
Shape-Primitive Based Object Recognition and Grasping
Matthias Nieuwenhuisen, Jörg Stückler, Alexander Berner, Reinhard Klein, and Sven Behnke

Computer Science Institute, University of Bonn, Germany

Abstract
Grasping objects from unstructured piles is an important, but difficult task. We present a new framework to grasp objects
composed of shape primitives like cylinders and spheres. For object recognition, we employ efficient shape primitive
detection methods in 3D point clouds. Object models composed of such primitives are then found in the detected shapes
with a probabilistic graph-matching technique. We implement object grasping based on the shape primitives in an efficient
multi-stage process that successively prunes infeasible grasps in tests of increasing complexity. The final step is to plan
collision-free reaching motions to execute the grasps. With our approach, our service robot can grasp object compounds
from piles of objects, e. g., in transport boxes.

1 Introduction

Object manipulation is a key capability in many industrial
and service robotics applications. We present a new frame-
work to grasp objects composed of shape primitives like
cylinders and spheres. These shape primitives are used for
both object recognition and grasp planning in an integrated
and efficient way. With the proposed approach, our service
robot can grasp object compounds from piles of objects,
e. g., in transport boxes (see Fig. 1).
In the computer vision community, research on the recog-
nition of parts can be traced back to work of Thomas
Binford [15]. This early work is based on the use of
generalized cylinders for segmentation and recognition.
Later work also considered different kinds of shape prim-
itives. A common approach is to hypothesize occur-
rences of shape primitives and more complex compounds
which are subsequently verified against image or range
data [4, 7, 6, 11, 12]. These approaches are based on in-
volved and relatively time-consuming segmentations in the
image domain (either intensity or range images). In con-
trast, in our approach we extend a novel robust shape prim-
itive decomposition technique [16] that is able to operate
directly on 3D point clouds and is efficient enough to de-
liver results in a matter of a few seconds even on large,
high-resolution point datasets. The method is based on
classical RANSAC [8] but employs novel sampling strate-
gies which are responsible for the improved efficiency.
In order to recognize parts composed of shape primitives,
we match detected primitives using a probabilistic graph-
matching approach to object models. We achieve fast de-
tection of objects by extending the flexible graph-matching
method of [17], which can handle optional and repetitive
object components, with probabilistic matching strategies
were recently proposed for symmetry detection [2, 3].

Figure 1: Cognitive service robot Cosero grasps an object
from a transport box.

For the perceived objects, we plan feasible grasping mo-
tions for a 7-DOF manipulator. In general, grasp planning
considers the problem of selecting feasible grasps from the
specifications of the object to grasp, the robot kinematics,
and the surrounding scene. A variety of approaches deter-
mine contact points for each finger for precision fingertip
grasps [5, 9]. In contrast, power grasps that exploit con-
tacts with finger surfaces and the palm may yield much
more stable grasps. To generate a rich set of fingertip and
power grasps, pregrasp shape approaches have been pro-
posed [13, 19].

In previous research, we developed an approach to grasp-
ing objects from a table top that is based on sampling fea-
sible grasps on segmented point clouds and fast, but con-

lnieuwenh
Typewriter
In Proc. of the 7th German Conference on Robotics (ROBOTIK), Munich, Germany, May 2012



servative, collision check heuristics [10]. In this paper, we
present an efficient pregrasp shape approach to plan grasps
for objects that are composed of shape primitives. In order
to gain efficiency, we plan grasps in a multi-stage process
in which we successively prune infeasible grasps in tests
with ascending complexity. We plan reaching motions
with an efficient multi-resolution sampling-based method.

2 Shape Primitive Detection and Ob-
ject Recognition

Our method for 3D object recognition is based on sub-
graph matching: We convert both the searched object and
the scanned scene to an annotated graph. Nodes of the
graph are instantiated for simple shapes (spheres, cylin-
ders, planes) detected by an extended algorithm that is
based on Schnabel et al. [16]. Edges connect those simple
shapes which are neighbored in space and also store the
relative pose of the primitives. For example, a box might
consist of six planar parts, intersecting at 90◦ angle.
We localize objects in a scene by identifying parts of our
search graph in the graph of the scene. Using the estab-
lished graph correspondences, we calculate a rigid trans-
formation to the assumed position and orientation of the
object. Finally, we verify this hypothesis with the original
CAD model positioned by this transformation. We gener-
ate new object models in advance using a CAD model of
the object.

2.1 Object Model Generation

The object we are looking for in the 3D point cloud is given
as detailed, exact 3D CAD model. In a first step, we use
our primitive detection method on this clean data. Here,
we set detection tolerance parameters very tight and get a
clean set of shape primitives representing the object and a
graph describing the relation of neighboring parts. Please
note that for all of these primitives and graph edges we
know the exact shape parameters, e. g., the radii for cylin-
ders and spheres or angles between planes.

