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Abstract. The Carologistics team participates in the RoboCup Logis-
tics League for the fith year. As a medium complex domain balancing
implementation effort and significance the league requires the develop-
ment and integration of various software components. We outline the
approach with an emphasis on the modifications required for the new
game originally introduced in 2015 in terms of custom hardware and
software components. Additionally, we report on our efforts regarding
the development of the league itself like releasing our full software stack
for the second year in a row as open source software.

The team members in 2016 are Alexander Ferrein, Mostafa Gomaa,
Christoph Henke, Daniel Künster, Nicolas Limpert, Matthias Löbach,
Victor Mataré, Tobias Neumann, Tim Niemueller, Sebastian Reuter, Jo-
hannes Rothe, David Schmidt, Sebastian Schönitz, and Frederik Zwilling.

1 Introduction

The Carologistics RoboCup Team is a cooperation of the Knowledge-based Sys-
tems Group, the IMA/ZLW & IfU Institute Cluster (both RWTH Aachen Uni-
versity), and the MASCOR Institute (FH Aachen UoAS). The team was initiated
in 2012. Doctoral, master, and bachelor students of all three partners participate
in the project and bring in their specific strengths tackling the various aspects
of the RoboCup Logistics League (RCLL): designing hardware modifications,

Fig. 1. Final round of the RoboCup Logistics League 2015 in Hefei, China. Team
Carologistcs (laptop on top) and Team Solidus (pink parts) are competing against
each other.



developing functional software components, system integration, and high-level
control of a group of mobile robots. Our approach to the league’s challenges is
based on a distributed system where robots are individual autonomous agents
that coordinate themselves by communicating information about the environ-
ment as well as their intended actions.

Our team has participated in RoboCup 2012–2015 and the RoboCup German
Open (GO) 2013–2015. We were able to win the GO 2014 and 2015 as well as the
RoboCup 2014 and 2015 (cf. Figure 1) in particular demonstrating flexible task
coordination, robust collision avoidance and self-localization. We have publicly
released our software stack used in 2014 and 2015 in particular including our
high-level reasoning components for all stages of the game4 [1].

In the following we will describe some of the challenges originating from the
new game play in 2015. In Section 2 we give an overview of the Carologistics
platform and the changes that were necessary to adapt to the new game play.
We continue highlighting our behavior components in Section 4 and our contin-
ued involvement for advancing the RCLL as a whole as well as the RoboCup
Industrial umbrella league in Section 5 before concluding in Section 6.

1.1 RoboCup Logistics League 2016

Fig. 2. Carologistics Robotino ap-
proaching a ring station MPS.

The goal is to maintain and optimize the ma-
terial flow in a simplified Smart Factory sce-
nario. Two competing groups of up to three
robots each use a set of exclusive machines
spread over a common playing field to pro-
duce and deliver products (cf. [2,3,4]).

In 2015, the RCLL has changed consid-
erably by introducing actual processing ma-
chines based on the Modular Production Sys-
tem (MPS) platform by Festo Didactic [3] as
shown in Figure 2. For more details on the
new game play we refer to [5]. In 2016, the
rules have only been changed slightly to al-
low teams to adapt and new teams to par-
ticipate. The first RCLL Winter School orga-
nized by our team has vastly helped in this
effort (cf. Section 5.3).

With a higher variety of work orders, time
consumption for the individual task is an is-
sue and efficient scheduling of the tasks a necessity to produce higher values
goods (cf. Figure 3). The RCLL will introduce bar codes on the work pieces to
be able to recognize them and award points during productio and not only on
delivery.

4 Software stack available at https://www.fawkesrobotics.org/projects/

rcll2015-release/

https://www.fawkesrobotics.org/projects/rcll2015-release/
https://www.fawkesrobotics.org/projects/rcll2015-release/
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Fig. 3. Refinement steps for the production of a highest complexity product in the
RCLL 2015 (legend on the right).

