they are not suited for many real-world tasks, e. g.
industrial scenarios.

* Both authors contributed equally to this work.


behnke
Schreibmaschine
20th RoboCup International Symposium, Leipzig, Germany, July 2016.


Alternatively, state machines [11] often come into play to specify the behav-
ior of the robot in a more bottom-up like approach (see [5,9,14]). The robotic
system is always in a certain state and proceeds to the next state depending
on internal or external events. As classical state machines have problems cop-
ing with complex scenarios, powerful dialects were invented like statecharts [8]
and SyncCharts [1]. They augment a classical state machine with hierarchy and
concurrency concepts, preemption handling, error recovery and data manage-
ment. Our state machine dialect uses and adapts many of these features and is
furthermore based on flowcharts in regards of its eventless design.

Specifically for programming robotic tasks, there exist many tools. Next to
well-designed solutions for educational purposes like Scratch [17] or NXT-G [10]
from LEGO Mindstorms, all tools designed for real world robots suffer from
certain problems. For some tools, maintenance and support was canceled, e.g.
ROS Commander [14], RobotFlow [7] or MissionLab [2], others do not offer their
code to the open source community, like Gostai Studio [3], or do not provide a
graphical editor, such as SMACH [4].

Therefore, we developed RAFCON, a visual programming tool, allowing for
the creation of hierarchical state machines. It is written in Python, as the lan-
guage is interpreted, easy to learn and can be integrated with software modules
of other languages. RAFCON was created completely from scratch. It is inspired
by the flow control tool Bubbles, which has been developed at our institute some
years ago [20]. Before starting with the implementation, experienced roboticist
of our institute elaborated a long list of requirements. The key advantages of our
tool are the novel visualization supporting state machines of several hundreds of
states (see Sec. 4), powerful error recovery mechanisms, sophisticated debugging
functionalities and usability and intuitiveness to allow for fast prototyping.

Furthermore, RAFCON enables collaborative state machine development.
During the SpacebotCamp 2016!, we successfully used RAFCON as both an
autonomous task control software on a mobile robot as well as part of a mission
control center setup with powerful remote monitoring and control capabilities.
The mission in the SpacebotCamp included autonomous exploration and local-
ization on a moon-like terrain, as well as object detection and assembly, all
within a 60 minute time limit (see Fig. 1). Thereby, many challenges had to be
tackled that are also common e. g. in the RoboCup Rescue League.

The paper is structured as follows: At first we explain the core framework
in Sec. 2. The following Sec. 3 describes all important components of the GUI.
After proofing the capabilities of our task programming tool in the case study
in Sec. 4, we will summarize our results and future work in Sec. 5.

2 Core framework

The core of the RAFCON framework mainly consists of the state machine and
the ezxecution engine. Hereby, next to the logical flow, also data flow concepts
are supported. All of these concepts are described in the following.

! http://s.dlr.de/ura?



SpaceBotCamp Main Mission

-7 explore
mission
control
> init I
mission | ]

Fig. 1. The left figure shows the state machine for the SpaceBotCamp, in which we
took part with our Lightweight Rover Unit (LRU, [19]). On the right, the LRU is
depicted while it mounts a blue container onto the red base station.

State machine: A state machine contains an execution engine and a root state
that is the starting point of the execution. State machines are hierarchical, mean-
ing that there are states that can contain child states.

State: The states of a state machine are the instances at which actions take
place (Moore machine). There are four different types of states:

— FExecution states are the essential states as they contain a user-defined func-
tion called execute, which is written in Python code. This execute function
serves as connection to other middleware. These states cannot have any chil-
dren.

— Hierarchy states group several child states. Each hierarchy state has a fixed
start state that defines the entry point of the state.

— Concurrency states also group several child states, however all of these child
states are evaluated concurrently, i.e. in parallel. The subtype preemptive
concurrency state stops all child states, as soon as one child state has finished
its execution, while a barrier concurrency state waits for all child states to
finish.

— Library states are intended to reuse state machines. They simply wrap a
whole state machine.

Outcome: Each state has two or more outcomes. As the name implies, these
elements define the possible exit statuses of a state. Mandatory outcomes are
aborted, in case an error occurred in the state, and preempted, for which the state
was preempted from outside.