2.2 Object Recognition

In the following, we describe every part of our object
recognition pipeline in detail.

prim. det.−−−−−→ graph extr.−−−−−−→

Figure 3: Model generation: Primitive detection and de-
scription of spatial relations.

Shape primitive detection: In a preprocessing step, we
rapidly calculate surface normals and remove outliers in
the data. Next, we detect shape primitives and establish
the graph of spatially close primitives.
In order to further increase robustness and performance of
the primitive shape detection, we introduce the detection
of primitives with predetermined parameters. Since the ob-
jects to be identified in our setup are known in advance, the
correct parameters are read from the input CAD model.
Graph matching: We efficiently create the annotated
shape graph of the scanned point cloud and apply our sub-
graph matching approach following ideas of [17]. We
first choose a random start edge of the query graph of the
searched object and find similar edges in the scene. We
compare edges by their shape attributes and compute a
score for each match. This score is zero if the edge types
of primitives do not match and is best if all attributes of the
edge and shapes are similar. We go through the list of all
similar edges, from best to worst, and for each edge, we try
to expand the match to adjacent edges in the query graph
and the scene graph simultaneously using our comparison
method for edges. We do so until the whole query graph
is fitted — or no more corresponding edges can be found.
This gives us a number of partially-matched graphs which
we rank by the sum of the score of all matched edges. For
the best ones, we compute a transformation matrix that en-
codes the estimated position and orientation of the object
in the scene. Then, we use this transformation to verify our
graph hypothesis.
Computing position and orientation: We compute a rel-
ative 6-DoF transformation towards a common reference
shape position and orientation in our object model. Every
primitive shape correspondence determines some of these
degrees of freedom, for example a sphere-to-sphere cor-
respondence completely characterizes the translation, but
does not help at all to determine the rotations. Hence, in
the matched partial graph, we use the combination of the
matched primitives to compute all unknowns.
We take special care for self-symmetric objects: For sym-
metric objects we can take any transformation around the
self-symmetry axis and compute a valid transformation. It
is possible to detect all self-symmetries in the model gen-
eration phase (e.g., see [2]).
Graph matching verification: We apply the transforma-
tion to the CAD model and check for sufficient overlap
with the scanned points. This way, we can also test points
where no primitives have been detected. In addition, we
verify that no scanned points should be inside the volume
of the CAD model. This makes it possible to identify
wrong matches that might occur in previous steps. If we
can confirm the transformation, we improve its accuracy
by employing the ICP method of Mitra et al. [14] to reg-
ister the CAD model to the points supporting the matched
primitives.
Final result and visibility ranking: The previous steps
result in transformations to all recognized instances of the
object of interest. We estimate the best graspable object



prep.−−→ graph−−−→ match−−−−→ verify−−−→

Figure 2: Object recognition: Input scan - fast preprocessing, primitive detection - abstract graph generation - match,
transformation estimation and verification.

by ranking our matches according to the number of visi-
ble points. The ranked poses of all objects are sent to the
grasp planner. We also compute a background point cloud
for grasp selection and collision avoidance during motion
planning. It consists of all points not in the support of any
object.

3 Grasping of Shape Primitive Com-
pounds

We investigate efficient solutions to grasp and motion plan-
ning in order to achieve fast planning and short delays be-
tween object perception and motion execution. In our ap-
proach, we first determine feasible, collision-free grasps at
the object. We rank these grasps and find the best grasp
that is achievable by a collision-free reaching motion.

3.1 Multiresolution Height Map
To speed up collision checking and allow for dynamically
adjusted safety margins between the robot and its environ-
ment we employ a multiresolution height-map based on
ideas from [1].

Figure 4: For each shape primitive in an object compound,
we sample grasps according to the parametric description
of the shape primitives. For the grasps, we determine pre-
grasp poses (visualized as arrows pointing in forward di-
rection of the gripper; color codes correspondence to shape
primitives). We discard grasps that are in collision within
the object.

The grid consists of multiple object-centered grids with
different resolutions. With increasing distance to the ob-
ject, the grid resolution decreases (see Fig. 5). This models
the trade-off between large safety margins and the need be
able to grasp an object in a cluttered environment.
More formally, the environment is discretized into a square
M ×M 2-dimensional grid. Recursively, a grid is embed-
ded into the inner part

[
M
4 : 3M

4

]
×

[
M
4 : 3M

4

]
of the grid

at the next coarser level. The cell area of the inner grid is a
quarter of the cell area of the outer grid.
Each grid cell contains the maximum height value, dis-
cretized with the corresponding resolution, measured in-
side the cell.