2 The Carologistics Platform

The standard robot platform of this league is the Robotino by Festo Didac-
tic [6]. The Robotino is developed for research and education and features omni-
directional locomotion, a gyroscope and webcam, infrared distance sensors, and
bumpers. The teams may equip the robot with additional sensors and computa-
tion devices as well as a gripper device for product handling.

2.1 Hardware System

The robot system currently in use is based on the Robotino 3. The modified
Robotino used by the Carologistics RoboCup team is shown in Figure 4 and
features two additional webcams, a RealSense dept camera and a Sick laser range
finder. The webcam on the top is used to recognize the signal lights, the one below

Fig. 4. Carologistics
Robotino 2015/2016

the number to identify machine markers, and the dept
camera below the gripper is used to recognize the con-
veyor belt. We use the Sick TiM571 laser scanner used
for collision avoidance and self-localization. It has a scan-
ning range of 25 m at a resolution of 1/3 degrees. An addi-
tional laptop increases the computation power and allows
for more elaborate methods for self-localization, computer
vision, and navigation.

Several parts were custom-made for our robot plat-
form. Most notably, a custom-made gripper based on
Festo fin-ray fingers and 3D-printed parts is used for prod-
uct handling. The gripper is able to adjust for slight lat-
eral and height offsets. The previously used servo mo-
tors have been replaced by stepper motors. These replace-
ments were motoviated by increasing the positioning ac-
curacy of the lateral axis. The motor is controlled with an
additional Arduino board together with a motor shield.
The acceleration of the motors follows an acceleration pro-
file for smoothly increasing an decreasing the motor speed
to avoid positioning errors. As no encoders are used a micro switch for initializing
the lateral axis position is used.



2.2 Architecture and Middleware

The software system of the Carologistics robots combines two different middle-
wares, Fawkes [7] and ROS [8]. This allows us to use software components from
both systems. The overall system, however, is integrated using Fawkes. Adapter
plugins connect the systems, for example to use ROS’ 3D visualization capabil-
ities. The overall software structure is inspired by the three-layer architecture
paradigm [9]. It consists of a deliberative layer for high-level reasoning, a re-
active execution layer for breaking down high-level commands and monitoring
their execution, and a feedback control layer for hardware access and functional
components. The lowest layer is described in Section 3. The upper two lay-
ers are detailed in Section 4. The communication between single components –
implemented as plugins – is realized by a hybrid blackboard and messaging ap-
proach [7]. This allows for information exchange between arbitrary components.
As shown in Figure 5, information is written to or read from interfaces, each
carrying certain information, e.g. sensor data or motor control, but also more
abstract information like the position of an object. The information flow is some-
what restricted – by design – in so far as only one component can write to an
interface. Reading, however, is possible for an arbitrary number of components.
This approach has proven to avoid race conditions when for example different
components try to instruct another component at the same time. The principle is
that the interface is used by a component to provide state information. Instruc-
tions and commands are sent as messages. Then, multiple conflicting commands
can be detected or they can be executed in sequence or in parallel, depending
on the nature of the commands.

3 Advances to Functional Software Components

A plethora of different software components is required for a multi-robot system.
Here, we discuss some components and advances of particular relevance to the
game as played in 2016.

3.1 Basic Components

The lowest layer in our architecture which contains functional modules and hard-
ware drivers. All functional components are implemented in Fawkes. For this
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Fig. 5. Components communicate state data via interfaces stored in the blackboard.
Commands and instructions are send as messages. Communication is universally shared
among functional plugins and behavioral components.



year, we have developed a module for direct communication with the Robotino
microcontroller, fully bypassing and eliminating the need for OpenRobotino. A
major issue was that OpenRobotino has no concept of time and the age of sen-
sor and odometry data could not be determined once it arrived in our system.
Furthermore, a new velocity and acceleration controller has been implemented
resulting in smoother driving.

3.2 MPS detection and approaching

The MPS machines are detected in two ways. Firstly with the tag placed on the
machines, but also using a line fitting algorithm on the laser data. The approach
the MPS during a game, the tag detection is used to validate the correct machine
and for a first rough alignment. In a second step the laser lines are used for an
more precised alignment especially regards the rotation. During the exploration
phase both methods are used concurrently while searching for machines.

