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LAB GOALS: 

Individual System 

Interaction 
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KINEMATIC MODELLING 

Kinematics- Motion capture 

• Kinect 1, 2, Phasespace Impulse X2 
• Adafruit 9DoF IMU 
• Recovery via rigid skeletonisation, 

inverse kinematics 
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KINEMATIC EVALUATION OF HUMAN MOTION 

(a) 0⁰

(f) 60⁰

(b) 30⁰

(d) 0⁰

(c) 60⁰

(e) 30⁰

 Goal: Evaluation of low-cost methods for 
capturing human motion kinematics 

 We compared Kinect v1 and v2 with 
motion capture to determine the error 
distributions for different joints 

 Outlier exclusion: using a mixed Gaussian 
(on-track motion data) and uniform 
(random motion data due to tracking loss) 
distribution to model the overall motion 
data 

 

 
Kinect 2Kinect 1

Gregorij Kurillo 
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ACTION SEGMENTAION 
 Goal: Develop a robust unsupervised 

method for segmenting repetitive 
actions based on the human kinematics 

 We use unscented Kalman filter (UKF) to 
extract kinematics and reduce effect of 
noise 

 We apply frequency analysis to 
determine most representative kinematic 
parameters 

 We developed robust method for 
segmentation using zero-velocity crossing 
with based k-means classification to 
determine motion phases 

 Applications: Physical rehabilitation, 
exercise coaching, robotic manipulation 

I II III

Qifei Wang 
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APPLICATION: DIAGNOSTICS 

 Goal: Development of new upper-
extremity outcome measure for functional 
evaluation in muscular dystrophy and 
other disorders. 

 Reachable workspace obtained from 
kinematic measurements from 3D vision 
camera (MS Kinect) is used as a proxy of 
upper-limb function. 

 Validation of reachable workspace outcome 
measure using standardized clinical tests 
(over 200 controls & patients). 

 Applications: Physical therapy, testing of 
drug effectiveness, remote health care, 
assistive devices, ergonomics. 

Gregorij Kurillo 
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DYNAMIC MODELLING 

Dynamics- Force sensing 

• AMTI Force platform  
• ATI Force sensors 
• UR5 Robot manipulator 
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DYNAMIC MODELLING 

• Given motion capture data 
and contact force data, can 
we recover the masses, and 
skeleton of the user? 
 

• Can we predict contact 
forces from just this model 
and motion capture? 

Investigation into standing 

Robert Matthew 
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DYNAMIC MODELLING 

Measure 
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DYNAMIC MODELLING 
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DYNAMIC MODELLING 

Measure 
contact forces 

Validate recovered 
forces 

Recover Dynamic 
Parameters 

Robert Matthew 
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DYNAMIC MODELLING 

Poor 
Recovery 

Good 
Recovery 

• Presence of two 
hybrid modes: 
• In contact with chair,  

• Not in contact with 
chair 

 

Robert Matthew 
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MUSCLE MODELLING 

Muscle sensing 

• Electromyography 
• Near Infrared Sensing 
• Ultrasound 

Laura Hallock 
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MUSCLE MODELLING 

Laura Hallock 

• Estimation of muscle force 
from is an open problem 

• Hill model used extensively 

• Highly parameter 
sensitive- tendon length  

• Typically EMG driven- 
highly noisy 

 

 

 

Hill Muscle Model 
Hill, A. V. "The heat of shortening and the dynamic constants of muscle." Proceedings of the Royal Society 
of London B: Biological Sciences 126.843 (1938): 136-195. 

Zajac, Felix E. "Muscle and tendon: properties, models, scaling, and application to biomechanics and 
motor control." Critical reviews in biomedical engineering 17.4 (1988): 359-411. 
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MUSCLE MODELLING 
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VERIFICATION: MRI 

Laura Hallock 
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STABILITY OF THE INDIVIDUAL 

Victor Shia 

• 2.5 million ED visits per year 
• Cause over 95% of hip 

fractures 
• Annual cost ~$34 billion 

Falling 
• Multiple causes for falls 
• Can fall while walking 
• Can fill while trying to stand 
• Focusing work on Sit-to-

Stand (STS) stability 
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PRESCRIPTION OF ASSISTIVE DEVICES 

Robert Matthew 

MEASUREMENT 

• Kinematics 
• Dynamics 
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PRESCRIPTION OF ASSISTIVE DEVICES 

