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1 Introduction

B-Human is a joint RoboCup team of the University of Bremen and the German
Research Center for Artificial Intelligence (DFKI). The team was founded in 2006
as a team in the Humanoid League, but switched to participating in the Standard
Platform League in 2009. Since then, we participated in seven RoboCup German
Open competitions, the RoboCup European Open, and in seven RoboCups. We
always won the German/European Open and became world champion four times.

This team description paper is organized as follows: In Sect. 2, our new image
preprocessing is described. Section 3 presents our approach for detecting the
black and white ball. In Sect. 4, a the new class of measurements is introduced
for self-localization. Finally, Sect. 5 summarizes this paper.

1.1 Team Members

B-Human consists of the following people, most of whom are shown in Fig. 1:

Team Leaders / Staff: Tim Laue, Thomas Röfer.
Students: Yannick Bülter, Mathis Engelbart, Miguel Kasparick, Mohamadreza

Amir Khostevan, Daniel Krause, Jonas Kuball, Lam Duy Le, Andre Lübken,
Florian Maaß, Andre Mühlenbrock, Tim Müller, Lukas Post, Jesse Richter-
Klug, René Schröder, Leonid Schwenke, Andreas Stolpmann, Alexander
Stöwing, Kannan Thambiah, Felix Thielke, Alexis Tsogias.

Associated Researchers: Udo Frese, Judith Müller, Dennis Schüthe, Felix
Wenk.

1.2 Publications Since RoboCup 2015

As in previous years, we released our code after the RoboCup 2015 together with
a detailed description [8] on our website and on GitHub (https://github.com/

https://github.com/bhuman/BHumanCodeRelease


Fig. 1: The B-Human team after winning the RoboCup European Open 2016

bhuman/BHumanCodeRelease). Up to date, we know of 21 teams that based their
RoboCup systems on one of our code releases (AUTMan Nao Team, Austrian
Kangaroos, BURST, Camellia Dragons, Crude Scientists, Edinferno, JoiTech-
SPL, NimbRo SPL, NTU Robot PAL, SPQR, UChile, Z-Knipsers) or used at
least parts of it (Cerberus, MRL SPL, Nao Devils, Northern Bites, NUbots,
RoboCanes, RoboEireann, TJArk, UT Austin Villa).

At the RoboCup Symposium 2016, we will present a new kick engine [1] that
is based on a a modified version of Dynamic Movement Primitives (DMPs) [4]
to describe the kick trajectory. This formulation allows the robot to dynamically
adapt to changing ball positions and to change the speed of a kick in order to
play passes of different lengths. Especially the latter is a capability that the kick
engine we currently use [6] does not have. The paper also describes a motor
model for the NAO robot as well as a ZMP-based balancer. The implementation
has already been used during the Corner Kick Challenge at RoboCup 2015,
enabling us to play precise passes to the striker robot that scored multiple goals.
A short description is given in our last code release document [8].

One team member has contributed to a paper that summarizes the Drop-In
Competition and analyzes the different team strategies as well as the impact of
the different scoring metrics [3].

2 Image Preprocessing

In previous years, our entire vision subsystem worked directly with the YUV422
images supplied by the cameras of the NAOs, viewing them as YUV444 images
by accessing only every second Y value and skipping every odd numbered row.
Most vision modules did not use the color values directly but looked up a color
class for each pixel in a precomputed color lookup table which was calibrated
beforehand using the color space HSI.

https://github.com/bhuman/BHumanCodeRelease
https://github.com/bhuman/BHumanCodeRelease


Fig. 2: The camera image (left) compared to the color-classified and gray-scaled
images which now form the basis of all further image processing

Considering that at the RoboCup 2016, we will participate in the outdoor
competition, in which games will be played under natural lighting [2], we chose
a new approach to automatically detect the ranges of color values for the color
classes to cope with different lighting conditions during a game. However, recal-
culating the precomputed color table for each frame would be computationally
too expensive, so we chose to remove the color table altogether and instead con-
vert each camera image to an image containing only the color classes of each
pixel based on color value ranges determined in the color space YHS, which is
the Y channel of the original image, the hue determined by the direction of the
vector described by the U and V channels, and the saturation determined by the
length of that vector.

The color value ranges for classifying colors, which for now are only white,
black, green, and none, may be either detected at runtime for each image or
calibrated beforehand with similar results as the old approach.

While creating the color classified image, a gray-scaled image, which contains
only the Y channel of the camera image, is created simultaneously. That way,
vision modules can now choose to work on a gray-scaled image, a color classified
image, or a combination of both. The new images compared to the camera image
can be seen in Fig. 2.

