
Soccereus 2D Simulation Team Description Paper

Shayan Salehian1, Ehsan Imani2 Anahita Hosseini3, Sahand Mozaffari4, and
Mohammad Ali Baghershemirani5

1 salehian@ce.sharif.edu, Sharif University of Technology, Tehran
2 eimani@ce.sharif.edu, Sharif University of Technology, Tehran

3 anahosseini@ucla.edu, University of California, Los Angeles
4 smozaffari@ce.sharif.edu, Sharif University of Technology, Tehran

5 bagher@ce.sharif.edu, Sharif University of Technology, Tehran

Abstract. Soccer simulation is a ground where one can utilize theoretical
concepts of Artificial Intelligence in a practical field. Majority of teams par-
ticipating in this international league give their complete attention to enhance
high level and more common actions through a learning process. In this pa-
per we employ several methods of machine learning to improve functionalities
that has received less attention in the past years. We propose three AI based
algorithms to improve the shooting skill of the agent, increase probability of
scoring a goal from corner kicks, and block the attacker in penalty shootouts.

Keywords: artificial intelligence, genetic algorithm, neural networks, rein-
forcement learning, soccer simulation, shoot, corner kick, penalty shootout

1 Introduction

Soccereus [1] is a 2D soccer simulation team that was established in 2011. The team
was the outcome of cooperation of a group of students, majoring in software engi-
neering at Sharif University of Technology who had found themselves absorbed in
Artificial Intelligence area and most of them had had a previous experience in 2D
soccer simulation leagues and had achieved several awards in national leagues. Soc-
cereus has participated in three national leagues in the past year, and has ended
second in Sharif Cup and PNU National contests and fifth in Iran Open league.

After some basic development of high level actions on Agent2D base, by H.
Akiyama [2], teams goal changed to developing a multi-aspect intelligent agent. The
first action that drew our attention was shooting and consequently we developed a
neural network based shooting method. Then we pondered that corner kick is a great
opportunity for every team to score a goal. However, most existing teams do not have
strategic and specific plans for this critical situation. They usually start with a long
pass or in some cases they utilize static decision makings. Along with these, we used
reinforcement learning to train the goalie for penalty shootouts.

2 Corner Kicks

To enable the agents to perform the corner kicking at their best, an algorithm was
needed to decide how the players should position themselves and also to determine
the sequence of passes that gives our team the most chance of scoring a goal. To
accommodate this need, a continuous genetic algorithm [3] was utilized to plan a
strategy for scoring from corners. When the first corner kick is awarded to our team,



2

the coach observes the positions of the opponent defenders and the goalie. Then he
runs the algorithm and informs the involved players of their positions and the pass
sequences to be used in next corner kicks.

In our data representation, each gene consisted of 5 positions for offensive players.
Each position contained the radius and angle relative to the players position in the
formation. Also, the cost of each gene was the risk of losing possession of the ball.
To compute the cost function, a directed graph was defined in which, each vertex
corresponded to a player. For each i and j, the edge from vertex vi to vertex vj had a
cost relative to the chance of losing possession of the ball when the ith player passed
the ball to the jth player. There was also an extra vertex vg corresponding to the
opponents goal. For each i, the edge from vi to vg had a cost relative to the chance
of failing to score when the ith player shot the ball towards the goal.

Then a run of Dijkstras algorithm [4] was executed on the graph to find the least
risky path from the corner kick taker to the goal. The output of cost function was
computed by the cost of the path and the number of players participating in the pass
sequence.

The initial population in our model, consisted of genes with random angles between
0 and 2 and random radii between 0 and 9. The algorithm used rank selection method
to choose two parents and single-point crossover to generate two children from the
parents. The positions before the crossover point were inherited from the first parent
and the ones after the point were inherited from the second parent. The position
whose index equaled to the crossover point was inherited in the following manner:

Pnew1 = Pma − β[Pma − Pda] (1)

Pnew2 = Pda + β[Pma − Pda] (2)

where Pnew1 and Pnew2 are the positions in the crossover points of the first and
second children, respectively. Pma is the position in the crossover point of the first
parent, Pda is the position in the crossover point of the second parent and is a random
real number between 0 and 1.

To avoid premature convergence to a local optimum, in each generation, 5 percent
of the population had a chance to be mutated i.e. a single position in each of them
would be replaced by a new position with an angle between 0 and 2 and a random
radius between 0 and 9. The parameters of the algorithm (number of generations and
population) had to be set so that the algorithm could achieve a reasonable cost in a
short time. Therefore, we ran the algorithm to find a safe path among the defenders
of FC Persepolis 2013 [5], which had a very dense defensive formation and could be a
challenging test for our algorithm. Then we analyzed the results based on the param-
eters. The results are shown in figure 1. As it can be seen, the algorithm converged
after almost 50 generations and taking 1000 as the population led to a reasonable
cost. Therefore we chose 50 for the number of generaions and 1000 for the population.

