
2016 Team Description Paper: UBC Thunderbots

Ryan De Iacoc, Stephen Johnsona, Fakherdin Kallac, Lynx Kevin Lua, Mathew
MacDougalle, Kawindi Muthukudac, James Petried , Michaela Ragoonathc, Wei Yi

Suc, Vincent Tangd , Tiffany Tsua, Brian Wanga, Graham Whytec, Cheng Xie,
Komancy Yud , Eric Zhangb and Kevin Zhangd .

Departments of: (a) Mechanical Engineering, (b) Computer Science,
(c) Electrical and Computer Engineering, (d) Engineering Physics,

(e) Applied Science
The University of British Columbia

Vancouver, BC, Canada
www.ubcthunderbots.ca

robocup@ece.ubc.ca

Abstract. This paper details the design improvements UBC Thunderbots has
made in preparation for RoboCup 2016 in Leipzig, Germany. The primary focus
was to build on the existing artificial intelligence of the robot by implementing
coroutines into high-level software while refining current features. The secondary
focus involved optimizing electrical, firmware and mechanical systems.

1 Introduction

UBC Thunderbots is an interdisciplinary team of undergraduate students at the Univer-
sity of British Columbia. Established in 2006, it pursued its first competitive initiative
within the Small Size League at RoboCup 2009. The team has consecutively competed
in RoboCup from 2010 to 2015 and is currently seeking qualification for RoboCup
2016. Over the years, it has made significant developments of its team of autonomous
soccer playing robots. This paper will outline the progress in implementation of the cur-
rent model of robots, focusing on the mechanical, electrical and software components
with particular emphasis on the artificial intelligence (AI) plays.

2 Mechanical Design

2.1 Drivetrain

Motor Mount: The overall design of the motor mounts is the same as the 2015 revi-
sion, with a few minor changes. The material has been changed back to aluminium, as
stainless steel cannot be easily machined during competition. Helix coils were added to
the threads connecting the motor mounts to the baseplate (M3), and the motor mounts
to the wheel (M5). This was done to increase the robustness of the aluminium threads
over time. Rubber padding was also added between the baseplate and motor mounts-
this was done to compensate for the wheel height differences across the four wheels
of the robot. The rubber padding acts as a ”suspension” system by giving the motor
mounts a little room for adjustment.



2.2 Chipper

With the aim of increasing mechanical compactness, we devised a chipper assembly
that allows for a horizontal chipper plunger motion while still maintaining the optimal
angle of ball contact at 45 degrees. As Figure 1 illustrates, the planned chipper me-
chanics compose of a flat solenoid-pulled plate with mostly water-jetted steel pieces.
The retraction force comes from torsion springs to be mounted on the pivot bolts. The
new layout is estimated to reduce the height of the chipper assembly by about 1.5cm,
allowing for more space for potential electrical expansion in the future.

Fig. 1: 2016 Chipper Mechanical System Design

2.3 Kicker

The kicker is mostly unchanged with the exception of the plunger stopper redesign. The
two-screw stopper design operated successfully for a period of time before the defor-
mation loosen the screw and required replacement. The new design has extended the
plunger stopper on the left and right, resulting in a better surface impact. Additionally,



a new stopper block has been installed on the base plate to absorb the impact and stop
the plunger from clashing the spring and destroying the kicker solenoid housing.

2.4 Dribbler

Frame: The current design has a frame that holds the dribbler, motor, and gearing.
It slides on two diagonal baseplate mounts and is restrained by springs that are also
attached to the baseplate mounts. The baseplate mounts have a crossbar that has a spring
shock absorber, which will be replaced by three to five pneumatic shock absorbers.
We are in the process of prototyping shock absorbers from perforated tubes filled with
compressible foam.

Frame Alignment: The dribbler frame has some twist while sliding up the baseplate
mounts during impact with the ball. The team will attempt a design revision in which
the twist will be reduced or eliminated.

Roller: The team will run an experiment testing new dribbler roller wrapper materials,
that are softer and more compressible than the current polyurethane. If the new material
causes less ball rebound, and has an equivalent lifetime on the roller, it will replace the
current polyurethane wrapping.

Break Beam: This year, the break beam receiver diode will be relocated onto the
same side as the laser diode emitter. The break beam components are all mounted in
the extended chipper plate mounts. The laser from the emitter will be reflected with
retro-reflective tape, onto the receiver.

3 Electrical Design

3.1 Electronics

Our electrical design remained mostly unchanged this year. However, we are planning
to make small modifications to the chicker (circuit for kicking and chipping) mainly
due to safety concerns.

