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Abstract
We present robust and efficient means for mobile robot navigation using a 3D representation of the environment. We build
3D surfel grid maps and propose Monte Carlo localization with probabilistic observation models for 2D and 3D sensors in
such maps. In contrast to localization methods that utilize a 2D laser scanner in a static horizontal mounting, our method
takes advantage of the 3D structure in the environment. This is useful, for instance, to localize in crowds of people: The
robot can focus on the static parts of the environment above the person’s height. Finally, we extract navigation maps for
2D path planning from the 3D maps. Our approach avoids discretization effects and considers the complete height range
of the robot to estimate traversability. In experiments, we demonstrate the accuracy and robustness of our approach for
pose tracking and global localization – even in a crowded environment.

1 Introduction
Many approaches to indoor localization and mapping use
2D laser scanners to acquire 2D footprints of the environ-
ment. Occupancy grid maps are used to represent the map,
because they provide dense information about free and oc-
cupied space for localization and path planning. One prob-
lem of such 2D maps appears in path planning, when ob-
stacles cannot be perceived on the laser scanner’s height.
Localization with 2D laser scanners imposes further re-
strictions when dynamic objects occur, or the environment
changes in the scan plane of the laser. Then, localization
may fail since large parts of the measurements are not ex-
plained by the map.
We address these problems by building 3D maps of the en-
vironment and by localizing in these maps (see Fig. 1). We
choose to represent the map in a 3D grid in which each
voxel maintains the 3D distribution of points by mean and
covariance (denoted as surfel). The robot acquires such
maps from several 3D scans. Once the map has been ob-
tained, we extract a 2D navigation map that considers ob-
stacles in the complete height range of the robot. Our ap-
proach avoids discretization effects by making use of the
continuous occupancy information in the map.
For localization, we developed a Monte Carlo method that
can incorporate full 3D scans as well as 2D scans. When
used with 3D scans, we extract surfels from the scans and
evaluate their observation likelihood. From 2D scans, we
extract line segments and associate them with surfels in the
map. The localization in 3D maps is specifically useful in
crowded environments. The robot can then take advantage
of measurements above the height of people to localize at
the static parts of the environment.

2 Related Work
Research on mobile robot localization in 2D maps has a
long tradition (e. g., [1, 2, 3]). In recent years, approaches
have been proposed that use 3D maps [10, 8, 7, 5, 6].

Figure 1: Top: Panorama image of an office environment.
Bottom left: 3D surfel map acquired with our approach
(surfel orientation coded by color). Bottom right: 2D nav-
igation map extracted from the 3D surfel map.

Kuemmerle et al. [8] apply Monte Carlo localization in
Multi-Level Surface (MLS) maps [11]. These maps extend
elevation maps to store height intervals of occupied space
in a 2D grid. They propose an approximate end-point sen-
sor model for individual sensor beams in the MLS map.
In order to gain efficiency, they sample 3D points from
the segments in the MLS map. Expected measurements
for beam end-points are then obtained by fast closest point
queries in a k-d tree of the sample points. In our frame-
work, an approximation by samples is not necessary.
Octrees constitute a further memory-efficient data struc-
ture for 3D map representation which has been applied for
occupancy mapping [13]. For this kind of map, Hornung et
al. [7] developed efficient means for 6-DoF localization of
a humanoid robot. They integrate postural measurements
from an IMU and joint feedback with 2D laser scans to lo-
calize within the OctoMap. For the laser measurements,
they use the end-point model. In contrast to uniform grids,
the octree data structure does not allow for precalculation
of the sensor model in a likelihood field. Instead, clos-
est point queries have to be executed in the octree. Re-
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garding the map representation, traversability can hardly
be estimated in low resolutions (e. g., 5 cm voxel size) due
to step effects. This effect must be handled by choosing
a higher resolution which is less memory-efficient. In our
map representation, we model local surface patches in each
voxel. Despite a relative coarse resolution of the voxel grid
(10 cm), our maps provide an accurate estimate of surfaces
like the floor plane.
For localization in dynamic environments, Fox et al. [3]
handle misleading measurements on dynamic objects by
incoporating them into the sensor model. Other ap-
proaches classify the environment into static and dynamic
parts (e. g. [12]). Our approach avoids the use of mislead-
ing measurements and focuses on the measurements above
the person’s height.