Transition: States are connected via transitions. A transition starts at an out-
come and either ends in a sibling state or in an outcome of a parent state. If a
state ends with a certain outcome, the transition connected to that outcome is
followed to determine the next state.

Data port: Next to outcomes, states can also have input data ports and output
data ports. They correspond to parameters respectively return values of func-
tions. Data ports have a name, type and default value.



Data flow: Data ports of the same type can be connected using data flows.
Thereby, the value assigned to the source ports gets forwarded to the target
port.

Ezecution engine: The execution engine runs a state machine, starting at the
root state. If a hierarchy state is reached, the execution goes down in the hi-
erarchy to the defined start state. The execution can split up, if a concurrency
state is executed. The hierarchy is went back up, if a transition is reached that
goes from a child to its parent state. For execution states, the values assigned
to the input data ports are forwarded to the execute function that can contain
arbitrary code. The function can also assign values to the output data ports and
defines the outcome of the state.

Many features of the engine help in debugging and testing even complex state
machines. The engine supports continuous and step mode. In step mode, one
can step over, into and out of states. In addition, step back mode is possible, for
which execution states can have a separate execute_backwards function. One
can also command the engine to start execution at an arbitrary state. During the
execution, a state machine can be changed on the fly. Finally, the execution can
be controlled from a separate host, which is especially useful for mobile robots.

3 Graphical user interface

The graphical user interface, shown in Fig. 2, is the most prominent feature
of RAFCON. The central widget, the Graphical State Machine Editor, is the
part of the GUI that renders RAFCON unique amongst other (visual) task
programming tools. Next to the creation of state machines, this GUI enables
the user to execute and monitor the state machine, also from remote. The GUI
design was developed in cooperation with professional interface designers?.

Concerning task engineering, visual programming is in our opinion superior to
textual languages in this context due to several reasons: First of all, the overview
and the understanding of a state machine is increased as the user builds a mental
model [15] of it. Beyond that, the logic and data flows are visualized separately,
which gives a clear view on the data handling and routing. Furthermore, visual
programming is more intuitive. All this improves the speed of state machine
creation.

3.1 GUI layout

The GTK+ widget toolkit was used to implement the GUI. A model-view-
controller architecture is used for the GUI in order to communicate with the
core. Thus, the core and the GUI are clearly separated. The four Gestalt princi-
ples [6] closure, similarity, continuity and proximity are heavily used to enhance
information retrieval. A modular and flexible layout is achieved by making all
sidebar tabs detachable, scalable and foldable.

2 Interaktionswerk, https://interaktionswerk.de/



GRAPHICAL EDITOR

|| Take picture of . o e
va:ik I'Ed ba”. Searcrh for b 2. © T
Exloration e A

%

i [ (Coutcomes ] |Exploration
| e \
N [Initialize Explore

|

LINKAGE

> W Il N STOPPED

Fig. 2. An example state machine visually programmed in RAFCON. An autonomous
agent explores a unknown environment until it localizes a red ball or stops because a
timer preempts the execution.

All the different components of the GUI can be seen in Fig. 2. The right
sidebar shows the state editor (1). It lists all details of a state, like name, de-
scriptions, ports and connections and offers functionality to modify all of these
properties. Execution states have in addition a source view to edit their execute
function.

The left sidebar features many widgets with different purposes. A Library
manager (2) organizes all library states in a clear fashion for easy reuse. The State
machine tree (3) shows the structure of the state machine in a tree and can be
used to explicitly select and navigate to a certain state. (4) is the Global variable
manager managing all global variables, (5) shows the Modification history of all
changes performed to the a state machine under construction and the Execution
history (6) keeps track of all states during an execution including the context
data.

The sidebar (7) at the bottom is the Logging View. Here all output of the
executed states, the core and the GUI is collected and can be filtered by their
logging level.

3.2 Graphical editor

As already mentioned, the Graphical State Machine Editor is the most sophis-
ticated element of the GUI. A clear visualization of complex state machines
with highly nested hierarchies (see Sec. 4) is a big challenge. We implemented a
mature navigation solution that is often experienced in digital maps. Zooming
into the state machine (e.g. with the mouse wheel) reveals more of the details
of lower hierarchy levels, while zooming out hides their details. The panning
mechanism enables the user to translate the view to another position. Thus, the



different hierarchy levels can be shown in varying degrees of detail, depending
on the states the user is interested in.