3.2 Grasp Planning
For grasp planning, we find feasible, collision-free grasp
postures on the object to grasp. We define a grasp as a
tuple containing
• the final pose of the gripper when grasping the object

(the grasp pose),
• the closure of the gripper (according to object

width),
• an initial pose of the gripper (the pre-grasp pose) for

approaching the grasp pose, e. g., in a distance of
10 cm to the object,
• a score encoding preferences for certain grasps, e. g.,

grasping cylinders instead of spheres, and prefer-
ring, as the grasp pose, the central part of the cylin-
der.

Figure 5: Multiresolution height-map for fast grasp selec-
tion and collision checking.



Figure 6: Planned end-effector trajectories for grasping a
compound object from a transport box. The trajectories for
the approach (left and middle) and grasp (right) phases are
shown as blue lines.

In order to gain efficiency, we plan grasps in a multi-stage
process that successively prunes infeasible grasps in tests
with increasing complexity:
In the first stages, we find collision-free grasp poses on the
object, irrespective of the pose of the object and not con-
sidering its scene context (see Fig. 4). These poses can be
pre-calculated efficiently in an off-line planning phase. We
sample grasp poses on the shape primitives. From these
poses, we extract grasps that are collision-free from pre-
grasp pose to grasp pose according to fast collision-check
heuristics.
During on-line planning, we examine the remaining grasp
poses in the actual poses of the objects to find those grasps
for which a collision-free solution of the inverse kinemat-
ics in the current situation exists.
Grasps from below the object are considered as infeasi-
ble and filtered first. Next, we test grasp and pre-grasp
positions against our height-map. The remaining grasps
are ranked first by the object ranking and second by the
grasp ranking. Collision-free inverse kinematics solutions
are searched for the grasps in descending order. If a valid
solution was found, we employ motion planning to find a
trajectory. If none was found, we continue with the grasp
evaluation.
We evaluate the score of the resulting grasp poses and in-
put the grasps to the motion planning method to find the
best collision-free grasp.

3.3 Motion Planning
Our grasp planning module finds feasible, collision-free
grasps at the object. The grasps are ranked according to
a score which incorporates efficiency and stability criteria.
The final step in our grasp and motion planning pipeline is
now to identify the best-ranked grasp that is reachable from
the current posture of the robot arm. We solve this by suc-
cessively planning reaching motions for the found grasps
(see Fig. 6). We test the grasps in descending order of their
score. For motion planning, we employ LBKPIECE [18].
We split the reaching motion into multiple segments:
• moving the endeffector over the transport box,
• reaching the pre-grasp pose,
• and finally grasp.

This allows for a quick evaluation if a valid reaching mo-
tion can be found by planning in the descending order of

the probability that planning for a segment will fail.

4 Experiments

4.1 Object Recognition
We tested our object recognition approach using a Kinect
sensor. Fig. 7 shows one result for an object consisting of
a cylinder and two spheres. Our method is able to iden-
tify the object of interest and selects the topmost object to
provide its position and orientation to grasp planning.

4.2 Grasp and Motion Planning
We evaluated our grasp and motion planning pipeline in
a physical simulation of the robot which allows for repro-
ducible experiments. We placed an object randomly in a
transport box and measured the time for planning and the
success rate. In ten runs, our approach requires in avg.
14.9 sec to choose a non-colliding grasp that is within the
workspace of the robot. We then plan reaching motions to
choose a reachable grasp within 2.45 sec in average. Note,
that multiple reaching motions may have been evaluated.
A successful reaching motion is planned in 0.45 sec on av-
erage. In all test runs, the robot succeeded to grasp the
object.
As a second test, we let our robot Cosero clear a transport
box with ten objects (see Fig. 1). The used object was a
pipe connector. Tab. 1 shows timings, the number of de-
tected objects per run, and the number of trials needed.
In average our approach required 5 sec to detect objects,
19.9 sec to choose a grasp, and 3.8 sec to plan a valid reach-
ing motion. This includes one run, where the robot aborted
the execution of a planned motion and replanned for the
other arm (see Run 5 in Tab. 1).

Figure 7: Top: image of the transport box (left) and ac-
quired point cloud (right). Bottom: detected object (left)
and primitives only (right).



Run Detections Selection Planning Trials
1 4 / 10 4.0 1.2 1
2 10 / 9 16.6 2.9 1
3 8 / 8 33.7 3.0 1
4 5 / 7 28.1 6.8 1
5 4 / 6 48.2 9.3 3
6 4 / 5 9.9 4.9 1
7 3 / 4 30.2 3.0 1
8 3 / 3 10.0 1.2 1
9 2 / 2 9.0 3.7 1

10 1 / 1 9.5 1.6 1
Avg. 76% 19.9 3.8 1.2

Table 1: Timings for grasp and motion planning (in sec.)
and number of found objects while clearing a transport
box. In Run 5, reaching the initially chosen grasp pose was
aborted and replanning was necessary, leading to higher
evaluation and planning times.