As our entire vision subsystem now only uses these two computed images,
we chose to calculate them from full-resolution YUV422 camera images and
reduce the resolution of the camera images from 1280 × 960 pixel for the upper
and 640 × 480 pixel for the lower camera to 640 × 480 pixel for the upper and
320 × 240 pixel for the lower camera respectively.

3 Ball Detection

The introduction of the black and white ball is the major new challenge in the
Standard Platform League in 2016. Until the RoboCup 2015, the ball was orange
and rather easy to detect. In particular, it was the only orange object on the
field. The new ball is mainly white with a regular pattern of black patches, just
as a miniature version of a regular soccer ball. The main problem is that the
field lines, the goals, and the NAO robots are also white. The latter even have



(a) Vertical scan lines and a detected ball
candidate (the cross). Parts of the robot’s
body are ignored (bottom left).

(b) Contrast-normalized Sobel image. The
colors indicate the directions of the gradi-
ents.

(c) Visualization of the search space for the
ball contour. The actual search is only per-
formed around the ball candidate, but in
single pixel steps in both dimensions.

(d) The contour with the highest response
(green) and the sample grid to check the
ball pattern (pixels classified as black are
shown in red, white pixels in blue).

Fig. 3: The main steps of the ball detection

several round plastic parts and they also contain grey parts. Since the ball is
often in the vicinity of the NAOs during a game, it is quite challenging to avoid
a large number of false positives.

We use a multi-step approach for the detection of the ball. First, the vertical
scan lines our vision system is mainly based on are searched for ball candidates.
Then, a contour detector fits ball contours around the candidates’ locations. Af-
terwards, fitted ball candidates are filtered using some general heuristics. Finally,
the surface pattern inside each remaining candidate is checked.

Searching for Ball Candidates. Our vision system scans the image vertically
using scan lines of different density based on the size that objects, in particular
the ball, would have in a certain position of the image. To determine ball candi-



dates, these scan lines are searched for sufficiently large gaps in the green that
also have a sufficiently large horizontal extension and contain enough white (cf.
Fig. 3a).

Fitting Ball Contours. As the position of a ball candidate is not necessarily
in the center of an actual ball, the area around such a position is searched for the
contour of the ball as it would appear in this part of the image given the intrinsic
parameters of the camera and its pose relative to the field plane. The approach
is very similar to the detection of objects in 3-D space using a stereo camera
system as described by Müller et al. [5], but we only use a single image instead.
For each ball candidate, a contrast-normalized Sobel image of the surrounding
area is computed (cf. Fig. 3b). This contrast image is then searched for the best
match with the expected ball contour (cf. Fig. 3c). The best match is then refined
by adapting its hypothetical 3-D coordinates (cf. Fig. 3d).

Filtering Ball Candidates. The fitting process results in a measure, the re-
sponse, for how well the image matches with the contour excepted at the can-
didate’s location. If this value is too small, the ball candidate is dropped. All
candidates that fit well enough are processed in descending order of their re-
sponse. As a result, the candidate with the highest response that also passes all
other checks will be accepted. These other checks include that the ball radius
found must be similar to the radius that would be expected at that position of
the image. Our vision system also detects other robots on the field. If a ball can-
didate is inside the area of a detected robot and could not just be lying in front
of it, it is also dropped. However, if a ball candidate is completely surrounded
by green pixels and the response was high enough to exclude the possibility of
being a penalty mark, the ball candidate is accepted right away, skipping the
final step described below that might be failing if the ball is rolling quickly.

Checking the Surface Pattern. For checking the black and white surface
pattern, a fixed set of 3-D points on the surface of the ball candidate are projected
into the image (cf. Fig. 3d). For each of these pixels, the brightness of the image
at its location is determined. Since the ball usually shows a strong gradient in the
image from its bright top to a much darker bottom half, the pixels are artificially
brightened depending on their position inside the ball. Then, Otsu’s method [7]
is used to determine the optimal threshold between the black and the white parts
of the ball for the pixels sampled. If the average brightnesses of both classes are
sufficiently different, all pixels sampled are classified as being either black or
white. Then, this pattern is looked up in a pre-computed table to determine
whether it is a valid combination for the official ball. The table was computed
from a 2-D texture of the ball surface considering all possible rotations of the
ball around all three axes and some variations close the transitions between the
black and the white parts of the ball.

The approach allows our robots to detect the ball in distances of up to five
meters with very few false positive detections.