The editor can also be used for direct interaction with the state machine for
e. g. handling states, creating connections with via-points, copying and pasting
of states and moving logic and data ports along the state border. Different view
modes help the user to focus on the kind of information he is interested.

4 Case study

In November 2015, the DLR Space Administration organized the SpaceBotCamp
2016 with the aim to stimulate research and innovations in autonomous space
robotic scenarios. The mission of the competition was to explore a rough, un-
known terrain with a mobile robot, to localize and pick up two objects and
finally to assemble those objects on a base station located on a crushed stone
hill top, shown in Fig. 1. Next to having no uplink to the robot for the majority
of the time, and complete communication blackouts for two occasions, there was
also a constant two second communication delay. Concerning these restrictions,
a highly autonomous behavior was required from the LRU robot [18] to solve
the challenge in less than 60 minutes.

Our robot accomplished all tasks in only half of the given time limit. Hereby,
RAFCON played a central role in autonomously orchestrating all modules of the
system, like navigation, manipulation and vision. An abstract overview of this
system architecture is shown in Fig. 3.

RAFCON

Computer
Vision

World Model

Navigation

Manipulation|

Middlewares (ROS etc.)

{ Drivers and Wrappers |»

Locomotion Manipulator Sensors

Hardware

Fig. 3. The architecture in the SpaceBotCamp, in which RAFCON is coordinating the
main software modules of our mobile robot.

RAFCON enabled us to collaboratively define the first two hierarchies of the
overall state machine in the beginning. Subsequently, the state machine could
be clearly divided into several sub-state-machines that were programmed by
different developers. All in all, our final state machine consisted of more than
750 states and more than 1200 transitions. The maximum depth, i. e. number of
hierarchies, was eight. This is a high number, considering the rather high-level
nature of the used states.

During competition runtime, a ground station team was allowed to monitor
the robot. Hereby, we were able to observe the current status of the state machine



execution remotely. Therefore, several ground stations operators could subscribe
to the state machine running on the robot and were supplied with status data of
the state machine. This included the current execution point(s) and the values of
data ports. Thus, an operator for navigation could observe the correct behavior
of the robot during navigation, a manipulation expert could examine correct
object assembly and an operator for computer vision could keep track of the
detection and pose estimation procedures.

5 Conclusions

The visual programming tool RAFCON, presented in this paper, fills a gap in the
robot programming domain. While for example ROS [16] unifies the communi-
cation in a heterogenous system, there is currently no graphical tool at hand for
using that communication. RAFCON seamlessly integrates with ROS or other
middlewares to orchestrate the different components in a way that they together
perform a certain task. Our tool features a clear programming interface (APT)
that can be used for programmatic state machine generation or the integration
with a logical planner. The state machine concept allows to quickly alter the ex-
ecution by simply reconnecting some transitions. For this, no deep programming
skills as required, as the GUI allows for intuitive visual programming.

Therefore, RAFCON is an ideal tool for mission control that can be used
in different RoboCup competitions, for example the Logistics or Rescue League.
This has been proved in the SpaceBotCup, in which similar requirements com-
pared to the mentioned RoboCup leagues had to be met. A video of RAFCON
is presented on http://213.136.81.227/23483/rafcon.mp4.

We are constantly improving RAFCON and planning to release it as open
source by the end of the year via GitHub. By then, the documentation will be
finished and the implementation be stable.

Acknowledgment

This work has been funded by the Helmholtz-Gemeinschaft Germany as part of
the project RACELab, by the Helmholtz Association, project alliance ROBEX,
under contract number HA-304 and by the European Commission under contract
number FP7-ICT-608849-EUROC.

References

1. André, C.: SyncCharts: A visual representation of reactive behaviors. Rapport de
recherche tr95-52, Université de Nice-Sophia Antipolis (1995)

2. Arkin, R.: Missionlab v 7.0. http://www.cc.gatech.edu/ai/robot-lab/
research/MissionLab (2006)

3. Baillie, J.C., Demaille, A., Hocquet, Q., Nottale, M., Tardieu, S.: The Urbi uni-
versal platform for robotics. In: First International Workshop on Standards and
Common Platform for Robotics (2008)


http://213.136.81.227/23483/rafcon.mp4
http://www.cc.gatech.edu/ai/ robot-lab/research/MissionLab
http://www.cc.gatech.edu/ai/ robot-lab/research/MissionLab