Robert Matthew 

MEASUREMENT PRESCRIPTION INTERVENTION 

• Kinematics 
• Dynamics 

• Customise assistance 
 

• Optimise actuation 

Variable stiffness 
actuation 
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PRESCRIPTION OF ASSISTIVE DEVICES 

Robert Matthew 

• Implement optimal device 
• Novel, low-power actuators 
• Variable device stiffness 
• Stiffness passively maintained: 

energy only required to 
actively change stiffness 
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PRESCRIPTION OF ASSISTIVE DEVICES 

Robert Matthew 

• Low mass 
• 2.54kg total 
• 0.39kg on arm 

• Low power 
• 12g CO2 

• 9V Battery 
• no energy required during 

operation 

• Low cost 
• <$1,000 

35/38 



ROBOTS: HUMAN-ROBOT INTERACTIONS 

Aaron Bestick 

𝑻𝐡𝐚𝐧𝐝𝐨𝐟𝐟? 

C(𝑞handoff) 

Existing Work: Static handoff pose planning 
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ROBOTS: HUMAN-ROBOT INTERACTIONS 

Aaron Bestick 

What about post handoff? 

𝐂(𝒒𝐠𝐨𝐚𝐥) 

𝐂(𝒒 𝒕 ) 

Problem: Human grasp affects 
task ergonomics post-handoff 

Insight: Optimize handoff pose 
w.r.t. C(𝑞goal) and C(𝑞 𝑡 ) in 

addition to C(𝑞handoff) 

𝑇goal 
𝑇start 

C(𝑞handoff) 

Idea: Optimize the robot’s motion with respect to the human’s ergonomic cost function 
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ROBOTS: HUMAN-ROBOT INTERACTIONS 

Aaron Bestick 

𝐺𝐻 

𝐺𝑅 

Step 1: Sample Start/End Goals 
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ROBOTS: HUMAN-ROBOT INTERACTIONS 

Aaron Bestick 

𝐻(𝑔𝑅 , 𝑇handoff
𝑤 ) 

Compute H  
∀ 𝑔𝑅 ∈ 𝐺𝑅 ,  
∀ 𝑇handoff

𝑤  ∈ 𝑆𝐸(3) 

Step 2: Find feasible human grasps 
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ROBOTS: HUMAN-ROBOT INTERACTIONS 

Aaron Bestick 

Choose the optimal 𝑔𝑟  and 𝑇handoff
𝑤  

according to: 
 
 
1)max  𝐻(𝑔𝑅 , 𝑇handoff

𝑤 )   𝑠. 𝑡.  ℎ∗ ∈ 𝐻    
 
 
2) min 𝐻(𝑔𝑅 , 𝑇handoff

𝑤 )   𝑠. 𝑡.  ℎ∗ ∈ 𝐻  
 
 

3) max 𝐻(𝑔𝑅 , 𝑇handoff
𝑤 )  

 
 

4) min 
 𝐶 ℎ
ℎ ∈ 𝐻 𝑔𝑅,𝑇handoff

𝑤  
𝐻 𝑔𝑅,𝑇handoff

𝑤  

(most options and allows ergonomically 
optimal choice) 

(least options and allows ergonomically 
optimal choice) 

(most options) 

(minimum average ergonomic cost) 

Step 3: Find optimal handoff pose 
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DRIVING: HUMAN IN THE LOOP INTERVENTION 

Katie Driggs-Campbell 

Control Scheme 

Environment Model Vehicle Model 

Human Model Driver Prediction 
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DRIVING: PREDICTING BEHAVIOR 

Katie Driggs-Campbell 

Distracted 

Attentive 

Lane 
Changing 

Lane 
Keeping 

About to 
Lane Change 

Potential Human Models 
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DRIVING: AGENT INTERACTIONS 

Katie Driggs-Campbell 

Lane Keeping Want to Change 

Execute Lane Change 

Communication 

argminΔ⊂ℝ𝑛  Δ𝐻  
subject to      𝑃 𝑋𝐻 𝑘 − 𝑥𝐻 0 ⊂ Δ𝐻 𝒪, ℐ |𝑠𝐴 ≥ 𝛼 
                         ∀𝑘 ∈ 0,… ,𝑁  

s1 s2 

s3 
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THANK YOU 
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