4 Complex Field Features and Self-Localization

In the past, B-Human used goals as a dominant feature for self-localization.
When the field was smaller and the goal posts were painted yellow, they were easy
to perceive from most positions and provided precise and valuable measurements
for the pose estimation process. In particular the sensor resetting part, i. e. the
creation of alternative pose estimates in case of a delocalization, was almost
completely based on the goal posts perceived. In 2015, we still relied on this
approach, using a detector for the white goals [9]. However, as it turned out that
this detector required too much computation time and did not work reliably in
some environments (requiring lots of calibration efforts), we decided to perform
self-localization without goals but by using complex field features derived from
certain constellations of perceived field lines.

Field Features. The self-localization always used field lines, their crossings, and
the center circle as measurements. Since 2015, these features are complemented
by the perception of the penalty marks. All these field elements are distributed
over the whole field and can be detected very reliably, provided a constant input
of measurements in most situations.

Built upon this, the perception of a new category of measurements, the so-
called Field Features, has been implemented. They are created by combining
multiple basic field elements in a way that a robot pose (in global field coordi-
nates) can be derived directly. The handling of the field symmetry, which leads
to actually two poses, is described in the following section.

The features that a currently computed are: the penalty area, the center
circle (including the center line that provides the direction), the field corners,
the center corners (where the center line touches the outer field lines, cf. Fig. 4a),
and the goal frame on the floor. Some of these features can be determined by
different field element constellations, e. g. the penalty area can be derived from
a subset of its corners as well as from a penalty mark and the penalty area’s line
next to it (cf. Fig. 4b).

All considered lines are preprocessed by classifying them in short and long
lines and by determining their relation to the field border (if available). The
crossings of the lines are categorized as L / T / X on the one hand and in big
/ small on the other hand. In this context, big means that it is a crossing that
results from the intersection of two long lines, such as field corners perceived
from a longer distance.

Overall, this approach provides a much higher number of reliable pose es-
timates than the previous goal-based approach, as the field lines on which it
is based can be seen from many perspectives and have a more robust context
(straight white lines surrounded by green carpet) than the noisy unknown back-
ground of goal posts.

Localization Resetting. The self-localization is based on a particle filter with
a low number of particles that each include an Unscented Kalman filter. Field



(a) Center corner: two long field lines in-
tersect and represent a big T (marked Tb).

(b) Penalty area: a penalty mark and a
close line allow the detection of this area.

Fig. 4: Two examples for field features, both are depicted as blue lines.

features can be used as measurements but not as a perception of relative land-
marks, instead, an artificial measurement of a global pose is generated, reducing
the translational error in both dimensions as well as the rotational error at once.
Furthermore, no data association – in contrast to the basic field elements that
are not unique – is required.

However, particles only cover the state space very sparsely. Therefore, to re-
cover from a delocalization, it is a common approach to perform sensor resetting,
i. e. to insert new particles based on recent measurements. The field features pro-
vide exactly this information and thus are used by us for creating new particles.

As false positives can be among the field features, e. g. caused by robot parts
overlapping parts of lines and thereby inducing a wrong constellation of elements,
an additional filtering step is necessary. All robot poses that can be derived from
recently observed field features are clustered and only the largest cluster, which
also needs to contain a minimum number of elements, is considered as a candidate
for a new sample. This candidate is only inserted into the sample set in case it
significantly differs from the current robot pose estimation.

To resolve the field’s symmetry when handling the field features, we use the
constraints given by the rules (e. g. all robots are in their own half when the
game state switches to Playing or when they return from a penalty) as well
as the assumption that the alternative that is more compatible to the previous
robot pose is more likely than the other one. This assumption can be made,
as no teleportation happens in real games. Instead, most localization errors re-
sult from situations in which robots lose track of their position and accumulate
translational and rotational errors.

These changes in localization and perception – along with a growing number
of robots that have a z-axis gyroscope – enabled us to reduce the number of
Leaving the Field penalties from 15 (in seven games during RoboCup 2015) to
0 (in five games during the RoboCup European Open).



5 Summary

For RoboCup 2016, we have made several major changes regarding image pre-
processing and perception. The aim of these changes is to improve the overall
robustness of the system, particularly with regard to the ability to play in en-
vironments with unstable lighting conditions, such as the upcoming Outdoor
Competition.

Some of these new features as well as the new ball detection, which is a must-
have to be able to play at all, have already been used at the RoboCup European
Open 2016 and contributed to our success in that competition. Thus, we are
looking forward to a successful participation in the RoboCup 2016 in Leipzig!
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