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

Bohren, J., Cousins, S.: The SMACH high-level executive [ROS news]. IEEE
Robotics & Automation Magazine 4(17), 18-20 (2010)

Bohren, J., Rusu, R.B., Jones, E.G., Marder-Eppstein, E., Pantofaru, C., Wise, M.,
Mosenlechner, L., Meeussen, W., Holzer, S.: Towards autonomous robotic butlers:
Lessons learned with the PR2. In: Robotics and Automation (ICRA), 2011 IEEE
International Conference on. pp. 5568-5575 (2011)

Chang, D., Dooley, L., Tuovinen, J.E.: Gestalt theory in visual screen design: a
new look at an old subject. In: Proceedings of the Seventh world conference on
computers in education conference on Computers in education: Australian topics-
Volume 8. pp. 5-12. Australian Computer Society, Inc. (2002)

Coté, C., Létourneau, D., Michaud, F., Valin, J.M., Brosseau, Y., Raievsky, C.,
Lemay, M., Tran, V.: Code reusability tools for programming mobile robots. In:
Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on.
pp. 18201825 (2004)

Harel, D.: Statecharts: A visual formalism for complex systems. Science of com-
puter programming 8(3), 231-274 (1987)

Jentzsch, S., Riedel, S., Denz, S., Brunner, S.: TUMsBendingUnits from TU Mu-
nich: RoboCup 2012 Logistics League Champion. In: Chen, X., Stone, P., Sucar,
L., van der Zant, T. (eds.) RoboCup 2012: Robot Soccer World Cup XVI, Lecture
Notes in Computer Science, vol. 7500, pp. 48-58. Springer Berlin Heidelberg (2013)
Kelly, J.F.: Lego Mindstorms NXT-G Programming Guide. Apress (2010)
Krithivasan, K.: Theory of Automata, Formal Languages and Computation (2014)
Leidner, D., Borst, C., Hirzinger, G.: Things are made for what they are: Solv-
ing manipulation tasks by using functional object classes. In: Humanoid Robots
(Humanoids), 12th IEEE-RAS International Conference on. pp. 429-435 (2012)
Mecdermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: PDDL - The Planning Domain Definition Language. Tech. rep.,
Yale Center for Computational Vision and Control, (1998)

Hai Nguyen, Ciocarlie, M., Kaijen Hsiao, Kemp, C.: ROS commander (ROSCo):
Behavior creation for home robots. In: Robotics and Automation (ICRA), 2013
IEEE International Conference on. pp. 467-474 (2013)

Navarro Prieto, R., Jose J. Canas: Are visual programming languages better?
The role of imagery in program comprehension. International Journal of Human-
Computer Studies 54(6), 799-829 (2001)

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA workshop on
open source software. vol. 3 (2009)

Resnick, M., Maloney, J., Monroy Hernéndez, A., Rusk, N., Eastmond, E., Bren-
nan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B.; et al.: Scratch:
programming for all. Communications of the ACM 52(11), 60-67 (2009)
Schuster, M., Brand, C., Brunner, S., Lehner, P., Reill, J., Riedel, S., Bodenmiiller,
T., Bussmann, K., Biittner, S., Domel, A., Friedl, W., Grixa, 1., Hellerer, M.,
Hirschmiiller, H., Kassecker, M., Marton, Z.C., Nissler, C., Ruef}, F., Suppa, M.,
Wedler, A.: The LRU Rover for Autonomous Planetary Exploration and its Suc-
cess in the SpaceBotCamp Challenge (2016), submitted to IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC), 2016
Wedler, A., Rebele, B., Reill, J., Suppa, M., Hirschmiiller, H., Brand, C., Schuster,
M., Vodermayer, B., Gmeiner, H., Maier, A., Willberg, B., Bussmann, K., Wappler,
F., Hellerer, M.: LRU - Lightweight Rover Unit. In: ASTRA (2015)

Widmoser, H.: Interaction Planning for collaborative Human-Robot Assembly
Tasks. Master’s thesis, TU Miinchen (2012)



	 RAFCON: a Graphical Tool forTask Programming and Mission Control 
	Introduction
	Core framework
	Graphical user interface
	GUI layout
	Graphical editor

	Case study
	Conclusions