Both kicking and chipping actions operate by discharging a 4 mF capacitor bank
charged to 240 VDC, as shown in Figure 2. At such high voltages, safety becomes a
serious concern, especially if the charge state of the capacitors is unknown after an
unexpected shut down. During normal operation, the capacitors are discharged through
the kicker and chipper solenoids in a few seconds. Conversely, in the event that the
robot is shut down unexpectedly while the capacitors are still charged, an on-board
relay switches the capacitors to a discharge circuit in order to dissipate the power.

In the past year, a large high-power resistor was used to dissipate the power. How-
ever, this resistor would fail after a few seconds. In addition, no indication was provided
by the circuit as to the current state of the capacitors. In order to address this issue, we
have replaced this resistor discharge circuit with a new indicator circuit. This circuit



Fig. 2: Chicker Board Architecture

consists of an LED in parallel with a shunt resistor, which is then in series with 2 high-
powered resistors. The LED remains significantly visible at 60V and the high-powered
resistors are capable of discharging the capacitors without overheating.

Furthermore, we removed a 1 mF capacitor from the capacitor bank. This allows the
capacitor bank to charge and discharge at a faster rate, thereby dissipating less power
through the indicator circuit. The removal of the 1mF capacitor provides the additional
benefit of creating more circuit board space. Currently, the board must be placed off-
centre to accommodate solenoid connectors. There are plans to move these connectors
down the side of the board in order to provide this space.

3.2 Controller

After the introduction of the movement primitives framework as described in our 2015
TDP [1], we have been focused on improving the performance of each primitive. Our
current design consists of six primitives:

– Move
– Dribble
– Shoot
– Catch
– Pivot
– Move-Spin

Move: The Move primitive relies on a positional controller which obtains positional
feedback from the dead reckoning unit on the robot. With dead reckoning data, the
robots calculate a trapezoidal velocity profile to reach its destination. To avoid jittery
motion caused by sudden changes in velocity, we limit jerk by averaging desired veloci-
ties within a time window. Currently, the Move primitive performs acceptably, although
improvements could be made to its accuracy.



Dribble: The Dribble primitive is to be used when the robot detects the ball in its
dribbler. The purpose of separating the Dribble primitive from the Move primitive is to
allow the robot to use a different drive controller designed for ball retention. However,
presently the Dribble primitive still relies on the same positional controller as the Move
primitive. In the future, we hope to develop a separate controller optimized for ball
retention. Furthermore, this year we are planning to experiment with a constant-velocity
controller for the dribbler.

Shoot: The Shoot primitive is a type of specially handled movement that takes into
account the proximity of the ball to the robot and the importance of angular accuracy
during shooting. In the past, we have always relied on a combination of camera data
and forward simulation via a Kalman filter to close the position controlling loop. How-
ever, the relatively low resolution of the camera and various errors introduced by the
geometry of the camera set-up prevents us from obtaining an accurate distance between
the robot and the ball. Additionally, the delay in the camera data sometimes causes our
robot to oscillate when it tries to aim with a very small angular tolerance. The Shoot
primitive attempts to combine lateral position sensor, as noted in our 2015 TDP [1] in-
formation with the improved angular accuracy of the robot level controller. We hope to
report a better shooting accuracy in the coming competition.

Catch: The Catch primitive is to be executed on plays where the robot needs to receive
the ball from another robot. This primitive is in a raw state compared to the other prim-
itives, and work this year has focused on making it more functionally useful. The idea
is to move and rotate to a given position where the ball is going to be, while at the same
time moving with a constant velocity along the axis of incidence of the ball velocity.
Completing this primitive will allow our artificial intelligence to make more complex
plays, and will make our team more competitive.

Pivot: The Pivot primitive can be broadly defined as moving in an arc, an with an
arbitrary radius, arc length and robot orientation. This primitive is especially useful
when a robot needs to navigate quickly around a stationary ball. The derivation of this
primitive is slightly non-trivial but essentially involves mapping position, velocity and
acceleration from a Cartesian coordinate system to a polar coordinate system and then
back to another Cartesian coordinate system. We found the resulting motion from the
robot level arc trajectory planner very accurate and smooth.

Move-Spin: The Move-Spin primitive is intended to be a defensive, fore-checking
primitive. The primitive is similar to the Move primitive, in that it moves to a given
positional coordinate. However, the robot spins at a specified angular velocity in order
to knock off the ball from opposing robots. The coordinates from our dead reckoning
system need to be continuously rotated to ensure that the robot continues towards its
required destination. This year, we are working on refining the primitive to ensure it
travels more precisely towards the required position, and has smoother control over its
angular velocity.



