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Large variations between individuals, and tasks
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Interaction



Kinematics- Motion capture

* Kinect 1, 2, Phasespace Impulse X2

e Adafruit 9DoF IMU

* Recovery via rigid skeletonisation,
inverse kinematics AR
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= Goal: Evaluation of low-cost methods for
capturing human motion kinematics
= We compared Kinect vl and v2 with

motion capture to determine the error (@)0° (b) 30° (c) 60°
distributions for different joints

= Qutlier exclusion: using a mixed Gaussian
(on-track motion data) and uniform
(random motion data due to tracking loss)
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Goal: Develop a robust unsupervised
method for segmenting repetitive
actions based on the human kinematics

We use unscented Kalman filter (UKF) to
extract kinematics and reduce effect of
noise

We apply frequency analysis to
determine most representative kinematic
parameters

We developed robust method for
segmentation using zero-velocity crossing
with based k-means classification to
determine motion phases

Applications: Physical rehabilitation,
exercise coaching, robotic manipulation

GMM-PCA
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= Goal: Development of new upper-
extremity outcome measure for functional
evaluation in muscular dystrophy and
other disorders.

= Reachable workspace obtained from
kinematic measurements from 3D vision
camera (MS Kinect) is used as a proxy of
upper-limb function.

= Validation of reachable workspace outcome
measure using standardized clinical tests
(over 200 controls & patients).

= Applications: Physical therapy, testing of
drug effectiveness, remote health care,
assistive devices, ergonomics.

Parent Project m UCDAVIS
Muscular Dystrophy MEDICAL CENTER

National Institutes
of Health

B€Ik€1€y Gregorij Kurillo

UNIVERSITY OF CALIFORNIA



Healthy Control
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Dynamics- Force sensing

 AMTI Force platform
* ATl Force sensors
 URS5 Robot manipulator
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Investigation into standing

* Given motion capture data
and contact force data, can
we recover the masses, and
skeleton of the user?

* Can we predict contact
forces from just this model
and motion capture?
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Measure
contact forces
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Measure Recover Dynamic
contact forces Parameters
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Poor Good
Recovery Recovery

e Presence of two
hybrid modes:
In contact with chair, -200 ¢t

Not in contact with
chair

-400 |
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)

Muscle sensing b

* Electromyography
* Near Infrared Sensing
* Ultrasound
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* Estimation of muscle force ¥ cosa Lr:l
from is an open problem
muscle tendon

Hill model used extensively wdoFL  bMusceFV o Tendon

ve — a=1.0

A

active

* Highly parameter
sensitive- tendon length

Normalized Force

o

1 0 v . ' 3 +
1 1+g' -lm;m—-;—’- 1 0 £

° Typlca”y EMG driven- Normalized Length Normalized Velocity Tendon Strain
highly noisy
Hill Muscle Model

Hill, A. V. "The heat of shortening and the dynamic constants of muscle." Proceedings of the Royal Society
of London B: Biological Sciences 126.843 (1938): 136-195.

Zajac, Felix E. "Muscle and tendon: properties, models, scaling, and application to biomechanics and
motor control." Critical reviews in biomedical engineering 17.4 (1988): 359-411.
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3D View
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zoom to fit 257 of 512 zoom to fit 207 of 51
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Falling

Multiple causes for falls
Can fall while walking

Can fill while trying to stand
Focusing work on Sit-to-
Stand (STS) stability

e 2.5 million ED visits per year

* Cause over 95% of hip
fractures

* Annual cost ~S34 billion
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Data Collection
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MEASUREMENT

 Kinematics
* Dynamics

—] .
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=== PRESCRIPTION

e Customise assistance

s R
210 ; 150

\ k=34mNm/deg
6,=319deg
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— === INTERVENTION

* Optimise actuation

s R
210 : 150

Psu'pp:'y I

Fatm

\ k=34mNm/deg Variable stiffness
6,=319deg actuation
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* Implement optimal device
* Novel, low-power actuators
e Variable device stiffness
 Stiffness passively maintained:
energy only required to
actively change stiffness
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* Low mass
e 2.54kg total
* 0.39kg on arm
* Low power
* 12g CO,
* 9V Battery
* no energy required during
operation
* Low cost
e <S1,000
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Existing Work: Static handoff pose planning
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What about post handoff?

C(ngal)

-—

C(q(®))
T
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Problem: Human grasp affects Insight: Optimize handofffose
task ergonomics post-handoff » :vd:jitior(](iioél()qand (c;( )) in
handoff

Idea: Optimize the robot’s motion with respect to the human’s ergonomic cost function
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Step 1: Sample Start/End Goals
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Step 2: Find feasible human grasps

Compute H
V gp € Gp,
V Thandofr € SE(3)

H(gr, Thandofr)
Berkeley Aaron Bestick
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Step 3: Find optimal handoff pose

Choose the optimal g,- and T4 doff
according to:

1) max |H(gR, T}‘I/‘;ndOff)l s.t. h“ € H
2) min |H(gg, Tyandose)| S-t- A" €H

3) max |H(gr, Thandofr)|

) C(h)

h e H(gR’T‘}/lvandoff
|H(gR'T}‘1/gndoff)|

4) min
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Human Model Driver Prediction

Vehicle Model

Control Scheme
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Driver
Distraction
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[ Communication ]

argminycpn Ay
subjectto  P[(Xy(k) —x5(0)) c A4(0,7)|s4] = «
vk € {0,..,N}

B@]fk€1€y Katie Driggs-Campbell

UNIVERSITY OF CALIFORNIA



Human-Assistive Robotic Technologies

Berkeley

UNIVERSITY OF CALIFORNIA