Although the robot cleared the transport box successfully,
some issues that need further investigation still exist. E. g.,
due to noisy measurements with the Kinect sensor, object
constellations in the cluttered box are possible, where it is
not possible to clearly distinguish to which object a primi-
tive belongs to. This can lead to wrongly connected primi-
tives (see Run 2 in Tab.1). This is not a problem for our ap-
proach, as grasps are calculated per primitive, but it slows
down the grasp evaluation. Also, the grasp selection still
is computational involved and could be sped up by more
accurate heuristics.

5 Conclusions

In this paper, we proposed methods to flexibly grasp ob-
jects composed of shape primitives. For object recogni-
tion, we generate shape compositions from CAD models
and perform sub-graph matching with the primitives in the
scene to detect and localize objects of interest. We take
special care for self-symmetries of the objects.

We solves grasp and motion planning in a multi-stage pro-
cess with tests of increasing complexity. We divide grasp
planning in an off-line and an on-line planning stage: In
the off-line phase, we examine the feasibility of grasps irre-
spective of the actual situation of the object in the scene. In
the actual scene, these grasps are further evaluated for col-
lisions with the environment and reachability by the robot.

In experiments, we could demonstrate that our approach
is capable of recognizing objects in a transport box. Our
method allows to grasp objects in many situations with
only short planning times.

In future work, we will consider view-pose planning to
further improve the recognition of complex parts in piles
of objects. We also investigate the learning of new object
models from simple demonstrations to the robot.

Acknowledgement
This research has been partially funded by the FP7 ICT-
2007.2.2 project ECHORD (grant agreement 231143) ex-
periment ActReMa.

References
[1] Sven Behnke. Local multiresolution path planning. Robocup 2003:

Robot Soccer World Cup VII, pages 332–343, 2004.

[2] A. Berner, M. Bokeloh, M. Wand, A. Schilling, and H.-P. Sei-
del. A graph-based approach to symmetry detection. In Proc. of
the IEEE/EG International Symposium on Volume and Point-Based
Graphics, 2008.

[3] M. Bokeloh, A. Berner, M. Wand, and H.-P. Seidel. Symmetry de-
tection using line features. In Proc. of the Eurographics Computer
Graphics Forum, 2009.

[4] R. C. Bolles and P. Horaud. 3DPO: A three-dimensional part orien-
tation system. International Journal of Robotic Research, 1986.

[5] C. Borst, M. Fischer, and G. Hirzinger. A fast and robust grasp
planner for arbitrary 3D objects. In Proc. of the IEEE Int. Conf. on
Robotics and Automation, 1999.

[6] S. Dickinson, A. Pentland, and A. Rosenfeld. From volumes to
views: An approach to 3-D object recognition. Computer Vision,
Graphics, and Image Processing: Image Understanding, 1992.

[7] O.D. Faugeras and M. Hebert. The representation, recognition, and
locating of 3-D objects. International Journal of Robotics Research,
1986.

[8] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 1981.

[9] R. D. Heester, M. Cetin, C. Kapoor, and D. Tesar. A criteria-based
approach to grasp synthesis. In Proc. of the IEEE Int. Conf. on
Robotics and Automation, 1999.

[10] Jörg Stückler, Ricarda Steffens, Dirk Holz, and Sven Behnke. Real-
time 3D perception and efficient grasp planning for everyday ma-
nipulation tasks. In Proc. of 5th ECMR, 2011.

[11] Whoi-Yul Kim and Avinash C. Kak. 3-D object recognition using
bipartite matching embedded in discrete relaxation. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 1991.

[12] J. Krivic and F. Solina. Part-level object recognition using su-
perquadrics. 2004.

[13] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen. Auto-
matic grasp planning using shape primitives. In Proc. of the IEEE
Int. Conf. on Robotics and Automation, 2003.

[14] N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas. Registration
of point cloud data from a geometric optimization perspective. In
Symp. Geometry Processing, 2004.

[15] R. Nevita and T. O. Binford. Description and recognition of curved
objects. Artificial Intelligence, 1977.

[16] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for point-
cloud shape detection. In Computer Graphics Forum, 2007.

[17] R. Schnabel, R. Wessel, R. Wahl, and R. Klein. Shape recognition
in 3D point-clouds. In Proc. of the 16th International Conference
in Central Europe on Computer Graphics, Visualization and Com-
puter Vision, 2008.

[18] I. A. Sucan and L. E. Kavraki. Kinodynamic motion planning
by interior-exterior cell exploration. In Algorithmic Foundation of
Robotics VIII (Proceedings of Workshop on the Algorithmic Foun-
dations of Robotics), 2009.

[19] Z. Xue, A. Kasper, J. M. Zoellner, and R. Dillmann. An automatic
grasp planning system for service robots. In Proc. of the 14th Int.
Conf. on Advanced Robotics (ICAR), 2009.