3.3 Light Signal Vision

Fig. 6. Vision-based light-signal
detection during production (post-
processed for legibility).

A multi-modal perception component for ro-
bust detection of the light signal state on the
field has been developed specifically for this
domain [10]. It limits the search within the
image by means of the detected position of
the machine. This provides us with a higher
robustness towards ambiguous backgrounds,
for example colored T-shirts in the audience.
Even if the machine cannot be detected, the
vision features graceful degradation by using
a geometric search heuristic to identify the
signal, loosing some of the robustness towards
the mentioned disturbances.

3.4 Conveyor Belt Detection

Fig. 7. Depth based conveyor belt
detection. Left RGB picture, right
point cloud with detected conveyor
belt and its normal.

The conveyor belts are rather narrow com-
pared to the products thus require a precise
handling. The tolerable error margin is in the
range of about 3 mm. The marker on a ma-
chine allows to determine the lateral offset
from the gripper to the conveyor belt. It gives
a 3D pose of the marker with respect to the
camera and thus the robot. However, this re-
quires a precise calibration of the conveyor
belt with respect to the marker. While ide-
ally this would be the same for each machine, in practice there is an offset which



would need to be calibrated per station. Therefore we are using the approach
described in 3.2 for a pre-alignment which is then improved with our depth based
conveyor detection, where a point cloud from an Intel RealSens F200 camera is
used to detect the conveyor. This is done by pruning the point cloud towards our
region of interest by fusing the initial guess of the belt gathered by the machine
position detected with the laser scanner. Afterwards a plane search is done to
detect the precise pose of the front-plane of the conveyor belt and its normal.

3.5 Barcode Detection

Fig. 8. Vision-based barcode de-
tection (training images).

Due to recent changes in the the RCLL, prod-
ucts can now be identified and tracked by
means of a barcode. This allows for identi-
fying each with an unique identifier. This en-
ables the refbox to award points for interme-
diate production steps. We have implemented
a detection component to be run on our robot.
It allows to be more robust towards handling
failures and to verify that the shared world
model is consistent. Our implementation is based on the ZBar5 OpenCV com-
puter vision libraries. The detection is promising and we are working towards
integration into our reasoning system. We will evaluate the system during the
competition in Leipzig.

4 High-level Decision Making and Task Coordination

Vision · · ·

AMCL Motion Components
Actuator/Sensor proc.

Localization, etc.

Behavior Engine Reactive Behaviors
Skill execution/monitoring

CLIPS Agent Deliberation
Decision making/planning

Fig. 9. Behavior Layer Separation

The behavior generating compo-
nents are separated into three lay-
ers, as depicted in Figure 9: the
low-level processing for percep-
tion and actuation, a mid-level re-
active layer, and a high-level rea-
soning layer. The layers are com-
bined following an adapted hybrid
deliberative-reactive coordination
paradigm.

The robot group needs to cooperate on its tasks, that is, the robots commu-
nicate information about their current intentions, acquire exclusive control over
resources like machines, and share their beliefs about the current state of the
environment. Currently, we employ a distributed, local-scope, and incremental
reasoning approach [5]. This means that each robot determines only its own ac-
tion (local scope) to perform next (incremental) and coordinates with the others
through communication (distributed), as opposed to a central instance which
plans globally for all robots at the same time or for multi-step plans.

5 http://zbar.sourceforge.net/

http://zbar.sourceforge.net/


In the following we describe the reactive and deliberative layers of the be-
havior components. For computational and energy efficiency, the behavior com-
ponents need also to coordinate activation of the lower level components.