3 3D Surfel Grid Maps
We discretize the environment in a voxel map with a fixed
resolution (10 cm in our experiments). In each voxel we
maintain a local surface element (surfel) which we repre-
sent as a normal distribution of 3D point measurements
within the voxel.
We acquire maps by integrating 3D scans obtained from
several locations in the environment. A 2D SLAM ap-
proach provides us with a drift-free pose estimate for map-
ping. We apply gMapping [4] for this purpose. In order to
obtain an accurate 6-DoF registration of the point clouds,
we match the 3D scans using ICP.
For each surfel in the map, we determine the possible view
directions onto the estimated surface. We estimate surface
normals by the eigenvector to the smallest eigenvalue of
the 3D sample covariance. If a surfel is viewed from a
scan pose, we memorize the view direction along the sur-
face normal.
Spurious noise or measurements on dynamic objects may
be incorporated during mapping. We thus perform occu-
pancy mapping. From each sensor pose, we trace sensor
rays to update the occupancy belief in the swept voxels.
In this process, we exploit the detailed surface information
represented in our voxels (see Fig. 2). We consider a voxel
as observed occupied, if a ray ends in the voxel. If a ray
crosses a voxel, we distinguish two cases: The ray may ei-
ther miss the surfel, or intersect the planar patch defined by
the surfel mean and its normal. In the latter case, the voxel
is observed free.

Figure 2: Possible measurements in a voxel containing a
surfel. Left: Ray ends in voxel. Middle: Ray passes voxel
but misses the surfel. Right: Ray passes a voxel and inter-
sects the surfel.

4 Monte Carlo Localization in 3D
Surfel Grid Maps

We developed efficient Monte Carlo localization in 3D sur-
fel grid maps. Our method can incorporate full 3D scans
from sensors such as 3D laser scanners or depth cameras
as well as 2D scans in arbitrary scan position and orienta-
tion. By integrating 2D scans, our method can also be used
for mobile robots that are only equipped with a 2D laser
scanner. Furthermore, the robot could continuously sweep
a tilting 3D laser scanner and integrate each 2D laser scan
instantly.

4.1 Sensor Models
Plane-to-Plane Model: For the use of 3D scans, we dis-
cretize the scan zt into a voxel grid and extract surfels zt,i
from the scan. We evaluate the observation likelihood of
the scan with regard to the surfel map by the observation
model

p(zt|xt,m) =∏
i

[αrand prand(zt,i|xt,m) + αhit phit(zt,i|xt,m)] , (1)

where xt is the robot pose,m is the surfel map, and the ob-
servation model includes two components that explain the
measurement. The first component prand models random
false measurements, while

phit(zt,i|xt,m) = pd(zt,i|xt,m) pα(zt,i|xt,m) (2)

measures the observation likelihood, if the scan sur-
fel corresponds to a surfel in the map. The likeli-
hood pd(zt,i|xt,m) compares the distance between the
surfels by the deviation under their normal distributions,
i. e.,

pd(zt,i|xt,m) =

N
(
µm − T (xt) µi; 0,Σm +R(xt)ΣiR(xt)

T
)
. (3)

Similar to the work in [9], we assume local planar struc-
tures in our map and therefore flatten the surfel covari-
ances Σm and Σi along their normals, i.e.,

Σ := RDRT ,

R =
(
n v1 v2

)
, D =

 ε 0 0
0 1 0
0 0 1

 , (4)

where n is the surfel normal, v1 and v2 are the first and sec-
ond principal axes of the surfel covariance, and ε is a small
positive constant. By this, we only account for deviations
along the surface normals.
In addition, the model incorporates the view direction onto
the surfel and the surfel orientation by the observation of
the surface normal

pα(zt,i|xt,m) = N (^(ni, nm); 0, σ2
α), (5)



where we set σα empirically.
Line-to-Plane Model: We integrate planar scans in an
analogeous way to the case of 3D scans. We find line ele-
ments zt,i in the 2D scan and determine the likelihood of
the line elements in the 3D surfel map using Eq. (1). Now,
we modify the covariance Σi of the line element to not
measure distance along the line, i.e.,

Σ := RDRT ,

R =
(
v1 v2 v3

)
, D =

 1 0 0
0 ε 0
0 0 ε

 , (6)

where vj are the eigenvectors of the line element covari-
ance sorted in descending order of the eigenvalues and ε
is a small positive constant. Note, that the line element is
compared with a flattened surfel in the map, such that devi-
ations are still not measured in the plane of the surfel. The
orientation of the surface normal cannot be considered in
the 2D case.

4.2 Data Association

For the efficient association of measurements to map sur-
fels, we precalculate nearest surfel neighbors in the voxel
map. The metric d(p, µ,Σ) = (p− µ)T Σ

−1
(p− µ) for a

point p and a surfel (µ,Σ) assumes planar structures in the
map. Since the robot is moving in the horizontal plane, we
only consider nearest neighbors within the same horizontal
slice in the map.