4 Software

4.1 Implementation of Coroutines into High-Level Software
This year, we are expanding upon the schema proposed in CMDragon’s STP: Skills,
Tactics and Plays for Multi-Robot Control in Adversarial Environments [2], which has
been in use for several years by UBC Thunderbots. Shortcomings of the previous state-
less implementation included an inability to easily and effectively write procedural code
due to the need to reprocess the playing field and re-evaluate decisions every tick.

In order to alleviate these concerns, we are using the Boost Coroutines library to
develop a solution by implementing the Plays and Tactics layers of the STP paradigm
as stateful coroutines that save the execution context across ticks. In coordination with
our recent switch to Movement Primitives as described in last year’s paper, C++ deter-
ministic destruction will be used to manage the execution of primitives on the Tactic
layer.

Firstly, as further development on the movement primitives, each robot will have
a queue of movement primitives on the software side. This will enable our navigator
to perform “look-ahead” and perform cooling on disjoint paths - that is, rounding off
sharp corners - to allow our robots to reach their final position faster. The construction
of a “primitive” object in the Tactic layer places a primitive on the robot queue, and its
destruction removes it from the queue. Our Navigator layer then accesses this queue to
plan out movements. On the Tactic layer, primitives will be queued sequentially, yield-
ing from the coroutine as necessary if waiting for a certain field condition is necessary.
An example of using this framework is presented below.

void MyTactic::run(Robot& bot) {
Primitive::Move prim1(bot, target, angle);
// yields from the coroutine until condition is met
wait_condition(goal_empty);
Primitive::Move prim2(bot, target2, angle2);
Primitive::Shoot prim3(bot, goal);
// wait until the primitive is finished
wait_finished(prim3);
}

The wait condition and wait finished methods yield from the coroutine
to pass control back to the caller, allowing processing of the other robots to occur.
Notably, primitives can also be allocated on the heap to control their en-queueing and
de-queueing with greater flexibility.

The Plays layer will perform a similar duty. However, instead of queueing primitives
onto execution queues, Plays will control the delegation of Tactics to players in the same
manner - they can wait for Tactics to complete before assigning new Tactics to other
robots.

In this framework, the Navigator takes up much of the work of handling the primi-
tive queue. As it is at a lower level than the Play and Tactic layers, this makes it much
simpler to write new Plays and Tactics as the finer details of execution are increasingly
abstracted away. We hope to finish this framework by RoboCup 2016 and test out basic
movements and tactics during the competition.



4.2 Optimal Ball Intercept

This year we are improving upon the old interception methods by allowing the AI to
dynamically decide the best place to intercept. Instead of simply getting in front of the
ball as fast as it can, the intercepting robot will now consider other factors to help it
decide where to intercept the ball.

Hopefully this will improve the decisions made after the intercept and help the
robots transition from defence to offence. This change will be more noticeable and
effective with the shift towards double-size fields, since there will be more space and
options for the robot to consider and take advantage of.

This new feature will work by finding both the earliest and latest locations the robot
could intercept the ball, and creating an array containing a certain number of points
on the line between these locations. The latest location the robot could intercept the
ball is considered to be either where the ball is projected to leave the field, where it
collides with a player, or where it is predicted to stop - whichever happens first. This
array of points is then passed to the evaluation function which returns the most optimal
point to intercept at. The evaluation assigns each point a score based on how optimal a
point it thinks it is, with higher score representing more favoured points. The evaluation
is planned to consider the time it takes to get to the points, how close enemy robots
are to the same points, and how many potential shots or passes can be made from that
point. Each factor will have a predefined weight in the scoring process, with time and
enemy threat being heavily weighted so the robot has the best possible chance of should
always beating the enemy to the ball. The potential passes or shots will then be used
to differentiate between the remaining points. This new approach should improve the
play-making of the team during transfers of possession and allow us to make the best
decisions while still beating the enemy to the ball.

4.3 Linear Ball Path Extraction

Currently, the robots have no method of estimating precisely where the ball will stop
when moving in a straight, uninterrupted line. To solve this problem, we made a pro-
gram to extract the data of uninterrupted ball movement from previous game logs. Using
the time, x-velocity, and y-velocity from the game logs, we create a new data log with
the direction, speed, and acceleration of the ball. By using a linear regression model to
graph acceleration as a function of speed, we can estimate where the ball will be in x
seconds.