3 Shoot

The result of a game almost specifically relies on the scoring ability of agents and
this makes shooting skill one of the most important high level skills. At first, we
implemented this action by considering balls motion model, opponents defenders and
goalie. This approach was similar to what Riton [6] had done in extracting possible



3

Fig. 1. The result of the genetic algorithm based on the number of generations and popula-
tion against FC Persepolis 2013

shoot points. Since all the factors involved in scoring a goal are practically unfeasible
to be taken into account, we reached to a limit in enhancement of that method.
Therefore, we decided to adapt a new approach. Since Artificial Neural Networks [7]
has been a popular option for data classification we employed its concepts to train
the agent to choose the best parameters for a shoot.

3.1 Designing the training set

One fundamental step is designing a training set that covers all situations likely to
happen. To this end we placed the under-training agent, uniformly in a continuous
environment in the penalty area, and the opponent goalie was placed randomly in
active penalty area.

3.2 Structure of the network

In construction of our neural network input, following criteria were taken into account.

– Angle between goalie and ball path
– Angle between goalie body and ball path
– Distance between goalie and ball
– Distance from ball to goal in balls direction
– Balls initial velocity

The single output of this network is a Boolean determining if a goal is scored or
not and based on the result, sample data is classified into two classes. The network
architecture is composed of an input layer with five inputs as described above, one
hidden layer containing five neurons, and an output layer of a single neuron. The
activation function for all the neurons in hidden layer are linear and output layer
employs the Binary Sigmoid function.

In figure 2, we compare the results of this method to results of the earlier method
we used. The two charts demonstrate the outcome of 500 rounds of shooting.



4

Fig. 2. Comparison of results from the old shoot algorithm with the neural networks based
one

4 Penalty Shootouts

Penalty shootout is the tie-breaker in the knockout stage of the tournament. Improving
the performance of the agent in this scenario demands considerable attention as it
directly determines the winner. In this section, we focus on training the goalie for a
penalty shootout scenario. We model it as a reinforcement learning [8] problem and
propose a solution based on the recent advancements in deep reinforcement learning.

4.1 Deep Reinforcement Learning

In a reinforcement learning problem, the aim is to find a policy that maximizes the
expected future rewards. Q-learning achieves this goal by finding an optimal action-
value function denoted by Q∗(s, a). This function shows the usefulness of taking action
a in state s assuming that the subsequent actions are chosen by the optimal policy. A
common approach in reinforcement learning is to estimate the optimal action-value
function using Bellman equation:

Q∗(s, a) = Es′∼ε[r + γmax
a′

Q∗(s′, a′)|s, a] (3)

in which r is the reward resulted from taking action a in state s, ε is the environment,
and γ is a discount factor.

Mnih et al. [9] proposed a method for end-to-end training of Deep Q-Network
(DQN) that approximates the optimal action-value function. The idea is based on
neural fitted Q-learning (NFQ) which uses resilient backpropagation and a loss func-
tion derived from the Bellman equation [10]. However, DQN is trained with experience
replay. In this technique, at each time-step, the agent picks an action using ε-greedy
policy, stores the reward and state transition in a dataset, and then applies minibatch
updates on the dataset to approximate the Q-function. Off-policy learning with ex-
perience replay breaks the correlation between the training samples and makes them
i.i.d., thus considerably improving the stability of the learning. Receiving raw pixels
as input, this approach achieved a level of performance comparable to expert human
players on many Atari 2600 games [9].

The methods discussed above are limited in that they only work on discrete action
spaces. If the set of actions is finite and a good approximation of Q-function is avail-
able, the optimal policy can be achieved by a simple maximization over the actions.
However, in many tasks, like 2d soccer simulation, actions can be high-dimensional
and continuous and this optimization might be infeasible in such spaces. Silver et
al. [11] proposed Deterministic Policy Gradient (DPG) algorithm which handles this



5

problem by training two parameterized functions simultaneously: i) an actor µ(s) that
gives the action that should be taken in the state s and ii) a critic Q(s, a) that approx-
imates the Q-function and is trained using the Bellman equation. Roughly speaking,
this method uses the critic function to compute the gradient of the expected fu-
ture rewards w.r.t. the parameters of the actor function, thus finding a direction in
which the actor parameters should change to achieve the optimal policy. Deep DPG
(DDPG) combines this actor-critic approach with the ideas in DQN to solve prob-
lems with high-dimensional action and state spaces [12]. Similar to DQN, DDPG uses
experience replay to train the Q-network with minibatch updates on the dataset of
experiences. The method also uses soft target updates [12], batch normalization [13],
and Ornstein-Uhlenbeck process [14] (for exploration) to further stabilize the learning
process.