5 Navigation Maps
Path planning requires maps that contain information about
traversable, occupied, and unknown space. We extract 2D
navigation maps from our surfel maps.
Our approach avoids many problems that one typically
encounters in occupancy voxel maps (see Fig. 3). The
discretization in such maps may introduce virtual un-
traversable steps. Furthermore, actual untraversable bumps
could not be represented that are smaller than the resolu-
tion of the map. Depending on the characteristics of the
mobile robot, this would require choosing a high resolution
for mapping. High resolutions not only increase memory-
requirements, but the resolution of the 3D sensor may not
be large enough to sample the map densely. A further ad-
vantage of our representation is, that we can exploit the de-

Figure 3: Typical discretization effects in occupancy voxel
maps. (a) The discretization introduces steps and (b) small
bumps are neglected.

Figure 4: We explore surfel maps for traversable vox-
els. We examine the transition points (EkSl) between sur-
fels (S1 and S2) to detect untraversable gaps.

tailed information in our voxel cells to generate navigation
maps in high resolutions.
Exploration of the Traversable Surface: Starting from
the scan poses, we explore the traversable surface by re-
gion growing in the map. We traverse between voxels, if
• the surfel in the next voxel is almost horizontal,
• the gap between the surfels at the common voxel

border plane is small (see Fig. 4), and
• no voxel is either occupied nor unknown within the

height range of the robot.
Interpolation of High-Resolution Navigation Maps:
We project the surfels into the horizontal plane and ras-
terize the projected lines in the 2D navigation grid map.
We also include the information on the possible view di-
rections onto the surfels. If one side of a surfel has not
been viewed, we mark the corresponding cells unknown in
the navigation map. An example map is shown in Fig. 1.

6 Experiments
We compare our approach (10 cm res.) to Monte Carlo
localization in 2D occupancy grid maps (5 cm res.) which
uses scans of a horizontally mounted laser. First, we assess
our approach in a static environment. We then demonstrate
our approach in a dynamic environment in which multiple
persons walk randomly.

6.1 Localization in Static Environments
In a static office environment, we compare the pose track-
ing accuracy of the methods. In our approach, we con-
tinuously tilt a laser scanner in a height of 1.15 m to ob-
tain laser scans in varying orientations. We integrate these
scans at high update rates into the localization estimate.

Figure 5: Comparison of the average tracking error in an
office between our approach with a continuously tilting
laser scanner (blue) and MCL with a horizontal laser (red).



Fig. 5 shows the accuracy of pose tracking in 4 runs within
an office environment. Our approach yields slightly lower
distance and angular errors. Our method is also similarly
efficient like MCL and, hence, real-time capable, although
the use of 3D maps and the extraction of surfels and line
segments from scans introduces a small overhead. When
integrating line segments from 2D scans, our approach per-
forms updates for 500 particles within ca. 18 msec on a
quadcore CPU (MCL: 10 msec).

6.2 Localization in Dynamic Environments
In a dynamic setting, we compare standard MCL with our
approach which focuses on measurements above the per-
sons’ heights. Eight persons were randomly walking in the
test environment. We quantify, how often and how accu-
rately the localization methods estimate the final position
of the trajectory. If with our approach the robot stands dur-
ing a full sweep, the complete 3D scan is integrated. Oth-
erwise, we use the 2D scans instantly.
For pose tracking, we initialize the methods with ground
truth. For global localization, we initialize the methods
with a uniform distribution of 5000 particles. We evaluated
global localization at 45 starting points in 5 trajectories.
Fig. 6 shows results of this experiment. It can be seen that
our approach localizes the robot more accurate. Global lo-
calization in the 2D map only succeeds in about 30% of the
runs, whereas our approach achieves 97.5% success rate at
a distance threshold of 0.5 m. While our approach yields
superior results in accuracy, it still retains the efficiency of
2D localization.

7 Conclusion
We presented efficient means for navigation using 3D sur-
fel grid maps. The map discretizes the environment and
estimates occupancy in each cell. In contrast to standard
occupancy grid maps, it maintains a continuous estimate
of the occupied space. We exploit this to better judge
traversability and to generate high-detail navigation maps.
We proposed probabilistic sensor models of 2D and 3D
scan measurements in our map. We integrated these sen-
sor models in a Monte Carlo localization framework. In
experiments, we could demonstrate that our method per-
forms similarly well like a standard MCL approach with
a horizontal 2D laser scanner in a static environment. In
dynamic environments such as crowds of people, our ap-
proach yields superior results, since it can focus on the
static parts of the environment.
The overhead in using our 3D approach amounts only in a
small constant factor (ca. 2) towards 2D MCL for a mea-
surement update in the particle filter.
In future work, we will extend our approach to localize a
robot in six degrees of freedom (6-DoF). For the navigation
in 6-DoF, we will also generate 3D navigation maps. Fi-
nally, we integrate 6-DoF SLAM into our system to make
full use of our representation during incremental mapping.

Figure 6: Localization in dynamic environments. Top: Ex-
ample estimates of 2D MCL (red) and our 3D approach
(blue). Bottom Accuracy for pose tracking (left) and after
global localization (right).
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