The most important function of this program is the improvement it would provide
for passing and intercepting. Currently, much of the software assumes that the ball is
moving at constant velocity, neglecting the external forces that will cause it to accelerate
or decelerate over time. Thus, the AI is not calculating the most efficient position the
robot should move to receive a pass or intercept an enemy pass. By accurately predicting
the path of the ball, we save time by providing an accurate initial calculation instead of
recalculating based on where to move from positions provided by each tick data.

One long term goal of extracting the behaviour of linear ball paths is machine learn-
ing. Essentially, we want the AI to recognize common enemy passes by observing com-
monly recurring linear paths of the ball in the game. By observing the state of the field



before common passes such as enemy positions, we can store certain states to watch
out for. Upon recognizing such states, we can predict and begin moving to intercept
common passes before they happen. Ultimately, this function would greatly improve
defence.

4.4 Movement Primitive To Turn While In Possession Of The Ball

The current movement primitives, though sufficient for general robot motion around
the field, do not control the case of a robot needing to turn while in possession of the
ball. This results in an imbalance of forces and causes the ball to accelerate out of the
robot’s control. During a typical turn, the robot faces inward along its curved path of
motion. This means the forces acting on the ball (the field’s friction and the normal force
from the robot) are opposing vectors along this path with no component to oppose the
centrifugal force generated from the turn.

The proposed solution is designing a new movement primitive that will orient the
robot at an angle inside its curved path, introducing an inward facing component to
the normal force from the robot driving the ball, which will provide enough force to
keep the ball from accelerating out of control [3]. This angle is to produce the correct
cancellation of forces based on the angular velocity.

4.5 Kalman Filter for Position Tracking

One problem with relying on dead reckoning for positioning the robots is the constant
need to readjust to a new path. The cumulative error present in dead reckoning can lead
to seemingly erratic movement and sometimes difficulty precisely following a straight
path. One method used by many systems to smooth out noise in a system is a Kalman
filter, which makes use of the sensor’s measurements, previously estimated locations,
and control inputs into the system to provide both an estimate of the value and standard
deviation of the current state of the system.

The general idea in this system is to use the position and velocity of the robots
as state variables for the Kalman filter. This provides an estimate of the current state
variables which can be used to determine the controller inputs needed to follow a path.
The Kalman filter would be implemented on the micro-controllers for each robot for
ease of access to its own state variables and encapsulation.

A missing implementation detail is the lack of compensation for the quarter second
delay from the camera loop for estimating the position of robots. The uncertainty in
position caused by the camera delay will ideally be reduced by extrapolating from a
state velocity estimation, and will then be absorbed into the Kalman filter’s uncertainty
matrix. Further investigation is needed to see if the delay poses enough of a problem to
consider improving the implementation in this way.

The goal of adding a Kalman filter is to improve the accuracy of the computed posi-
tions and velocities of the robots. An increased performance in navigation and tracking
allows for more consistency in tasks such as passing and allows for the introduction of
more complicated passing plays.



5 Conclusion

We believe that the design changes detailed above will lead to significant improvements
in performance. We look forward to putting the changes into action at RoboCup 2016.

6 Acknowledgements

We would like to thank our sponsors, as well as the University of British Columbia,
specifically the Faculty of Applied Science and departments of Mechanical Engineer-
ing, Engineering Physics, and Electrical and Computer Engineering. Without their con-
tinued support, developing our robots and competing at RoboCup would not be possi-
ble.

References

1. S. Churchley, R. De Iaco, J. Fraser, S. Ghosh, C. Head, S. Holdjik, N. Ivanov, S. Johnson,
F. Kalla, A. Lam, B. Long, K. Lu, S. Ng, K. Peri, J. Petrie, E. Roach, W. Y. Su, B. Wang,
C. Xi, K. Yu, and K. Zhang, “2015 Team Description Paper: UBC Thunderbots,” 2015.

2. B. Browning, J. Bruce, M. Bowling, and M. Veloso, “STP: Skills,Tactics, and Plays for Multi-
Robot Control in Adversarial Environments,” Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering, vol. 219, no. 1, pp. 33–52,
2006.

3. J. Biswas, P. Cooksey, S. Klee, J. P. Mendoza, R. Wang, M. Veloso, and D. Zhu, “CMDragons
2015 Extended Team Description Paper,” 2015.


	2016 Team Description Paper: UBC Thunderbots 