4.2 Modeling Our Problem

We model the performance of the goalie in a penalty shootout scenario as a reinforce-
ment learning problem with continuous action and state spaces and train the agent
with DDPG algorithm. Since the goalie and an attacker are the only present agents
in the environment, the state can be described by these features:

– Position of the goalie
– Position of the attacker
– Position of the ball
– Velocity of the ball
– Body angle of the goalie
– Velocity of the goalie

The action that should be taken is specified by the following features:

– Angle of turn
– Power of dash (at 8 different angles)

The neck angle of the agent is heuristically set to follow the ball in order to avoid
further complication of the action space. We also devise a reward function that is used
in the training algorithm. A serious challenge in 2d soccer simulation is the extremely
delayed reward. The naive reward function gives +1 and −1 only when a goal is
scored and conceded respectively. The agent of our problem, whose aim is to block
the attacker in a penalty shootout, is only concerned with conceded goals. Therefore
the naive reward function can be described as a function of the distance between the
ball and our goal:

R(x) = 2 ∗ (H(x)− 1) (4)

in which H(x) refers to Heaviside step function. This function can be interpreted
as a severe punishment that suddenly appears as the distance reaches zero. We use
the alternative definitions of Heaviside step function to derive a ”soft” version of this
reward function:

R′(x) = 2 ∗ (1/(1 + e−x/t)− 1) (5)

where t is a hyper-parameter that controls the ”softness” of our function (note that
R′(x) behaves like R as t → 0). Intuitively, the agent’s aim is to keep the ball away
from the goal but the punishment is not hard as long as the opponent is wandering
outside the penalty area. While this formulation alleviates the problem of delayed
reward, it should be noted that sufficient stochasticity in exploration is essential for
the algorithm to converge.



6

5 Conclusion

In this paper we proposed several methods for improving different agent actions, in
which we found room for improvement. They included actions such as shooting, corner
kicking, and defending our goal in penalty shootouts. All of the implemented actions
had a reasonable result and showed an improvement in comparison to our former
methods. Our team intends to focus on improving other actions by means of Artificial
Intelligence methods.

References

1. S. Mozaffari, M. baghershemirani, A. Hosseini, E. Imani, S. Salehian. Soccereus 2D sim-
ulation - Team Description Paper, 2014.

2. Akiyama, H.: Agent2D Base Code. http://www.rctools.sourceforge.jp
3. Randy L. Haupt, Sue E. Haupt. ”Practical genetic algorithms”, 2nd ed., Wiley-

Interscience, 2004.
4. Cormen, Thomas H. Leiserson, Charles E. Rivest, Ronald L, Stein, Clifford (2001). ”Sec-

tion 24.3: Dijkstra’s algorithm”. Introduction to Algorithms (Second ed.). MIT Press and
McGrawHill. pp. 595601. ISBN 0-262-03293-7.

5. Amir Tavafi, Vahid Khodabakhshi, Nima Nozari, Michael Shaghe-
lani, Hosseinali Zare, Marziye Hashemian. FC Perspolis 2013 Binary.
http://chaosscripting.net/files/competitions/RoboCup/WorldCup/2013/2DSim/binaries/fcperspolis.tar.gz

6. M. Alavi, M. Falaki Tarazkouhi , A. Azaran , A. Nouri , S. Zolfaghari. RoboCup
2012 Soccer 2D Simulation Team Description Paper (Riton) [online], Available:
http://www.socsim.robocup.org/ files/2D/tdp/RoboCup2012/.

7. Martin T. Hagan, Howard B. Demuth, Mark Beale. ”Neural Network Design”, Boston,
2002.

8. Richard S. Sutton, Andrew G. Barto. ”Reinforcement Learning: An Introduction”, MIT
Press, Cambridge, 1998.

9. Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc
G. Bellemare, Alex Graves et al. ”Human-level control through deep reinforcement learn-
ing.” Nature 518, no. 7540 (2015): 529-533.

10. Riedmiller, Martin. ”Neural fitted Q iterationfirst experiences with a data efficient neural
reinforcement learning method.” In Machine Learning: ECML 2005, pp. 317-328. Springer
Berlin Heidelberg, 2005.

11. Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. ”Deterministic policy gradient algorithms.” In ICML. 2014.

12. Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. ”Continuous control with deep reinforce-
ment learning.” arXiv preprint arXiv:1509.02971 (2015). Harvard

13. Ioffe, Sergey, and Christian Szegedy. ”Batch normalization: Accelerating deep network
training by reducing internal covariate shift.” arXiv preprint arXiv:1502.03167 (2015).

14. Uhlenbeck, George E., and Leonard S. Ornstein. ”On the theory of the Brownian mo-
tion.” Physical review 36, no. 5 (1930): 823.