4.1 Lua-based Behavior Engine

In previous work we have developed the Lua-based Behavior Engine (BE) [11]. It
serves as the reactive layer to interface between the low- and high-level systems.
The BE is based on hybrid state machines (HSM). They can be depicted as a
directed graph with nodes representing states for action execution, and/or moni-
toring of actuation, perception, and internal state. Edges denote jump conditions
implemented as Boolean functions. For the active state of a state machine, all
outgoing conditions are evaluated, typically at about 15 Hz. If a condition fires,
the active state is changed to the target node of the edge. A table of variables
holds information like the world model, for example storing numeric values for
object positions. It remedies typical problems of state machines like fast growing
number of states or variable data passing from one state to another. Skills are
implemented using the light-weight, extensible scripting language Lua.

4.2 Reasoning and Planning

The problem at hand with its intertwined world model updating and execution
naturally lends itself to a representation as a fact base with update rules for trig-
gering behavior for certain beliefs. We have chosen the CLIPS rules engine [12],
because using incremental reasoning the robot can take the next best action at
any point in time whenever the robot is idle. This avoids costly re-planning (as
with approaches using classical planners) and it allows us to cope with incom-
plete knowledge about the world. Additionally, it is computationally inexpensive.
More details about the general agent design and the CLIPS engine are in [13].

The agent for 2016 is based on the continued development effort of our
CLIPS-based agent [4]. We have finalized generic world model synchronization
capabilities that allow to mark specific facts in the fact base to be synchro-
nized with other robots. A central robot dynamically determined through leader
election is responsible for generating a consistent few and distributing it to all
robots.

We have evaluated several different possibilities for the implementation of
agent programs in the RCLL [13] and are making efforts towards a centralized
global planning system.

4.3 Multi-robot Simulation in Gazebo

The character of the RCLL game emphasizes research and application of methods
for efficient planning, scheduling, and reasoning on the optimal work order of
production processes handled by a group of robots. An aspect that distinctly
separates this league from others is that the environment itself acts as an agent
by posting orders and controlling the machines’ reactions. This is what we call



Fig. 10. Simulation of the RCLL
2015 with MPS stations.

environment agency. Naturally, dynamic sce-
narios for autonomous mobile robots are com-
plex challenges in general, and in particular
if multiple competing agents are involved. In
the RCLL, the large playing field and mate-
rial costs are prohibitive for teams to set up
a complete scenario for testing, let alone to
have two teams of robots. Additionally, mem-
bers of related communities like planning and
reasoning might not want to deal with the full
software and system complexity. Still they often welcome relevant scenarios to
test and present their research. Therefore, we have created an open simulation
environment [14,15] based on Gazebo.6

5 League Advancements and Continued Involvement

We have been active members of the Technical, Organizational, and Execu-
tive Committees and proposed various ground-breaking changes for the league
like merging the two playing fields or using physical processing machines in
2015 [2,3]. Additionally we introduced and currently maintain the autonomous
referee box for the competition and develop the open simulation environment
described above. We have also been a driving factor in the establishment of the
RoboCup Industrial umbrella league [3]. It serves to coordinate and bring closer
the efforts of industrially inspired RoboCup leagues. The first steps are the uni-
fication to a common referee box system (Section 5.1) and the introduction of a
cross-over challenge (Section 5.4).

5.1 RCLL Referee Box and MPS Stations

The Carologistics team has developed the autonomous referee box (refbox) for
the RCLL which was deployed in 2013 [2]. It strives for full autonomy on the

6 More information, media, the software itself, and documentation are available at
http://www.fawkesrobotics.org/projects/llsf-sim/
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Fig. 11. Robots running (parts of) Fawkes which were or are used for the development
of the framework and its components.

http://www.fawkesrobotics.org/projects/llsf-sim/


game controller, i.e., it tracks and monitors machine states, creates (randomized)
game scenarios, handles communication with the robots, and interacts with a
human referee. In 2014 the refbox has been adapted to the merged fields and
two opposing teams on the field at the same time. We have also implemented a
basic encryption scheme for secured communications.

In 2016, tracking of workpieces through barcode scanners on all stations must
be implemented. Furthermore, there are efforts to create a general RoboCup
Industrial Referee Box7 based on the RCLL refbox. This would then be used in
the RCLL as well as the RoboCup Industrial @Work League.

5.2 Public Release of Full Software Stack

Over the past nine years, we have developed the Fawkes Robot Software Frame-
work [7] as a robust foundation to deal with the challenges of robotics appli-
cations in general, and in the context of RoboCup in particular. It has been
developed and used in the Middle-Size [16] and Standard Platform [17] soc-
cer leagues, the RoboCup@Home [18,19] service robot league, and now in the
RoboCup Logistics League [15] as also shown in Figure 12.

The Carologistics are the first team in the RCLL to publicly release their
software stack. Teams in other leagues have made similar releases before. What
makes ours unique is that it provides a complete and ready-to-run package with
the full software (and some additions and fixes) that we used in the competition
in 2015. This in particular includes the complete task-level executive component,
that is the strategic decision making and behavior generating software. This
component was typically held back or only released in small parts in previous
software releases by other teams (for any league).

7 Project website: https://github.com/robocup-industrial/rci-refbox

Fig. 12. Participants and the Carologistics at the RCLL winter school in 2015.

https://github.com/robocup-industrial/rci-refbox


5.3 RoboCup Logistics League Winter School

In December 2015, the Carologistcs Team organized the week-long RoboCup
Logistics League Winter School in Aachen. Within these days participants from
Asia and Europe were introduced to the RoboCup Logistics League and the
relevant components of the Fawkes software framwork. The winter school was
structured by theoretical session where participants were members of the Car-
ologistics presented topics like perception, navigation, simulation, and behavior
design. Aftwards hands-on sessions with the Fawkes software framework deep-
ened the theoretical sessions and were applied in simulation and in the real en-
vironment. This has been made possible through the generous support of Festo
Didactic SE and a RoboCup Federation grant. Festo provided the full playing
field for the winter school. Videos of all presentations and further information is
available at https://www.carologistics.org/winter-school-2015/.

5.4 RoboCup Industrial Cross-over Challenge

As a first step for closer cooperation for the industry-inspired leagues under
the RoboCup Industrial umbrella, together with stakeholders from the @Work
league we have initiated a crossover challenge [20]. It describes several milestones
towards closer cooperation. The task for the first year is depicted in Figure 13.

Human
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RoboCup
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requests a
specific part

transmits an
assembly task runs the

production
processprovides

the finished
product

packages
and delivers
the object

1 2 3

45

Dispatching & Delivery Production & Storage

Fig. 13. Workflow of the cross-over scenario between @Work and the RCLL [20].

5.5 Planning Competition for Logistics Robots in Simulation

As an outcome of the presentation of the RCLL at the workshop on Planning in
Robotics at the International Conference on Automated Planning and Schedul-
ing (ICAPS) in 2015, a planning competition in simulation is being prepared.

https://www.carologistics.org/winter-school-2015/


At ICAPS 2016, a tutorial will be held to present the idea, gather feedback,
and kickstart interested teams [21]. The particular challenges are to efficiently
plan in short time with dynamic orders and to provide an effective executive
to execute multi-robot plans. The competition will be based on the simulation
developed by the Carologistics team. The idea is to foster collaboration and ex-
change among the planning and robotics communities. Further information is
available at http://www.robocup-logistics.org/sim-comp.

6 Conclusion

In 2016, we have in further adapted to the new game. We upgraded our cus-
tom hardware gripper based on the feedback of the 2015 season, and further
adapted and extended the behavior and functional components. We have also
continued our contributions to the league as a whole through active participation
in the league’s committees, publishing papers about the RCLL, and initiating a
crossover challenge under the RoboCup Industrial umbrella. The development of
the simulation we initiated has been transferred to a public project where other
teams have joined the effort and it is used in a spin-off simulation competition.
Most notably, however, have we released the complete software stack including
all components and configurations as a ready-to-run package.

The website of the Carologistics RoboCup Team with further information
and media can be found at http://www.carologistics.org.
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